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A Theoretical Model Study of the Influence of Fluid Stresses on a Cell
Adhering to a Microchannel Wall

Donald P. Gaver, lll, and Stephanie M. Kute

Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118 USA

ABSTRACT We predict the amplification of mechanical stress, force, and torque on an adherent cell due to flow within a
narrow microchannel. We model this system as a semicircular bulge on a microchannel wall, with pressure-driven flow. This
two-dimensional model is solved computationally by the boundary element method. Algebraic expressions are developed by
using forms suggested by lubrication theory that can be used simply and accurately to predict the fluid stress, force, and
torque based upon the fluid viscosity, u, channel height, H, cell size, R, and flow rate per unit width, Q,_y. This study shows
that even for the smallest cells (y = R/H << 1), the stress, force, and torque can be significantly greater than that predicted
based on flow in a cell-free system. Increased flow resistance and fluid stress amplification occur with bigger cells (y > 0.25),
because of constraints by the channel wall. In these cases we find that the shear stress amplification is proportional to
Q,.4(1 — )2, and the force and torque are proportional to Q,_4(1 — v?) 2. Finally, we predict the fluid mechanical influence
on three-dimensional immersed objects. These algebraic expressions have an accuracy of ~10% for flow in channels and
thus are useful for the analysis of cells in flow chambers. For cell adhesion in tubes, the approximations are accurate to ~25%
when y > 0.5. These calculations may thus be used to simply predict fluid mechanical interactions with cells in these
constrained settings. Furthermore, the modeling approach may be useful in understanding more complex systems that
include cell deformability and cell-cell interactions.

INTRODUCTION

Cells in nature frequently adhere to the walls of channels oroll along the endothelial surface. Next, neutrophil activa-
tubes whose cross-sectional dimensions are similar to thosmn ensues, resulting in the up-regulation of the integrin
of the cells themselves. This can occur in situations asamily of adhesion molecules, which initiates firm contact
varied as leukocyte adhesion in the vascular system tbetween the endothelium and neutrophil. Subsequently, the
biofilm formation in porous media. Fluid flowing through neutrophil flattens and eventually migrates between inter-
these systems exerts stresses on these cells, which majdothelial junctions to enter the tissue.
influence their adhesion to the microchannel wall. In addi- ~ Clearly the strength and rate of attachment of the ligand-
tion, cell adhesion can greatly influence the flow field receptor bindings are key determinants of the adhesion
within these channels. To fully understand the interrelation-process, and for this reason they are the focus of many
ships between cell behavior and flow, a fundamental understydies (for example, Goetz et al., 1994; Hammer and Apte,
standing of the modification of the flow-field within the 1992: Konstantopoulos and Mclintire, 1996; Tempelman
channel, the flow-induced stress, force, and torque on thgng Hammer, 1994). Olivier and Truskey (Olivier and Trus-
cell body ig necessary. Several specific _Iines of research th%y, 1993) have examined the force and torque associated
can benefit from improved understanding of the hydrody-yith shape changes during sequestration, and predicted that
namic interaction between a cell and the environment ity gjgnificant reduction in stress and torque would occur.
inhabits are described below. However, an unstudied aspect of the above investigations
relates to the fluid mechanical interaction that occurs during
Leukocyte adhesion the adhesion and sequestration of cells in small vessels (for

Much is already known about the adhesion process wittgxa@mple, postcapillary venules) wherein a cell, or a cluster
leukocytes, particularly neutrophils. Briefly, the adhesionOf cells, may cause significant flow disruption and thus
process is initiated by an inflammation response, whictincrease the stress exerted on the cell. A goal of the research
results in vascular endothelial cells displaying specific ad-described herein is to identify the scenarios in which such
hesion molecules that bind to convecting neutrophils. Thélow disruption may be significant, and the degree to which
initial attachment is mediated by adhesion molecules knowithis disruption influences the stress field on an adherent cell.
as selectins, which slow the neutrophils and cause them tbor this reason, the calculations performed in this study will
provide a description of the stress field surrounding the cell

, — o (which could affect cell deformation), and the torque and
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Biofilm formation transduction studies is a quantitative evaluation of the stress
A situation that is similar to leukocvte adhesion is biofil field exerted on the cell surface. This aspect has been
sttuation that IS simiiar to leukocyte adhesion 1S biotim recognized and studied by Barbee and colleagues (Barbee et

form.a'tmn.. Biofilm” is a general term describing the Im- al., 1995), who used computational fluid dynamics tools to
mobilization of cells on a substratum. An excellent review.

f biofil d their | : ided by Ch i investigate how endothelial cell remodeling influences the
of biofiims and their |m'po'rtance IS provided by Lharacklls o\ ncelular shear stress distribution. These studies showed
and Marshall (1990). Biofilms are ubiquitous in nature, and

. . . . that the endothelial surface would remodel under shear so as
can be either detrimental or beneficial. For examplle,. b|o-to align with the flow to reduce the magnitudes of shear-
: X Stress and their gradients at the cell surface. Further under-
urinary tract, where thgy pose health risks. In_ Cor]tr"’l‘e’tstanding of the fluid mechanical interactions with adherent
biofilms may be benef|C|aI in the natural gnV|ronment, cells in a variety of orientations may be useful for identi-
where they are responsible for natural cleansing of ground1’ying mechanotransduction mechanisms. While the problem
water. In situ bioremediation efforts depend upon the Cre4escribed in the present paper is idealized, the methods
ation of microbial colonies within porous media, wherein described may be useful in further research, of mechano-
the bacteria and pore d_lmen3|ons are equa!ent. ._transduction. In particular, the change in the stress field with
The development or improvement of effective strategieg ell deformation (on which the present study builds a foun-

fordm—stltu dplorerptehdlaélotn'Isr:jould ble ballsbedh upon ? Spumiation) may be important in understanding mechanotrans-
understanding of the detailed pore-level behavior of micro-y | o mechanisms.

organisms within porous media. Bioavailability of microor-
ganisms depends upon the local physicochemical conditions
(e.g., pH, temperature, concentrations of dissolved gaseStudy goals

anq solutes) becaqse they influence chemotaxis and ﬂOCClI'ﬁ the present study, our goal is to estimate the magnitudes
lation, the propensity of microbes to aggregate and adheret& fluid-induced stress, force, and torque on a cell that

each other and the ocal pore structl,!re, creating the l.)'o.mmadheres to a microchannel wall. As explained above, this
A common feature of many theoretical models of biofilm

