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ABSTRACT Surface-based binding assays are often influenced by the transport of analyte to the sensor surface. Using
simulated data sets, we test a simple two-compartment model to see if its description of transport and binding is sufficient
to accurately analyze BIACORE data. First we present a computer model that can generate realistic BIACORE data. This
model calculates the laminar flow of analyte within the flow cell, its diffusion both perpendicular and parallel to the sensor
surface, and the reversible chemical reaction between analyte and immobilized reactant. We use this computer model to
generate binding data under a variety of conditions. An analysis of these data sets with the two-compartment model
demonstrates that good estimates of the intrinsic reaction rate constants are recovered even when mass transport influences
the binding reaction. We also discuss the conditions under which the two-compartment model can be used to determine the
diffusion coefficient of the analyte. Our results illustrate that this model can significantly extend the range of association rate
constants that can be accurately determined from BIACORE.

INTRODUCTION

Until recently, obtaining reliable equilibrium and rate con- receptor (Josson et al., 1991; Malmqvist, 1993; Garland,
stants for interacting biomolecules was often difficult and1996). Thus continuous monitoring of the SPR signal al-
time consuming. Optical biosensors now offer a rapid waylows the kinetics of binding to be followed in real time.
to determine equilibrium and rate constants without theAfter binding, buffer alone may be introduced to monitor
need to label the interacting biomolecules (Garland, 1996the dissociation kinetics.
Silin and Plant, 1997). Because of these features these As the preceding description suggests, the SPR signal in
instruments, such as BIACORE (Biacore, Uppsala, Swej typical experiment is not simply a report of the progress of
den), have gained wide use and have been employed in thRe chemical processes of association and dissociation at the
study of the interactions of a variety of biomolecules, in-syrface. Rather, the signal is the result of a combination of
cluding proteins, nucleic acids, lipids, and carbohydrateshese chemical processes and the transport processes of
(reviewed in Szabo et al., 1995; Raghavan and Bjorkmangifysion and flow. Thus obtaining estimates of the intrinsic
1995; van der Merwe and Barclay, 1996; Myszka, 1997 toward and reverse rate constants of the analyte-receptor
Schuck, 1997a; Fivash et al., 1998). o reaction requires some model that will, when needed, ac-
_In BIACORE instruments, one of the reactants is immo-¢ 0 for transport. The model most often used assumes that
bilized on a sensor chip. We will call it the receptor, in jger 4 prief transient, during which analyte is transported to

?nalogy tp a r?cepto; on da cell Sﬁrfa}ce, atl)t_?ougr} In t(;":‘[he sensor surface, no correction is needed, because the free
lterature it Is often referred to as the immobilized ligan "analyte concentration remains uniform in space and con-

T T o e aisant i lme, kep 50 by he connuous o of new
P y P analyte. We will refer to this model as the rapid mixing

by coupling it to a thin dextran layer that extend00 nm model because, after the brief transient, the binding at the

out from the sensor surface, 0.2% of the height of the flow : . )
) S . sensor surface is the same as for a well-mixed system with
chamber. Detection of binding is based on the optical phe- .
nstant analyte concentration.

nomenon of surface plasmon resonance (SPR). The SP??S ¢ i in th timat f1h i tant
response is used to detect changes in the index of refraction ystematic errors In the estimates of the rate constants
arise if the rapid mixing model is not a reasonable

caused by mass changes at the sensor surface. The
Y g escription of the binding kinetics (Chaiken et al., 1992;

changes are brought about by the binding of analyte t

Malmborg et al., 1992; Ito and Kurosawa, 1993; Morton et
al., 1994; Wohlhueter et al., 1994). A number of authors
Received for publication 30 December 1997 and in final form 29 April have discussed this problem and presented conditions under
1998. which the assumption is expected to break down (Glaser,
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analyte within the dextran layer. If one or both of theseOBTAINING SIMULATED DATA SETS
influence the kinetics of binding, then the free analyte_l_he mathematical model
concentration cannot be taken to be constant and uniform.
In this paper we consider only experiments in which theln BIACORE instruments, analyte is transported by diffu-
properties of the dextran layer do not influence the bindingsion and flow to the sensor surface, where it reacts with
kinetics, i.e., where the binding can be treated as if themmobilized receptors. The flow channel of the BIACORE
receptors are coupled directly to the sensor surface. BIAhas a rectangular cross section (lengtireighth, and width
CORE binding studies have been performed both with rew). We lett be the time, and we introduce Cartesian coor-
ceptors coupled to dextran layers and with receptors coudinates with the origin at the inflow port, theaxis parallel
pled directly to the sensor surfaces (Karlsson aifly F97;  to the direction of flow, and they axis normal to the
Parsons and Stockley, 1997). These experiments demoreceptor-coated surface (illustrated in Fig. 1). (In BIACORE
strate that under appropriate experimental conditions (i.einstruments, the sensor surface is actually on top of the flow
low surface capacity), the dextran layer has no significan€ell. For convenience we draw it on the bottom.) Because
effect on the binding kinetics. the instrument’s flow chamber is 10 times wider than it is
To improve the ana|ysis of bulk transport effects on thehlgh, variations in concentrations across the width of the
SPR signal, a simple model has been proposed that treag§amber can be neglected.
binding as a two-step process: transport of analyte to the Along the flow chamber, laminar flow is fully developed
sensor surface, followed by reaction of analyte with recep€ssentially over its entire length (Brody et al., 1996). The
tors on the surface (Myszka et al., 1997). This two-com-Velocity profile is therefore parabolic, gqual to zero at the
partment model is attractive because it can be formulated ifPP (¥ = h) and bottom § = 0) boundaries and rising to a
terms of a simple system of ordinary differential equationsT@ximum,v, in the center, i.e., the velocii(y) at a height
and because it is only slightly more complicated than the/ @P0ve the sensor surface is (Batchelor, 1967)
rapid mixing model. The two-compartment model has been _ -
used to describe several experimental systems studied with v(y) = Av(ym(a = (y/h) @)
BIACORE instruments (Myszka et al., 1996, 1997; Morton (Because Eq. 1 is sometimes written in terms of the average
and Myszka, 1998). This is encouraging, but uncertaintyelocity, v, we note tha¥ = 2v/3.)
remains about how well the two-compartment model de- The dependent variables of the model are the bulk con-
scribes BIACORE binding kinetics. What is provided in this centration of free analyté&(t, x, y), and the surface density
paper is a demonstration that the two-compartment model isf bound analyteB(t, X) (with units of mass/volume and
sufficiently accurate to analyze BIACORE data. In partic-mass/area, respectively). The net analyte flux due to con-
ular, we show that the numerical parameter values obtainedection and diffusion is
by fitting the two-compartment model to noisy SPR data are
accurate estimates of the underlying physical paramete}(t’ X y) =
values. y + jaC(t, %, y)lay)
The approach we use to demonstrate the validity of the
two-compartment kinetic scheme for analyzing BIACORE whereJ is the flux vector,D is the analyte diffusion coef-
binding data is as follows: ficient, andi andj are the unit vectors in the& andy
1. We present a computer model that can simulate BIAdirections. The component of normal to any surface,
CORE binding experiments involving monovalent analytesintegrated over that surface, equals the flux through the
binding to monovalent receptors, i.e., that accounts fosurface, e.g., the number of particles per second passing
laminar flow and diffusion of the analyte, chemical reac-through the surface. From conservation of mass (the conti-
tions at the sensor surface, and geometry of the BIACOREBUity equation), the following partial differential equation
This computer model is similar to that developed by Glaser
(1993), the difference being that we include diffusion in the
flow direction.

