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ABSTRACT We describe a method of measuring neutron scattering of aligned membranes with the momentum transfer
oriented parallel or partly perpendicular to the plane of the membranes. The method obtains the complete information for the
structures within fluid membranes obtainable by scattering. Data from alamethicin- and magainin-induced pores are
presented. Although the in-plane scattering curves of these two peptides are similar to each other, their off-plane scattering
patterns are strikingly distinct. Magainin pores exhibit intermembrane correlations.

INTRODUCTION

X-ray and neutron scattering techniques are the only meth-
ods that can probe the structures in fluid membranes di-
rectly. In the last few years we have used the techniques of
in-plane scattering to detect and analyze the peptide-in-
duced pores in membranes (He et al., 1995, 1996; Ludtke et
al., 1996). In these experiments, membranes are prepared in
the form of oriented lamellae in which parallel membranes
are separated by water layers. The momentum transfer of
scattering was oriented parallel to the plane of the mem-
branes. This is a convenient way of detecting pores in
membranes. With water replaced by D2O, neutron scatter-
ing easily detects the water channel of the pore, because
D2O provides a strong neutron scattering contrast against
peptide and lipid. However, a complete structural analysis
requires a scattering pattern with the momentum transfer
oriented off-plane as well as in-plane. In this and a follow-
ing paper, we will show the technique of measuring off-
plane scattering patterns and the theory for data analysis.

We will use the alamethicin- and magainin-induced pores
to demonstrate this technique. These pores were previously
detected by in-plane scattering (He et al., 1995, 1996;
Ludtke et al., 1996). We will show that although the in-
plane scattering curves of these two pores are somewhat
similar, their off-plane scattering patterns are strikingly
distinct. Furthermore, in the case of the charged peptide
magainin, there are correlations between pores residing in
neighboring membranes. In such cases, in-plane scattering
provides only approximate information for the in-plane
structures. This paper describes a method of measurement
with a small-angle neutron-scattering instrument.

SAMPLES

Sample preparation for oriented membranes has been
described in detail by He at al. (1996) and Ludtke et al.
(1996). Briefly, 1,2-dilauroyl-sn-glycero-3-phosphatidylcho-
line (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-
choline (DMPC), and 1,2-dimyristoyl-sn-glycero-3-phos-
phatidylglycerol (DMPG) were purchased from Avanti
(Alabaster, AL). Alamethicin was from Sigma (St. Louis,
MO). Magainin 2 amide was a gift from Drs. M. Zasloff and
W. Maloy of Magainin Pharmaceuticals (Plymouth Meet-
ing, PA). The lipids and peptides were used as delivered.
Peptide and lipid at the desired peptide-to-lipid molar ratio,
P/L, were dissolved in chloroform/methanol (alamethicin)
or trifluoroethanol (magainin). The solvent was removed by
nitrogen purge followed by drying under vacuum. D2O was
added to the peptide-lipid film. The mixture was homoge-
nized with a sonicator and then lyophilized. The lyophilized
powder was hydrated with D2O vapor. Six thin layers of
D2O-hydrated sample were held between seven parallel
quartz plates. Hydrated peptide/lipid mixtures self-assem-
bled into parallel bilayers separated by water (D2O) layers.
The degree of lamellar alignment was manipulated by me-
chanical compression and thermal annealing (Huang and
Olah, 1987). The peptide orientation was monitored by
oriented circular dichroism (Wu et al., 1990). The total
thickness of the membranes in each sample was;0.25 mm.
The sample cross sections were;2.6 cm in diameter.

OFF-PLANE SCATTERING GEOMETRY

In the following we will describe the scattering geometry,
using a generic small-angle neutron-scattering instrument
that consists of a highly collimated neutron beam and an
area detector oriented perpendicular to the beam. Neutron
scattering measures the Fourier transform of the scattering
length density of the sample in the direction of the momen-
tum transferq. The magnitude ofq is decided by the
scattering angle 2u: q 5 (4p/l)sin u. In the detector coor-
dinates (X, Y, Z), the components ofq for a scattered beam
striking the detector cell (Xc,Yc) are qX 5 q cos u cos f,
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qY 5 q cosu sin f, qZ 5 2q sin u, where

2u 5 tan21
ÎXc

2 1 Yc
2

R
, f 5 tan21

Yc

Xc

as defined in Fig. 1A, and R is the sample-to-detector
distance.