L . . information is essential if one is to accurately evaluate the
format!on Is that the explicit dependence upon fluid dynam'adhesion strength necessary for a cell to remain adherent to
ICS IS ignored. Howevgr, cells may be removed from theeither a vessel wall or on a soil matrix in porous media. In
b!qﬁlm by. flow pr.op.ertlle s that' lead tp detachm.ent.lln ad'addition, to quantify mechanotransduction responses, one
dition, while the biofilm is the site of bioremediation, it may

so hind icrobial miaration into th by reduci must first understand the magnitude and distribution of
aiso hinder microbial migration Into the pores by TedUCiNGgyosse5 on the cell membrane. We investigate a two-dimen-
forced convection and diffusive transport of new cells into

h I ¢ f biofoull For th sional model of a single isolated cell within a narrow
the sma pores (@ ype ot biotou mg). or these reasonSypannel, and study the influence of channel height and cell
recent studies of bacterial movement in microchannels su

. ) ) %Lize on the stresses, forces, and torques exerted on these
gest that surface interaction and hydrodynamic forces MULells. We use lubrication theory as a motivation for the

be m(.jUded"'? tmodtzls; at the trmcropor.e sca:llet.lf on% 'Sl’ toZevelopment of simple algebraic formulae that can be used
Examme d(':et' a%an ra:jn_srpor ISSlugegsolinDr.e”a IS 'f rrl10 189550 ccurately to predict these mechanical influences over a
loremediation (Berg and Turner, » ifon et al., 'range of different cell to channel height aspect ratios. Al-

1996; Harkes et al.,, 1992). The goal of the research det’hough the problem studied herein is greatly simplified, the

§cribed 'in this paper is to explain simply the fluid dynamical methods described may be useful in determining improved
interaction between adherent cells and the flow through th%nalytical expressions for more complex systems that more
microchannels they inhabit, so as to improve the under'accurately describe cell behavior in vivo

standing of this aspect of the microscale process. Addition- In these models, we assume the flow is driven by a

al]y, knqwledge of .the force gnd torqge on individuql qells pressure difference\P) between opposite ends of the chan-
will be. important in assessing the likelihood of biofilm nel of lengthL, thus setting the average pressure gradient.
formation. For this reason, the flow rat€) through the channel will
depend upon the size of the channel as well as the size of the
adherent cell. We have chosen to model this system as
pressure-driven (instead of with a defined flow rate), be-
Recently it has become evident that vascular endotheliatause in the systems that we hope to model (e.g., porous
cells that line vessel walls convert fluid stresses to electricaedia or capillary beds), parallel pathways may exist
and/or biochemical signals, affecting the behavior of thethrough which flow will be shunted when the resistance of
vascular system—a behavior termeechanotransduction a given pathway increases. In these cases, the pressure
(Davies, 1995). This mechanism is hypothesized to regulatdifference will remain relatively constant as cell adhesion
vessel tone and may be related to atherosclerosis. Tensegritgcurs. In our simulations, we will report the flow rate that
architectural models of the cytoskeleton may explain howoccurs with cell adhesion, because this will influence the
the surface mechanical stresses are converted into biochelbase level of the stresses in the system, and the rate at which
ical responses (Ingber, 1997). A critical aspect of mechanoeells might convect into the channel.

Mechanotransduction
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MODEL DEVELOPMENT the following scales:

Here we develop a model that can be used to study the stregs = Lx, y* =Ly, p*=APp, + = APz
distribution on individual cells in a single microchannel of
length L and heightH. These cells could be leukocytes
adhering to the endothelial surface of a vessel wall, or could

make up a biofilm in porous media. Flow of a viscous, here L and H are the length and height of the pore

incompressible fluid is driven within the channel because orespectively,AP is the applied pressure difference across

an applied pressure differend®. Discrete cells of heighR . : : :
are allowed to attach to the channel wall, which changes th}ehe length of the pore, andis the viscosity of the fluid. The

N o . velocity scale,U = APH?%8uL, is the centerline velocity
effective” wall shape and therefore influences the flow magnitude for flow in a channel without aggregation.

field. Below we develop the governing equations that de- Using the scales in Eq. 4, the Stokes equations and
scribe this situation, and use this model to investigate th%ontinuity are given by Y
flow through the channel, and the fluid-mediated stresses on

attached cells. 32

Vp = 0 Ve, and

2
and u*=Uu=Aﬂu 4)
8ulL

Governing equations V-u=0. (5)

We assume slow, viscous flow through the microchannel infhe pressure and velocity boundary conditions are given by
which inertia is negligible, based upon the Reynolds num-

et =1  and Prgne = 0, 6
ber, Re = UH/v << 1, whereU is a representative flow Pet Pright ©)
velocity andv is the fluid kinematic viscosity. Therefore, and
flow is governed by Stokes equations and continuity:
? / q / U, Y = Yaar) = O, ()
V¥p* = uV*2u*, and whereB = H/L is the dimensionless parameter defining the
V*eut =0 @ microchannel aspect ratio. In dimensionless form, cell ad-

hesion induces a wall protuberance of magnitude=

whereV*p* is the pressure gradieni is the viscosity of the  R/L = By, wherey = RiH is the cell to channel width aspect
fluid, and u* = (u*, v*) is the convective velocity of the ratio. An example of the domain with a single cell attached

fluid. In this and following equations, * denotes a dimen- X = (1/2, 0) is shown in Fig. 1. We solve the governing
sional variable, and unstarred quantities reflect dimensiong9uations using the boundary element method, as discussed
less variables. in the Appendix. This computational method is outstanding
Because of the imposed pressure differentP, the for irregularly shaped domains, because it demands only a
pressure on the left and right boundaries of the donfjg, discretization of the surface. Even so, this method is capable

andP,, are given by of resolving fine features of the flow. For example, stream-
" lines are shown in Fig. 1, which demonstrate the overall
pri = AP and pig, =0, (2) flow field. These streamlines show small Moffat vorticies

near the edge of the cell, which would require small dis-
where the pressure at the right boundary is taken as theretizations to resolve if finite difference methods were
reference pressure. The no-slip boundary condition is imused. The boundary element method is useful for systems
posed so that the velocity at the top and bottom walls of thavith free surfaces (e.g., deformable cells) (Gaver et al.,
pore is zero: 1996), because it does not require remeshing of the domain

with deformation. Finally, this method is rapid—typical

u*(X*, y* = yuar) = 0. 3)

