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ABSTRACT Experimentally observed changes in the conductivity of skin under the influence of a pulsing electric field were
theoretically analyzed on the basis of a proposed electrorheological model of the stratum corneum (SC). The dependence of
relative changes in conductivity on the amplitude of electric field and timelike parameters of applied pulses or pulse trains
have been mathematically described. Statistical characteristics of phenomena of transient and long-term electroporation of
SC were taken into consideration. The time-dependent decreases of skin resistance depicted by the models were fitted to
experimental data for transient and long-term skin permeabilization by electric pulses. The results show two characteristic
times and two spectra of characteristic energies for transient and long-term permeabilizations. The rheological parameters
derived from the fittings agreed with those reported elsewhere for biological membranes.

INTRODUCTION

The permeabilization of the skin by applying short, high
voltage electrical pulses (electroporation) has great potential
in enhancing drug delivery. The electrical resistance of the
skin is dominated by the stratum corneum (SC), which, in
its electrical property, is similar to multilamellar lipid mem-
branes (Chizmadzhev et al., 1995). There have been a
number of successful experiments to permeabilize the skin
by electroporation. Several theoretical approaches to the
problem of electric permeabilization of artificial or biolog-
ical membranes have been reported. These studies often
consider the electric polarization energy as the major factor
in generating membrane pores (Sugar and Neumann, 1984;
Weaver and Powell, 1989; Barnett and Weaver, 1991;
Weaver, 1994). There are also a few models based on
electrocompression force consideration (Chang, 1989;
Crowley, 1973; Zimmermann et al., 1977, 1990; Needham
and Hochmuth, 1989; Stenger et al., 1991). It becomes
obvious later in this paper that, when considering time-
dependent responses of electroporation, the membrane vis-
coelastic extensil deformation must be taken into account.
Therefore, the electrocompression force approach is important.

The mechanical response of the membrane to the action
of stress, as well as its quantitative characteristics, is strictly
related to the rheological properties of the membrane. In an
external electric field, biological membranes are subjected
to different types of induced mechanical stress. The form of
stress depends on the electric and geometric parameters of
the system, leading to the domination of either the shear
(Pawlowski and Fikus, 1991) or the extensil stress
(Pawlowski and Fikus, 1993). The latter type of stress,

which equals the difference between the isotropic part of
mechanical stresses on the membrane surface and the stress
in the direction perpendicular to the membrane, dominates
in the low frequency range of oscillations. It results in the
extensil deformation of the membrane, which means the
change in the area of the membrane or the corresponding
opposite change in its thickness without change in its vol-
ume (Needham and Hochmuth, 1989). Extensil deformation
can lead to transient or permanent destabilization of the
membrane, manifesting itself by electroporation or elec-
trodestruction (Pawlowski et al., 1993).

In a recent report, electric pulses were applied to porcine
skins to permeabilize them electrically (Gallo et al., 1997).
It was found that, under certain conditions, the skin could be
permeabilized transiently by a single pulse, or long-term
permeabilization could be achieved by using a train of
higher voltage pulses. In this paper we apply the viscoelastic
membrane model to quantitatively describe the deformation
of the SC by the applied electric pulses. We propose two
parallel rheological models to describe viscoelastic defor-
mations of the SC in an electric field. In this way we can
analyze the transient (reversible) and long-term (irrevers-
ible) permeabilization of the SC by low frequency pulsing
electric fields. We found that the relative change in conduc-
tivity may be described as an analytical function of the
amplitude of the electric field and timelike parameters of
applied pulses or pulse trains. Electroporation may then be
quantitated in terms of the changes in total skin conductivity
as a function of deformation, or of stress and time. The
statistical nature of the permeabilization energy is revealed
in the analysis of deformation with electroporation. Finally,
the theoretical model is applied to interpret experimental
results.

ELECTRORHEOLOGICAL MODEL OF THE
STRATUM CORNEUM

In the following analysis, we first express the conductivity of the skin as a
function of its extensil deformation. We then calculate the change of the
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skin conductivity as a result of the applied extensil stress that may statis-
tically reach the range of pore-forming energy.

For simplicity, we assume that each “locally macroscopic” horizontal
slice of the SC (Fig. 1) consists of a layer of nonconducting viscoelastic
membranes, randomly perforated by a system of naturally occurring con-
ducting routes (appendageal routes, natural defects of the SC), and an
underlying layer of nonviscous conducting liquid.