We need to expressq in the sample coordinates (x, y, z).
In an in-plane scattering experiment, the plane of the mem-
branes is oriented perpendicular to the incident beam (Fig.
1 A). In this case, the sample coordinate axes are the same
as the detector coordinate axes, i.e.,qx 5 qX, qy 5 qY, qz 5
qZ. For small-angle scattering,q is practically parallel to the
sample plane (qz ' 0; Fig. 2 A). Thus in-plane scattering
only gives lateral structural information. In general, lipid
lamellar samples are disordered within the plane of mem-
branes. Therefore, the scattering signal is cylindrically sym-
metrical with respect to theqz axis. In general, in-plane
scattering patterns on the detector are concentric rings. The
scattering intensity is essentially a function ofqr 5 =qx

2 1
qy

2. Theqz dependence is not measured.
The purpose of off-plane scattering is to projectq with a

component perpendicular to the plane of the membranes.
This is achieved by rotating the sample about they axis,
such that the plane of the membranes is oriented at an angle

v with respect to the detector (Fig. 1B). The projections of
q on the sample axes are now given by

qx 5 cosvqX 2 sin vqZ 5 q~cosu cosf cosv

1 sin u sin v!
(1.1)

qy 5 qY 5 q cosu sin f (1.2)

qz 5 sin vqX 1 cosvqZ 5 q~cosu cosf sin v

2 sin u cosv!
(1.3)

An example ofv 5 60° is shown in Fig. 2B. However, the
structural information of fluid membranes is most clearly
presented in theqr-qz plane. This can be achieved by con-
verting the data directly toqr andqz:

qr 5 Îqx
2 1 qy

2

5 qÎ~cosu cosf cosv 1 sin u sin v!2 1 ~cosu sin f!2

(2.1)

qz 5 q~cosu cosf sin v 2 sin u cosv! (2.2)

The projection of the detector space on theqr-qz plane is
shown in Fig. 3,A–C, for three different values ofv.
Different samples may require different coverages in the
q-space, which can be achieved by adjustingv.

A variation of this geometry is achieved by changing the
position of the detector, for instance, by swinging the de-
tector by an anglec around the vertical axis at the sample
(Fig. 1 C). This will change the sampleq space in another
way. Fig. 3, E and F, shows two examples of different
values ofc.

DATA PROCESSING FOR
OFF-PLANE SCATTERING

Besides the routine data corrections for small-angle scatter-
ing (Chen and Lin, 1987), it is necessary to correct the
off-plane scattering data for sample volume and absorption.
The amount of sample through which the neutron beam

FIGURE 1 (A) The geometry of in-plan scattering.Srepresents the plane
of multilamellar membranes andD the area detector, both oriented per-
pendicular to the incident neutron beam. The right-handedX, Y, Z coordi-
nates on the detector and the corresponding sample coordinatesx, y, z are
defined facing the incident beam. (B) The geometry of off-plane scattering.
The sample is rotated around they axis by an anglev. (C) The detector
may be rotated to vary the coverage on the sampleq space.