iv(y)C(t, X, y) — D(ioC(t, x, y)/ox
(2)

. y=h ~=—

2. We use the computer model to simulate BIACORE > P ® ®

binding data, choosing parameter values that lead to trans- —— ® L J
t-influenced binding kineti I ter val e Cxy @

port-influenced binding kinetics as well as parameter values ' ® P
where suc_h effects are negligible. o " > P ¥ v ¥

_3. We fit the two-compartment binding qugl to the o Bt R(t,x) "
simulated data and show that we recover the original values sensor surface -

of the rate constants (the values used to simulate the data). _ o
4. We then add random noise at realistic levels to the I'GUF:E 1 _dtshChma“ChOf af'A;:OF;E f'OWChIamtbzr' ngt’;e the Va”a“o;‘
. . . along the wi [0} € chamber nas been neglected an € Sensor surrace
_SImUIatlonS and demonstrate that QOOd estimates of thﬁas been placed on the bottom rather than the top. For a standard instru-
input parameters are recovered when the two-compartmegfent h = 5 x 102 cm, | = 0.24 cm, and the width equals’s 102 cm.

model is used to analyze the noisy simulated data. The figure is not to scale. The true length is 48 times longer than the height.
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(PDE) is obtained: (hC/Ry)ac(t, X, y)loy = ab(t, X)loT
dClat = D(02Clax? + 9°Clay?) — 4v,(y/h)(1 — (y/h))aClax = k,C(7, X, 00(1 — b(1, X)) — kb(T, X) aty=0 (7b)
3)
c(r,0,y =1 atx=0 (7¢)

The boundary conditions for Eq. 3 are as follows. Because
the top boundary is impenetrable and unreactive, the mass ac(t, x, y)lox =0 atx=1 (7d)

flux of analyte must vanish at this boundary:
If diffusion in the x direction is ignored (i.e., the? term

aC(t, x, y)oy =0 aty=nh (4a) in Eq. 6 is set equal to zero), the model reduces to what has
now become a standard description for the BIACORE flow
In contrast, the analyte mass flux at the sensor surfacgy, (Lok et al., 1983; Glaser, 1993; Christensen, 1997).

should equal_the time rate of change in the amount bound &5 mush et al. (1996) have also used this approximation,
the surface, i.e., but in the context of a nonnegligible dextran layer. For a

DIC(t, X, y)/ay = aB(t, X)/at standard flow celle = 0.021. This suggests that such an
(t.x y)idy (t.%) (4b) approximation is justified, although for < e, diffusion in
= k.C(t, X, OR(t, x) — ksB(t, X) aty=0 the x direction will dominate flow. We have not made this

. . __approximation, because we are using the model as an ab-
whereC(t, x, 0) is the free analyte concentration at positionsp|ute standard for generating simulation data, and therefore
x just above the sensor surfa¢¥t, X) = Ry — B(t, x) isthe jt js desirable to include as much detail as possible. Because

free surface receptor concentration>atR; is the total  we are solving Eq. 6 numerically, there is no necessity to do
receptor concentration and is constant with respect to boththerwise.

position and time. The rate constants of the reactiorkare
andk,. Note that these are the intrinsic microscopic forward
and reverse rate constants for binding of the analyte to th&fhe numerical method
receptor.

