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ABSTRACT Surface-based binding assays are often influenced by the transport of analyte to the sensor surface. Using
simulated data sets, we test a simple two-compartment model to see if its description of transport and binding is sufficient
to accurately analyze BIACORE data. First we present a computer model that can generate realistic BIACORE data. This
model calculates the laminar flow of analyte within the flow cell, its diffusion both perpendicular and parallel to the sensor
surface, and the reversible chemical reaction between analyte and immobilized reactant. We use this computer model to
generate binding data under a variety of conditions. An analysis of these data sets with the two-compartment model
demonstrates that good estimates of the intrinsic reaction rate constants are recovered even when mass transport influences
the binding reaction. We also discuss the conditions under which the two-compartment model can be used to determine the
diffusion coefficient of the analyte. Our results illustrate that this model can significantly extend the range of association rate
constants that can be accurately determined from BIACORE.

INTRODUCTION

Until recently, obtaining reliable equilibrium and rate con-
stants for interacting biomolecules was often difficult and
time consuming. Optical biosensors now offer a rapid way
to determine equilibrium and rate constants without the
need to label the interacting biomolecules (Garland, 1996;
Silin and Plant, 1997). Because of these features these
instruments, such as BIACORE (Biacore, Uppsala, Swe-
den), have gained wide use and have been employed in the
study of the interactions of a variety of biomolecules, in-
cluding proteins, nucleic acids, lipids, and carbohydrates
(reviewed in Szabo et al., 1995; Raghavan and Bjorkman,
1995; van der Merwe and Barclay, 1996; Myszka, 1997;
Schuck, 1997a; Fivash et al., 1998).

In BIACORE instruments, one of the reactants is immo-
bilized on a sensor chip. We will call it the receptor, in
analogy to a receptor on a cell surface, although in the
literature it is often referred to as the immobilized ligand.
The other reactant, called the analyte, flows past the chip.
The immobilization of the receptor is usually accomplished
by coupling it to a thin dextran layer that extends;100 nm
out from the sensor surface, 0.2% of the height of the flow
chamber. Detection of binding is based on the optical phe-
nomenon of surface plasmon resonance (SPR). The SPR
response is used to detect changes in the index of refraction
caused by mass changes at the sensor surface. These
changes are brought about by the binding of analyte to

receptor (Jo¨nsson et al., 1991; Malmqvist, 1993; Garland,
1996). Thus continuous monitoring of the SPR signal al-
lows the kinetics of binding to be followed in real time.
After binding, buffer alone may be introduced to monitor
the dissociation kinetics.

As the preceding description suggests, the SPR signal in
a typical experiment is not simply a report of the progress of
the chemical processes of association and dissociation at the
surface. Rather, the signal is the result of a combination of
these chemical processes and the transport processes of
diffusion and flow. Thus obtaining estimates of the intrinsic
forward and reverse rate constants of the analyte-receptor
reaction requires some model that will, when needed, ac-
count for transport. The model most often used assumes that
after a brief transient, during which analyte is transported to
the sensor surface, no correction is needed, because the free
analyte concentration remains uniform in space and con-
stant in time, kept so by the continuous influx of new
analyte. We will refer to this model as the rapid mixing
model because, after the brief transient, the binding at the
sensor surface is the same as for a well-mixed system with
constant analyte concentration.

Systematic errors in the estimates of the rate constants
can arise if the rapid mixing model is not a reasonable
description of the binding kinetics (Chaiken et al., 1992;
Malmborg et al., 1992; Ito and Kurosawa, 1993; Morton et
al., 1994; Wohlhueter et al., 1994). A number of authors
have discussed this problem and presented conditions under
which the assumption is expected to break down (Glaser,
1993; Karlsson et al. 1994; Schuck, 1996; Schuck and
Minton, 1996; Yarmush et al., 1996; Christensen, 1997).
There are two possible sources for the breakdown: 1) the
transport (diffusion and flow) of analyte in solution to the
dextran layer and 2) the transport (primarily diffusion) of
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analyte within the dextran layer. If one or both of these
influence the kinetics of binding, then the free analyte
concentration cannot be taken to be constant and uniform.

In this paper we consider only experiments in which the
properties of the dextran layer do not influence the binding
kinetics, i.e., where the binding can be treated as if the
receptors are coupled directly to the sensor surface. BIA-
CORE binding studies have been performed both with re-
ceptors coupled to dextran layers and with receptors cou-
pled directly to the sensor surfaces (Karlsson and Fa¨lt, 1997;
Parsons and Stockley, 1997). These experiments demon-
strate that under appropriate experimental conditions (i.e.,
low surface capacity), the dextran layer has no significant
effect on the binding kinetics.

To improve the analysis of bulk transport effects on the
SPR signal, a simple model has been proposed that treats
binding as a two-step process: transport of analyte to the
sensor surface, followed by reaction of analyte with recep-
tors on the surface (Myszka et al., 1997). This two-com-
partment model is attractive because it can be formulated in
terms of a simple system of ordinary differential equations
and because it is only slightly more complicated than the
rapid mixing model. The two-compartment model has been
used to describe several experimental systems studied with
BIACORE instruments (Myszka et al., 1996, 1997; Morton
and Myszka, 1998). This is encouraging, but uncertainty
remains about how well the two-compartment model de-
scribes BIACORE binding kinetics. What is provided in this
paper is a demonstration that the two-compartment model is
sufficiently accurate to analyze BIACORE data. In partic-
ular, we show that the numerical parameter values obtained
by fitting the two-compartment model to noisy SPR data are
accurate estimates of the underlying physical parameter
values.

The approach we use to demonstrate the validity of the
two-compartment kinetic scheme for analyzing BIACORE
binding data is as follows:

1. We present a computer model that can simulate BIA-
CORE binding experiments involving monovalent analytes
binding to monovalent receptors, i.e., that accounts for
laminar flow and diffusion of the analyte, chemical reac-
tions at the sensor surface, and geometry of the BIACORE.
This computer model is similar to that developed by Glaser
(1993), the difference being that we include diffusion in the
flow direction.