FIGURE 2 Illustrations of the sampleq space in an in-plane scattering
(v 5 0°) and in an off-plane scattering (v 5 60°). For the purpose of
illustration, we use a detector of 203 20 cells. We also use a hypothetical
length unit, so that the sample-to-detector distanceR 5 100 and the
detector cell size is 13 1. The unit ofq is 0.25 nm21 for l 5 0.5 nm. (The
NG-3 detector at NIST has 643 64 cells. The cell size is 1 cm3 1 cm.
The sample-to-detector distance is 1.3–13 m, andl 5 0.5–2.0 nm.)
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passes is proportional to 1/cosv. As shown in Fig. 4A, the
path length of neutron through the sample depends on the
angles u and f as well asv. Let the sample’s linear
absorption coefficient bem and the sample thickness bea.
(The value forma can be measured directly by a transmis-
sion measurement.) Then the total scattering intensity at
(u, f), I(u, f), is proportional to a correction factor given by

I~u, f!}E
0

a

expF2m~a 2 z!

cosv G

z expS2 mz

cosaD dx

cosv
}

1 2 expF2maS 1

cosa
2

1

cosvDG
maS 1

cosa
2

1

cosvDcosv

(3)

wherea is the angle between the direction of the scattered
beam,kout, and the normal to the sample plane,n (Fig. 4B),
cosa 5 cosv cos 2u 2 sin v sin 2u cosf. The correction
factor for our samples oriented atv 5 60° is shown in Fig.
4 C.

Although the data points on the detector are on a regular
grid, the transformed data in the sample coordinates are not
(Fig. 5 A). For the convenience of data analysis, it is

FIGURE 6 Neutron in-plane scattering of (A) alamethicin in DLPC
bilayers at P/L5 1/20; (B) magainin in DMPC/DMPG (3:1) bilayers at
P/L 5 1/20, measured at 35°C; (C) sample B at 20°C; (D) pure DLPC
sample. Samples A and D did not show temperature dependence. The right
panel shows the scattering patterns on the 2D detector. The left panel
shows the circularly averaged intensityI in arbitrary units versus in-plane
momentum transferqr. The data were taken at NIST withR 5 2 m and
l 5 0.5 nm. The measurement time was;10 min each.

FIGURE 3 Illustrations of the sampleq space in an off-plane scattering
experiment using the geometry specified in Fig. 2. The three-dimensional
q space is projected onto the two-dimensionalqr-qz plane, because of the
cylindrical symmetry of the scattering signal. Different coverages on the
qr-qz plane can be achieved by varyingc andv (defined in Fig. 1): (A) c 5
0°, v 5 0°; (B) c 5 0°, v 5 60°; (C) c 5 0, v 5 90°; (D) c 5 15°, v 5
75°; (E) c 5 30°, v 5 75°.

FIGURE 4 (A) The schematic of neutron path. In general, the scattered
wave vectorkout is not in the plane defined by the sample normaln and the
incident wave vectorkin. (B) The geometry ofkin, kout, andn. The angle
betweenkout andn is a. The path length of neutron depends on the angle
a and the depthz of the scattering point. (C) (cos v) 3 (the correction
factor) (see Eq. 3 on the detector) atv 5 60°andma 5 0.1, using the
geometry specified in Fig. 2.ma ' 0.1 is typical for our samples.

FIGURE 5 (A) Data taken from a regular grid on the detector are
irregular on theqr-qz plane. (B) A regular grid on theqr-qz plane projected
back onto the detector.
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desirable to have the data on a regular grid in the sample
coordinates. This can be achieved in two ways. The obvious
way is to intrapolate the irregular (qr, qz) data grid into a
regular grid. However, a more efficient way is to start with
a regular (qr, qz) grid and find the corresponding position
(Xc, Yc) on the detector:

Xc 5 R tan 2u cosf (4.1)

Yc 5 R tan 2u sin f (4.2)

where

u 5 arcsin
lq

4p
(4.3)

f 5 arccos
qz/q 1 sin u cosv

sin v cosu
(4.4)

These coordinates in general fall between detected data
points (Fig. 5B). However, it is much more convenient to
intrapolate from a regular coordinate to an irregular coor-
dinate than the other way around.

In this off-plane scattering geometry, the data on the
detector are symmetrical up-and-down, that is, points (X, Y)
and (X, 2Y) correspond to the same point in theq space. On
the other hand, left and right are slightly asymmetrical on
the detector. The transformed data on the (qr, qz) plane are
symmetrical with respect to the sign ofqz, I(qz) 5 I(2qz),
because the membranes are centrosymmetrical. The data are
averaged across the symmetrical axes to improve the statistics.