In the absence of electropores, the electric resistance (dRo) of such a
slice of SC equals

dRo 5 ~rdz/So!@am~So/Sn! 1 ~1 2 am!#, (1)

where r is the specific resistivity of the conducting liquid within the
conducting routes and the underlying layer,dz is the total thickness of the
slice,So is the area of the slice,Sn is the total cross section area of naturally
occurring conducting routes, andam is the fractional thickness of the
nonconducting viscoelastic “membrane” layer in the total thickness of the
slice (am # 1).

In the case of electroporation of the membrane layer, the electric
resistance (dR) of such a slice equals

dR5 ~rdz/So!$am@So/~Sn 1 Sp!# 1 1 2 am%, (2)

whereSp is the total cross section area of conducting pores.
In the case whenam > 1, Sn ,, So, andSp ,, So, Eqs. 1 and 2 can be

written in the form

dRo 5 ~rdz/So!am~So/Sn!, (3)

dR5 ~rdz/So!am@So/~Sn 1 Sp!#. (4)

Assuming that all slices of SC are electrically identical, it is possible to
obtain resistivitiesRo andR for the entire SC of thicknessH:

Ro 5 am~rH/Sn!, (5)

R5 am~rH/~Sn 1 Sp!#. (6)

If we define conductivitiesso ands, whereso 5 1/Ro ands 5 1/R, by
using Eqs. 5 and 6 we can write the relative increase in conductivity, (RIC),
defined as

RIC 5 ~s 2 so!/so, (7)

which equals

RIC 5 Sp/Sn. (8)

We assume that there are two distinct types of membrane regions “f”
and “s.” The region of type “f” responds relatively rapidly and reversibly
to stress, as depicted by the viscoelastic rheological model 1 (m.r. 1 in Fig.
2). The region of type “s” responds relatively slowly and irreversibly to the
action of stress, as depicted by the viscoelastic rheological model 2 (m.r. 2
in Fig. 2). The initial, unperforated membrane areaSm (5 So 2 Sn) in each
slice can be written as a sum:

Sm 5 Sf 1 Ss, (9)

where Sf and Ss are areas of the two types (“f” and “s”) of membrane
regions. In the case of electroporation, the total conducting area of pores
can be calculated as

Sp 5 kf pfSf 1 ks psSs, (10)

wherepf andps are the probabilities of electroporation, andkf andks are
the ratios of characteristic time of pore closing to characteristic time of
pore opening in regions “f” and “s,” respectively.

The probability of electroporation in a given region can be calculated as
the probability that the energy density produced by the action of the electric
field exceeds a critical (enough for the formation of pore) valueDep. The
probabilitiespf and ps, in the “f” and “s” regions, respectively, may be
expressed mathematically by calculating the integrals:

pf 5 E
2`

Def

gf~x!dx (11)

ps 5 E
2`

Des

gs~x!dx (12)

whereDef and Des are applied energy densities due to the action of the
electric field, andgf(x) andgs(x) are densities of probability that the critical
valueDep falls in the range betweenx andx 1 dx for regions “f” and “s,”
respectively.

FIGURE 1 Electrorheological model of SC. The hor-
izontal slice of the SC (upper left) consists of a layer of
nonconducting viscoelastic membrane (a), randomly
perforated by a system of conducting natural routes (Sn),
and electrically induced pores (Sp), and a layer of con-
ducting nonviscous liquid (b). The meaning of the sym-
bols is explained in the text.

2722 Biophysical Journal Volume 75 December 1998



The applied energy densitiesDef andDes can be calculated as

Def 5 gf~DSf/Sf!, (13)

Des 5 gs~DSs/Ss!, (14)

wheregf and gs are initial tensions (in N/m2), andDSf/Sf andDSs/Ss are
relative increases of membrane areas caused by the action of the electric
field in regions “f” and “s,” respectively.

Taking into account rheological models (Fig. 2), relative increases of
membrane areas during the action of pulsing electric field are described by
(see Appendix 1)

DSf/Sf 5 ~t/T!~df/Kf!$1 2 exp@2~t/tf!#%, (15)

DSs/Ss 5 ~ds/Ks!$1 2 exp@2~t/T!~t/ts!#%, (16)

wheredf and ds are extensil stresses imposed on the membranes by the
action of the electric field;Kf andKs are elastic moduli of membranes (for
changes in area);tf 5 hf/Kf and ts 5 hs/Ks; hf and hs are viscosities in
regions “f” and “s,” respectively;t is the width of a single pulse;T is the
period of the pulse electric field; andt is time.