2. We use the computer model to simulate BIACORE
binding data, choosing parameter values that lead to trans-
port-influenced binding kinetics as well as parameter values
where such effects are negligible.

3. We fit the two-compartment binding model to the
simulated data and show that we recover the original values
of the rate constants (the values used to simulate the data).

4. We then add random noise at realistic levels to the
simulations and demonstrate that good estimates of the
input parameters are recovered when the two-compartment
model is used to analyze the noisy simulated data.

OBTAINING SIMULATED DATA SETS

The mathematical model

In BIACORE instruments, analyte is transported by diffu-
sion and flow to the sensor surface, where it reacts with
immobilized receptors. The flow channel of the BIACORE
has a rectangular cross section (lengthl, heighth, and width
w). We let t be the time, and we introduce Cartesian coor-
dinates with the origin at the inflow port, thex axis parallel
to the direction of flow, and they axis normal to the
receptor-coated surface (illustrated in Fig. 1). (In BIACORE
instruments, the sensor surface is actually on top of the flow
cell. For convenience we draw it on the bottom.) Because
the instrument’s flow chamber is 10 times wider than it is
high, variations in concentrations across the width of the
chamber can be neglected.

Along the flow chamber, laminar flow is fully developed
essentially over its entire length (Brody et al., 1996). The
velocity profile is therefore parabolic, equal to zero at the
top (y 5 h) and bottom (y 5 0) boundaries and rising to a
maximum,vc, in the center, i.e., the velocityv( y) at a height
y above the sensor surface is (Batchelor, 1967)

v~ y! 5 4vc~ y/h!~1 2 ~ y/h!! (1)

(Because Eq. 1 is sometimes written in terms of the average
velocity, v#, we note thatv# 5 2vc/3.)

The dependent variables of the model are the bulk con-
centration of free analyte,C(t, x, y), and the surface density
of bound analyte,B(t, x) (with units of mass/volume and
mass/area, respectively). The net analyte flux due to con-
vection and diffusion is

J~t, x, y! 5 iv~ y!C~t, x, y! 2 D~i­C~t, x, y!/­x

1 j­C~t, x, y!/­y!
(2)

whereJ is the flux vector,D is the analyte diffusion coef-
ficient, and i and j are the unit vectors in thex and y
directions. The component ofJ normal to any surface,
integrated over that surface, equals the flux through the
surface, e.g., the number of particles per second passing
through the surface. From conservation of mass (the conti-
nuity equation), the following partial differential equation

FIGURE 1 Schematic of a BIACORE flow chamber, where the variation
along the width of the chamber has been neglected and the sensor surface
has been placed on the bottom rather than the top. For a standard instru-
ment,h 5 5 3 1023 cm, l 5 0.24 cm, and the width equals 53 1022 cm.
The figure is not to scale. The true length is 48 times longer than the height.
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(PDE) is obtained:

­C/­t 5 D~­2C/­x2 1 ­2C/­y2! 2 4vc~y/h!~1 2 ~y/h!!­C/­x
(3)

The boundary conditions for Eq. 3 are as follows. Because
the top boundary is impenetrable and unreactive, the mass
flux of analyte must vanish at this boundary:

­C~t, x, y!/­y 5 0 aty 5 h (4a)

In contrast, the analyte mass flux at the sensor surface
should equal the time rate of change in the amount bound at
the surface, i.e.,

D­C~t, x, y!/­y 5 ­B~t, x!/­t

5 kaC~t, x, 0!R~t, x! 2 kdB~t, x! aty 5 0
(4b)

whereC(t, x, 0) is the free analyte concentration at position
x just above the sensor surface.R(t, x) 5 RT 2 B(t, x) is the
free surface receptor concentration atx. RT is the total
receptor concentration and is constant with respect to both
position and time. The rate constants of the reaction areka

andkd. Note that these are the intrinsic microscopic forward
and reverse rate constants for binding of the analyte to the
receptor.

At the entry port to the flow cell (x 5 0), the concentra-
tion is constant and equal to the injection concentration,CT,
i.e.,

C~t, 0,y! 5 CT atx 5 0 (4c)

At the end of the sensor, where analyte exits (x 5 l), we
adopt a simple continuation condition that assumes the exit
of analyte is due entirely to flow:

­C~t, x, y!/­x 5 0 atx 5 l (4d)

Hence they leave the computational domain and have a
negligible effect on the dynamic processes happening inside
the instrument.

It is useful to write Eq. 3 and the boundary conditions,
Eqs. 4a–4d, in nondimensional form. To do this we intro-
duce the following nondimensional time and lengths, con-
centrations, and rate constants:

t ; Dt/h2 x ; x/l y ; y/h (5a)

c ; C/CT b ; B/RT r ; R/RT (5b)

ka ; kaCTh
2/D kd ; kdh

2/D (5c)

and nondimensional parameters:

e 5 h/l p 5 4vch/D (5d)

Equations 3 and 4a–4c become

­c/­t 5 e2­2c/­x2 1 ­2c/­y2 2 pey~1 2 y!­c/­x (6)

­c~t, x, y!/­y 5 0 at y5 1 (7a)

~hCT/RT!­c~t, x, y!/­y 5 ­b~t, x!/­t

5 kac~t, x, 0!~1 2 b~t, x!! 2 kdb~t, x! at y5 0 (7b)

c~t, 0, y! 5 1 at x5 0 (7c)

­c~t, x, y!/­x 5 0 at x5 1 (7d)

If diffusion in thex direction is ignored (i.e., thee2 term
in Eq. 6 is set equal to zero), the model reduces to what has
now become a standard description for the BIACORE flow
cell (Lok et al., 1983; Glaser, 1993; Christensen, 1997).
Yarmush et al. (1996) have also used this approximation,
but in the context of a nonnegligible dextran layer. For a
standard flow cell,e 5 0.021. This suggests that such an
approximation is justified, although fory , e, diffusion in
the x direction will dominate flow. We have not made this
approximation, because we are using the model as an ab-
solute standard for generating simulation data, and therefore
it is desirable to include as much detail as possible. Because
we are solving Eq. 6 numerically, there is no necessity to do
otherwise.