A monolayer biofilm develops when cells attach to the
wall and modify the microchannel structure. At the point of &
attachment for each cell, the wall of the microchannel is% 025
modified by the addition of a semicircular protuberance of § %2° 't

heightR. The attachment is smoothed at the juncture with £ 015 P |B=HL
the wall by a “fllet” of radiusR/10. g o Jfﬂ; A

c

.% 0.00

S 0.00 0.25 0.50 0.75 1.00
Scales and dimensionless governing equations 5 Dimensionless x-coardinate, x'/L

_TO discem important parameters Of'the system, the QOVEMFIGURE 1 Example of a domain with one aggregated cell with stream-
ing equations of the model are nondimensionalized by usingnes indicating the flowy = RH = 0.30; 8 = H/L = 0.25.
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calculations required only 1 CPU-s on a 200 MHz Intel Deviation of Q from unity represents the reduction in
Pentium-Pro computer. For these reasons, the present mefilew rate due to the cell adhesio@ depends on the two
ods are extendable to much more complicated systems thgeometric dimensionless parameters in the system. The cell
include multiple cells and/or cell deformation, from which aspect ratio ¥ = R/H) dictates the size of the gap width
the present study would be considered a baseline. between the channel wall and top of the cell. Clearly, as
It is important to recognize that the scaling in this anal-y — 1, the channel becomes obstructed &d- 0. In
ysis removes the pressure difference between ends of tredition, Q is modulated by the other independent param-
pore (AP) as a parameter of the problem, because it wagter of the system (eithgd = H/L or « = R/L). If y = R/H
used in the stress and velocity scales. To determine this varied with3 = H/L fixed, this is equivalent to changing
magnitude ofAP under specific conditions, one would use the cell size R) for a given channel, as shown in Fig.a2
either direct measurements in an experiment, or estimate tHa this case, a&/H increases, the cell fills a larger portion
magnitude based upon flow conditions that are known tof the channel by increasing its relative length, because
exist. For example, if a background flow in a pore of RL = R/H - H/L. The influence of flow following this
dimensionsH = 10 um andL = 100 um is known to be  scenario is presented in Fig.&8 This flow rate reduction
U = 15um/s (1.3 m/day, a natural flow velocity), then from occurs for two reasons. First, the resistance increases with
Eq. 4 a pressure drop &fP = 1.2 N/n? must be imposed increasingR’H due to the decreased gap through which fluid
across the pore. A reduction &f to 1 um would yield a  can flow between the cell and opposing wall. Second, the
100-fold increase iAP for the same velocity, or a 100-fold flow resistance increases because of the increasing axial
decrease in velocity for the samd>. We will demonstrate  extent over which the cell fills the chann&V/[ increasing).
below that the stress/flow is invariant withP, so a mea- Alternatively, varyingR/H with R/L fixed is identical to
surement ofQ* is sufficient to estimate the stresses on changing the channel heightl with a fixed cell size, as
individual cells. shown in Fig. 2b. The influence on the flow rate in this
situation is given by Fig. 8. In this case, the change in flow
resistance is due only to the decrease in the gap width
RESULTS between the top of the cell and the opposite wall with

In thi tion we explore how the ttached cell increasing=/H. From this figure it is evident that small cells
S section we explore how the Tlow over attached Celis ;) _ 0.01) have only a minor effect on the flow rate until

establishes a stress field upon the cell. We first examin H > 0.3. However, a®/L increases, the flow resistance

(next sectlon)' the ﬂOW. rate through'the Systegt, anq increases markedly because of the increasing axial extent of
demonstrate its behavior as a function of the two dimen-

sionless parameters in the systeggn= H/L andy = R/L. the flow disturbance.

We then examine the scales for the magnitudes of the

stresses, forces, and torques and show that these mechaniSétess, force, and torque scales for
guantities are proportional t9*, and that the magnitudes of attached cells

the flow-normalized quantities are independenABf Next, . : ,
A number of mechanical factors may influence a cell’s

we predict the magnitudes of these flow-normalized Me 3 hility to adhere to a microchannel wall. These include the
chanical properties on isolated cells and develop regressioRorm);l and shear-stress distribution on.the cell membrane
formulae based upon lubrication analysis. These regression '

formulse may be used sl to predct th i flow 40 "= 1172 210 loraue Sxered o e el Dol e
behavior on cells in constrained settings. 9 ’

that we can determine the relative influence of fluid flow on
acell. As described in detail below, we rescale the cell shear
stress %), the x component of forceR%), and the torque

The influence of cell adhesion on channel (T*) by magnitudes that are derived from stress magnitudes

flow rate

When a cell attaches to the channel wall, it disturbs the flow
rate through the channeQ* = [u*dy*, which in turn :
influences the stress field experienced by the cell. We scale @’”Cr@as’"g Ak
Q* by the flow rate that would exist in a flat-walled (cell- 2

free) system,

Constant H/L

3
Qratwal = APiH (8) Constant R/L
at-wal 12[J/L’ :
. . . . b incréasing RH
and define this dimensionless flow rate as =
* " FIGURE 2 Description of decrease in the cell aspect rd&ibl, by (a)
Q — Q — 12”“qu 3dY* (9) changing the cell size3(= H/L fixed); (b) changing the channel width
Qfat-wal APH (y = RIL fixed).
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FIGURE 3 The influence of cell aspect rati®&/H) on the flow rate
through the channela) Effect of variation in cell sizeH/L fixed). -, H/L =
0.05;V, H/L = 0.10;m, H/L = 0.15;0, H/L = 0.20; a, H/L = 0.25. )
Effect of variation of channel heighR(L fixed). ——, R/IL = 0.01,;
«Ve RIL = 0.03; —8—, RL = 0.05; —¢-, RL = 0.07; —A—-,
RL = 0.09; —, RL = 0.11; —e-- R/L = 0.13; —V—-, R/L = 0.15.

that would exist in a flat-wall (or cell-free) system. These
rescaled dimensionless quantities are denotet, by, and

T, respectively. These quantities provide a measure of the

amplification of the fluid mechanical interaction with the
cell due to the combined effect of flow disruption by the cell
and the constraint of the channel.

In addition, because shear stress under Stokes flow is

directly proportional tdQ*, it is useful to represent the fluid
mechanical interaction with the cells by dividing the stress
force, or torque byQ*—we call this theflow-normalized

response. This representation is beneficial for several rea-
sons. First, it identifies the magnification of the mechanical

influence on cells in a system with a fixed flow rate. In a

pressure-driven system the flow rate is modified, as shown

in Fig. 3. Nevertheless, with this representation, oQteés

determined, it is simple to calculate the fluid mechanical

impact on the cell. Most importantly, the flow-normalized
responsestt/Q*, F3/Q*, and T*/Q*) depend only on phys-

ical constants of the system and the dimensionless flow-

normalized response§Q, F,/Q, and T/Q, respectively)
that are functions only of = R/H. This greatly simplifies

the data representation, and will be very useful in determin-
ing regression formulae of the system response outlined

below (see Regression Relationships).