After the electric field is switched off, changes in relative area can be
written as follows:

DSf/Sf 5 ~t/T!~df/Kf!$1 2 exp@2~ta/tf!#%

exp$2@~t 2 ta!/tf#%,
(17)

DSs/Ss 5 ~ds/Ks!$1 2 exp@2~t/T!~ta/ts!#%, (18)

where ta is the cumulative time duration when the applied electric pulse
train is applied to the skin.

Extensil stressesdf andds of the membranes, caused by the action of the
electric field, are described approximately by (see Appendix 2)

df 5 ef@DVsc/~amH!#2, (19)

ds 5 es@DVsc/~amH!#2, (20)

whereef andes are dielectric permitivities for regions “f” and “s,” respec-
tively, andDVsc is the voltage difference across the SC.

There are two cases when RIC can be expressed relatively simply. Case
I is when a single pulse (t 5 T) much shorter than the characteristic
response timets of regions of type “s” is applied. ThenpsSs ,, pfSf and by
using Eqs. 8, 10, 11, 13, 15, 19 and the approximation that

DVsc , 0.5DV, (21)

whereDV is the voltage difference between electrodes on the surface of the
skin, it is easy to obtain, fort 5 t,

RIC 5 kf~Sf/Sn!E
2`

X1

gf~x!dx (22)

where

x1 5 @~ef gf!/~4Kf~amH!2!#$1 2 exp@2~t/tf!#%~DV!2. (23)

Case II is the case when a train of pulses is applied and the long-term
recovery of type “s” regions is measured. ThenpfSf ,, psSs, and by using
Eqs. 8, 10, 12, 14, 18, 20, and approximation 21 it is easy to obtain

RIC9 5 ks~Ss/Sn!E
2`

X19

gs~x!dx (24)

where

X19 5 @~esgs!/~4Ks~amH!2!#$1 2 exp@2~t/T!~ta/ts!#%~DV!2.
(25)

RIC may be expressed as a function of applied energyDef or Des, which
are linear terms in the Taylor approximations of functions 22 or 24 near
Def 5 ^Dep&f or Des 5 ^Dep&s, where^Dep& is mean value ofDep.
In case I,

RIC 5 kf~Sf/Sn! z $0.51 gf~^Dep&f!

z @lf$1 2 exp@2~t/tf!#%~DV!22^Dep&f#%,
(26)

and in case II,

RIC9 5 ks~Ss/Sn! z $0.51 gs~^Dep&s!

z @ls$1 2 exp@2~ta*/ ts!#%~DV!22^Dep&s#%,

(27)

where lf 5 [(efgf)/(4Kf(amH)2)], ls 5 [(esgs)/(4Ks(amH)2)], and t*a 5
(t/T)t is the cumulative time of action of the electric field pulse train.
Equations 26 and 27 are useful in investigations of characteristic time
constantstf and ts.

If we define two new variablesj andj9 as

j 5 $1 2 exp@2~t/tf!#%~DV!2, (28)

j9 5 $1 2 exp@2~t*a/ts!#%~DV!2, (29)

differentiation of Eqs. 22 and 24 againstj andj9 leads to the results

d RIC/dj 5 kf lf~Sf/Sn!gf$lfj%, (30)

d RIC9/dj9 5 ks ls~Ss/Sn!gs$lsj9%, (31)

Equations 30 and 31 can be useful in investigations of densities of prob-
ability gf andgs.

RESULTS

For this study, the experimental data were taken from the
work of Gallo et al. (1997). The set-up and procedure used
in electroporation of porcine skin experiments were also
described in that paper.

FIGURE 2 Rheological models of different membrane regions. Models
m.r. 1 and m.r. 2 represent viscoelastic properties of “f” and “s” regions,
respectively. Springs model elasticity, dashpots model viscosity, and the
comb models irreversible response of these regions. HereKf, Ks are area
elastic moduli of the membrane andhf, hs are area viscosities of the
membrane in regions “f” and “s” respectively.
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Case I

“Single pulse” experiments. Equation 26 suggests that, if
the variation of the applied pulse voltage during the exper-
iment is neglected, the trend of changes of RIC with pulse
lengtht has the form

RIC 5 a 1 b$1 2 exp@2~t/tf!#%, (32)

where

a 5 kf~Sf/Sn!$0.52 gf~^Dep&f!^Dep&f%, (33)

b 5 kf~Sf/Sn!gf~^Dep&f!lf^~DV!2&, (34)

and ^(DV)2& is the mean value of the square of the applied
voltage difference.

