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ABSTRACT The linear pentadecapeptide antibiotic gramicidin D is a heterogeneous mixture of six components. Precise
refinements of three-dimensional structures of naturally occurring gramicidin D in crystals obtained from methanol, ethanol,
and n-propanol demonstrate the unexpected presence of stable left-handed antiparallel double-helical heterodimers that vary
with the crystallization solvent. The side chains of Trp residues in the three structures exhibit sequence-specific patterns of
conformational preference. Tyr substitution for Trp at position 11 appears to favor b ribbon formation and stabilization of the
antiparallel double helix that acts as a template for gramicidin folding and nucleation of different crystal forms. The fact that
a minor component in a heterogeneous mixture influences aggregation and crystal nucleation has potential applications to
other systems in which anomalous behavior is exhibited by aggregation of apparently homogeneous materials, such as the
enigmatic behavior of prion proteins.

INTRODUCTION

Linear gramicidin, a pentadecapeptide antibiotic isolated
from Bacillus brevis(Dubos, 1939) is active against Gram-
positive bacteria (Hotchkiss, 1944; Gross and Witkop,
1965) by forming membrane channels that are specific for
monovalent cations (Pressman, 1965). The antibiotic con-
sists of alternatingD- and L-amino acids in the sequence
HCO-L-Val1-Gly2-L-Ala3-D-Leu4-L-Ala5-D-Val6-L-Val7-D-
Val8-L-Trp9-D-Leu10-L-Trp11-D-Leu12-L-Trp13-D-Leu14-L-
Trp15-NHCH2CH2OH (Sarges and Witkop, 1965). Natu-
rally occurring gramicidin is a mixture of isoforms differing
in amino acid composition at position 1, Val1 (Vg)/Ile1(Ig),
and position 11, Trp11(gA)/Phe11(gB)/Tyr11(gC) (Sarges
and Witkop, 1965). Electrophysiological measurements in-
dicate that several types of channels having different con-
ductance levels, channel accumulation, and duration of
channel opening are observed for homo and heterodimers of
natural and synthetic gramicidin and their mixtures
(O’Connell et al., 1990; Sawyer et al., 1989; Oiki et al.,
1994; Koeppe et al., 1985, 1991, 1992, 1995). Numerous
models have been proposed for the structure of gramicidin
in various solvents and in lipid bilayers (Urry, 1971; Veatch
and Stryer, 1977; Arseniev et al., 1992; Ketchem et al.,
1993; Stark et al., 1986; Pascal and Cross, 1993; Bouchard
et al., 1995; Cotten, 1997). Although it appears that the
conducting form of the molecule is most probably a dimer
(Veatch and Stryer, 1977), there is evidence that several
types of dimers, including a head-to-head single-stranded
form (Urry, 1971), left- and right-handed double-stranded
parallel and antiparallel helical forms (Veatch and Stryer,
1977), and a possible tetrameric form (Stark et al., 1986)

exist and may have some functional role. It has been pro-
posed that tryptophan conformations and conformational
changes are specifically correlated with gramicidin orienta-
tion in and association with membrane lipids, ion coordina-
tion, and bilayer ion transport (Salom et al., 1995; Becker et
al., 1991; Takeuchi et al., 1990; Seoh and Busath, 1995;
Woolf and Roux, 1997; Jing and Urry, 1995; Roux and
Woolf, 1997; Urry et al., 1982a; Nekrasov et al., 1995;
Separovic et al., 1994; Smith et al., 1990; Roux et al., 1995).
The tryptophan residues at the four sites [In the structures,
the two strands are designated as 101–116 and 201–216. If
a general description of residues is indicated in the text, then
the numbering will be 1–16] (9, 11, 13, and 15) differ
significantly with respect to these properties (Becker et al.,
1991). Studies of naturally occurring and synthetic isomers
indicate that amino acid variation at position 11, in partic-
ular, has significant effects on channel opening, duration,
and transport properties (Becker et al., 1991).

A left-handed antiparallelb-helix conformation (Fig. 1)
has been found in crystals of uncomplexed gramicidin,
obtained from methanol (Langs et al., 1991), ethanol
(Langs, 1988), and n-propanol (this report), and in grami-
cidin complexes with KSCN (Doyle and Wallace, 1997)
and CsCl (Wallace and Ravikumar, 1988). NMR studies of
gramicidin in benzene/ethanol and of a gramicidin Cs1

complex in methanol (Nekrasov et al., 1995) predict Trp
conformations similar to those observed in crystals obtained
from ethanol and n-propanol. We have recently determined
the structure of a crystal form prepared from n-propanol and
completed the full-matrix restrained anisotropic refinements
of all atomic positions in gramicidin in all three crystal
forms of gramicidin D.