. : . F
To determine the magnitudes of these mechanical props

erties, the stress vector along the cell surfagg,, is cal-
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culated using the relationship:
(10)

wherefi. is the cell wall outward normal vector, armslis
the dimensionless stress tenser= —Pl + (B%8)[Vu +
Vu']. An example of thex, y, normal, and tangential com-
ponents of the stress{ 7, 7,, and 7, respectively) on a
single cell is shown in Fig. 44—d Note thatr, = 7, along
the flat wall. Far from the cell, these quantities approach the
pressurep, which decreases linearly, as would be expected
in uniform channel flow.

Note that the dimensionless shear-stress on a flat-walled
(cell-free) microchannel is

(T8 natwai _ B

AP 2 (1)

(T9fat-wan =

which is shown in Fig. 4l. This figure shows that, on the

cell surface may be much larger than that on the flat wall.
To compare the relative magnitudes of the cell shear-stress
with that exerted on the flat wall in a cell-free system, we
represent the dimensionless shear-stress as

* *
Ts Ts

N (T:)flat—wall N AP(B/Z)’

Ts

12)

1.0
) a
O .~ O 0.5+ 1
£ 4
S o™ x
w5 © 001 r
gg It
EX w05y 1
Q
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1.0
3 b
o .o
24
O o* »
‘wEs v 05
’ g'{; ]
ET v
[=]
0.0
1.0
. c
]
2 o
Lo g
€5
e
[ ST T
E‘E- ]
c
58~
0.0
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d
@ o o 0061
298 4a
S5+, 0041 (ts)
'47;2 Lo S Rl N
S g g 002+ T
g2 o
e 1 1
5@ 0.00
-0.02

0.45 0.50

. N . *
Dimensionless x-coordinate, x /L

IGURE 4 Dimensionless stresses exerted on single ¢glis.H/L =
.05,y = RIH = 0.25. @) x component; i) y component; ¢ normal
component; ) tangential component.
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and the flow-normalized shear stress from Eq. 8 is thus Below, we will use this as a torque scale to evaluate the
influence of biofilm formation on the torque experienced by

E _ 67*: E (13) a cell. As such, we will represent the dimensionless torque as
QWG
Q - 2R[Tds*
The x component of the force/width on the cely) is base™ (7R2)(BAP)’ (18)

computed by integrating, over the cell surface. In undis- ) o
turbed flow, the magnitude of force on a flat section of wall Where the integration is taken over the cell surface. The

over the distance covered by the cell is flow-normalized torque is given by
(Ftatwar = 2R(T)natwar = RBAP. (14) T’;:se: <67TP;R2\-T—b~ase: By’ -Ttiase_ (19)
Q H ) § o)

This magnitude is due solely to the shear-stress exerted on
the flat wall. When a cell is introduceds, will include
contributions due to shear- and normal stresses, which Wi.u.-‘otresses,
be modified by the flow field, increasing the magnitude of
F%. To identify the amplification due to flow disruption, we Fig. 5, a andb, shows the dimensionless shear-stress and
represent the relative magnitude B} with the flat-wall ~ normal stress for individual cells of different sizes within a
limit as narrow channel = H/L = 0.05). Fig. 5a shows that small

. . cells (y = R/IH = 0.1) have a%),,.x~ 3, indicating that the
_ Fx _ Jrds* (15) shear-stress on a cell is much larger than the stress exerted

(Ffatwan R+ APB’ on the flat wall. This result is in agreement with calculations

. L of stresses due to Stokes flow in a semiinfinite domain over
where the integration is computed over the cell surface. Thgemicircular ridges computed by Higdon (1985), providin
flow-normalizedx component of force/width is thus g b y 9 P g

confirmation of our numerical method. This result shows

forces, and torques on individual cells

Fx

F* /12uR\E,  [12yp\E, that the shear-stress exerted on the cell is much larger than
o =l /a=\"n J& (16)  the stress exerted on the surrounding wall. The shear-stress
Q Q deviation occurs over a distance from the cell center of

The torque/width experienced by the celllis = fr= x  several cell radii {4R) before 7, — 1, indicating the
T*ds*, where r* is typ|ca”y the vector between the rota- distance over which the flow field is disturbed by the
tional axis of the cell and the cell surface. For unattached
cells, r* originates from the center of mass (denoted with . _ . . .
the subscript cm) of the cell, so that,, = [r%,, X 7*ds, ) ) f ' " a
with the integration conducted over the entire surface of the |
cell. In the present model, we assume that the cell is im-
mobile. In this context, it is most convenient to choose=
I'tase the radial vector from the center of the attachment of
the cell to the surface. In this case, the torque induced by
fluid flow is T},ee= [Thase X 78ds* = Rf7ids*, because
the component of* perpendicular ta'} i o ThaseiS
useful for representing the fluid-exerted torque on the fully
adherent cell. In equilibrium it is balanced by the torque -1

T =T Jrwall
[#+]

s

~

Dimensionless Shear Stress,
*

exerted by cell adhesion, which is due solely to the i 10
component of force exerted by the receptor-ligand binding § 08 1
along the flat surface of the cell, whereas theomponent %’ '
of force exerted by the receptor-ligand binding is balanced £ o 44
by F5. For this reason, all torques hereafter will be referred %*:c
to as Th,se Unless otherwise noted. Note, however, that & ". o4
becauser’;m = rf)ase_ (4R)/(37T)ey! sz = ~}kc)ase"_ (4R/ -§ i
3m)[Tdst = Tiae + (ARBWFE. So, from the data pro- 5 02t
vided, T%,,, can be determined. £
To determine a scale fof},,, We assume thaty ~ 0.0 : y * ' y
(T)faewan (Which underestimates the stress in the cell cen- N 4 ) 2 ] 0 2 ¢ 6
ter, but overestimates it near the edge of the cell); then a Dimensionless Distance from Cell Center,
“flat-wall” torque/width scale is O e VR
BAP FIGURE 5 The relationship between cell aspect rat®Hj and cell
(Thasdnatwal = wR2(2>. (17)  stressp = HIL = 0.05.——R/H = 0.1;~, RIH = 0.3, —R/MH = 0.5;
—, RIH = 0.75. @) Shear-stresspf Normal stress.
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presence of the cell. With increasing cell siz&y){. in- 35
creases, so that whd®H = 0.75, ¢9)max =~ 5.5. The cell a0l
disturbs the flow field throughout the channel by introduc-
ing a large increase in flow resistance, which decreg&ges
and causes the far-fielel, < 1. The relative disturbance

from the far-field flow occurs over a shorter relative dis-
tance from the cell center of 2R with the larger cells.