At the entry port to the flow cell = 0), the concentra-
tion is constant and equal to the injection concentraiiy,
ie.,

We have solved Eq. 6 by using a general, conservative, and
well-tested hydrodynamics transport code based on the
method of finite elements (Dembo, 1994a,b). Shown in Fig.
2 is a small computational grid (8 8) with 49 node points
C(t, 0,y) = Ct atx=0 (4c) and 32 surface elements. In thedirection the length is
divided uniformly into eight parts. In thg direction the
At the end of the sensor, where analyte exits<(1), we  height first is divided into four equal parts. The top and
adopt a simple continuation condition that assumes the exliottom sections are then divided in half, so there are six
of analyte is due entirely to flow: sections in all. Finally, the new top and bottom sections are
divided in half, forming the eight sections shown in Fig. 2.
ICE X, y)lox=0  atx= (4d) " The height of the bottom and top sectionghig6. Refine-

Hence they leave the computational domain and have ments of this grid are generated by subdividing each of the

negligible effect on the dynamic processes happening insigduadrilaterals of the course mesh into four equal parts. For
the instrument. example, the top and bottom elements of ax664 grid are

It is useful to write Eq. 3 and the boundary conditions,h/128 in height and/64 in length. In the BIACORE flow

Eqs. 4a—4d, in nondimensional form. To do this we intro-Cell, except at very short times after the initiation of binding

duce the following nondimensional time and lengths con-2nd dissociation, the concentration of analyte is uniform far
centrations. and rate constants: ' from the sensor surface. Thus there is no reason for gener-
’ ating a fine grid near the top surface. This was done only

7= Dt/h? x = x| y=y/h (5a) because the code we adapted required a grid that was

c=CIC; b=BR r=RR  (5b)

ko= kCihD  ky= kh?/D (5¢) y=h

and nondimensional parameters:

e=hl p=4vhD (5d)

Equations 3 and 4a—4c become

¥=0 x-0 sensor surface x=l
acloT = €29%clax? + 0°cloy? — pey(1 — y)aclox  (6)
FIGURE 2 An 8Xx 8 computational grid consisting of 49 node points
ac(t, x, y)lay = 0 aty=1 (7a)  and 32 boundary points.
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symmetrical aboutt/2. We have since developed a code for0.2 s 1. Analyte was injected for 50 s, after which buffer
which this is not required (unpublished result). was introduced and dissociation proceeded for an additional
In trial simulations we compared the time course for the50 s. Fig. 3 shows the average concentration of bound
average concentration of bound analyte, calculated using @analyte and the average free analyte concentration just
32 X 32 and a 64X 64 grid. The average concentration of above the sensor surface plotted as a function of time. We
the bound ligand was calculated by summing the boundee from Fig. 3 that the free analyte concentration near the
ligand concentration over each bottom surface element ansensor surface is not constant during the association phase
dividing the sum by the number of bottom surface elementsor zero during the dissociation phase, as is often assumed.
n + 1 for ann X n grid. There was no significant difference Fig. 4 presents “snapshots” of the free analyte concentra-
between the values obtained using the two grids. Neverthdion, as a function of position throughout the flow cell, at
less, in the Results section, where we test the two-comparfeur successive time points (two during the association
ment model’s ability to recover accurate parameter valuegphase and two during the dissociation phase). Note that at
all simulations were done on a 64 64 grid. For this grid 25 s and 75 s there is substantial variation in the free analyte
the first set of grid points above the sensor surfaceys=at  concentration along the sensor surface. As a consequence,
h/128 ~ 400 nm, or about four times the thickness of the
dextran layer for a standard CM5 sensor surface (Stenberg

et al., 1991). S5

Simulations 25.0

To illustrate the information that can be obtained from 245
solving Eqg. 6 numerically, subject to the boundary condi- 54
tions in Eqs. 7a—7d, we simulate a BIACORE binding study

using parameter values previously determined for interleu 23.5
kin-2 (IL-2), flowing past, and interacting with, its immo-
bilized low-affinity receptor, IL-2R (Myszka et al., 1996).
In the simulation we took the association rate conskgrt 22.5
8 X 10° M~ s ! and the dissociation rate constagt=

23.0

22.0 ‘
21.5
140 LI B S T T
" 6 0.0
L -=| 3 ) 25
. ) 05
105 | g g° 3| 3T
g ${20 8 1.0
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5 - 4 g 15
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& 2
® 35¢ 8 3.0
o« {5 ¢&
= 35
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0 oS 4.0 i
R . R L R 45
0 20 40 60 80 100
Time (s) FIGURE 4 Predicted free analyte concentration in the BIACORE flow

cell for the simulation parameters given in Fig. 3. Different colors indicate
FIGURE 3 Predicted time course for the average concentration of boundifferent free analyte concentrations in 0.5 nM increments. The contours
analyte (——) and average free analyte concentration at the sensor surfagegparating two colors are lines of fixed concentration. The value of the
(==-). In the simulation, 25 nM analyte was injected from 0 to 50 s concentration at any point on the grid is obtained by interpolating between
(Cr = 25 nM), then the injected concentration was set to z€xo< 0) and  the calculated values of the two nodes the grid line connects. Note that in
dissociation was followed for 50 g, = 5 cm/s, corresponding to a flow  the association phase € 25 s and 50 s) the contours separating the two
rate of 50 ul/min, and the analyte diffusion coefficiem = 1 X 107° colors nearest the top surface are not smooth. This indicates that in this
cm?/s. The immobilized receptor concentrati@p = 7.5 X 10" receptors/  region, more node points are required to improve accuracy. This simulation
cn?® = 1.25 nM cm. (Because 1 RE 10 *°g/cn?, when all sites are filled  was done on a 3% 32 grid. Despite the apparent lack of spatial resolution
with IL-2, MW = 14,000, there is an increase of 175 RU over baseline.)far from the boundary, when we compared calculations using x &2
A standard flow cell was assumed, whih= 5 x 10 2cmand = 0.24cm.  and a 64X 64 grid, the quantity we are most interested in, the average
ko=8x10° M *s *andky = 0.2 5%, as reported in the literature for bound analyte concentratioB, changed only slightly. Between 10 s and
IL-2 binding to IL-2Rx (Myszka et al., 1996). A 3X 32 grid was used. 90 s, the difference was always less than 1%.
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the bound analyte concentration will also be nonuniform, as 30— . : : :

