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Simulations of the Erythrocyte Cytoskeleton at Large Deformation.
I. Microscopic Models

Seng K. Boey, David H. Boal, and Dennis E. Discher
*Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

ABSTRACT Three variations of a polymer chain model for the human erythrocyte cytoskeleton are used in large deformation
simulations of microscopic membrane patches. Each model satisfies an experimental observation that the contour length of
the spectrin tetramers making up the erythrocyte cytoskeleton is roughly /7 times the end-to-end distance of the tetramer
in vivo. Up to modest stress, each brushy cytoskeletal network behaves, consistently, like a low-temperature, planar network
of Hookean springs, with a model-dependent effective spring constant, k., in the range of 20-40 kgT/s.?, where T is the
temperature and s, is the force-free spring length. However, several features observed at large deformation distinguish these
models from spring networks: 1) Network dimensions do not expand without bound in approaching a critical isotropic tension
(V3 k) that is a characteristic limit of Hookean spring nets. 2) In surface compression, steric interactions among the chain
elements prevent a network collapse that is otherwise observed in compression of planar triangulated networks of springs.
3) Under uniaxial surface tension, isotropy of the network disappears only as the network is stretched by more than 50% of
its equilibrium dimensions. Also found are definitively non-Hookean regimes in the stress dependence of the elastic moduli.
Lastly, determinations of elastic moduli from both fluctuations and stress/strain relations prove to be consistent, implying that
consistency should be expected among experimental determinations of these quantities.

INTRODUCTION

The mean diameter of a human erythrocyte-8 um, yet  tude one would expect from the density of junction vertices
the cell routinely passes through capillaries with half thatin the cytoskeleton. That is, both a two-dimensional ideal
diameter or less. The surface shear resistance of the erythas and a triangulated network of loose chains have an area
rocyte must not be too large, or the cell could not deformcompression moduluk, of BK A ~ 1, wherep is the
easily in a capillary. On the other hand, surface sheamverse temperature (4T) andA is the area per particle or
resistance must be large enough to maintain the cell’s shageer network node (i.e., junction). Explicitly, given a node
and integrity during normal flow in the circulatory system. density of 2 X 10 m~2 of the cytoskeleton junction
As the human erythrocyte has no significant intracellularvertices, such two-dimensional systems would have an area
structure, the in-plane elasticity of the plasma membrangompression modulus 610 ¢ J/n? (or 1 pNjum) at room
likely arises in no small part from the membrane-associategemperature (for whiciB™* = 4.0 x 102 J).
cytoskeleton, a cross-linked brushy polymer network. The However, these order of magnitude estimates and the two
protein spectrin is the primary component of the cytoskelmost commonly quoted measurements of the elastic moduli
etal network: spectrin cross-links very short actin filamentsdo not agree in detail. In recent flicker experiments (Zilker
resulting in junctional nodes that are approximately five- oret al., 1992; Peterson et al., 1992; Strey et al., 1995), long
sixfold coordinated in spectrin. wavelength fluctuations of the erythrocyte shape suggest
The in-plane elastic constants of the network—shear anghat the shear modulus is consistent with zero. In contrast,
area compression moduli—have been measured at VaniSFhicropipette aspiration experiments (Waugh and Evans,
ingly small (Zilker et al., 1992; Peterson et al., 1992; Strey1979; Hochmuth, 1987; Discher et al., 1994), which involve
etal., 1995) and moderate (Waugh and Evans, 1979; Hocharge deformations of an erythrocyte, yield an apparent
muth, 1987; Engelhardt and Sackmann, 1988; Discher et alshear modulus of 6-8 10~ J/n?. The difference between
1994) stress. The various measurements indicate that thgese measurements could arise from several effects, includ-
shear and area compression moduli are both less than or ¢y the following:
the order of 10° J/n?, which is about the order of magni-  The elastic moduli of two-dimensional triangulated net-

works are known to be stress-dependent (Boal et al., 1993).