MATERIALS AND METHODS

Crystals of gramicidin D were grown from a heated 30 mg/ml solution in
n-propanol containing 2% (w/v) PEG 4000. Although individual batches of
gramicidin D differ in composition, the material used to prepare the
crystals came from Sigma Chemical Company (St. Louis, MO) and was
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labeled 80% gA, 6% gB, 14% gC, and an unspecified percentage of Ig.
HPLC separation of the sample of the starting material produced peaks
corresponding to gC and gA with a satellite that would correspond to IgG
and IgA, but no unequivocal signal for gB (data not shown). Single crystals
appeared in approximately one month and grew to an approximate size of
0.3 3 0.3 3 0.7 mm. During data collection, the diffracting crystal was
mounted inside a fiber loop (Hampton Research, Laguna Niguel, CA) and
flash-frozen with liquid nitrogen with the n-propanol/PEG mother liquor
acting as its own cryoprotectant. The crystals diffracted to the limit of the
RAXIS II image plate detector using CuKa radiation and a full data set was
collected to 1.13 Å. The cell constants of the unit cell were determined to
be a5 32.434 Å, b5 32.461 Å, and c5 24.148 Å in space group P212121.
A total of 67561 observations were recorded of which 9572 were unique
with anRmergeof 4.1%. The highest resolution shell (1.16–1.13 Å) had an
Rmergeof 6.5% and an̂I/sI& of 13.0.

Because the n-propanol unit cell was approximately isomorphous to the
ethanol solvate of gramicidin (Langs, 1988), the coordinates from the
refined structure (see below), stripped of all solvent and disordered com-
ponents, was refined against F2 using SHELXL-97 (Sheldrick, 1997).
Disordered components and n-propanol solvents were identified with dif-
ference (Fo-Fc) electron density maps and modeled if they made chemical
sense, with monitoring during refinement usingRfree (Brunger, 1992).
Re-refinements of the methanol and ethanol solvates were performed in the
same manner using their original data sets. The refined coordinates have
been deposited in the PDB (Bernstein et al., 1977) with reference codes
1ALX (methanol), 1ALZ (ethanol), and 1AL4 (n-propanol).

RESULTS

As a result of the high quality of the low temperature data
used in the refinements and the use of restrained anisotropic
thermal parameter refinement, we have been able to deter-
mine for the first time that significant amounts of ordered
heterodimers are present in each crystal form, in addition to
the expected homodimers. The heterodimers of VgA/VgC
were identified by detection of an ordered Tyr11 side chain
on only one strand of the dimer. The presence of the residue
was detected in difference electron density maps calculated
during the late stages of the refinements (Fig. 2). The

refined group occupancy for the Tyr11 side chain relative to
the Trp11 side chain is 31%/69% in crystals obtained from
ethanol and 25%/75% in crystals obtained from methanol.
HPLC separation of gramicidin from dissolved crystals
obtained from methanol and ethanol reveal the presence of
a mixture of gA and gC. The introduction of a partial
occupancy Tyr in these ratios during refinement resulted in
reduction in theR factor of 0.4% and 0.8% in the methanol
and ethanol structure, respectively; a significant reduction
for the addition of a few partial atoms. Thermal parameters
for both Trp11 and Tyr11 are similar in each crystal structure,
suggesting that the occupancy is not skewed by changes in
the thermal parameters of the relevant atoms. We found no
evidence of Ile1 in the single crystals grown from methanol.
However, in crystals grown from n-propanol, Ile1 residues
are found on both strands of the double helix and the
occupancy is;20% at each site. This may be due to random
distribution of Ile1 substituted strands among homo and
heterodimers or disordered crystallization of VgA/IgA het-
erodimers. We found no evidence of Tyr11 in the crystals

FIGURE 1 Stereo illustration of the antiparallelb-helical forms of gram-
icidin D observed in crystals obtained from n-propanol. Disordered Trp’s
and disordered n-propanol molecules, including those hydrogen-bonded to
three of the Trp (W-9, W-15, and W-13) residues, are shown. All figures
of molecular structures were drawn using the program CHAIN (Sack,
1988).

FIGURE 2 2-Fo-Fc electron density maps (stippled) and Fo-Fc difference
maps (solid mesh) reveal the presence of 20–30% occupancy by tyrosine
residues at position 111 on only one strand of theb-helical dimer in both
the monoclinic crystal form obtained from methanol (a) and the ortho-
rhombic form obtained from ethanol (b). For the calculations the Tyr111

side chains were omitted and the Trp111 residues were included at 0.70
occupancy. The difference density was contoured at 3s. The 2-Fo-Fc

electron density map is superimposed and contoured at 1s. The 100%
occupancy Trp211, ordered in methanol (a) and 50/50 disorder in ethanol
(b), are shown for comparison.
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grown from n-propanol and no evidence of Phe11 in crystals
from any of the three solvents. The crystal and refinement
data for the three structure determinations are presented in
Table 1. The average temperature factors are given in Table
2. The RMSD values for the bond length average 0.014 Å in
the methanol complex and 0.016 Å in the ethanol and
propanol structures.