The normal stress along the bottom wall is greatly influ-
enced byR/H, as shown in Fig. b. In a cell-free system, the 51
normal stress is identically the pressuypgdnd would decay 0 : ; ,
linearly with increasingx; this is clearly modified by the 0.0 0.2 0.4 0.6 0.8 1.0
introduction of a cell. The normal stress disruption causes Cell Aspect Ratio, RIH
an increase inP upstream of the cell, and a decrease

NN
(=T

ury
(4]

Dimens!onless Fx
Fy = F P nanwan

~

-

(=]
+

R/L increasing

downstream. This is a direct result of the increased flow e
resistance resulting from the cell occluding the channel. w'"-;
Figs. 6-8 demonstrate the behavior of the system g%
through plots of %) max Fx» @NdT,,se Fespectively, for = §§
R/L = 0.03 (a cell occupying a small section of the channel) SE
anda = 0.10 in thea panels, and the dimensionless flow- §z°
normalized mechanical behavior of the systef), (,./Q, H
(TS

F,/Q, andT,../Q, in theb panels. Thea-panel representa-

tions are intended to give a general understanding of the 1
physical behavior of the system. However, to completely

analyze this system using this representation would require

an exhaustive exploration as a function of two geometrical _ _
FIGURE 7 The influence of cell aspect ratiB/H) on thex component

parametersx and eithera or B) In contrast, usm,g the of force, F,. (a) Dimensionless respons®, a = 0.03;m, o = 0.10. p)
flow-normalized b-panel) approach, the response is solelypimensionless flow-normied responsd®, Boundary element; ———, lubri-
cation theory; ——, regression.

1 2 3 4 5
(-(RH)

a function of the dimensionless cell size,= R/H. These
a data are represented in log-log format, with variationyof
61 T along the abscissa representing the inverse of the dimen-
51 1 sionless gap width 1/(+ +y) or by 1/(1— v?). The rationale
for this format will be made clear when data regression
formulae are discussed in the next section.
871 T Fig. 6a shows the maximuri, exerted on the cell &=/H
21 + increases. For smal¥/H, (T9)nax =~ 3, the infinite-domain
i1 | limiting result discussed above. ARH increases, 1) max
RiL increasing increases greatly, and reaches a maximum Rédr= 0.8.
! For R'H > 0.8, (dmax — 0, because the cell obstructs the
channel and) — 0. Cells that extend over a larger portion
of the domain ¢ = 0.10) experience smallefrd,, be-
cause of the commensurate reduction in flow rate in the
pressure-driven system. Figh&emonstrates the influence
of y on the dimensionless flow-normalized maximum shear
stress, T)ma/Q- As the gap width decreases ((1 vt
increasing), t9)ma/Q is initially constant, indicating that the
top wall has little influence on the cell. When @ y)~* >
1.33, shear stress amplification due to interaction with the
top wall is observed. This indicates that the top wall starts
1= to influence the shear stress on the cell when the cell size is
! g 8 4 5678910 greater than 25% of the channel width. For larger cells, a
(Dimensionless Gap Width)", 1/(1-R/H) dramatic increase in7(),,./Q occurs as the cell fills the
channel. In a system with a fixed flow raté&.), ., would

Dimensionless Maximum Shear Stress,
Tohmax= (78 Imand (T htatewan
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Ts)maja
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Maximum Shear Stress, (tg

FIGURE 6 The influence of cell aspect rati®/() on the maximum iner xponentially: however. in r re-driven
shear-stressaj Dimensionless behavio®, « = 0.03;m, a« = 0.10. p) crease exponentially, however, a pressure en sys

Dimensionless flow-normalized respond®, Boundary element; ———, t€m, the shear.-SNtress WO'Uld be reduced frpm Fhese values by
lubrication theory:-, large-gap limit; ——, regression. the reduction inQ (see Fig. 3), as shown in Fig.&®
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The dimensionless component of force on a ceff,, as 8 a. These results show that torque predictions in uncon-
a function ofy = R/H is given in Fig. 7a. For R/H small,  strained systems may greatly underestimate the torque on a
Fx =~ 3, indicating the magnification of force due to flow cell in a constrained channel.
disruption, even for very small cells. Ag increasesF,
increases markedly. In the limR/H — 1, the cell com- . . )
pletely occludes the channel, and tkﬁ;(se L/R = 1/a (in Regression relationships

dimensional formF}; — AP - H), because this is the entire The data presented in Figs. 6—8 clearly demonstrate that
x component of force applied to the cell. The dimensionlessiisruption of the flow field by a single cell in a microchan-
flow-normalizedx component of force on a celF{/Q) asa nel can greatly increase the mechanical influence of the
function of (1— %)~ *is shown in Fig. 7o. This represen- fluid on the cell over that experienced in an unconstrained
tation shows that in a fixed flow-rate system, would  setting. In this section we develop regression relationships
increase without bound because the applied pressure woutdat can be used to predict simply these fluid mechanical
need to be increased to compensate for the increased vigteractions for individual cells. For the flow-normalized
cous resistance as the gap width between the cell and taesponses, the general forms of these regressions were de-
wall narrows. In a pressure-driven system, the—> 1  rived using lubrication theory analysis, which is presented
limiting behavior is not as obvious in Fig.l becaus®is  briefly in the Appendix. This approach gives a logical basis
simultaneously reduced with the increaseyiras shown in  for the regression analysis. The general forms derived
Fig. 3. . should thus be accurate for more complex systems (deform-
Finally, the dimensionless torqui,,s.is greatly influ-  able and multicell), which will allow comparison with the
enced byR/H, as shown by Fig. 8. Fig. 8 shows that ag  rigid single-cell responses derived herein.
increases, the torque experienced by the cell increases to a
maximum value, then decays to zero as the flow is reduced
by obstruction of the channel. The dimensionless flow- oW rate
normalized response shown in Figb&emonstrates thatin  The flow rate predictions by lubrication theory given in the
the flow-driven caseT,,seWould grow exponentially ay  Appendix for a semicircular protuberance of length R/L
increases. This increase T ,..is reduced by flow limita- and channel aspect rat = H/L gives
tion in the pressure-driven system, as demonstrated in Fig.