illustrated in Fig. 5. In BIACORE instruments the SPR =

detector is centered in the middle of the flow cell and = — — 1

monitors~75% of the total flow path. Thus the output is a g ya

measure of the average bound analyte over this region. g 20 |/ J/ 1
The parameter values used in Figs. 3-5 were chosen to '§

demonstrate how transport affects the kinetics of binding g | 1

and dissociation in a BIACORE instrument. In Fig. 6 we J \

show that as the association rate is decreased, transport = L o 1

effects become negligible, i.e., the concentration of free & /!

analyte becomes constant in time, and the rapid mixing 3 N \ ]

model becomes a good description of the binding. = | R T
In the next section we discuss a proposed method of

analyzing BIACORE binding data that are influenced by ‘ : : :
mass transport. To test this method we simulate additional 0 20 40 60 80 100
BIACORE binding experiments under a variety of condi-

tions and see if the method can recover the kinetic param-
eters used in the simulations. FIGURE 6 The time course of the average free analyte concentration

just above the sensor surface, for different values of the forward rate
constantk,. Shown are time courses for the average free analyte concen-

Time (s)

tration fork,= 8 X 10* M s * (—),8 X 10° M s 1 (---), and 8x
ANALYZING MASS TRANSPORT-INFLUENCED 10° M1 571 (). All other simulation parameters are the same as in
BINDING DATA Fig. 3.

A two-compartment model

Obtaining kinetic parameters from binding data requires A two-compartment model, consisting of a set of coupled
fitting a model to the data. At present, it is impractical to doordinary differential equations, has been used to analyze a
this by using the mathematical description of the previoussariety of BIACORE binding experiments that have been
section, a PDE (Eqg. 6), and its boundary conditions, Eqsshown to be influenced by mass transport (Myszka et al.,
7a—7d. A simpler mathematical model is required, one tha 996, 1997; Morton and Myszka, 1998). First we review
can accurately calculate the average concentration of bourttlis model, and then in the following section we test it, to
analyte at the sensor surface. This model need do nothingee if accurate rate constants can be recovered from simu-
more. For example, it does not have to describe the spatidhted BIACORE experiments.

variation of the analyte concentration throughout the flow The model handles the variation in analyte concentration
cell or of the bound analyte over the sensor surface. in the BIACORE flow cell (see Fig. 4) by dividing the flow
chamber into two compartments as shown in Fig. 7. Within
each compartment the concentrations are uniform in space
but may change in time. These concentrations are averages

' ' ' ' over the length of the BIACORE flow cell. It is assumed
105 that the analyte concentration in the outer compartment is
=)
< h
g 70 e ° [ ®
<)
§ ® ® C; @
o e © o ®
35 y=h|-------------—-----------------
} y ¥ "I |
g R
0 " 1 i 1 " 1 N 1 " x=0 B X=
0 20 40 60 80 100 sensor surface
Time (s) FIGURE 7 A two-compartment model of the BIACORE flow cell. In the
binding phase the average analyte concentration near the sensor d0rface,
FIGURE 5 Spatial variation in the bound analyte concentratigh,x). equals zero initially and grows with time until it equals the injection

Shown are time courses for the bound analyte concentration in RU at aoncentrationC; or dissociation is initiated and it decays to zero. The
distance ofl/4 (—), 1/2 (-- -), and 3/4 () along the sensor surface. analyte concentration far from the sensor surface remains constant and
The simulation parameters used are the same as in Fig. 3. The resukgjual toC; during binding, and constant and equal to zero during disso-
demonstrate that the bound analyte concentration varies with the distanagation. B andR are the bound and free receptor concentrations, averaged
from the entrance to the flow cell. over the sensor surface.
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constant and equal to the injection concentratiop, The  this is done, we see from Eq. 8a tHatdrops out of the
model ignores the brief transition periods that occur wherequations, which explains why the choice lpfdoes not
binding or dissociation is initiated and the concentration inaffect the solution. Once the quasi-equilibrium approxima-
the outer compartment rises or falls @. At the typical tion is made, the model is identical to the often discussed
flow rates used in kinetic experiments (50-1@0'min, effective rate constant model (Karlsson et al., 1994).
corresponding te, = 5 — 10 cm/s), the time needed foran  Returning to Egs. 8a and 8b, we defiBe= B/h;, R =
analyte molecule that is not near the walls of the flow cellR/h;, Ry = Ry/h;, andky,, = ky,/h;. In terms of these quan-
to travel 0.24 cm, the length of the flow chamber, is lesstities, Eqs. 8a and 8b take the familiar form

than 0.05 s. The concentration in the inner compartn@nt, L .