The numerical method

We have solved Eq. 6 by using a general, conservative, and
well-tested hydrodynamics transport code based on the
method of finite elements (Dembo, 1994a,b). Shown in Fig.
2 is a small computational grid (83 8) with 49 node points
and 32 surface elements. In thex direction the length is
divided uniformly into eight parts. In they direction the
height first is divided into four equal parts. The top and
bottom sections are then divided in half, so there are six
sections in all. Finally, the new top and bottom sections are
divided in half, forming the eight sections shown in Fig. 2.
The height of the bottom and top sections ish/16. Refine-
ments of this grid are generated by subdividing each of the
quadrilaterals of the course mesh into four equal parts. For
example, the top and bottom elements of a 643 64 grid are
h/128 in height andl/64 in length. In the BIACORE flow
cell, except at very short times after the initiation of binding
and dissociation, the concentration of analyte is uniform far
from the sensor surface. Thus there is no reason for gener-
ating a fine grid near the top surface. This was done only
because the code we adapted required a grid that was

FIGURE 2 An 83 8 computational grid consisting of 49 node points
and 32 boundary points.
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symmetrical abouth/2. We have since developed a code for
which this is not required (unpublished result).

In trial simulations we compared the time course for the
average concentration of bound analyte, calculated using a
32 3 32 and a 643 64 grid. The average concentration of
the bound ligand was calculated by summing the bound
ligand concentration over each bottom surface element and
dividing the sum by the number of bottom surface elements,
n 1 1 for ann 3 n grid. There was no significant difference
between the values obtained using the two grids. Neverthe-
less, in the Results section, where we test the two-compart-
ment model’s ability to recover accurate parameter values,
all simulations were done on a 643 64 grid. For this grid
the first set of grid points above the sensor surface is aty 5
h/128 ' 400 nm, or about four times the thickness of the
dextran layer for a standard CM5 sensor surface (Stenberg
et al., 1991).

Simulations

To illustrate the information that can be obtained from
solving Eq. 6 numerically, subject to the boundary condi-
tions in Eqs. 7a–7d, we simulate a BIACORE binding study
using parameter values previously determined for interleu-
kin-2 (IL-2), flowing past, and interacting with, its immo-
bilized low-affinity receptor, IL-2Ra (Myszka et al., 1996).
In the simulation we took the association rate constantka 5
8 3 106 M21 s21 and the dissociation rate constantkd 5

0.2 s21. Analyte was injected for 50 s, after which buffer
was introduced and dissociation proceeded for an additional
50 s. Fig. 3 shows the average concentration of bound
analyte and the average free analyte concentration just
above the sensor surface plotted as a function of time. We
see from Fig. 3 that the free analyte concentration near the
sensor surface is not constant during the association phase
or zero during the dissociation phase, as is often assumed.
Fig. 4 presents “snapshots” of the free analyte concentra-
tion, as a function of position throughout the flow cell, at
four successive time points (two during the association
phase and two during the dissociation phase). Note that at
25 s and 75 s there is substantial variation in the free analyte
concentration along the sensor surface. As a consequence,

FIGURE 3 Predicted time course for the average concentration of bound
analyte (——) and average free analyte concentration at the sensor surface
(– – –). In the simulation, 25 nM analyte was injected from 0 to 50 s
(CT 5 25 nM), then the injected concentration was set to zero (CT 5 0) and
dissociation was followed for 50 s.vc 5 5 cm/s, corresponding to a flow
rate of 50ml/min, and the analyte diffusion coefficientD 5 1 3 1026

cm2/s. The immobilized receptor concentrationRT 5 7.53 1011 receptors/
cm2 5 1.25 nM cm. (Because 1 RU5 10210 g/cm2, when all sites are filled
with IL-2, MW 5 14,000, there is an increase of 175 RU over baseline.)
A standard flow cell was assumed, withh 5 5 3 1023 cm andl 5 0.24 cm.
ka 5 8 3 106 M21 s21 andkd 5 0.2 s21, as reported in the literature for
IL-2 binding to IL-2Ra (Myszka et al., 1996). A 323 32 grid was used.

FIGURE 4 Predicted free analyte concentration in the BIACORE flow
cell for the simulation parameters given in Fig. 3. Different colors indicate
different free analyte concentrations in 0.5 nM increments. The contours
separating two colors are lines of fixed concentration. The value of the
concentration at any point on the grid is obtained by interpolating between
the calculated values of the two nodes the grid line connects. Note that in
the association phase (t 5 25 s and 50 s) the contours separating the two
colors nearest the top surface are not smooth. This indicates that in this
region, more node points are required to improve accuracy. This simulation
was done on a 323 32 grid. Despite the apparent lack of spatial resolution
far from the boundary, when we compared calculations using a 323 32
and a 643 64 grid, the quantity we are most interested in, the average
bound analyte concentration,B# , changed only slightly. Between 10 s and
90 s, the difference was always less than 1%.
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the bound analyte concentration will also be nonuniform, as
illustrated in Fig. 5. In BIACORE instruments the SPR
detector is centered in the middle of the flow cell and
monitors;75% of the total flow path. Thus the output is a
measure of the average bound analyte over this region.