~_ Q _f@p
Qtatwan  Tole, B)’
3 . . , ; ~ where
fi(a, B) = 2(B* — &®)*? (20)
§ 51 1 and

f(a, B) = (2(1 — 2a)a* + 2B%*(5a — 2))(B? — a?)Y?

Tyase = Toase AT Hiat-wai

Dimensionless Tor

a
+ 34(2(32 — 012)1/2 + 37TO[2) + 6B4a2tan‘1<(2_2)1,2>,
R/L increasing B o

0 : . . X as demonstrated in Fig. 9. Although this approximation
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FIGURE 8 The influence of cell aspect rati/) on the cell torque.&)
Dimensionless respons®, o« = 0.03;m, a« = 0.10. ) Dimensionless FIGURE 9 The influence of cell aspect rati?/t) on flow rate through
flow-normalized respons@®, Boundary element; ———, lubrication theory; the channel. Boundary element analy#: « = 0.03; m, « = 0.10.
——, regression. Lubrication theory: ———n = 0.03; —,« = 0.10.
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overestimate® for small R/H, it gives a better fit than any as shown in Fig. &. We generalized this form and found
simple regression formula provides, and is probably suffithe regression
cient for the purposes of this study.

Thase 115+ 0.70y

Maximum shear stress 5 A—pz Y =0.85, (26)
Lubrication theory shows that
(T ma 1 which (Fig. 8b) clearly provides a good fit of the compu-
Li ( ~ ) = e (21) tationally derived resultsR¢ = 1.00). Over the range of

investigated, this relationship does not converge to the lu-
As shown in Fig. 6a, this relationship is satisfactory for brication theory prediction given in Eq. 25, although as

small gap widths, but does not provide an adequate relal — 1, it is expected that this relationship will hold.

tionship for small values of, as can be seen in Figkb6To

develop a quantitative relationship that can be used over

0.25= y = 1 (the range over which the top wall influences pjSCUSSION

the cell), we performed a least-squares regression of the ]

boundary element data, using the forf)(./Q = a + In this paper we predict the stress, force, and torque on a

1/(1 — y)?, which has the correct limiting behavior gs—  model of a stationary cell attached to a channel wall. From

1. This calculation shows that= 1.158, and the regression the data presented above, it is clear that the flow-field

coefficient is R = 0.998. This leads to the following disruption can be significant. The constraints added by the

relationship for the maximum shear stress calculations: microchannel walls result in significant magnification of the
stress, force, and torque when the cell size is significant in

=1

(To)max 2.95 v=<025 relation to the channel width. In this case, the amplification
o) ) 1.158+ — 0.25=y=0.85. (22) " of the cell stress, force, and torque can be large, as demon-
1= strated by Figs. 6—8. In a pressure-driven system, the net

This relationship is shown in Fig. 6, which demonstrates flow is reduced by this disturbance, as shown in Figs. 3 and
a strong correlation to the calculations from the boundany®, which reduces the stress amplification. If the cell is small
element method and to that of the limiting lubrication theorycompared to the channel lengtR/ll << 1), this flow rate

analysis. Fory > 0.85, Eq. 21 should be used to estimatereduction is lessened. In a system with a defined flow rate,

(?s)malé- the stress amplification is potentially enormous, because the
flow is required to squeeze through the gap between the cell
x component of force, F,: and the opposing wall. This case is described by pamefs

Figs. 6—8. From these studies, it appears that the stress
magnification demonstrated in this model may have a sig-
nificant impact on cell adhesion within the channel, or on
= o0 the mechanotransduction of cells lining the channel wall.
( ) = 1— P (23) As with all model studies, it is important to keep in mind
the limitations of the modeling approach. In particular, with
which is shown in Fig. 7b. Clearly this relationship is this model we have assumed a two-dimensional geometry
inadequate fory < 1. We generalized this form and found that implies that the cell shape does not vary in the

As shown in the Appendix, the lubrication approximation
for (F,/Q) gives

Lim
y—1

the regression direction, and thus our cells are semicircular “rib-shaped”
. 5 objects, instead of a more biological hemispherical shape.
5 — 3.19+ 0.65y + 4.3y =08 (24) We have also neglected to model cell wall flexibility, which
o) (1- )" =R will clearly allow modification of the cell shape when large

stresses are imposed. Furthermore, in the models we as-
sumed that fluid inertia was negligible, based upge =
UH/v. For a flow velocity appropriate for the microvascu-
lature withU = 0.2 cm/sH = 20 um, andv = 0.03 cnf/s,

Re= 0.01; thus inertia is indeed negligible. If the gap width

which, as shown in Fig. B, clearly provides a good fit of
the computationally derived resuItR2(~= 1.00). Fory >
0.8, Eg. 23 should be used to estim&igQ.

Torque is reduced withAp held constant, then the reduction in the
In the limit of small gap width, the flow-normalized torque flow rate (see Fig. 3) would further redudge If Q is
on the cell is given by defined, then a reduction in the gap width would be accom-
~ panied by an increase ld, which would elevatdre If the
Lim(TEase) — # (25) 9ap width reduces to 10% of the channel widih=¢ 0.9),
1 11—y thenRe = 0.1, which is large enough for inertial effects to
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be significant. If this regime is to be investigated, modifi- with a prescribed flow rate through the tube. Using dimen-

cation of the analytical methods will be warranted. sional analysis, they find that

Fi) 'Ytubezle< 7.52 )2

~ = 815— ], 27)
Validation <Q* we 2D IN(Yiube)

To judge the accuracy of the two-dimensional modelingwherey,,,c = d/D is the ratio of the cell to tube diameter.
approach in the present study, we compared our predictionsig. 10 a compares the relative magnitudes of the dimen-
to calculations and measurements of three-dimensional flowionless quantities=/Q*)/(uy/<¥) for the 2-D channel re-
obstructions in different flow scenarios by other investiga-gression behavior (Eg. 24) with the 3-D tube measurements
tors (Brooks and Tozeren, 1996; Chapman and Cokele{Eq. 27), wherée? is the relevant cross-sectional dimension
1996; Pozrikidis, 1997). To do so, it was necessary toH for 2-D, orD for 3-D). Note that3/Q* is dimensionally
calculate an equivalent 3-D force and torque on our 2-Dequivalent in 2-D and 3-D, because in 2H} is the force
objects. We chose to leEf); 5 = 2R(F%),.p, Where £3),.5  per unit width andQ* is the flow per unit width, so the

is the prediction from the present study, afd)¢ , is the  two-dimensionality of each cancels out. This figure shows a
force on the cell in a cell of lengthR which should thus be remarkable similarity between the 2-D channel predictions
comparable to a hemispherical cell. Likewis€;{);p = and 3-D measurements. Fig. k8hows that fory > 0.5, the
2R(T}2sd2-0- 2-D prediction consistently overestimate$ by only 25%,