changes because analyte is transported between compart-  dC/dt = (—k,C(Ry — B) + kiB + ky(Cy — C))

ments and because analyte binds to, and dissociates from, (10a)
immobilized receptors on the sensor surfaceVilfis the ~ - ~ ~

volume of the inner compartmer,is the surface area of dB/dt = k.C(Rr — B) — kB (10D)

the flow chamber, andy is the transport coefficient de-  \yhen these equations are used to analyze binding data,
scribing diffusive movement of analyte between the com-yme care must be taken in the choice of units. If we

partments, then measureR, Ry, andB in RU; CandCy in M; kyinM~1s™%;
o _ _ kqin s7% andky, in cm/s, this is equivalent to settirg =
VidC/dt = S—kCRr = B) + kB +ka(Cr =€) (8) 1oy (Because the data are insensitive to the valure, of
dB/dt = k,C(R; — B) — kB (8b) Wweare free to choose any value for it we wish. Taking
1 RU/M avoids having to divide the data valuestpypefore
The initial conditions for the binding phase of the experi-fitting the data. It is a convenient choice having nothing to
ment are that at= 0, C; equals the injection concentration, do with the physical height of the inner compartment.) To
C = 0 andB = 0. The initial conditions for the dissociation obtaink,, in cm/s fromk,, in 1/s, the parameter determined
phase are that at the time of dissociatipn, C+ = 0, and  from the least-squares fit of the data, one must multiply by
C and B equal the values they attainedtat ty.s If the 10~ and divide by the molecular weight of the analyte, i.e.,
association phase is sufficiently long so that a steady state is

reached, then at = t4.,, C = Cy andB = KC;R/(1 + ku = (1 RU/M)ky = (1077 cm g/mobky,
KC;), but this is not required. -
The rapid mixing model assumes that after a brief tran- = (1077 cm/MW)ky (11)

sient, the free analyttnT concent_rauon |s_ uniform throthg%\/here we have used the conversion factor 1RULO-1°
the flow chamber. This model is described by Eq. 8b W'thg/cmz

C=C.
As discussed in the Appendik,, is the diffusion-limited
forward rate constant, averaged over the sensor surfacpata fitting approach

Transport effects will influence the kinetics of binding when

the reaction rate is fast compared to the rate of transport/€ Priefly summarize the data fitting approach we employ,
i.e., whenk Ry = ky,. (To evaluate this inequality, the units because it has been discussed in detail elsewhere (Myszka,
must be consistent, so for examplekifis in M~ s, then 1997; Myszka et al., 1997; Morton and Myszka, 1998). The
R; should be in M cm ané, in cm/s.) As discussed by Lok até constantk, andky, k,, (related to the transport coeffi-

et al. (1983) and Sjander and Urbaniczky (1991), it can be Ci€Ntky by Eq. 11), and the surface receptor denBiare
shown that, to a good approximation, taken to be free parameters. The best fit values of these

parameters are determined from nonlinear least-squares fit-
1 (3v,D?\¥? v.D?\? ting of the data, where the calculated values of the average
kw = 1~(4/3)( ohl ) =4 82( hi ) () bound analyte concentration for each time point are deter-
mined by solving Egs. 10a and 10b numerically (Morton et
Because the model does not specify the height of thal., 1995). (The software program used in this analysis
inner compartment, there are four unknown parameters thd CLAMP) may be downloaded for no charge at the follow-
enter Egs. 8a and 8k, kg, ky;, andh; = Vi/S. However, for  ing web site: http://www.hci.utah.edu/cores/biacore/docs/
the range of parameter values that describe BIACORElamp.html.)
experiments, the solutions to Egs. 8a and 8b are insensitive To obtain accurate values for the kinetic rate constants
to the value ofh,. It can be shown (see Appendix and Fig. and the transport coefficient, the data that are being fit must
3) that at the sensor surface, once binding or dissociation ise sensitive to these parameters. Recall that as the receptor
initiated, C changes rapidly over a short period of time anddensity on the sensor surface is increased, the binding
slowly thereafter. Furthermore, while this rapid chang€in reaction at the sensor surface speeds up, and the binding
is occurring, there is a negligible changeBnThis behavior  kinetics become transport limited. As a result, at high sur-
means that a quasi-steady-state approximation can be matkece receptor densities, the binding kinetics are dependent
where we set @/dt = 0 (Segel and Slemrod, 1989). When onk,,. In the other limit, as the receptor density is reduced,
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transport effects decrease and these data become insensitasimulate the data, even in the absence of noise, the standard
to ky, and strongly dependent on the reaction rate constantsleviation of the residuals is nonzero. As shown in Table 1B,
To try to ensure that the data depend on both the transpospplying the two-compartment model to these same data
and the reaction rate constants, we simultaneously fit datgets gives essentially the same results. The additional pa-
sets for different surface receptor densities. The procedure iameter,RM, has little effect on the quality of the fit (std
sometimes called global analysis and has been extensivetgsiduals= 0.053 RU), the returned parameter values, stan-
used to analyze BIACORE binding data (Morton et al.,dard deviations, or the correlation coefficients. However,
1995; Myszka et al., 1996, 1997; Morton and Myszka,the value returned fdg, of 2.9 x 10'?s~*, which from Eq.
1998). 11 corresponds tky, = 9.7 cm/s for MW= 3 X 10° Da, is

grossly in error. From Eq. 9, the predicted value Kgris

2.6 X 103 cm/s. This error is not surprising. The associ-
RESULTS ation rate is so slow that the binding is unaffected by