The parameter values used in Figs. 3–5 were chosen to
demonstrate how transport affects the kinetics of binding
and dissociation in a BIACORE instrument. In Fig. 6 we
show that as the association rate is decreased, transport
effects become negligible, i.e., the concentration of free
analyte becomes constant in time, and the rapid mixing
model becomes a good description of the binding.

In the next section we discuss a proposed method of
analyzing BIACORE binding data that are influenced by
mass transport. To test this method we simulate additional
BIACORE binding experiments under a variety of condi-
tions and see if the method can recover the kinetic param-
eters used in the simulations.

ANALYZING MASS TRANSPORT-INFLUENCED
BINDING DATA

A two-compartment model

Obtaining kinetic parameters from binding data requires
fitting a model to the data. At present, it is impractical to do
this by using the mathematical description of the previous
section, a PDE (Eq. 6), and its boundary conditions, Eqs.
7a–7d. A simpler mathematical model is required, one that
can accurately calculate the average concentration of bound
analyte at the sensor surface. This model need do nothing
more. For example, it does not have to describe the spatial
variation of the analyte concentration throughout the flow
cell or of the bound analyte over the sensor surface.

A two-compartment model, consisting of a set of coupled
ordinary differential equations, has been used to analyze a
variety of BIACORE binding experiments that have been
shown to be influenced by mass transport (Myszka et al.,
1996, 1997; Morton and Myszka, 1998). First we review
this model, and then in the following section we test it, to
see if accurate rate constants can be recovered from simu-
lated BIACORE experiments.

The model handles the variation in analyte concentration
in the BIACORE flow cell (see Fig. 4) by dividing the flow
chamber into two compartments as shown in Fig. 7. Within
each compartment the concentrations are uniform in space
but may change in time. These concentrations are averages
over the length of the BIACORE flow cell. It is assumed
that the analyte concentration in the outer compartment is

FIGURE 5 Spatial variation in the bound analyte concentration,B(t, x).
Shown are time courses for the bound analyte concentration in RU at a
distance ofl/4 (——), l/2 (– z –), and 3l/4 (zzzzz) along the sensor surface.
The simulation parameters used are the same as in Fig. 3. The results
demonstrate that the bound analyte concentration varies with the distance
from the entrance to the flow cell.

FIGURE 6 The time course of the average free analyte concentration
just above the sensor surface, for different values of the forward rate
constant,ka. Shown are time courses for the average free analyte concen-
tration forka 5 8 3 104 M21 s21 (——), 8 3 105 M21 s21 (– z –), and 83
106 M21 s21 (zzzzz). All other simulation parameters are the same as in
Fig. 3.

FIGURE 7 A two-compartment model of the BIACORE flow cell. In the
binding phase the average analyte concentration near the sensor surface,C,
equals zero initially and grows with time until it equals the injection
concentrationCT or dissociation is initiated and it decays to zero. The
analyte concentration far from the sensor surface remains constant and
equal toCT during binding, and constant and equal to zero during disso-
ciation.B andR are the bound and free receptor concentrations, averaged
over the sensor surface.
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constant and equal to the injection concentration,CT. The
model ignores the brief transition periods that occur when
binding or dissociation is initiated and the concentration in
the outer compartment rises or falls toCT. At the typical
flow rates used in kinetic experiments (50–100ml/min,
corresponding tovc 5 5 2 10 cm/s), the time needed for an
analyte molecule that is not near the walls of the flow cell
to travel 0.24 cm, the length of the flow chamber, is less
than 0.05 s. The concentration in the inner compartment,C,
changes because analyte is transported between compart-
ments and because analyte binds to, and dissociates from,
immobilized receptors on the sensor surface. IfVi is the
volume of the inner compartment,S is the surface area of
the flow chamber, andkM is the transport coefficient de-
scribing diffusive movement of analyte between the com-
partments, then

VidC/dt 5 S~2kaC~RT 2 B! 1 kdB 1 kM~CT 2 C!! (8a)

dB/dt 5 kaC~RT 2 B! 2 kdB (8b)

The initial conditions for the binding phase of the experi-
ment are that att 5 0, CT equals the injection concentration,
C 5 0 andB 5 0. The initial conditions for the dissociation
phase are that at the time of dissociation,tdiss, CT 5 0, and
C and B equal the values they attained att 5 tdiss. If the
association phase is sufficiently long so that a steady state is
reached, then att 5 tdiss, C 5 CT and B 5 KCTRT/(1 1
KCT), but this is not required.

The rapid mixing model assumes that after a brief tran-
sient, the free analyte concentration is uniform throughout
the flow chamber. This model is described by Eq. 8b with
C 5 CT.

As discussed in the Appendix,kM is the diffusion-limited
forward rate constant, averaged over the sensor surface.
Transport effects will influence the kinetics of binding when
the reaction rate is fast compared to the rate of transport,
i.e., whenkaRT $ kM. (To evaluate this inequality, the units
must be consistent, so for example, ifka is in M21 s21, then
RT should be in M cm andkM in cm/s.) As discussed by Lok
et al. (1983) and Sjo¨lander and Urbaniczky (1991), it can be
shown that, to a good approximation,

kM 5
1

G~4/3!S3vcD
2

2hl D
1/3

< 1.282SvcD
2

hl D
1/3

(9)

Because the model does not specify the height of the
inner compartment, there are four unknown parameters that
enter Eqs. 8a and 8b,ka, kd, kM, andhi 5 Vi/S. However, for
the range of parameter values that describe BIACORE
experiments, the solutions to Eqs. 8a and 8b are insensitive
to the value ofhi. It can be shown (see Appendix and Fig.
3) that at the sensor surface, once binding or dissociation is
initiated,C changes rapidly over a short period of time and
slowly thereafter. Furthermore, while this rapid change inC
is occurring, there is a negligible change inB. This behavior
means that a quasi-steady-state approximation can be made
where we set dC/dt 5 0 (Segel and Slemrod, 1989). When

this is done, we see from Eq. 8a thathi drops out of the
equations, which explains why the choice ofhi does not
affect the solution. Once the quasi-equilibrium approxima-
tion is made, the model is identical to the often discussed
effective rate constant model (Karlsson et al., 1994).