The elastic moduli of two-dimensional polymerized net-
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of polymer chains attached to each other at sixfold juncported. At this time, machine limitations prevent us from
tions, and attached to a flat computational bilayer at theexamining polymer chain systems whose equivalent physi-
chain midpoints (see Fig. ). The primary motivation for cal dimension exceeds0.3 um to the side, which is far
the microscopic structure of this model is the experimentakmaller than a typical erythrocyte. Hence, in the second of
observation that in fully spread, negatively stained skelethis pair of papers (Discher et al., 1998, referred to as paper
tons, the contour length of the spectrin tetramer that maked hereafter) we coarse-grain the present models by con-
up the erythrocyte cytoskeleton is abqUi times the end- structing effective representations in which entire chains are
to-end distance in vivo (Byers and Branton, 1985; Liu et al.,replaced with two- and three-body potentials. With this
1987; see also Steck, 1989). However, it has been suggestegpresentation, a complete erythrocyte witd &0 so junc-
that the imaging technique used in these experiments mayjon complexes can be simulated on inexpensive worksta-
disrupt in vivo associations that may be present both withirtions. Results from these “whole cell” simulations, and
and between spectrin tetramers, leading to an artificialllcomparisons with experiment, are elaborated in paper II.
high estimate of the effective contour length in vivo (Ursitti It was assumed in our first investigation of the polymer-
and Wade, 1993). chain model that the cytoskeleton of a normal mature eryth-
Sample configurations of a polymer-chain network underrocyte is not under stress (which we refer to in this paper as
stress are shown in Fig. 1, where Figa $hows a network the stress-free model). Here we examine two other situa-
under tension, and Fig. 4 shows the same network under tions that may be relevant to the erythrocyte:
compression. Note in Fig.dthat the chain mipoints canbe 1. The cytoskeleton may be under compression in a
seen, from the gray scale, as residing closest taztke0  normal erythrocyte. For example, a “prestress” of the cy-
plane. At zero stress, a state between the two illustrated, theskeleton could arise from the preferential loss of bilayer
chains are significantly convoluted, reflecting the fact that(Discher et al., 1994) as membrane area is lost in erythro-
the area per junction vertex is fixed at a small fraction of itscyte maturation (Mohandas and Groner, 1989). The concept
stretched or contour value. The elastic properties of thef a prestress imposed by the bilayer on the cytoskeleton has
model network at zero stress agree in part with the obsemeen explicitly discussed by Kozlov and Markin (1995) and
vations obtained by micromechanical manipulation of theimplicitly employed by Mohandas and Evans (1994) in the
erythrocyte. However, it is important to understand theproposal of constitutive equations for membrane tensions
properties of the model network away from the small stresgsee equation 7 in Mohandas and Evans, 1994). Recent and
regime, both because some of the experimental measureareful optical measurements of the area of isolated cy-
ments were made under such conditions, and because theskeletons (Svoboda et al., 1992) show the area to be
erythrocyte is placed under significant stress in the circulasmaller than the intact red cell’s, but not nearly so small as
tory system. expected (see Boal, 1994) in the absence of the constraining
In this paper, we determine the stress dependence of thalayer. Last, recent theoretical arguments (Goulian et al.,
geometry and elasticity of the polymer-chain model, partic-1993) show that bilayer thermal fluctuations can lead to attrac-
ularly the network area and two-dimensional elastic proption between integral membrane proteins, including those at-
erties. The stress dependence of out-of-plane propertiegched to an underlying cytoskeleton; this would be equivalent
such as network thickness and bulk modulus, are also rde imposing a compressive force on the cytoskeleton.

FIGURE 1 Periodic box configura-
tions of a model cytoskeleton @ila?

= —0.2 (g, tension) anglla® = 0.2 (b,
compression), wherél is the imposed
two-dimensional stress ards the bead
diameter appearing in Egs. 1 and 5. The 4
chains are drawn such that elements *
closer to the viewer have lighter shad-
ing. The two configurations are drawn
to the same scale. Simulation is from
the stress-free model described in the
text.
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2. There may be attractive interactions between nonneighfhe repulsive term applies to all vertex pairs, and the
boring elements of the spectrin tetramers of the cytoskeletotethering potential applies only to nearest-neighbor vertices
(see, for example, Stokke et al., 1986; Ursitti and Wade, 1993glong the chain. The length scale of the system is set by the

We refer to our representations of situations 1 and 2 abead diametes; the relationship betweeamand the physical
the prestress model and condensed model, respectiveliength scale depends upon the model, as discussed later in
Results from all three simulations are presented and conthis section. In the limit of very small Monte Carlo step
pared in this paper. Furthermore, the anisotropic response @gfzes, self-avoidance of the chain only requires the maxi-
the polymer-chain networks at moderate deformation isnum tether length to bg2a, rather than/1.%a. However,
reported and seen to be similar to that found for two-the nonzero step size of this simulation allows chains to
dimensional triangulated networks (Discher et al., 1997). cross each other gt2a, and hence a slightly smaller tether

The content of the paper is organized as follows. Thdength is used in Eq. 1c.
notation and simulation techniques are reviewed in the next The simulation generates a set of configurations that
section. The simulation results from all three cytoskeletonrsamples periodic box shapes according to the udéatype
models are then presented and compared, with an emphasis Boltzmann weight and is used to construct ensemble aver-
the geometrical and elastic characteristics of the model cyages of geometrical observables, such as the box lengths
toskeleton in the bilayer plane. These characteristics are inteft,) and{L,) or the box are&A). The elastic constants of the
preted using mean-field approaches. Some aspects of the exetwork can be determined from these ensemble averages,
perimental techniques for determining the elastic properties oither through numerical derivatives such as
networks also are investigated, particularly the usage of fluc- . .
tuations and numerical derivatives for obtaining the elastic Ka™t = (A H(a(A)/ol1), 2
moduli. The paper concludes with a summary of our findings.,; via fluctuations