All three structures are left-handed antiparallel double
helixes with;5.6 residues/turn. Since the n-propanol and
ethanol structures have isomorphous cell constants, the
structures are very similar to one another. The methanol
structure differs from the other two in that most Trp residues
are oriented with their planes parallel to the helix axis and
their ring nitrogens hydrogen-bonded to methanol mole-
cules. The Trp residues in the ethanol and n-propanol are
oriented with their planes approximately perpendicular to
the helix axes, and few of them are associated with solvent.
When the six crystallographically independent backbones
are superimposed by least-squares fit of the first five Ca
carbons (Fig. 3), one strand of the six appears to be dis-
tinctly different. This is the Tyr-containing strand in the
dimer grown from methanol.

The methanol structure contains several discretely disor-
dered residues: Val107 (82/18), Val206 (72/28), Val208 (70/
30), and Leu210 (44/56). The ratios of occupancy are shown
in parentheses. In addition, both ethanolamine residues,
EAM116 (45/25/30) and EAM216 (41/30/29), occur in three
orientations. In the ethanol structure, only four side chains
are discretely disordered: Leu112 (70/30), Leu210 (75/25),
Trp211 (58/42), and Trp213 (42/58). This disorder is highly

correlated, with neighboring Trp211/Trp213 residues from
symmetry-related dimers interacting, which appears to con-
tribute to disorder in the nearby Leu112 and Leu210. The
ethanolamines are fully ordered and form hydrogen bonds
to the backbone with the same dimer via end-to-end inter-
actions between translationally related dimers. The n-pro-
panol structure is isomorphous to the ethanol structure with
a slight expansion along thea axis. There are five disor-
dered side chains: Val107 (89/11), Trp111 (60/40), Val208

(78/22), Trp211 (70/30), and Trp213 (61/39). One of the two
ethanolamines, EAM116 (45/2936/19), is threefold disor-
dered. There is no evidence for Tyr at either 11 position,
although this could be masked by the disorder at each site.
Nearly all of the solvents are disordered, to some extent, in
all three crystal forms. However, solvent does seem to play
a key role in gramicidin side chain conformation and in
selecting the composition of gramicidin in the crystals.
Details of the solvent structure are presented in Table 3.

The gramicidin dimers are linked together to form infinite
chains running approximately parallel to one another in
each of the three crystal structures. These infinite chains are
stabilized by hydrogen bonding between the N-termini of
translationally related dimers. The alignment of the adjacent
dimers and solvent interactions at the interface between
them differs in the three structures. The hydrogen bonds
linking the dimers together are strongest in the methanol
complex and weakest in the n-propanol complex (Fig. 4). In
the ethanol and n-propanol complexes, an alcohol molecule
competes for the hydrogen bond to the formyl group so that
the formyl carbonyl to the Leu4 NH distance increases from
2.80 Å to 3.80 Å to 4.05 Å as the solvent changes from
methanol to ethanol to n-propanol.

The principal difference between the monoclinic (meth-
anol) and orthorhombic (ethanol and n-propanol) crystal
forms concerns the position of the infinite chains relative to
each other. The tyrosine present in only 25–30% of the
heterodimers appears to influence the registry of adjacent
chains in crystals grown from methanol and ethanol. Adja-
cent gramicidin chains in crystals grown from ethanol are
connected by a sequence of hydrogen bonds involving a

TABLE 1 Gramicidin D crystal and refinement data

Methanol Ethanol n-Propanol

Crystal System Monoclinic Orthorhombic Orthorhombic
Space Groups P21 P212121 P212121

Cell Constants a5 14.907 Å a 5 31.595 Å a 5 32.434 Å
b 5 26.014 Å b 5 32.369 Å b 5 32.461 Å
c 5 31.911 Å c 5 24.219 Å c 5 24.148 Å
a 5 g 5 90.0° a 5 b 5 g 5 90.00 a 5 b 5 g 5 90°
b 5 92.1°

Resolution 1.20 Å 0.86 Å 1.13 Å
Number of data [F. 4 s (F)] 7726 [7726] 21,454 [10,782] 9571 [9165]
R(F) [R(F . 4 s(F))]* 8.91% [8.91%] 16.41% [11.03%] 6.71% [6.58%]
Number of Parameters 3094 3489 3788
Number of Restraints 5995 7373 7555
Observation/Parameters 4.4 [4.4] 8.3 [5.2] 4.5 [4.4]

*The reflection weighting scheme used is Weight5 [s2(Fo
2) 1 (0.2P)2]21 where P5 1/3 [max(0, Fo

2) 1 2Fc
2].