Returning to Eqs. 8a and 8b, we defineB̃ 5 B/hi, R̃ 5
R/hi, R̃T 5 RT/hi, and k̃M 5 kM/hi. In terms of these quan-
tities, Eqs. 8a and 8b take the familiar form

dC/dt 5 ~2kaC~R̃T 2 B̃! 1 kdB̃ 1 k̃M~CT 2 C!!
(10a)

dB̃/dt 5 kaC~R̃T 2 B̃! 2 kdB̃ (10b)

When these equations are used to analyze binding data,
some care must be taken in the choice of units. If we
measureR, RT, andB in RU; C andCT in M; ka in M21 s21;
kd in s21; andkM in cm/s, this is equivalent to settinghi 5
1 RU/M. (Because the data are insensitive to the value ofhi,
we are free to choose any value for it we wish. Takinghi 5
1 RU/M avoids having to divide the data values byhi before
fitting the data. It is a convenient choice having nothing to
do with the physical height of the inner compartment.) To
obtainkM in cm/s fromk̃M in 1/s, the parameter determined
from the least-squares fit of the data, one must multiply by
1027 and divide by the molecular weight of the analyte, i.e.,

kM 5 ~1 RU/M!k̃M 5 ~1027 cm g/mol!k̃M

5 ~1027 cm/MW!k̃M (11)

where we have used the conversion factor 1RU5 10210

g/cm2.

Data fitting approach

We briefly summarize the data fitting approach we employ,
because it has been discussed in detail elsewhere (Myszka,
1997; Myszka et al., 1997; Morton and Myszka, 1998). The
rate constantska andkd, k̃M (related to the transport coeffi-
cientkM by Eq. 11), and the surface receptor densityRT are
taken to be free parameters. The best fit values of these
parameters are determined from nonlinear least-squares fit-
ting of the data, where the calculated values of the average
bound analyte concentration for each time point are deter-
mined by solving Eqs. 10a and 10b numerically (Morton et
al., 1995). (The software program used in this analysis
(CLAMP) may be downloaded for no charge at the follow-
ing web site: http://www.hci.utah.edu/cores/biacore/docs/
clamp.html.)

To obtain accurate values for the kinetic rate constants
and the transport coefficient, the data that are being fit must
be sensitive to these parameters. Recall that as the receptor
density on the sensor surface is increased, the binding
reaction at the sensor surface speeds up, and the binding
kinetics become transport limited. As a result, at high sur-
face receptor densities, the binding kinetics are dependent
on kM. In the other limit, as the receptor density is reduced,
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transport effects decrease and these data become insensitive
to kM and strongly dependent on the reaction rate constants.
To try to ensure that the data depend on both the transport
and the reaction rate constants, we simultaneously fit data
sets for different surface receptor densities. The procedure is
sometimes called global analysis and has been extensively
used to analyze BIACORE binding data (Morton et al.,
1995; Myszka et al., 1996, 1997; Morton and Myszka,
1998).

RESULTS

In this section we report the results of fitting the two-
compartment model to simulated data sets generated under
a variety of conditions. Before considering the effects of
noisy data on parameter estimation, we see how well the
model does at recovering parameter values in the absence of
noise.

We start by analyzing data where the reactions are not
influenced by mass transport. Fig. 8 illustrates two sets of
binding experiments simulated with identical rate constants
(ka 5 5 3 104 M21 s21 andkd 5 0.04 s21) and flow rates
(100 ml/min), but with different receptor densities (RT1 5
50 RU andRT2 5 15 RU). Note that when the reaction is not
influenced by transport, for the same analyte concentration,
the binding responses are identical for the two surfaces
when normalized with respect to the maximum response,
i.e., a plot of the fraction of receptor sites bound versus time
is independent ofRT. Under these conditions, the rapid
mixing model (Eq. 8b, withC 5 CT) gives an excellent fit
to the data (not shown) and returns correct parameter values,
as shown in Table 1A, i.e., the best fit values of the param-
eters match the values used to simulate the data. The stan-
dard deviation of the residuals equals 0.054 RU, which is
small but nonzero. Because the ODE models used to fit the
data are always approximations to the PDE model used to

simulate the data, even in the absence of noise, the standard
deviation of the residuals is nonzero. As shown in Table 1B,
applying the two-compartment model to these same data
sets gives essentially the same results. The additional pa-
rameter,k̃M, has little effect on the quality of the fit (std
residuals5 0.053 RU), the returned parameter values, stan-
dard deviations, or the correlation coefficients. However,
the value returned fork̃M of 2.93 1012 s21, which from Eq.
11 corresponds tokM 5 9.7 cm/s for MW5 3 3 104 Da, is
grossly in error. From Eq. 9, the predicted value forkM is
2.6 3 1023 cm/s. This error is not surprising. The associ-
ation rate is so slow that the binding is unaffected by
transport, and so the data contain no information for the
determination ofkM.

Next we carried out the same fitting procedures on data
simulated with a 10-fold higher association rate constant
(ka 5 5 3 105 M21 s21). All other parameters were the
same. Again a good fit was obtained with the rapid mixing
model (std residuals5 0.062 RU), yielding parameter val-
ues that are close to the input values (Table 2A). As shown
in Table 2B, using a two-compartment model improves the
quality of the fit somewhat (std residuals5 0.055 RU).
Furthermore, the best fit valuek̃M 5 8.9 3 108 s21, which
corresponds tokM 5 3.03 1023 cm/s, is greatly improved,
being within 13% of the expected value. The improvements
in the residual standard deviation, rate constant estimates,
and the value ofkM suggest that under these conditions,
transport is beginning to influence the binding kinetics.