BKa = (A)((A%) — (A, (3)
SIMULATION TECHNIQUES AND ANALYSIS
whereK, is the in-plane area compression modufdiss the

The ingredients of our cytoskeleton simulation model have,erse temperaturdT) %, andIT is the in-plane pressure.

been described in previous publications on the properties ofp,o in-plane shear modulys is obtained subsequently
networks at zero stress (Boal, 1994; Boal and Boey, 1995k,

In the model, each spectrin tetramer is represented by a

single chain that has,freely jointed segments defined by (BKa) ™t = (Bu) Tt = KALLYLXL) —1).  (4)
Nseg + 1 vertices. The ends of the chains are joined at , )
sixfold coordinated junction vertices to form a network. The V& have checked the numerical accuracy of the calculations
chain midpoints are restricted to lie in the computational 2Y comparing the results from Egs. 2 and 3 for selected
plane, which represents a tensed or locally flat lipid bilayerParameter values. Analogous to Eg. 3, the volume compres-
in the model, but all other chain elements can undergg') modulusK, can be obtained fromK,, = (V)/({(V*) —
motions in the positive direction. An attractive interaction (¥)"). WhereV = A(z) andzis the distance above the bilayer
between a defined set of nearest-neighbor vertices providdd@ne az = 0. The transverse Young’s modulig can be

the chain with its linear topology, and a repulsive interaction€Xtracted from the fluctuations invia g, = [(2/ (@) -

2
between all vertices prevents chain segments from overlag? )J/(A (Boal and Boey, 1995). _
ping. In a previous paper (Boal and Boey, 1995), a mixed

A Monte Carlo algorithm is used to propagate a compu-Monte Carlo/molecular dynamics algorithm was used to

tational membrane with the form of a periodic rectangle having’roPagate a polymer network whose interactions were
lengthsL andL, in the x andy directions, respectively. The smooth functions of interparticle separa’glon (see Bishop et
basic intervertex potential(r) of our polymer chain networks al., 1979). The ensem'b'le averages of all |n.-plane and almost
has a bead-and-tether form with two components all out-of-plane quantities calculated by this MC/MD tech-

' nique are correct, and agree with pure MC simulations of

V(r) = Viedr) + VonlD), (1a) the same potentials. However, the ensemble ave@yes
_ _ not consistent within this mixed ensemble, and hence we
where the short-range repulsive term is use only pure MC in this paper. The results of Boal and

Boey (1995) on the barrier-free paths of directed protein

Vieglr) = = foro<r=<a, (1b) motion are unaffected by this inconsistency(if).

-0 forr > a, The connectivity of our network junctions is strictly
sixfold. However, it is claimed from electron microscopy
and the nearest-neighbor tethering potential is that erythrocytes also contain junctions with five or fewer
spectrin tetramers attached (Byers and Branton, 1985; Ur-
Vir) = for0<r<aandr> 1.9, sitti and Wade, 1993). The properties of defective networks

— (1c) have been investigated in statistical mechanics, and the
=0 fora<r<l.%. elastic properties of one category of defective two-dimen-
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sional networks at zero temperature and zero stress wewehere the energy scafeis chosen to satistp/(A) = 7 for
determined by Hansen et al. (1996). For networks whos@ given ns,, For ease of comparison with the prestress
junction vertices have a mean connectivity near 6, thenodel, we chooses., = 12. The variation ofA/(A)
variation of the elastic moduli with the amount of defective with By is shown in Fig. 2, from which one can see that
connectivity is not a strong effect compared to the stres®\/(A) = 7 is reached apy = 0.6. As in the prestress
dependence of interest in this paper. Of course, bond-denodel, a 200-nm contour length corresponds to a bead
pleted networks, which are present in erythrocytes of indi-diametera, of 13.9 nm if the chain has 12 segments.
viduals with certain hereditary blood diseases, may have The number of junction verticel, in the cytoskeleton
much lower elastic moduli for bond concentrations ap-simulations is 16, so that the total number of particles in the
proaching the rigidity percolation threshold (Thorpe, 1986;computational system is 544 faor., = 12 and 1216 for
Tang and Thorpe, 1988; Saxton, 1990; Hansen et al., 1997\, = 26. At each pressure, the sample sets consist of 1050
In our previous two papers on polymer chain networks,configurations separated by 48C steps fseg = 12) Or
we determined the behavior of a particular model network a750 configurations separated byx310* MC steps Qseg =
zero stress as a general functiomgf, Here we investigate 26), to ensure statistical accuracy of the ensemble averages.
the properties of three model networks as a function of in-plan&he first 50 configurations of the sample are discarded in
compression and tension for a valuergf, specific to each  constructing the averages. Other calculational details can be
model. In all three situations, the parameters for the cytoskeffound in Boal (1994).
eton model are chosen such that the contour area per junction
vertex, A, is approximately seven times the equilibrium area
per junction(A). For the potential in Egs. la-1c, the contourCYTOSKELETON SIMULATIONS
area per junction ig\, = (,/3/2) X (1.2ansegz. In human erythrocytes, the contour length of the spectrin
tetramers is~200 nm, compared to the average end-to-end
distance of~75 nm in vivo, meaning that the cytoskeleton
Stress-free model can be stretched to about seven times its equilibrium area.
— : . . Within the polymer-chain model, this factor of seven in the
In this simple model, the interactions among chain elements_.. . : o
. . o ratio of contour area per junction comple,, to equilib-
are described strictly by Eq. 1, and the in vivo state of the . . : . .
. : = rium area per junctiortA), arises from the entropic prop-
erythrocyte is assumed to be stress-free. To saigipy) = erties of the chains. That is. “slack” in s .
. . , pectrin fluctuates
7, the number of segments per polymer chain mustpe= into the cytoplasm, defining an average height, analogous to
26 (see Boal, 1994). For a 200-nm contour length, the bead ' '