In this section we report the results of fitting the two- transport, and so the data contain no information for the

compartment model to simulated data sets generated und@ftermination oky. .
a variety of conditions. Before considering the effects of N€Xt we carried out the same fitting procedures on data

noisy data on parameter estimation, we see how well theimulated with a 10-fold higher association rate constant
model does at recovering parameter values in the absence & = 5 X 10° M™* s™%). All other parameters were the
noise. same. Again a good fit was obtained with the rapid mixing
We start by analyzing data where the reactions are ngiodel (std residuals- 0.062 RU), yielding parameter val-
influenced by mass transport. Fig. 8 illustrates two sets of€S that are close to the input values (Table 2A). As shown
binding experiments simulated with identical rate constants" Table 2B, using a two-compartment model improves the
(k,= 5% 10* M * s tandky = 0.04 %) and flow rates quality of the fit somewhat (std residuats 0.055 RU).
(100 wl/min), but with different receptor densitie®(, =  Furthermore, the best fit valug, = 8.9 X 10° s™*, which
50 RU andR;, = 15 RU). Note that when the reaction is not corresponds té, = 3.0 X 10" cm/s, is greatly improved,
influenced by transport, for the same analyte concentratiorR€ing within 13% of the expected value. The improvements
the binding responses are identical for the two surfaced the residual standard deviation, rate constant estimates,
when normalized with respect to the maximum responseand the value ok, suggest that under these conditions,
i.e., a plot of the fraction of receptor sites bound versus timdransport is beginning to influence the binding kinetics.
is independent oR;. Under these conditions, the rapid Fig. 9 illustrates what happens to the shapes of the
mixing model (Eg. 8b, wittC = C;) gives an excellent fit binding responses when the association rate constant is
to the data (not shown) and returns correct parameter valueicreased to x 10° M~*s™* and the data become strongly
as shown in Table 1A, i.e., the best fit values of the paraminfluenced by transport. (Note that the off-rate constant was
eters match the values used to simulate the data. The staimcreased to 0.08°¢, so that the shapes of the progress
dard deviation of the residuals equals 0.054 RU, which isurves would remain similar.) Without doing any data fit-
small but nonzero. Because the ODE models used to fit théng, one can see (compare Figc @ith 9 d) that the binding
data are always approximations to the PDE model used tis transport limited because, unlike in Fig. 8, the shapes of
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FIGURE 8 Binding response simulated for a reaction occurring under conditions where the binding is reaction limited. The parameter values used in the
simulations weré, = 5 X 10* M~ *s ™%, k; = 0.04 s, D = 1 X 10 ® cnm?/s, andv, = 10 cm/s. The surface receptor concentrations were 0.167 nM cm

(@) and 0.05 nM cmlg), which, for an analyte with MW= 3 X 107, correspond to a maximum response of 50 RU and 15 RU, respectively. The ligand
concentrations used in the simulation were 8000, 2670, 890, 297, and 99 nM. The results of the fit are given in Table 1.
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TABLE 1 Parameter estimates, standard deviations, and correlations for the fits of the rapid mixing model and the two-
compartment model to data simulated in Fig. 8 withk, =5 x 10*M~'s 'and k, = 4 x 1072 s~

Correlation coefficient

Parameter Estimate Std Braxi Brnaxe Kk, Ky

A. Rapid mixing model

R, (RU) 50.14 8.6x 103

Rr, (RU) 15.00 5.5 103 0.324

ko(M~1ts™? 4.92x% 10 2.7x 10 —0.632 —-0.319

kg (s7H) 0.040 1.3x 1073 0.342 0.165 0.230
B. Two-compartment model

R, (RU) 50.14 8.6x 103

Rr, (RU) 15.00 5.5 103 0.323

ko(M~ts™? 4.92x% 10 2.7x 10 —-0.631 —-0.317

kg (s7H) 0.040 1.3x 1073 0.343 0.161 0.226

ku (579 2.89x 10" 1.2x 10 —0.009 0.044 0.020 —0.090

The parameters values used to simulate the data are given in Figr.&,, = 0.0032 and 0.0010, for the two surface receptor densities X.60~*°
M cm and 5.0 10~ ° M cm. For an analyte with a molecular weight 06310*, these correspond to maximum binding capacities of 50 RU and 15 RU.

the binding curves for the two surfaces are not identicalficient when the binding kinetics are influenced by trans-
Now equilibrium is approached more rapidly on the surfaceport.
with the lower receptor density. When the binding is influ- The accurate determination &, suggests that BIA-
enced by transport, the fraction of receptor sites bound is n@ORE can be used to determine the diffusion coefficient of
longer independent d®;. Receptors no longer act indepen- the analyte by calculatind from Eqg. 9. The value dk,, in
dently. In the association phase they compete for analyté[able 3A givesD = 9.85 X 10~/ cné/s, which is remark-
whereas in the dissociation phase rebinding occurs. ably close to the value used in the simulation of .00 °©

The fit of the rapid mixing model to the simulated data cm?/s. However, because Eq. 9 is an approximate result, to
(Fig. 9,a andb) is poor (residual ste= 1.52 RU), whereas determineD from k,,, one must ensure that the experiments
the fit of the two-compartment model (Fig. 8,andd) is  are done in a parameter range in which Eq. 9 is sufficiently
excellent (residual sté= 0.07 RU). Furthermore, in Table accurate (see Discussion).
3A we see that the two-compartment model returns param- Finally, to study the effects of noise on the best fit values
eter values that are close to those used in the simulationsf the parameters, we added 0.5 RU of pseudo-normally
The best fit valuds, = 7.72x 10 RU s %, or equivalently, distributed noise to the data sets of Fig. 9. This level of
ky = 2.6 X 103 cm/s, is within 1% of the predicted value. noise is consistent with what is seen in typical experiments
These results demonstrate that in the absence of noise, tdene on BIACORE 2000 (Morton and Myszka, 1998). Fig.
two-compartment model returns accurate estimates for bothO shows the results of fitting the two-compartment model
the intrinsic reaction rate constants and the transport coeto these data. The residual standard deviation was 0.504 RU,

TABLE 2 Parameter estimates, standard deviations, and correlations for the fits of the rapid mixing model and the two-
compartment model to data simulated with k, =5 x 10° M~ 's " and ky = 4 x 10721