Our first comparison is to the model study by Pozrikidis indicating that for small gap widths the fluid dynamics are
(1997) of shear flow over a protuberance attached to a plani by 2-D approximations. This comparison suggests that
wall, which can be compared to our study in the limit of stress and torque predictions of the 2-D channel model may
v — 0. In this study, far upstream the imposed flow field give reasonably accurate results for small gap widths, be-
has a linear velocity, so that= ky, and thus f9s..wai =  Cause most of the contributions to the stress field occur in
uk = ApB/2, which sets the flow rate in our systemQ@it = the narrow region between the cell and opposite wall, which
kH?/6. From this, our model studies in the limit gf— 0,  has a 2-D behavior when the gap width is small. Of course,
using Egs. 16 and 24, predid€}); , = 4.06mukRe. Like-  this hypothesis should be evaluated in a careful comparison
wise, Egs. 19 and 26 giveT{,<ds.0 = 2.30mukRe. For  between 2-D and 3-D calculations. Nevertheless, this com-

comparison, Pozrikidis (1997) predictsFi;p = parison gives us confidence that the predicted amplification
4.30mukR and (Tt ,0s.0 = 2.44mukRe. This difference of  of cell stress, torque, and force exerted in small channels is
only 6% is surprisingly good. relevant to the 3-D system.

Next, we compare the results of our model to the study
results of Brooks and Tozeren (1996), who modeled cells
attached to a flow channel. These models explored arrays of
a variety of different shaped cells, and we compare our
model results to their prediction for an array of hemispher-
ical cells of radiuR = 12.6 um in a channel of heightl =
120 um (y = 0.105). In this model an intercell spacing of
d = 60 um exists and a flow rateQ¥);., = 10 ml/min
occurs in a channel of width = 1.5 cm, and the fluid
viscosity is w = 0.01 dyn s/cri Our model predicts
(FHs.5 = 9.9 X 10 “ dyn, which is only a 6% deviation 100 1
from their prediction of F%); 5 = 9.3 10 “dyn. It should
be noted, however, that in this case, our model prediction is 0
larger than the prediction by Brooks and Tozeren (1996),
whereas we predict a smaller force than that predicted by 6 1
Pozrikidis (1997). This discrepancy is due most likely to
interactions between neighboring cells in the study of
Brooks and Tozeren (1996), which reducg¥)¢_p, and was
not modeled in either the present study or by Pozrikidis
(1997). Once again, the prediction between the present 2-D
study and the 3-D calculation is very good.

Finally, we consideFs for a single cell, and compare it
to experimental measurements and computational predic- 0 : ‘
tions by Chapman and Cokelet (1996, 1997) of the drag 0.0 02 04 0.6 0.8
force on a model leukocyte adhering to a blood vessel. In Cell Size, L2
these studies, the authors determined the drag force ongGuURE 10 Comparison dF, predictions with 3-D experiments in tube.
rigid sphere attached to the inside wall of a cylindrical tube(a) Fi/Q/(uy/¥). (b) Proportional difference in predictions.

500 + + }
—e— 2:D Model Predictions a
--©-- 3-D Measurements
400 4 1
300 +

200 1

(FQ)(uyl.2)
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As an example of how the analysis above may be used to {3.194— 0.65y + 4.3ry2} (28)

predict the fluid mechanical influence on adherent cells, we (Fan = 24uv"Q%0 (1= 5
consider neutrophil adhesion in a postcapillary venule. The

relevant dimensions aié = 8 um for the neutrophilD = and

20 um for a postcapillary venule (Horsfield and Gordon,

1981),L = 1000 um, u = 0.03g/(cm s), with an average 1.15+ 0.70y
fluid velocity of V,, = 0.2 cm/s, resulting in a 3-D flow rate (Thasds-o = 12muRY?Q,.p* {(1_2)5,2}
Qs.p* = 6.3 10" cm®/s. We will assume in this system Y

thatd ~ RandD =~ H, which is justified based upon the
comparison between tube experiments and channel theo
above. From Egs. 24 and 26,/Q = 6.4 andT,,¢/Q = 3.1,
respectively. So from Eq. 16 = 2.9 X 10 * dynes. And

* _ —7 .
:g::roEqﬁil%c?,s-[c?asreollinl.fihzIilgndﬁgzgstofgﬁgigr \t/cguldthe flow rate per unit width in the system. Based upon
P P 9 9 P 9 .comparisons with 3-D studies by Brooks and Tozeren

need to create a'torque of this magnitude. From Eq. 2.6’ thl?1996) and Pozrikidis (1997), these predictions for flow in
is nearly three times the torque one would predict in an

. . a planar geometry are accurate+d0%, and thus can be
unconstrained setting. To calculate the shear-stress on the X T .
. ._USed to simply calculate the mechanical influence of fluid
cell, an equivalent 2-D flow rate must be calculated for thlsfIOW on an adherent cell in a flow chamber. By comparing
* * _ .
syste:n - We choos@y o 32Q3'D./(6WD) (4/3)VnD, SO our results to those of Chapman and Cokelet (1996), we
that 75 from Eq. 13 correctly predicts the vessel wall shear-

stress in a cell-free system. So in this ca@b,, = 5.3 X expect that in circular geometries the relationships in Eq. 28

IO
10" *cné/s. Then from Egs. 13 and 22 ~ 100 dynes/crh are accurate to within-25% wheny = 0.5.

- . . Finally, it is important to recognize that this is a model
These predictions are clearly subject to error due to dlfferStudy with many simplifications. Although we expect that

ences in 2-D and 3-D geometry. However, in all cases thes L . -
Zwe predictions given here are accurate for rigid models of

These formulae are accurate fpr< 0.8. For largery, the
[¥lbrication approximations given in the Appendix should be
used. In these calculations, the immersed cell has dimension
R, ¥y = R/H is the ratio of cell to channel width, ar@;_ is

results are comparable to predictions made by Fung (1984 ‘ells, they ignore the influence of cell deformability and

based upon the model studies by Schmid-Schoenbein et Tell-to-cell interaction, which could clearly alter the behav-

(1975). Finally, from Fig. 9, the flow rate through this . . o . .
venule would not be greatly affected by the adhesion of thd°r predicted in this study. The methods described herein are

collbecaisn L 1 Hmever, L educeio 350 (o209 2020 imestgeion fese ot compiatd
wm, the flow (and henceF}, T}... and 75 would be Y ' g

reduced by~20%. This could have an impact on the rate of ability and interactions between cells could use the present
: : study for comparison, to define the relative importance of
leukocyte transport to this venule by shunting blood to other .
these aspects for cell adhesion phenomena.
parallel venules.