Fig. 9 illustrates what happens to the shapes of the
binding responses when the association rate constant is
increased to 13 108 M21 s21 and the data become strongly
influenced by transport. (Note that the off-rate constant was
increased to 0.08 s21, so that the shapes of the progress
curves would remain similar.) Without doing any data fit-
ting, one can see (compare Fig. 9c with 9 d) that the binding
is transport limited because, unlike in Fig. 8, the shapes of

FIGURE 8 Binding response simulated for a reaction occurring under conditions where the binding is reaction limited. The parameter values used in the
simulations wereka 5 5 3 104 M21 s21, kd 5 0.04 s21, D 5 1 3 1026 cm2/s, andvc 5 10 cm/s. The surface receptor concentrations were 0.167 nM cm
(a) and 0.05 nM cm (b), which, for an analyte with MW5 3 3 104, correspond to a maximum response of 50 RU and 15 RU, respectively. The ligand
concentrations used in the simulation were 8000, 2670, 890, 297, and 99 nM. The results of the fit are given in Table 1.
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the binding curves for the two surfaces are not identical.
Now equilibrium is approached more rapidly on the surface
with the lower receptor density. When the binding is influ-
enced by transport, the fraction of receptor sites bound is no
longer independent ofRT. Receptors no longer act indepen-
dently. In the association phase they compete for analyte,
whereas in the dissociation phase rebinding occurs.

The fit of the rapid mixing model to the simulated data
(Fig. 9,a andb) is poor (residual std5 1.52 RU), whereas
the fit of the two-compartment model (Fig. 9,c and d ) is
excellent (residual std5 0.07 RU). Furthermore, in Table
3A we see that the two-compartment model returns param-
eter values that are close to those used in the simulations.
The best fit valuek̃M 5 7.723 108 RU s21, or equivalently,
kM 5 2.63 1023 cm/s, is within 1% of the predicted value.
These results demonstrate that in the absence of noise, the
two-compartment model returns accurate estimates for both
the intrinsic reaction rate constants and the transport coef-

ficient when the binding kinetics are influenced by trans-
port.

The accurate determination ofkM suggests that BIA-
CORE can be used to determine the diffusion coefficient of
the analyte by calculatingD from Eq. 9. The value ofk̃M in
Table 3A givesD 5 9.853 1027 cm2/s, which is remark-
ably close to the value used in the simulation of 1.03 1026

cm2/s. However, because Eq. 9 is an approximate result, to
determineD from kM, one must ensure that the experiments
are done in a parameter range in which Eq. 9 is sufficiently
accurate (see Discussion).

Finally, to study the effects of noise on the best fit values
of the parameters, we added 0.5 RU of pseudo-normally
distributed noise to the data sets of Fig. 9. This level of
noise is consistent with what is seen in typical experiments
done on BIACORE 2000 (Morton and Myszka, 1998). Fig.
10 shows the results of fitting the two-compartment model
to these data. The residual standard deviation was 0.504 RU,

TABLE 1 Parameter estimates, standard deviations, and correlations for the fits of the rapid mixing model and the two-
compartment model to data simulated in Fig. 8 with ka 5 5 3 104 M21 s21 and kd 5 4 3 1022 s21

Parameter Estimate Std

Correlation coefficient

Bmax1 Bmax2 ka kd

A. Rapid mixing model
RT1 (RU) 50.14 8.63 1023

RT2 (RU) 15.00 5.53 1023 0.324
ka (M21 s21) 4.923 104 2.73 101 20.632 20.319
kd (s21) 0.040 1.33 1023 0.342 0.165 0.230

B. Two-compartment model
RT1 (RU) 50.14 8.63 1023

RT2 (RU) 15.00 5.53 1023 0.323
ka (M21 s21) 4.923 104 2.73 101 20.631 20.317
kd (s21) 0.040 1.33 1023 0.343 0.161 0.226
kM (s21) 2.893 1012 1.23 1012 20.009 0.044 0.020 20.090

The parameters values used to simulate the data are given in Fig. 8.kaRT/kM 5 0.0032 and 0.0010, for the two surface receptor densities 1.673 10210

M cm and 5.03 1029 M cm. For an analyte with a molecular weight of 33 104, these correspond to maximum binding capacities of 50 RU and 15 RU.

TABLE 2 Parameter estimates, standard deviations, and correlations for the fits of the rapid mixing model and the two-
compartment model to data simulated with ka 5 5 3 105 M21 s21 and kd 5 4 3 1022 s21

Parameter Estimate Std

Correlation coefficient

RT1 RT2 ka kd

A. Rapid mixing model
RT1 (RU) 50.12 9.63 1023

RT2 (RU) 15.00 6.33 1023 0.291
ka (M21 s21) 4.863 105 2.83 102 20.601 20.277
kd (s21) 0.039 1.53 1023 0.335 0.154 0.277

B. Two-compartment model
RT1 (RU) 50.13 8.63 1023

RT2 (RU) 15.00 5.63 1023 0.293
ka (M21 s21) 4.943 105 5.43 102 20.338 20.164
kd (s21) 0.040 3.63 1023 0.061 0.019 0.870
kM (s21) 8.933 108 5.13 107 0.064 0.039 20.881 20.930

The parameters values used to simulate the data are given in Fig. 8, except forka 5 5 3 105 M21 s21 andkd 5 4 3 1022 s21. kaRT/kM 5 0.032 and 0.010,
for the two surface receptor densities 1.673 10210 M cm and 5.03 1029 M cm. For an analyte with a molecular weight of 33 104, these correspond
to maximum binding capacities of 50 RU and 15 RU.
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which is consistent with the level of noise added to the data.
The best fit parameter values are given in Table 3B. Sur-
prisingly, this level of random noise had little effect on the
determined parameter values or the correlation coefficients,
although as expected, the standard errors were increased. To

demonstrate that the linear approximation statistics returned
for the nonlinear analysis were valid, we performed Monte
Carlo analysis to generate confidence probability distribu-
tions for the estimated parameters (Straume and Johnson,
1992). One thousand data sets were simulated with noise