Correlation coefficient

Parameter Estimate Std Ry R, ka Ky

A. Rapid mixing model

R, (RU) 50.12 9.6x 1073

Rr, (RU) 15.00 6.3 103 0.291

ky(M™1s™%) 4.86% 10° 2.8X 107 —0.601 -0.277

ke (s7H 0.039 1.5x10°° 0.335 0.154 0.277
B. Two-compartment model

R, (RU) 50.13 8.6x 1073

Rr, (RU) 15.00 5.6< 102 0.293

ky(M™1s™%) 4.94x 10° 5.4X 107 —0.338 —0.164

ke (s7H 0.040 3.6x10°° 0.061 0.019 0.870

kv (579 8.93x 10° 5.1x 107 0.064 0.039 —0.881 —0.930

The parameters values used to simulate the data are given in Fig. 8, exdeptferx 10° M~*s tandk, = 4 X 10 2s %, k,R;/k,, = 0.032 and 0.010,
for the two surface receptor densities 1.67.0"1° M ¢cm and 5.0x 10~° M cm. For an analyte with a molecular weight o3 10%, these correspond
to maximum binding capacities of 50 RU and 15 RU.
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which is consistent with the level of noise added to the datademonstrate that the linear approximation statistics returned
The best fit parameter values are given in Table 3B. Surfor the nonlinear analysis were valid, we performed Monte
prisingly, this level of random noise had little effect on the Carlo analysis to generate confidence probability distribu-
determined parameter values or the correlation coefficientdjons for the estimated parameters (Straume and Johnson,
although as expected, the standard errors were increased. T692). One thousand data sets were simulated with noise

TABLE 3 Parameter estimates, standard deviations, and correlations for the fits of the two-compartment model to data
simulated with k, =1 X 10 M~" s~ ' and k, = 8 x 1072 s " in the absence of noise (Fig. 9) and the presence of noise (Fig. 10)

Correlation coefficient

Parameter Estimate Std R, R, Ky Ky

A. Absence of noise

Bumax1 (RU) 49.92 1.2 1072

Bmaxz (RU) 15.04 7.5¢ 1073 0.349

ko(M~1ts™% 1.02x 10° 4.1x 10° —0.156 0.014

kg (s7h 0.083 3.1x 10 0.012 0.102 0.979

ku (579 7.72x 10° 9.2 1¢° 0.078 —0.049 —0.894 —0.898
B. Noisy data

R, (RU) 49.90 8.7 1072

R, (RU) 14.99 5.3x 10 2 0.348

ky(M™1s™%) 1.05x 10° 3.0x 1¢° —0.168 0.021

kg (s7H) 0.085 2.3x10°° 0.002 0.107 0.980

Ky (579 7.66x 10° 6.4% 10° 0.086 —0.055 —0.894 —-0.897
C. Monte Carlo analysis after 1000 simulations

R, (RU) 49.92 8.7x 102

R, (RU) 15.03 5.3 1072

k,(M~ts™} 1.02x 10° 2.9x% 10°

kg (s7h 0.083 2.2x10°°

ky (571 7.72% 10° 6.7x 10°

The parameters values used to simulate the data are given in Figs. 9 agB1K), = 6.4 and 1.9, for the two surface receptor densities K670 *°
M cm and 5.0 10~° M cm. For an analyte with a molecular weight 06310* these correspond to maximum binding capacities of 50 RU and 15 RU.
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FIGURE 10 Simulations of the 50 = ’ T e T 16
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and solved as before with varied starting parameters. Therhen the two-compartment model was fit to the simulated

results of this analysis confirmed that the confidence interdata, values for the rate constants were returned with sur-
vals were normally distributed (data not shown), and theprisingly high accuracy.

standard deviations for the confidence intervals (Table 3C) The data we simulated corresponded to optimal experi-
were similar to those determined from the linear approxi-mental conditions currently available on BIACORE 2000, a

mation statistics (Table 3B). The Monte Carlo analysisflow rate of 100ul/min and surface receptor densities as

routines are readily available in the CLAMP program.  |ow as 15 RU. Our data analysis method involved simulta-
neously fitting the two-compartment model to two sets of
DISCUSSION simulated data, corresponding to two different receptor den-

sities, 15 RU and 50 RU. The idea behind the approach,
The binding kinetics in a BIACORE flow cell are the result known as global analysis (reviewed in Myszka et al., 1997),
of diffusion and flow, which bring the analyte to, and take js to obtain data that are sensitive to both the chemical rate
it away from, the sensor surface, and the chemical reactiopynstants (data from the low-capacity surface) and the trans-
that occurs between analyte and receptor at the sensgpyt coefficient (data from the high-capacity surface). In our
surface. We have modeled these processes for the case ofi@ we showed that even though the maximum response
monovalent analyte interacting with a monovalent receptorgom one of the surfaces was only 15 RU, the addition of the
\{vhen the conditions un'der Wh'_Ch t.he receptor Is ImmObI'expected level of experimental noise (0.5 RU) did not affect
lized do r]ot affect the binding kinetics. If, for example, the our ability to accurately recover the reaction rate constants.
receptor is coupled to the sensor surface through a dextran ; .-« peen pointed out that if receptors are immobilized

layer, then our model is restricted to conditions where th a dextran layer, the binding kinetics can be influenced by