) . . a brush thickness, that should somehow correlate with the
diameter in the moded,;, must have a physical value of 6.4 . .
am in-plane stress response of the cytoskeleton. The in-plane

stress response of the stress-free model (see previous sec-
tion) is illustrated in Fig. 1, which shows two configurations
drawn from simulations g8Ilo® = 0.2 (compression) and
BIlo? = —0.2 (tension). The two parts of the figure are
The ratio AJ(A)) increases withng, (Boal, 1994). It is drawn to the same scale, and the difference in the network
possible to havé\ /(A)) = 7 for ng,; < 26, but the model density is obvious: aBlle? = 0.2 the network is almost
cytoskeleton must then be in a condensed or prestesseight times as dense as it is @klo® = —0.2.
state. Introducing the prestresﬁpsa2 as a new parameter,

there is a locus of values fogegandﬁl'[psa2 that satisfyA/(A)

= 7. The polymer chain model will have difficulty in repro- ' ' '
ducing the observed elastic modulnif,4is much less than 12, 7k -
so we chooseg.,= 12 as a limiting case. The assignment for
the bead diametea,; of 13.9 nm withns, = 12 corresponds

Prestress model

to a 200-nm contour length in the prestress model. AL 6 .
~
fﬁu

Condensed model ST T

An alternative means of forcing/(A)) = 7 for ngeq< 26 is

to preserve the in vivo state as stress-free, but to add 4k .

attractive interactions between nonneighboring vertices. We ] . | ,

choose the attractive interaction to have a square-well form, 0 0.2 0.4 0.6

By
Vail(r) = o0 forO<r <a,
=—vy fora<r < \,‘m, (5) FIGURE 2 Ratio of contour area per junctidq to average area per

— junction (A)) for the condensed model, shown as a function of the energy
=0 forr > V1.9, scaleBy in the attractive potential of Eq. 5.
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The area per junction verte)®)/N; under both compres- ible network that expands more rapidly under tension than
sion and tension is shown in Fig.&for all three models. the ns.q = 12 networks do, for a given bead diameter
For comparative purposes, the areas are compared to tiNote, however, that the physical value afis model-
contour area per verteX.. Recent micropipette aspiration dependent, an issue to which we return in Fig. 8.
experiments on intact red cell membranes (Discher et al., Both the stress-free and condensed networks have param-
1994) have shown that the area (which is the inverse of theters (.qand Bvy) that are selected to reprodu@®)/A, =
surface density reported in the paper) of the red cell networld/7. Thus both of these models have the same area per
in reversible deformation can, at the least, range betweejunction atglla? = 0. In contrast, then,.y = 12 network
0.5 and 4 times the unstressed area, depending on th@thout an attractive interaction (prestress model) has
magnitude of aspiration. The results in Fig. 3 cover much okA)/A; ~ 2/7 atBlla? = 0, and this network must be placed
this range, and extend to even lower density (high area)inder a 50% area compression V\qﬂﬂpsaz = 0.7 to match
where sensitivity becomes an issue in experiment. the experimentally measuréé,)/A; = 1/7.