FIGURE 9 Binding response sim-
ulated for a reaction occurring under
conditions where the binding is trans-
port limited. The parameter values
used in the simulations wereka 5
1 3 108 M21 s21 andkd 5 0.08 s21.
All other parameters were the same
as in Fig. 8. The surface receptor
concentrations correspond to a max-
imum response of 50 RU (a, c) and
15 RU (b, d) for a 3 3 104 Da ana-
lyte. The analyte concentrations used
in the simulation were 8, 2.67, 0.89,
0.297, and 0.099 nM. Shown are si-
multaneous fits (red lines) of the
rapid mixing model (a, b) and the
two-compartment model (c, d) to the
simulations. The results of the fits are
given in Table 3.

TABLE 3 Parameter estimates, standard deviations, and correlations for the fits of the two-compartment model to data
simulated with ka 5 1 3 108 M21 s21 and kd 5 8 3 1022 s21 in the absence of noise (Fig. 9) and the presence of noise (Fig. 10)

Parameter Estimate Std

Correlation coefficient

RT1 RT2 ka kd

A. Absence of noise
Bmax1 (RU) 49.92 1.23 1022

Bmax2 (RU) 15.04 7.53 1023 0.349
ka (M21 s21) 1.023 108 4.13 105 20.156 0.014
kd (s21) 0.083 3.13 1024 0.012 0.102 0.979
kM (s21) 7.723 108 9.23 105 0.078 20.049 20.894 20.898

B. Noisy data
RT1 (RU) 49.90 8.73 1022

RT2 (RU) 14.99 5.33 1022 0.348
ka (M21 s21) 1.053 108 3.03 106 20.168 0.021
kd (s21) 0.085 2.33 1023 0.002 0.107 0.980
kM (s21) 7.663 108 6.43 106 0.086 20.055 20.894 20.897

C. Monte Carlo analysis after 1000 simulations
RT1 (RU) 49.92 8.73 1022

RT2 (RU) 15.03 5.33 1022

ka (M21 s21) 1.023 108 2.93 106

kd (s21) 0.083 2.23 1023

kM (s21) 7.723 108 6.73 106

The parameters values used to simulate the data are given in Figs. 9 and 10.kaRT/kM 5 6.4 and 1.9, for the two surface receptor densities 1.673 10210

M cm and 5.03 1029 M cm. For an analyte with a molecular weight of 33 104, these correspond to maximum binding capacities of 50 RU and 15 RU.
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and solved as before with varied starting parameters. The
results of this analysis confirmed that the confidence inter-
vals were normally distributed (data not shown), and the
standard deviations for the confidence intervals (Table 3C)
were similar to those determined from the linear approxi-
mation statistics (Table 3B). The Monte Carlo analysis
routines are readily available in the CLAMP program.

DISCUSSION

The binding kinetics in a BIACORE flow cell are the result
of diffusion and flow, which bring the analyte to, and take
it away from, the sensor surface, and the chemical reaction
that occurs between analyte and receptor at the sensor
surface. We have modeled these processes for the case of a
monovalent analyte interacting with a monovalent receptor,
when the conditions under which the receptor is immobi-
lized do not affect the binding kinetics. If, for example, the
receptor is coupled to the sensor surface through a dextran
layer, then our model is restricted to conditions where the
layer has no influence on the binding kinetics. As discussed
in the Appendix, numerous authors have considered this
case and argued that a two-compartment model gives a
reasonable description of the binding kinetics when the data
are influenced by transport (Glaser, 1993; Karlsson et al.,
1994; Schuck and Minton, 1996; Christensen, 1997), al-
though its use in analyzing such data has been questioned
(Schuck, 1997b). To see if, in fact, a two-compartment
model can be used to extract accurate parameter values from
transport-influenced BIACORE binding data, we generated
test sets of simulated data. The obvious advantage of using
simulated data sets is that the values of the underlying
parameters are known exactly. We extended the model of
Glaser (1993) to include diffusion in the direction of flow,
obtaining a partial differential equation with appropriate
boundary conditions that accounts for the processes that
occur in a flow cell: convection, diffusion, and reversible
chemical reaction at the sensor surface. The simulated data
sets were generated by solving this model numerically, to
obtain noiseless data, and then adding noise to the numerical
solutions. These simulated data sets served as our standard
for testing the two-compartment model. We showed that

when the two-compartment model was fit to the simulated
data, values for the rate constants were returned with sur-
prisingly high accuracy.

The data we simulated corresponded to optimal experi-
mental conditions currently available on BIACORE 2000, a
flow rate of 100ml/min and surface receptor densities as
low as 15 RU. Our data analysis method involved simulta-
neously fitting the two-compartment model to two sets of
simulated data, corresponding to two different receptor den-
sities, 15 RU and 50 RU. The idea behind the approach,
known as global analysis (reviewed in Myszka et al., 1997),
is to obtain data that are sensitive to both the chemical rate
constants (data from the low-capacity surface) and the trans-
port coefficient (data from the high-capacity surface). In our
fits we showed that even though the maximum response
from one of the surfaces was only 15 RU, the addition of the
expected level of experimental noise (0.5 RU) did not affect
our ability to accurately recover the reaction rate constants.