DATA

We now compare the data from three different samples:
alamethicin in DLPC at P/L5 1/20, magainin in a 3:1
mixture of DMPC and DMPG at P/L5 1/20, and pure
DLPC. The experiments were performed at the Cold Neu-
tron Research Facility, National Institute of Standards and
Technology (NIST), using the NG-3 beamline. Selected
results were reproduced at the Intense Pulsed Neutron
Source (IPNS), Argonne National Laboratory, using the
SAND beamline.

Fig. 6 shows in-plane scattering patterns of these three
samples at 20°C and the magainin sample at 35°C. The two
DLPC samples (with and without alamethicin) did not show
observable temperature dependence from 20°C to 40°C.
The peak of the pure lipid sample (Fig. 6D) is due to oily
streak defects in the lamellar phase (for a detailed discus-
sion of the defect signals, see He et al., 1996). Because this
is the result of diffraction by the defect structures, its
intensity can be very strong compared to the scattering
signals. Therefore, it is necessary to take the precaution of
limiting the amount of defects in the sample (He et al.,
1996). The defect peak also appears in the magainin sample

FIGURE 7 Off-plane scattering patterns on the 2D detector when the
samples of Fig. 6 were rotated atv 5 60°. The measurement time was 1 h
each.A andB are the signature patterns of the alamethicin and magainin
pores. All alamethicin and magainin samples reproduced these patterns.
(C) The magainin sample was in a crystallline phase at 20°C. (D) The oily
streak defects produce a circular pattern (with modulated intensities) on the
detector.

FIGURE 8 Data of Fig. 7 transformed to theqr-qz plane. (A) The qz

dependence is consistent with the form factor of an alamethicin channel
(He et al., 1996). There are no intermembrane correlations. (B) The defect
peaks are suppressed (seeD for comparison) to show the scattering pattern
of magainin. There are peaks atqz ' 6p/d, whered 5 6.0 nm is the
lamellar repeat spacing. The peaks are indicative of intermembrane corre-
lations between pores. (C) The diffraction pattern of a crystalline phase of
the magainin-lipid mixture. The scale of this figure is the logarithm of
intensity. (D) This diffraction pattern provides new information for the oily
streak defects (Schneider and Webb, 1984). Readers may obtain the com-
plete data from http:\\ion.rice.edu\;huang\neutron data.
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(Fig. 6 B) at a slightly smallerq, because of the differences
in lipid chain length and possibly in the water (D2O) content
as well. The alamethicin and magainin peaks (Fig. 6,A and
B) have been discussed previously (He et al., 1996; Ludtke
et al., 1996). However, the origins of in-plane peaks are not
always clear. An example is given in Fig. 6C, where an
interpretation based on the in-plane scattering alone would
be very difficult.

This problem is now solved by off-plane scattering. Fig.
7 shows the off-plane scattering patterns on the detector
produced by the previous four samples whenv was set at
60°. We see that each structure produces a unique pattern,
clearly different from the others. The pattern of oily streak
defects is circular. The magainin sample at 20°C is clearly
crystalline. Most amazing of all, the patterns of alamethicin
pores and magainin pores have distinctively different fea-
tures. We have measured several alamethicin and magainin
samples. All of them reproduced these unique patterns.

The scattering patterns on theqr-qz plane are shown in
Fig. 8. These are in the form most convenient for theoretical
analysis. We note that the magainin sample at 35°C shows
a maximum atqz . 0. This is an indication of intermem-
brane correlations. The data analysis will be discussed in a
later paper.

CONCLUSION

Off-plane scattering provides information in addition to that
of in-plane scattering. In fact, it provides the complete
structural information on fluid membranes obtainable by
scattering. We have shown a simple method of measuring

off-plane scattering patterns using existing small-angle scat-
tering facilities.
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