TABLE 2 Average temperature factor of the peptide
backbone atoms, side chain action, and solvent in the three
crystal structures

Structure

^B&
Peptide

Backbone
^B&

Side Chain
^B&

Solvent

Methanol 6.6Å2 8.8Å2 18.1Å2

Ethanol 5.3Å2 8.1Å2 14.5Å2

n-Propanol 7.9Å2 10.3Å2 16.3Å2
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water molecule and an ethanol molecule that link a Tyr11

hydroxyl on one chain to a Trp15 carbonyl oxygen of
another (Fig. 5a). These hydrogen-bonded Tyr and ethanol
molecules link adjacent chains like the rungs in a ladder.
The infinite chains linked by the Tyr/ethanol rungs are
related to one another by a crystallographic screw axis
parallel to the axis of the tubes, as illustrated in Fig. 5b. The
packing of adjacent chains in crystals grown from n-propa-
nol is nearly identical to that in the ethanol complex, but no
interstrand chains of hydrogen bonded molecules can be
detected. Crystals grown from methanol exhibit a more
well-defined layered structure than is observed in crystals
grown from ethanol and n-propanol. The layers of methanol
alternate with layers of gramicidin in which the more hy-
drophobic surfaces of the gramicidin dimers are packed
together. The nitrogens of all Trp residues are hydrogen-

bonded to methanol oxygens. The 13 hydrogen bonds range
in length from 2.60 to 3.17 Å (avg5 2.926 0.15 Å). The
Tyr residues are embedded in the surface of the solvent
layers and orient the gramicidin chains relative to them. The
alignment of adjacent chains related by rotational symmetry
and the alternating layers of gramicidin chains and solvent
molecules in the crystal form obtained from methanol are
shown in Fig. 6.

The observed conformations of the Trp residues were
examined to identify any patterns of unusual features of
position 11, the site of structural isomerism arising from a
mixed population of Tyr, Trp, and Phe residues. To compare
observed conformational features of theD, L amino acids in
gramicidin with data from the Protein Data Bank (PDB)
(Bernstein et al., 1977) the signs of the torsion angles of the
D residues have been inverted to correspond to the mirror-
imageL enantiomers. Thec, f values for the 15 residues in
the three dimers (a total of 90 residues including disorder)
are listed in Table 4 and plotted in Fig. 7a, and compared
with the distribution observed in well-determined structures
taken from the PDB (Kleigwegt and Jones, 1996). All of the
amino acid conformations in gramicidin are in the region of
the c, f plot typical of b-structures. The most significant
feature of the distribution is that the Trp residues lie outside
the contour that encompasses 95% of all amino acid con-
formations. Although thec, f values for the 11 position on

FIGURE 3 Least-squares-fit of the backbone
atoms of the first five residues in the six crystal-
lographically independent monomers in the struc-
tures crystallized from methanol (M1 and M2),
ethanol (E1 and E2), and n-propanol (P1 and P2)
reveal that P1 and E1 (green) have nearly identical
conformations, P2 and E2 (blue) have nearly iden-
tical conformations and diverge from P1/E1 at
residue 11, M2 (alsoblue) is much like P2/E2 but
diverges from them at Leu12, and M1 (red) devi-
ates most from all others, diverging from M2 at
Val8.

TABLE 3 Characteristics of solvent in crystalline complexes

Solvent Methanol Ethanol n-Propanol

Dielectric constant* 32.6 24.3 20.1
Number/unit cell 42 54 44
Sites/unit cell 70 84 88
Bulk solvent g# 0.1279 0.2214 0.5373
Bulk solvent U# 0.8232 1.2947 0.7755

*From CRC Handbook of Chemistry & Physics, 56th Edition (1976).
#Fc

2 (new) 5 Fc
2 (old) z (1 2 g z exp[28 p2U(sinu/l)2]).
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the Tyr-rich strands of the heterodimer are of necessity an
average of values for Trp and Tyr, thec, f magnitudes at
position 11 in the mixed occupancy strand are closer to the
densely populated portion of theb region than thef, c
values for full occupancy Trp’s.

When thex1 andx2 values (Table 5) for the Trp and Tyr
residues are examined (Fig. 7b) the significantly different
conformational properties of the amino acid side chains at
position 11 emerge. Because of the partial occupancy of the
Tyr and Trp residues at position 11 in the heterodimers, the
twofold disorder of the Trp11 and Trp13 in the ethanol
complex, and the twofold disorder of Trp11 in the propanol
complex, there are 29 observedx1/x2 pairs. In the plot,
24/29 residues havex1 values of;180°. The five excep-
tions are the four Trp11’s and one Tyr. The majority of the
Trp’s at positions 9, 13, and 15 of both strands of the
two-strandedb-coil (15 of 19) have conformations with
x1 5 2166 6 13° andx2 5 296 6 18°. Variation of the
x1 andx2 values in this subset is highly correlated (Fig. 7d).
None of the Trp11 residues fall in this region of conforma-
tional space. All eight full and partially occupied Trp11

residues on either strand of the hetero and homodimers are
in less favored regions of conformational space (Fig. 7,e
andf) and four of them are among the five havingx1 values
closer to690° than to 180°. In one of these unusual con-
formations [x1, x2 5 260°, 260°] the indole ring lies so
close to the gramicidin backbone that contacts of less than
van der Waals distance are made between the ring and the
carbonyl group of Leu10 (Fig. 7 f). There is 13C-NMR
evidence that this carbonyl is the site of ion association in
the conducting form of gramicidin. The two Tyr11 residues
havex1 andx2 values similar to those of the Trp11. The Trp
residues in crystals grown from methanol all havex1 values

near 180°, but have a much broader range ofx2 values than
do the Trp residues in crystals prepared from ethanol or
n-propanol (Fig. 7,b and f).