It has been pointed out that if receptors are immobilized
in a dextran layer, the binding kinetics can be influenced by
the transport of the analyte within the layer (Schuck, 1996;
Yarmush et al., 1996). It is expected that such effects will
become pronounced at high receptor densities. At such
densities the two-compartment model will no longer give a
reasonable description of the binding kinetics. Elsewhere
we discuss how to reformulate the model when the thick-
ness of the layer cannot be neglected (Wofsy et al., manu-
script in preparation). There we show that the effects of the
layer will be negligible when the layer “looks” thin to the
analyte, i.e., when the average distance the analyte travels in
the layer before it binds to a receptor (its mean free path) is
long compared to the height of the layer,d. The mean free
path equals=(dDi/(kaRT), whereRT/d is the three-dimen-
sional receptor concentration andDi is the diffusion coef-
ficient in the layer. Thus one can ignore the layer and treat
the binding as if it is directly to the sensor surface when
1 .. =kadRT/Di. (For the low receptor densities, we expect
Di ' D. In our simulations the 50 RU surface corresponded
to RT 5 0.167 nM cm andD 5 1 3 1026 cm2/s. For a
standard flow cell,d ' 1 3 1025 cm. For these values the
inequality breaks down whenka $ 1 3 108 M21 s21.)

FIGURE 10 Simulations of the
binding response of Fig. 9 in the
presence of noise. Random noise
with a standard deviation of 0.5 RU
was generated and added to the sim-
ulations of Fig. 9. As in Fig. 9, the
surface receptor concentrations cor-
respond to a maximum response of
50 RU (a) and 15 RU (b) for a 3 3
104 Da analyte. Shown are simulta-
neous fits (red lines) of the two-com-
partment model to the simulations.
The results of the fits are given in
Table 3.
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In addition to determining the rate constants, we showed
that the two-compartment model can be used to determine
D, the diffusion coefficient of the analyte. This was done by
determining the transport coefficient,kM, by fitting the
simulated data, and then calculatingD from Eq. 9. Because
Eq. 9 is an approximate result, it can be used to determine
D only under conditions in which it is highly accurate.
Equation 9 overestimateskM. It is derived by ignoring the
parabolic flow velocity profile and taking the velocity to
rise linearly with the height above the sensor surface. It also
ignores the upper boundary of the flow cell. Analyte that
diffuses to this boundary is not reflected. However, if the
time it takes to travel the length of the flow cell,l/v# 5
3l/(2vc), is short compared to the time it takes to diffuse to
the boundary,h2/(4D), or equivalently, if 1.. 6lD/(h2vc),
then we expect Eq. 6 to be valid. Thus to determineD from
Eq. 9, one should use a fast flow velocity for the binding
studies.

We have shown that the two-compartment model can be
used to determine accurate values of the rate constants and
transport coefficients for data that are influenced by flow
and diffusion. From the transport coefficient the analyte
diffusion coefficient can be determined as well. Using the
two-compartment model and analyzing the data globally
extends the range of reaction rates that can be determined
with instruments like BIACORE. At present, this approach
seems to be the best available for analyzing experiments
when the effects of mass transport cannot be eliminated
from the binding kinetics. This model has been incorporated
in BIAevalution 3.0 analysis software available from BIA-
CORE, Inc. It has already been used to analyze such exper-
imental data, yielding excellent fits to the data and improved
accuracy of the returned rate constants (Myszka et al., 1996;
Myszka et al., 1997; Morton and Myszka, 1998).

APPENDIX

The two-compartment model is given by Eqs. 8a and 8b. If we make a
quasi-steady-state approximation and set dC/dt 5 0, Eq. 8a becomes

C 5
kdB 1 kMCT

ka~RT 2 B! 1 kM
(A1)

Substituting this expression forC into Eq. 8b, we obtain

dB/dt 5
ka

1 1 ka~RT 2 B!/kM
CT~RT 2 B!

2
kd

1 1 ka~RT 2 B!/kM
B

(A2)

Equation A2 has the same form as a well-mixed system, except that the true
rate constants are replaced by effective rate coefficients that change in time
as the free receptor concentration,R 5 RT 2 B, changes. If this equation
is to have the correct limit asR3 `, i.e., when the sensor surface acts as
a perfect absorber, thenkM must equal the diffusion-limited forward rate
constant averaged over the sensor surface (Eq. 9). Numerous authors have
presented Eq. A2 and discussed its implications (Glaser, 1993; Karlsson et
al., 1994; Schuck and Minton, 1996; Christensen, 1997).

Justifying the quasi-steady-state approximation that leads to Eq. A2
requires showing that when binding or dissociation is initiated,C at the
sensor surface changes rapidly over a short period of time and slowly
thereafter. Furthermore, if we take the initial condition for Eq. A2 to be that
B 5 0 at t 5 0, then we must show thatB changes negligibly during the
rapid transient (Segel and Slemrod, 1989). Because this is the behavior we
see in our simulations (e.g., theinset in Fig. 3), we expect that the
approximation is justified.

To find the characteristic time for the fast transient inC, tf, during the
association phase, we assume thatB ' 0 during this time and justify this
assumption after findingtf. (For the fast transient during the dissociation
phase, we would assume thatB remains constant.) At the start of binding,
whenB ' 0, Eq. 8a is approximately

hidC/dt < kMCT 2 ~kM 1 kaRT!C (A4)

with solution

C 5 CT~kM/~kM 1 kaRT!!~1 2 e2t/tf) (A5)

where

tf 5 hi/~kM 1 kaRT! , h/~kM 1 kaRT! , h/kM (A6)

For the simulations in Figs. 8–10,kM 5 2.6 3 1023 cm/s. For a standard
flow cell, h 5 5 3 1023 cm, so we have for these simulations thattf , 2 s,
i.e., C changes rapidly for less than 2 s and then slowly until dissociation
is initiated. During this time the maximum amount of analyte that can bind
is Bmax 5 kaCTRTtf, and this expression can be evaluated to see if the
binding is significant. We simply note that in kinetic binding studies using
BIACORE, analyte concentrations are chosen so that binding occurs over
much longer periods than a few seconds; thus we expect the binding to be
negligible in the first second or so.
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