There are several distinctive features to Figa. 3Jnder Last, as a technical issue, note th&p/A. can exceed 1
increasing compression(A) decreases and should ulti- with any “soft” interaction potential such as Eq. 1, or
mately tend toward a constant, determined by the steribarmonic potentials, or some of the smooth potentials com-
interaction of the cytoskeleton elements. However, themon in polymer studies (e.g., Bishop et al., 1979). The
small value of(A) at BIla? = 1.0 is not near the close- contour length of a single chain in our model at any tem-
packed density of the spherical beads, reflecting the fluctuperature is 1.2, which is less than the fully stretched
ations in position of these chain elements at finite temperiength of 1.38s.4a. Thus, in the limit of infinite tension,
ature. Under tension at glla® > 0.5, the area per junction (A)IA; can be as large as 1.32 for Eq. 1. Unless the chain
approaches the contour area per junction of the networksegments are forced to be rigid rods with a fixed length, then
indicated by(A)/A. — 1. Both the prestress and condensedthe average segment length will slowly increase as the
models haven.,= 12, and they approach the contour areanetwork becomes highly stretched. Fortunately, the network
together. The stress-free model mas, = 26, a very flex-  deformations in which we are interested do not significantly
enter this deformation regime.

The mean displacement of the network normal to the
bilayer plane is shown as a function of pressure in Fig. 3
The mean displacement is the ensemble average of the
displacement over all vertices in all configurations. Sim-
ulations show that the mean thickness of the network is
~2(2), suggesting that monomers are restrained by their
interactions so as to be relatively uniform in their distribu-
tion above the reflecting plane at= 0. As expected, the
> 05T 7 trends irz) are the reverse of those of the aréais largest
under compression, and decreases monotonically with in-
creasing tension. The two networks wit,, = 12 have
very similar values fo(z), despite their differences in area.
Although then,.,= 26 network has a significantly larges)

0 ' ' ' ' ' under a compressive stress, in terms ofahength scale, its

T T T T T value in physical units is similar to thg.,= 12 networks,
once one takes into account tlegt = a. ~ 2a. A measure

of the cytoskeleton volume can be obtained from the prod-
uct of the area per junction vertex from Fig.a3with the
mean displacement from Fig. 8 It is important that one
r i finds that the volume per junction is larger when the net-
work is under tension than when it is under compression.
Thus these cytoskeletal networks are far from incompress-
1r 8 ible—volumetric incompressibilty being a common finding
in large deformation rubber elasticity.

The in-plane compression and shear moduli are extracted
0 ! L ! ! ! from the simulations via fluctuations. The behavior of the

-1 05 0 05 1 moduli is shown in Fig. 4 for all three simulation models.
-BIld? The compression modulus, has a minimum near zero
_— stress for all of the models, and is significantly larger at
FIGURE 3 Reduced network area per junction comgigy/A, (a) and .
mean displacemexit)/a (b) as a function of in-plane pressygéla? for the qugrate deformatllon’ Whether. s.tretchec'i or compressed.
three simulation models. Note that the physical valueads model- T hiS is expected, given the steric interactions that become
dependent. increasingly important when the network is compressed,
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FIGURE 5 Volume compression modul@K,a® (a) and transverse
Young's modulusgY,a® (b) as a function of pressurglla? for the three
simulation models.

FIGURE 4 In-plane compression modulgk,a? (a) and shear modulus
Bua? (b) as a function of pressurglla? for the three simulation models.

and given the tether constraints that resist the network being

stretched much beyon@)/A, = 1. Of the three networks on the order ofY,, and this rough numerical equivalency
shown in Fig. 4a, the 26-segment network is expected to becan be seen by comparing Fig.&andb.
the softest, and one can see that its compression modulus is
the lowest near zero stress and under compression.
The shear modulus, shown in Fig.b} shares several DISCUSSION

characteristics with the compression modulus. At large ex- ) o . . .
. . . Qur first task in interpreting the results from Figs. 3-5 is to

tension, the networks resist shear because of the tetherin L S o
velop an intuitive description of the network’s in-plane

constraints, as withk,. However, when the networks are . ) . .
A behavior. The chain elements shown in Fig. 1 assume a

compressed, the increased steric interaction does not cause . . . .
. . . - . variety of configurations: they are mildly or even exces-
an increase in the shear modulus, unlike the situation with. ; . ;
. S sively contorted in 3-D. However, the motion of the sixfold
KA. However, this behavior is not unexpected, because the "~ - . . .
ltmct|ons is much more restricted, and the displacement

tethering constraints that resist shear are most importar# . L . )
rom their mean position is fairly small relative to the

when the network is stretched, not when it is compressed, as_ . . . .
P Interjunction separation. Thus the effective temperature of

n n from Fig. 1. Finally, the 26-segment network, . L .
can be seen fro g ally, the 26-segment netwo he junctions is, in a sense, much lower than the effective

tends to have the lowest shear modulus of the three net- .
. . . emperature of the chain elements, as measured by the
works under compression, again as Wij.

. . dispersion in their positions. At moderate deformations, the
Two elastic moduli that depend upon the out-of-plane. . . .