There is a correlation between Trp conformations and
solvent association in the crystals. Hydrogen bonding be-
tween the Trp nitrogen and solvent molecules is observed
for seven of eight Trp residues in the methanol complex, but
only three of the eight Trp residues in the ethanol and
n-propanol complexes. The stereospecific pattern of meth-
anol association with the Trp in the complex (Fig. 8) cor-
relates well with the rotation around the Ca-Cb bond (x2

values) forming the bouquet-like appearance of the Trp’s
when the Ca-Cb bonds are superimposed (Fig. 7c). In
contrast, in the crystals grown from ethanol and propanol,
the Trp side chains do not hydrogen-bond with the solvent.
A correlated variation of the Trpx1, x2 values is observed
in the crystal that is in excellent agreement with the con-
formations found by NMR in uncomplexed gramicidin in
benzene/ethanol (Zhang et al., 1992) (Fig. 7d) and the
gramicidin CsCl complex in methanol (Nekrasov et al.,
1995).

DISCUSSION

The presence of distinct heterodimers in significantly dif-
ferent crystal forms demonstrates that the heterodimers are
not an artifact of crystallization. The strongest interactions
between adjacent columns of gramicidin dimers in crystals
obtained from ethanol are hydrogen bonds involving the Tyr
11 and the ethanol (Fig. 5). This suggests that tyrosine
residues of the heterodimers nucleate and define this crystal
form. The fact that crystals grown from methanol and eth-

FIGURE 4 (a) Schematic of hydrogen bonds connecting two translationally related dimers. Hydrogen bonds link translationally related gramicidin dimers
via the N-termini in crystals prepared from methanol, ethanol, and n-propanol (top to bottom). The methanol form contains two hydrogen bonds [(N4–OF21

and (O2–N22)] between Y and W strands in translational related dimers. In the ethanol form OF21 is hydrogen-bonded to the ethanol rather than to N4, and
the ethanolamine residue forms a hydrogen bond between OG36 and N4. In the n-propanol form, the interaction between adjacent dimers is further reduced.
(b) Stereo view of same region.
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anol each contain 20–30% heterodimers of gramicidin A
and C and 70–80% homodimers of gramicidin A indicate
that suitable packing interactions can be satisfied without
full occupancy by heterodimers. The presence of gramicidin
C in the crystallization media of the propanol complex may
be sufficient for nucleation of the antiparallel double-helical
crystal form. The fact that single crystals grown from n-
propanol solution contain 20% Ile on both strands suggest
that homo and heterodimers containing Ile are less soluble
in and preferentially precipitate from n-propanol. It is worth
noting that the intramolecular interactions in both the meth-
anol and ethanol crystal forms are of sufficient importance
to crystallize an ordered heterodimer. If the heterodimers
had crystallized in a disordered fashion, conforming to the
pseudo-twofold symmetry perpendicular to the helix axis
relating the twob-chains, it would have been impossible to
detect that the antiparallelb-helix was in fact a heterodimer.
For this reason, it is impossible to ascertain whether a
disordered arrangement of heterodimers of IgA/VgA is
present in crystals grown from n-propanol.

A very tight seamless fit of hydrogen bonds is attributed
to the NH2-terminus to NH2 terminus dimer that is claimed
to be the membrane channel form of gramicidin (Durkin et
al., 1986). In all three crystal forms, there are H bonds
between the N-termini of translationally related dimers

forming what could be loosely termed a “tetramer.” The
N-terminus of a Tyr11-enriched strand forms two hydrogen
bonds with the N-terminus of a pure Trp11 strand in an
adjacent symmetry-related dimer (Fig. 4). If comparable
hydrogen bonds occur in solution, then they could compli-
cate efforts to distinguish among different aggregate forms
of gramicidin.

The entirely unexpected detection of a heterodimer of
gramicidin in the solid state raises interesting implications
concerning molecular association in a well-defined and rel-
atively simple system. The obvious stability of the het-
erodimer raises the question of the relative stabilities of all
gramicidin heterodimers and homodimers. The relative pop-
ulation of the antiparallelb-helical coils in solution may
depend upon the relative stability of the different antiparal-
lel b-ribbon precursors as well as the helices themselves.