APPENDIX
CONCLUSIONS

. . . This appendix provides a basic background for the computational and
In this study, we have attempted to clarify the importance ofnalytical approaches used in this study.
fluid mechanics for the stresses, forces, and torques expe-
rienced by cells adhering to microchannel walls. This situ-
ation is important in biofilm formation, and cell adhesion in
. mp Boundary element method
biomedical systems. We have shown that the stress magni-
fication due to cells adhering in a constrained setting may bé&he computational solution to the boundary value problem posed in the
extremely |arge which may have an impact on the |ike|i_section on model development is challenging because the domain changes
- s a function of the extent of cell coverage. Conventional finite-difference
hood of adhesmn,_the flow rate throth the channel, an(ﬁechniques are difficult to implement because of the need to continually
mechanotransduction. We haV(? Use.d th? boundary elemeRinesh the domain with changes in the number of aggregated cells. Biofilm
method to perform the calculations in this study, and havenodels have been developed using the immersed boundary method to
used lubrication theory to determine simp|e ana|ytica| ex-follow individual cells in a microchannel (Dillon et al., 1995, 1996). In the
pressions that can be used to predict the maximum she&fesent model, however, we base our calculations on the boundary integral
) . .- representation of Stokes flow, derived by Ladyzhenskaya (1963). The
stress, force, and torques on 2 ,D representatlons of Imsolution for the velocity field resulting from Stokes flow is obtained in
mersed cells. We used these relationships to create formula&ms of single- and double-layer potentials by taking Fourier transforms of

for 3-D immersed objects. These formulae are Eq. 5 and applying Green’s theorem (Ladyzhenskaya, 1963), which creates
an integral relationship that must be satisfied:

(Tg)max

8
_ 6uQip[ 2.95 y<0.25 U (x) = J Tu(X, y)uds, — e f Ui (X, y)7dS,, (29)
T HZ | 1158+ (1—v)? 0.25=y=0.85 ] s s
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where field is
1 (% = ¥ (% — W) u(x, y) = Ay* + By + C(x)
Usix,y) = o bloglx —y| =,
and
1 =V _\/ — ’ ’
Ty = - I ) @0y AR B cyiow, e

Here Srepresents the boundary surface, anet oy;n;, with i, j equal to 1 where
(x direction) or 2 ¥ direction). Asx approaches a point on the boundary
surface, the solution of Eq. 29 becomes 4 dP 4 dP

A(x) = B dx B(x) = B dx (h(X) + hy(x)),

8
Ciui(x) = J Ti(x, y)uds, — BzJ' Ui(x, y)7idS, 4 dp
s s C(x) = E ax hy(X)hy(x)

(31)
wherex € S and the tenso€,; accounts for stress discontinuities at the and
surfaceC,; = é 8, if the boundary is smooth, but has a more complicated A (X) B'(xX)
structure if the domain has corners (Brebbia and Dominguez, 1989). D(x) = 3 hz(X)?’ + 5 hZ(X)Z + C'(X)hy(x).

Equation 29 is solved numerically by discretizing the boundary hto

3-point (quadratic) elements, so that . N
P @ ) To satisfy Eq. 6, the local pressure gradient is

N N
8 x=1 -1
Ciui(x) — Ef Ti(X, y)UidS/ = _2EJ Ui(X, y)TidS/: dj = —| (h.(x) — hy(x))3 L
= B, d ~ | MO =] g ooy
(32) - (36)
whereu and 7 are discretized along the domain and are represented b)k )
quadratic polynomials. rom this result,
Equation 32 is represented by a system of linear equations, 2 -1 d -1
x= X
Hw = Gt, (33) Q= 3732 f (hy(X) — hy(x))? (37)
x=0

whereH and G are, respectively, M X 4N and N X 6N matrices, and

Woi_g = Uy Wy =V, by g = g, by = 1y forj = 1,..., N. Matrix G is From this, the shear-stress on the wall of a flat-walled channel is
made larger thahi to allow the stress vector to have two distinct values at (7). = B/2, and the flow through a flat-walled channeQg., i =
corner points because of two possible orientations of the normal vectorzg/3. Flow rate predictions from this analysis are provided by Eq. 20 and
This is particularly useful at corner points, where stress discontinuitiesare demonstrated in Fig. 9.

exist as a result of discontinuities in the normal vector. The elemertts of

andG are computed using a 10-point regular Gaussian quadrataidoiés

not coincide with one of the node points &. Otherwise a 10-point Maximum shear stress

logarithmic quadrature is used to evaluate those portions of the integrals in

Eg. 31 that contain the logarithmic singularity. The diagonal coefficients ofGiven a semicircular protuberance of height= R/H, the lubrication

H are computed indirectly by imposing a uniform flow in both thandy theory calculation shows that the maximum shear stress is

directions. We then apply the boundary conditions and rearrange the

system so thaf\z = f, whereA is a NN X 4N matrix, z is a 2N vector [ (Tmax . 1
containing the unknown velocities and stresses, fatmhtains the known Li Q - (1 _ y)2' (38)
stress or velocity information. This system is solved using Gaussian y—1
elimination with partial pivoting. We have validated this technique in
different systems, including those of Gaver et al. (1996) and Halpern and
Gaver (1994). x component of force, F,
From lubrication theory in the limit of small gap widtly (~ 1),
Lubrication theory
au Ju dv ov

In this section we derive lubrication approximations of the flow field 07 = (, oy )1

. . Yy IX' 90X’ ay
through a channel with a single-cell protuberance on the bottom wall. In
these calculations, we follow lubrication analysis of creeping flows. Forhe x component of the cell stress is
details of this type of analysis, the reader is referred to Leal (1992). In the
description that follows, we assume thi&t/ay? = 92u/ox? and oP/oy ~ 2ou
0, so that Eq. 5 is approximately 7= —Pcos6 + §87y sin 6.

2 12
dj - E E (34) Integrating over the surface of the cell,
dx 8 ay* .
(K 2

with u(y = hy(x)) = u(y = hy(x)) = 0, to satisfy no slip on the top and L|m<~) = . (39)
bottom walls, respectively. From this and continuity (Eqg. 5), the velocity y—1 (1 Y )
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