. I unctions behave like a low-temperature network in two
properties of the network are shown in Fig. 5. Generall

speaking, the volume compression mod{ysdisplayed in dimensions._ . . .

: ’ . . .. To quantify this observation, consider a network of
Fig. 5 a decreases slowly with stress. This behavior |ss rinas. each governed by Hooke's Law:
similar, but not identical, to that df,: steric interactions prings, 9 y '
will raise th_e compression _modulus_ as _the network is com- Vil (9) = (12ky (s — 82 (6)
pressed. Similar behavior is seen in Figb $or the trans-
verse Young's modulusy,, as a function of stress. As whereky, is the spring constant arglis the length of the
pointed out previously (Boal, 1994), one expel§isto be  spring, whose unstretched lengttsis At zero temperature,
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a triangular network of identical springs under stress isvhichK,/u < 1, implying that the Poisson ratio is negative.
described by (Boal et al., 1993) With the exception of the blow-up in network area predicted
by Eq. 7a atll = —/3ky., but prevented in the model

(AIA) = (1 + 11/ \"@I‘Ht)f2 (Ta)  networks by the tether constraints, several of the generic
_ R A features of a low-temperature Hooke’s Law network are
Kalkia = \3(1 + I1/ 3k )12 (7b) present in our three models at modest stress.

_ B R If the model cytoskeletons are approximately described
pha = 3(1 = \3llk/4, (7€) ear zero stress by Egs. 7a—7c, then an effective spring
whereA, = /3s,%2. As in the previous section, the applied constank., can be determined for each model. We consider
pressurell is defined to be negative for a network underthe harmonic behavior of the stress-free model in some
tension. According to Egs. 7a—7c, &k becomes more detail, and then simply quote results for the other models.
negative, The in-plane area compression modul@&,a® of the
stress-free model is observed to be 0.18lat 0. Com-
paring this value with Eq. 7b, each chain in the network is
equivalent to a spring with effective spring constgkgqa®
= 0.18. A similar treatment of the shear modulus using Eg.
Equations 7a—7c for fixeH provide an apt description of 7c yields an effective spring constant@.qa® = 0.28, for
the spring network in the small fluctuation limit, which an average from both moduli ¢fk.sa® = 0.23.
corresponds tgk,,, s,> >> 1. Furthermore, Egs. 7b and 7c  The harmonic behavior of the cytoskeleton at small stress
show that there is a domain ®F < 0 at whichu exceeds can be confirmed from the behavior of the area as a function
K4, which implies that the Poisson ratio is negative (in twoof stress. We plot in Fig. 7 the area per junction vertex
dimensions). However, Egs. 7a—7c, for zero temperature, déA)/l\Q normalized to the zero stress value, whickAg, =
not faithfully describe a spring network under moderatel19%“. At small deformations, the area follows the low
compression: just abovd = (/3/8)k,, there is a symme- temperature behavior of Eq. 7a, namely thay ¥ is a
try-breaking transition as the network area goes to zerdinear function of the tension. By fitting Eq. 7a to the area
discontinuously from (8/8A, (Discher et al., 1997; Wintz aroundll = 0, one finds that the effective spring constant is
et al., 1997). Are any of these properties of Hookean springhen k.qa® = 0.22, which is in very good agreement with
networks present in the model cytoskeletons? the value extracted above from the elastic moduli. Now the
area per junction at zero stress of 41 @orresponds to an
effective interjunction length of, of 11.7ain the stress-free
model. Expressed in terms of spring variables, the effective
Inspection of the ratio oK,/w, shown in Fig. 6, confirms spring constant of the stress-free model in the harmonic
that several properties of the low-temperature spring netregime is Bkegs,> = 30. This is a large spring constant
work are present in the model cytoskeletons. The figurecorresponding to a stiff (or, equivalently, cold) network that
shows thatK,/u ~ 2 for all models at zero stress, as has small fluctuations in the intervertex separation.
predicted by Egs. 7b and 7c. Also near zero strésgu A similar analysis of the other two model networks yields
increases under compression, again as expected from Eqg&lues ofgk.za® = 0.72 for the prestress model, afikisa” =
7b and 7c. Furthermore, there is a range of extension fop.81 for the condensed model, both evaluated at zero stress.

e the area increases,
e K, decreases, and
e L increases.