Trp11, Tyr11, and b-ribbon formation and coiling

Of the residues that make up theD-L-pentadecapeptide; Val,
Tyr, Trp, and Gly are more commonly observed inb-sheets
than in a-helices. Only Ala, and to some extent Leu, are
more frequently found ina-helices thanb-sheets. This
could lead to preferential formation of theb-ribbons joining

FIGURE 5 The strongest interac-
tion between adjacent infinite chains
of b-helical dimers in the ethanol
complex involves an ethanol and a
water molecule that link the partial
occupancy Tyr11 to a carbonyl on the
backbone of a Trp215 residue on an
adjacent chain. The Tyr111, ethanol,
water, carbonyl sequence is shown in
(a). (b) Illustration of the relative po-
sition of the chains linked by this hy-
drogen bond network to form infinite
ladders with tyrosine/water/ethanol
rungs.
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the antiparallel strands from Val6 through Leu14 with a
dozen hydrogen bonds that are common to the crystallo-
graphically observed uncomplexed and cesium-complexed
forms of gramicidin (Fig. 9). The ratio of occurrence of the
Tyr residue inb-secondary structures versusa-secondary
structures in proteins of known three-dimensional structure
is significantly higher than the corresponding ratio for Trp
residues (1.79 vs. 1.20) (Chou and Fasman, 1974; Lewis et
al., 1971; Crawford et al., 1973). Consistent with this em-
pirical observation, antiparallelb-ribbons incorporating
gramicidin C in which a Tyr replaces a Trp may have a

sufficient increase in stability to favor the formation of
heterodimerb-ribbons. The absence of evidence for gram-
icidin C homodimers in the crystals may be controlled by
mass action because the opportunities forb-strands of
gramicidin C to pair with strands of gramicidin A are
greater than opportunities to pair with other gramicidin C
strands. Furthermore, the presence of Tyr in a hetero two-
strandedb-ribbon may have enhanced potential for coil
formation. The unusual pattern inf c, x1, andx2 parame-
ters observed for the Trp and Tyr residues in the het-
erodimers (Fig. 7,a andb) offers a possible explanation for

FIGURE 6 Detailed views of solvent/gramicidin interaction in the methanol-solvated crystal. (a) Looking down thea-axis of the crystal, the Trp planes
overlap with each other and solvent fills the interstitial spaces. (b) Down theb-axis, the gramicidin dimers orient in pseudo-layers that are one-half unit
cell thick. The methanol molecules are hydrogen-bonded to Trp side chains at the ends of the dimers. (c) This clustering is demonstrated further when
looking perpendicular to both (a) and (b). The most solvated Trp side chains are those that lie near the dimer-dimer interface in adjacent chains.
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the enhanced preference forb-structures of Tyr over Trp
residues and the enriched presence of Tyr in double-
strandedb-helical gramicidin. Thef, c plot reveals that the
observedf, c values for Trp residues in the gramicidin
antiparallelb-helices are not on the optimal portion of the
f, c plot (Fig. 7 a) and are energetically strained to some
degree. Thef, c values of Trp/Tyr residues at 11 appear
less strained than thef, c values of Trp resides at that
position. On thex1 and x2 plot the conformations of the
Trp’s having the less common and more strainedf, c
values are seen to havex1, x2 values that are more typical
and exhibit correlated variations (Fig. 7b). In contrast, the
Trp’s at position 11 havex1 andx2 values that are distinct
from the more populated and well-behaved region. It may
be that the stereofit of the two-strandedb-coil introduces
strain that is released by distortion of thef, c values at
positions 9, 13, and 15 while permitting retention of the
most favored side chain conformation withx1, x2 values
around 190° and 270°, respectively.

The conformational behavior of the Trp11 is significantly
different from that of Trp’s at the 9, 13, and 15 positions.
All Trp’s at position 11 and both of the Tyr’s at 11 take up
conformations distinct from the values seen in 9/13 Trp

conformations observed for residues 9, 13, and 15. It would
appear that the steric crowding at the 11 position is such that
a conformation in whichx1 and x2 are near2160° and
290°, respectively, is incompatible with the antiparallel
b-coil. Three of the Trp 11 residues havex1 values near
2160° but thex2 values are near 0°; the other two Trp
residues havex2 values of160° and260°. Because the
side chain of Tyr is smaller than that of Trp it can adopt
conformations comparable to those exhibited by Trp11

(x1 5 280°, x2 5 260°, x1 5 180°, x2 5 60°), but with
less strain induced in thef, c values (Fig. 7). Heteroge-
neous two-stranded antiparallelb-ribbons composed of one
gramicidin A and one gramicidin C strand may be more
stable because the Tyr size and conformation preference is
more compatible with theb-ribbon structure than the Trp in
the conformationally sensitive 11 position.

The ion conductance, channel duration, and selectivity of
gramicidin A analogs having various combinations of Trp
(W) and Phe (F) residues at positions 9, 11, 13, and 15 have
been tested (Becker et al., 1991). These data demonstrate a
significant influence of the substituent in the 11 position
upon duration of channel opening. For the 9/16 possible
W/F combinations reported, channel conductance decreases
as a monotonic function of the number of W3 F substi-
tutions at the 9, 11, and 15 positions. The average duration
of ion channels formed by the nine analogs studied fall into
three classes. Five have an average duration similar to that
of gramicidin A (850 ms), three have an average duration
two to three times longer than gramicidin A (2200 ms), and
one had a duration of only 5 ms. On the basis of the sample,
the variation in duration appears to be highly correlated with
the substituent at the 11 position. Only analogs with an
11-Phe exhibited longer duration and the one analog having
the anomalous short duration had Phe in all but the 11
position (F9, W11, F13, F15). If the anomalous pattern of
Trp11 conformation observed in the uncomplexed structure
were to be present in the complexed form of gramicidin as
well, the Trp11 side chain would shield the carbonyl oxygen
of Leu10 as reported (Roux and Woolf, 1997), contribute to
its enhanced electronegativity, and could account for evi-
dence that there is an ion binding site inside the channel
near the 11 position.