!ayer has no influence on the binding kinetics. As'discusse&{;e transport of the analyte within the layer (Schuck, 1996;
in the Appendix, numerous authors have considered thl%armush et al., 1996). It is expected that such effects will

case and argueq that a “NO'ForT‘part.meT“ model gives gecome pronounced at high receptor densities. At such
reasonable description of the binding kinetics when the dat%ensities the two-compartment model will no longer give a

are influenced by transport (Glaser, 1993; Karlsson et al., o - o
1994; Schuck and Minton, 1996; Christensen, 1997), al_reasqnable description of the binding kinetics. Elsewhere
though its use in analyzing such data has been questioné%e discuss how to reformulate the model when the thick-
(Schuck, 1997b). To see if, in fact, a two-compartmentnes_s Qf the Iayer_ cannot be neglected (Wofsy et al., manu-
model can be used to extract accurate parameter values frop'IPt in preparation). There we show that the effects of the
transport-influenced BIACORE binding data, we generated@Yer Will be negligible when the layer *looks” thin to the
test sets of simulated data. The obvious advantage of usi@alyte, I.e., when the average distance the analyte travels in
simulated data sets is that the values of the underlying€ layer before it binds to a receptor (its mean free path) is
parameters are known exactly. We extended the model dPng compared to the height of the layer, The mean free
Glaser (1993) to include diffusion in the direction of flow, Path equalsV/(dD/(kRy), whereR;/d is the three-dimen-
obtaining a partial differential equation with appropriate Sional receptor concentration afiy is the diffusion coef-
boundary conditions that accounts for the processes théicient in the layer. Thus one can ignore the layer and treat
occur in a flow cell: convection, diffusion, and reversible the binding as if it is directly to the sensor surface when
chemical reaction at the sensor surface. The simulated dafa=> VkdR/D;. (For the low receptor densities, we expect
sets were generated by solving this model numerically, td; =~ D. In our simulations the 50 RU surface corresponded
obtain noiseless data, and then adding noise to the numeric&l Ry = 0.167 nM c¢cm and = 1 X 10 ° cn¥/s. For a
solutions. These simulated data sets served as our standaténdard flow celld ~ 1 X 10> cm. For these values the
for testing the two-compartment model. We showed thainequality breaks down whek, = 1 X 1° M~ *s™%)
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In addition to determining the rate constants, we showed Justifying the quasi-steady-state approximation that leads to Eq. A2

that the two-compartment model can be used to determingauires showing that when binding or dissociation is initia@dt the
: : - . sensor surface changes rapidly over a short period of time and slowly

D, the Q|ffu5|on coefficient of the ,ar_]alyte' This WaS done bythereafter. Furthermore, if we take the initial condition for Eq. A2 to be that
dgtermlnlng the transport CoeﬁlqenkM7 by fitting the B = 0 att = 0, then we must show th& changes negligibly during the
simulated data, and then calculatiDgrom Eq. 9. Because rapid transient (Segel and Slemrod, 1989). Because this is the behavior we
Eg. 9 is an approximate result, it can be used to determineee in our simulations (e.g., thiesetin Fig. 3), we expect that the
D only under conditions in which it is highly accurate. apF;m’;_'“La:'r?” 'EJ“S“tf'e_d-t_ TS

: . : : : . o find the characteristic time for the fast transientnt;, during the
Equatlo.n 9 OvereStlmatéﬁ"' .It 1S derlve_d by |gnor|ng. the association phase, we assume tBat 0 during this time and justify this
Para*?O“C ﬂow VEIOC|W_ profile and taking the velocity to assumption after finding. (For the fast transient during the dissociation
rise linearly with the height above the sensor surface. It als@hase, we would assume ttatemains constant.) At the start of binding,
ignores the upper boundary of the flow cell. Analyte thatwhenB ~ 0, Eq. 8a is approximately
diffuses to this boundary is not reflected. However, if the
. . _’ hdC/dt = kyC; — + kR)C A4
time it takes to travel the length of the flow celly = ! kuCr = (ku + kiRr) (A4)
3l/(2vy), is short compared to the time it takes to diffuse towith solution
the boundaryh?(4D), or equivalently, if 1>> 6ID/(h?v,)

1 - i 1 — o _[/tf

then we expect Eq. 6 to be valid. Thus to deterniinfeom C = Crlku/(ky + kRr))(1 ) (AS)
Eqg. 9, one should use a fast flow velocity for the binding ynere
studies.

We have shown that the two-compartment model can be tr = hi/(ku + kRy) < W(ky + kRr) <hky  (A6)
used to determlne accurate values of th'e rate constants anggr the simulations in Figs. 8—1R,, = 2.6 X 10~ cm/s. For a standard
transport coefficients for data that are influenced by flowfiow cell, h = 5 x 103 cm, so we have for these simulations that 2 s,
and diffusion. From the transport coefficient the analytei.e., C changes rapidly for less the s and then slowly until dissociation
diffusion coefficient can be determined as well. Using theis initiated. During this time the maximum amount of analyte that can bind
two-compartment model and analyzing the data globaII))S, Bnax = K.CrRyt;, and this expression can be evaluated to see if the

. . “binding is significant. We simply note that in kinetic binding studies usin
extends the range of reaction rates that can be determln%qi1 918 819 Y 9 g

e - . ‘ACORE, analyte concentrations are chosen so that binding occurs over
with instruments like BIACORE. At present, this approach mych longer periods than a few seconds; thus we expect the binding to be
seems to be the best available for analyzing experimentsegligible in the first second or so.

when the effects of mass transport cannot be eliminated

from the binding kinetics. This model has been incorporate
in BlAevalution 3.0 analysis software available from BIA-
CORE, Inc. It has already been used to analyze such expeT
imental data, yielding excellent fits to the data and improveda
accuracy of the returned rate constants (Myszka et al., 1996;
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