Harmonic regime

6 I I I O Stress-free
i O Stressfree | 2r ® 2D network
5 O Prestress
+ Condensed
4F .
Ny
3k -
-«
]
oF -
1F 1
] I ] I I
0 ! I L 0.5 -0.1 -0.05 0 0.05 0.1
-0.5 0 05 1

-BIa?
-BIMa?
FIGURE 7 Normalized are@)/(A), as a function of pressuiéfla® for
FIGURE 6 Ratio of in-plane compression modulysto shear modulus  the stress-free model. A fit to the data using Eq. 7a is shown for compar-
w as a function of pressurglla® for the three simulation models. ison, with Bk.za® = 0.22.
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Using the average interjunction separation at zero stress &on show quantitatively different behavior, although they
a length scale, rather thanyields Bk.4S,” = 39 and 23 for  share qualitative trends. At moderate tension, the area of the
the prestress and condensed models, respectively. Thus wendensed model rises the fastest under tension, followed
see that for small deformations, the junctions in all threeby the stress-free model, and trailed by the prestress model.
models effectively behave like two-dimensional networksThe differences between the stress-free and prestress mod-
of springs at very low temperature. els are not always large, but they are significant.

The compression modulus, of the models, shown in
Fig. 94a, displays similar qualitative featurels, is large at
large values ofAll|, and has a minimum near, but not at,
The areas and elastic constants are reported in dimensiodll = 0. The fact thatK, has a minimum at moderate
less form in the simulation section of this paper. What istension is expected for a harmonic network, althokgh's
needed to convert these quantities to physical units argot observed to vanish within the cytoskeletal models, as it
choices for the inverse temperatygand the bead diameter would in a pure Hooke’s Law network, in which the spring
a. At room temperature8* = 4.0 X 10 %' J; to mimic a  lengths can increase without bound.
200-nm spectrin contour lengthay = 6.4 nm anda, = Finally, the in-plane shear modulysis shown in Fig. 9
a. = 13.9 nm. However, the reference configuration (i.e.,b. At zero stress, all models display a similar value of
the configuration assumed by the cytoskeleton of an eryth==10"° J/n¥, which is in the range found in the microme-
rocyte in its discotic shape) is not the same in all models: thehanical manipulation measurements. The models also il-
reference state is at zero stress in the stress-free and cdustrate that the shear modulus has a finite value that does
densed models, but is under a Str%sapsz in the pre-  not change significantly when the network is placed under
stress model. According to Fig. BI1,&,.” must be equal to  compression; in contrast, the shear modulus decreases and
—0.7 to give AJ(A) = 7. Hence we can construct the even vanishes under compression for Hooke's Law net-
behavior of(A)) and the elastic moduli as a function of works in two dimensions. The largest differences between
applied stress as long as we are careful to measure the stréb¢ models arise when the networks are placed under ten-
with respect to the “reference” stress of the equilibriumsion: the shear modulus rises slowest in the prestress model.
configuration. An externally applied streasl is related to
the stress in the model cytoskeletons by

Physical values

I 1 I
All =11 (stress-free and condensed moglels (8a) 2R [a] .
O Stress-free
BAHaps = E’Haps2 - Bl_[psaps2 - O Prestress
N + Condensed
= Blla,’ + 0.7  (prestress modgl (8b) § gk i
Ul
The area per junctiofd) in physical units is displayed in s
Fig. 8. By definition, the three models agreeAdl = 0, and \;
it is seen that the areas are very similar fdfI > 0 S .
(compression) as well. However, the networks under ten-
O ! 1 1
I T 1
g 10 T T
30r O Stress-free I
O Prestress (b]
,(,'E\ + Condensed /\7. sk |
| 208 - ~N
3 5
— 'fl> 5k _
A 2
$ 10 7 =
25 .
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-AIT (1075 Jim?)
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FIGURE 8 Area per junction vertef\) as a function of an externally
applied stresall. Conversion to physical units is described in the text. The FIGURE 9 In-plane compression modults, (a) and in-plane shear
area is quoted in fonm?, andAIl is quoted in 10° J/n?. Note that the ~ modulusu (b) as a function oAIl. Same conversions as in Fig. 8. All of
definition of AIT is model-dependent (see Eq. 8). Ka, i, andAlIl are quoted in 10° J/n?.
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This behavior ofu is expected, given the properties of the periodic box lengths for a given magnitude of anisotropic
network area under stress: the area of the prestress modsatess. However, the anisotropic response becomes notice-
increases the slowest of the three models, and so the sheahble once the strain variable exceed3.6. Furthermore, the
resisting tether constraints are not as important in prestresdress associated with a given strain varies strongly with
networks at modest tensions as they are in the other netlirection for (L;)/(L;)q > 1.6. Thus the model network

works. responds anisotropically at large deformation, in a way
similar to that observed for two-dimensional triangulated
networks.