It is postulated that head-to-head dimers form when sin-
gle helical monomers enter the membrane from either side
of the channel, N-terminus first, and the N-termini of two
such monomers find each other at the center of the bilayer
to form the channel. This model raises the question of how
an antibiotic peptide like gramicidin gets into the cell in the
first place. A paper often cited to support this model
(O’Connell et al., 1990) notes that when different analogs
are added asymmetrically to opposite sides of a preformed
bilayer, homodimers form in the first few minutes and that
homodimer concentration remains stable while het-
erodimers form in increasing numbers and become the
dominant form after the first few minutes. The initial dom-
inance of homodimers indicates that although the compo-
nents are added asymmetrically, each is able to migrate

TABLE 4 f, c Values for all residues in the three crystallized
forms of gramicidin

Methanol Ethanol Propanol

f c f c f c

Y Strand
Val1 2140 135 2137 145 2132 142
Gly2 73 2154 65 2139 67 2143
Ala3 2136 135 2152 138 2150 129
Leu4 70 2136 92 2139 105 2139
Ala5 2159 142 2161 88 2160 87
Val6 94 2133 109 2150 108 2150
Val7 2154 118 2140 129 2140 129
Val8 89 2129 89 2128 89 2127
Trp9 2157 126 2158 103 2160 106
Leu10 93 2134 105 2143 114 2142
Tyr/Trp11 2157 106 2139 111 2151 99
Leu12 122 2140 101 2135 116 2142
Trp13 2167 99 2158 85 2158 87
Leu14 116 2146 136 2143 133 2144
Trp15 2154 100 2158 83 2157 78

W Strand
Val1 2136 130 2158 143 2162 142
Gly2 70 2138 65 2147 66 2146
Ala3 2151 151 2140 126 2138 141
Leu4 66 2139 103 2140 76 2141
Ala5 2154 126 2157 87 2153 107
Val6 118 2149 119 2155 104 2155
Val7 2159 98 2140 109 2139 105
Val8 115 2141 117 2144 120 2147
Trp9 2157 107 2159 97 2154 102
Leu10 118 2129 102 2134 100 2137
Trp11 2167 98 2155 126 2154 125
Leu12 120 2134 97 2129 95 2129
Trp13 2160 110 2161 88 2160 89
Leu14 106 2130 121 2141 120 2141
Trp15 2158 81 2156 98 2159 95
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through the bilayer in order that the dimers that dominate
ion transport in channels can proliferate. It has been postu-
lated that these initial homodimer channels could originate

from the left-handed antiparallel double-helical form be-
cause their insertion into the bilayer would be energetically
favored over the insertion of the head-to-head single-helical

FIGURE 7 (a) A plot of the f, c values for all amino acids in the six crystallographically independent strands of gramicidin in the methanol, ethanol,
and n-propanol crystal forms superimposed on the contour map for amino acid conformation in high resolution structures contained in the PDB (Kleigwegt
and Jones, 1996). Further reference to residues: note 9, 11, 13, and 15 are the tryptophan residues. The outer contour level encloses 98% of all non-glycine
residues. Subsequent contour levels are for 95%, 90%, 80%, and 50% of all non-glycine residues. In the plot, the geometry ofD-residues has been
transformed to correspond toL-geometry by taking the negative of thef andf values. The geometries of all of theD-residues, theL-Val1 residue, and the
L-Ala3 residues are within the 80% contour. In contrast, many of the 24 tryptophan residues have conformations outside the 95% contour. (b) The
conformations of Trp residues at position 11 differ significantly in thex1 andx2 parameters from Trp’s at positions 9, 13, and 15. All 19 Trp’s at positions
9, 13, and 15 in the three different crystal forms (including one twofold disordered Trp13) havex1 values' 180°, and 14 of these havex2 values near290°.
In contrast, the eight Trp residues at position 11 (including two twofold disorder Trp11’s on a W strand (see text) in the ethanol complex and on the
analogous strand in the n-propanol complex) exhibit a different pattern. The four Trp11’s that havex1 values near 180° havex2 values near 0°, and the
remaining four havex1 values closer to660° than 180°. The partial-occupancy Tyr residues at position 11 havex1 andx2 values similar to those of the
Trp at 11. Stereo pairs illustrate the solvent and site-specific patterns in Trp conformation, (c) Trp residues at positions 9, 11, 13, and 15 in gramicidin
crystals grown from methanol, (d) Trp residues at positions 9, 13, and 15 in the crystals grown from ethanol and propanol, (e) conformation of Trp 11 on
W strands in the heterodimer found in crystals grown from ethanol and the analogous strand in the isomorphous crystals grown from propanol, and (f)
conformation of Trp11 in the Y strand in the heterodimer in crystals grown from ethanol and the analogous strand in the propanol-grown crystal. The
conformations of the two partial-occupancy Tyr residues are shown in (c) and (f). The close approach of the plane of the aromatic group and the O11
backbone carbonyl is illustrated in (f). A consistent color scheme is used in the graphs and stereo pairs.
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dimer models. Recent NMR (Cotten et al., 1997) and HPLC
(Salom et al., 1995) analysis indicate that gramicidin ana-
logs having phenylalanine at positions 9, 11, 13, and 15
(gM) retain the left-handed antiparallel double-helical form
in lipid bilayers and are poor ion conductors.