Anisotropic stress

The anisotropic response of two-dimensional triangulated
networks at Ia'lrge.defo.rmatiqns hgs been demonstrgted forﬁlodulus measurements at large deformation
class of Hamiltonians including simple square well interac-
tions between nearest-neighbor network nodes (Discher édeasurements have been made of the shear modulus of the
al., 1997). By “square well” potential we mean a potentialerythrocyte cytoskeleton in two different deformation re-
that vanishes for intervertex separatiaigess than a fixed gimes. In micromechanical manipulation, the cytoskeleton
Smaxe @Nd is infinite beyonds,,,, (Boal et al., 1993). The is subject to at least moderate deformation, and the modulus
stress/strain relation in one of the three tether directions is extracted from stress/strain relations analogous to Eq. 2.
found to be different from the stress/strain relation in anin studies of erythrocyte flicker, the modulus is found from
orthogonal direction. However, the anisotropy only be-shape fluctuations at zero stress, similar to Eq. 3. Different
comes marked in these nets when the strains approadiprmalization conventions, such as the usgAjf, rather
80-90% of their allowed maximum. than(A) as a normalizing area in Eqg. 2, can lead to artifi-
We have probed a model cytoskeleton for the sameially different elastic constants. While one must be aware
phenomenon of anisotropic response by applying a uniaxigdf normalization conventions when comparing results, the
stress along one of the periodic boundaries g = 12 shear moduli determined by the manipulation and flicker
polymer chain network. Fig. 10 shows the strain variabletechniques are different by at least an order of magnitude.
(LKL — 1 as a function of uniaxial stress for two axes in Does the difference lie in the use of fluctuations rather than
the periodic systentk; = L, or L,. In the figure, the stress stress/strain relations to obtain the moduli?
is applied in the same direction as the strain label, and is Based on the fluctuation-dissipation theorem, we do not
zero in the orthogonal direction. Young’'s modli andY,, expect that Egs. 2 and 3 should yield different moduli,
can be determined from the stress/strain relations present@dthough it should be emphasized that large samples are
in the figure, and compared witfi, andY, extracted inde- needed for Eqg. 3 to yield accurate results. As a test, moduli
pendently fronK, andu (see Boal et al., 1993). NeAf =  were extracted from both relations in an analysis of the
0, the two determinations of the Young’s moduli agree tostress-free model data, covering a fourfold change in area.
better than 10%. Over this range, the compression moduli obtained from the
One can see that there is little anisotropy in the respons&vo approaches agreed to within 20%, entirely consistent
of the model cytoskeleton up to a 50% change in thewith the uncertainty in the data. We conclude that the
moduli, measured under the same conditions, should be
independent of whether they are determined from fluctua-
tions or the stress/strain relations. The difference in the two
measurement techniques must arise from another source.

1 T T T
X x - direction

v y - direction

0.75 -

R SUMMARY

f 05 - We report simulations of the human erythrocyte cytoskele-
A ton, using three structural models for networks tacked to a
Y flat “bilayer”:

The stress-free modgin which each spectrin tetramer of
the cytoskeleton is treated as a 26-segment polymer, and the
elastic properties of the network arise from the entropic

I
0 0.5

1

-B #stress * a®

FIGURE 10 Strain variablé_)/L;), — 1 as a function of uniaxial stress

1.5

properties of the polymer. For this model to apply, the

cytoskeleton is assumed to be stress-free in vivo.
Theprestress modein which there are only 12 segments

per spectrin, but the network is under an externally gener-

for two axes in the periodic systerh; = L, andL,. The stress is applied ated prestress. ThIS situation (_:OUId arise if the membrane
in the same direction as the strain label, and is zero in the orthogonal€a decreases with cell age, without a corresponding loss of
direction. cytoskeletal material.
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Thecondensed modgh which there are 12 segments per model cytoskeleton shows a clear anisotropic response
spectrin, and an attractive interaction between nonneighbomwhen the strain variabld)/{L;), — 1 exceeds-1 (where
ing spectrin elements within a given chain and betweerl; = L, orL,), although the anisotropy is very small as this
different chains. strain variable approaches zero. It is important that although
In each of these models, the reference area of the netwotke anisotropy of another spectrin-actin based membrane
is ~ one-seventh of the contour area. The properties of thekeleton, that of the auditory outer hair cell, is experimen-
networks are determined under large deformations of up ttally well documented (Tolomeo et al., 1996, and references
a fourfold change in equilibrium area. therein), the anisotropy presented in the red cell cytoskele-
The qualitative behaviors of the three models are similarton model here is a novel and distinctive structural feature
The network area increases under tension and decreasesrth searching for in large deformation experiments with
under compression, but does not show the area collapsed cell membranes. Last, two methods have been used
observed for two-dimensional triangulated networks undeexperimentally for extracting the elastic moduli: stress/
compression. strain relations such as those in Eq. 2, and fluctuation
The network height is a quantity that fluctuates about arelations such as those in Eg. 3. Our simulations in the
mean, but it invariably decreases under tension and instress-free model demonstrate that the two approaches yield
creases under tension. the same results within statistical error.
The area compression modulus increases at large defor-
mation under both compression and tension.
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