Linear gramicidin is synthesized nonribosomally byB.
brevis(Lipmann, 1973). Infidelities in synthesis of polypep-
tides by polymerase enzymes occur primarily at aromatic
amino acid sites. Other classes of amino acids are not
generally replaced in the synthetic system, with the excep-
tion of Val1 in linear gramicidin. Experiments to introduce
unnatural amino acids have much lower rates of incorpora-
tion into growing antibiotics, unless the amino acid is
present in high concentrations (Lipmann, 1973). One could
ask why amino acid heterogeneity does not occur at Trp9,
Trp13, and Trp15, but does occur at Trp11. It may be that
infidelity observed in gramicidin D synthesis is not random,
but that a selective evolutionary advantage toB. brevis is

provided by heterogeneity at positions 1 and 11. Molecular
features observed in crystals of gramicidin from methanol
and ethanol suggest a role for this natural heterogeneity.
Both structures contain a minor, but significant (20–30%),
fraction of Tyr11 instead of Trp11 that would have evolu-
tionary advantage. This heterogeneity occurs on only one of
the two strands in the dimer, therefore forming a het-
erodimer. It is obvious that heterodimers of linear gramici-
din are a significant chemical species in mixtures of gram-
icidin. The Tyr11 on gramicidin C may be critically
important to stabilization of the antiparallelb-ribbon and its
conversion to theb-helix to create a template for formation
of homodimers of gramicidin A via specific end-to-end
hydrogen bonds (Fig. 4). It is also possible that this heter-
ogeneity may play a role in one of the other postulated
functions of gramicidin.

In addition to stabilizing the antiparallelb-ribbon the Tyr
residue plays a critical role in determining the aggregation
of dimers in the two crystal forms. Despite efforts to crys-
tallize hundreds of samples of natural and synthetic grami-
cidins, the only crystals for which x-ray crystal structure
analysis has been reported have been prepared from gram-
icidin samples containing natural abundance gA/gB/gC. If it
were not for the high resolution data provided by the well-
formed crystals of uncomplexed gramicidin, the presence of
Tyr11 in the heterodimers would have gone undetected. It
remains to be seen whether the presence of some minimal
percentage of gC is necessary and sufficient for crystalliza-
tion. If, as these data suggest, a small percentage of gC acts
as a nucleation agent for crystallization of gA, it is conceiv-
able that a similar phenomenon may account for anomalous
protein and peptide aggregation in other systems. The pos-
sibility that a minor component in a heterogeneous mixture

TABLE 5 Tryptophan (W) and tyrosine (Y) conformations

Residue

x1 x2

Ethanol Propanol Methanol Ethanol Propanol Methanol

9 180 177 170 2114 2110 30
11 257W 262W 2160W 283W 277W 12W

279Y 13 173Y 258Y 65 66Y
13 2139 2142 2166 264 255 277
15 2166 2166 2158 2105 2106 106
29 2158 2164 2163 294 291 23
31 180 175 2162 18 26 5

61 232
33 2159 2176 174 286 290 2125

2178 74
35 2168 2169 2167 286 289 297

FIGURE 8 (a) The structure of methanol-solvated gramicidin D shows little or no influence of crystal packing upon solvent association. The positions
of the 10 methanol molecules that are hydrogen-bonded to 10 indole rings are seen to be nearly identical relative to the Trp plan and are governed by the
conformation of the tryptophan residues, not crystal packing; a superposition of the position of 10 methanol molecules is viewed perpendicular to the indole
ring in (b) and parallel to the indole ring in (c). This gramicidin conformation including the Trp orientations and associated solvent probably constitutes
the major conformer present in polar solvents.
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can have a profound effect on peptide folding and aggrega-
tion has potential applications to other systems in which
anomalous behavior is exhibited by aggregation of appar-
ently homogeneous materials, such as the enigmatic behav-
ior of the prion, responsible for bovine spongiform enceph-
alitis and ovine scrapie, as well as the human equivalents,
kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler
syndrome. These diseases have been linked to a template-
driven protein conformational change requiring the pres-
ence of small amounts of PrPSc, a conformational mutant of
a naturally occurring protein PrPC, that forms heterodimers
as a part of the disease process (Cohen et al., 1994).

This work was supported by National Institutes of Health/NIGMS Grant
GM32812.
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