Equation 32 was preliminarily fitted (see for example,
Fig. 3) to thet-dependence of experimental results taken
from 21 independent measurements, classified into four
groups by the voltages used (0–30, 30–60, 60–80, 110–
160 V). Because all preliminary fittings showed that param-
etera did not differ significantly from zero, it was assumed
thata 5 0 in the final fittings. Then the final values oftf 5
1.66, 1.66, 1.85, and 1.74 ms were obtained. For future
calculation the mean value oftf 5 1.7 ms is taken.

In the next step, RIC results were plotted against the
variablej (Fig. 4 A) and differentiated. Differentiation was
performed by using the linear regression method applied in
the sequential neighborhoods of five to nine experimental
points. In this way mean values ofj and RIC for these
neighborhoods were also obtained (Fig. 4B). Finally, coef-
ficients of slope versus mean valuesj in neighborhoods
were analyzed (Fig. 4C, points).

In the final analysis, the line shape ofgf in Eq. 30 was
assumed to have the form of

gf~x! 5 @1/~2psf
2!1/2#exp$2~x 2 ^Dep&f!

2/~2sf
2!%. (35)

Equation 30 was fitted to differentials of RIC (Fig. 4C,
continuous line).Before evaluation, Eq. 30 was transformed
into the form

d RIC/dj 5 kf~Sf/Sn!@1/~2pbf
2!1/2#exp$2~j 2 ^jp&f!

2/~2bf
2!%,

(36)

where

^jp&f 5 ^Dep&f/lf , (37)

bf 5 sf/lf . (38)

Then ^jp&f 5 976.426 0.08 V2, bf 5 500 V2, and kf(Sf/
Sn) 5 4 were obtained. The values of the last two parame-
ters have no documented statistical significance.

Case II

“Pulse train” experiments. Equation 27 suggests that if we
neglect the variation of applied voltage during experiments,
the trend of changes of RIC9 with time t*a has the form

RIC9 5 a9 1 b9$1 2 exp@2~t*a/ts!#%, (39)

where

a9 5 ks~Ss/Sn!$0.52 gs~^Dep&s!^Dep&s%, (40)

b9 5 ks~Ss/Sn!gs~^Dep&s!lŝ ~DV!2&. (41)

Similarly to case I, Eq. 39 was preliminarily fitted (see, for
example, Fig. 5) to thet*a-dependence of experimental re-
sults taken from 48 independent measurements, classified
into five groups by the voltages used (90–130, 170–200,
220–250, 260–300, 300–340 V). As computer fittings
showed, the parametera9 did not differ significantly from
zero. Therefore, it was assumed thata9 5 0 in final fittings.
The final values ofts 5 11.8, 7.1, 3.9, 6.5, and 7.4 s were

FIGURE 3 Example of a preliminary fitting of
the dependence of RIC ont for case I: single pulse
experiments. Equation 32 (solid line) is fitted to
three experimental measurements of RIC in the
110–160 V range. RIC is the relative increase in
conductivity.
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FIGURE 4 Statistical treatment of experimental data
for case I: single pulse experiments. The variablej is
defined by Eq. 28. The solid line is the fitting of Eq.
36. (A) Dependence of RIC onj; (B) dependence of
RIC on j (averaged values); (c) dependence of differ-
entiated RIC onj.
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obtained. For future calculations, the mean value ofts 5 7 s
is taken. In the next steps, the RIC9 results were plotted
against the variablej9 (Fig. 6 A) and differentiated. The
differentiation procedure was the same as in case I. Mean
values ofj9 and RIC9 for these neighborhoods were ob-
tained (Fig. 6B). Finally, coefficients of slope versus mean
values of j9 in neighborhoods were analyzed (Fig. 6C,
points).

In the final analysis, the functiongs in Eq. 31 was
assumed to have the form

gs~x! 5 @1/~2pss
2!1/2#exp$2~x 2 ^Dep&s!

2/~2ss
2!% 1 gso.

(42)

Equation 31 was fitted to differentials of RIC9 (Fig. 6 C,
continuous line). Before evaluation, Eq. 31 was transformed
into the form

dRIC9/dj9 5 ks~Ss/Sn!@1/~2pbs
2!1/2#

exp$2~j 2 ^jp&s!
2/~2bs

2!% 1 es,
(43)

where

^jp&s 5 ^Dep&s/ls, (44)

bs 5 ss/ls, (45)

es 5 ks~Ss/Sn!ls gso. (46)

Then^jp&s 5 49802.8866 0.014 V2, bs 5 (6296 25)*101

V2, ks(Ss/Sn) 5 1.41 6 0.06, and es 5 (8.964 6
0.001)*1026 V22 were obtained.

DISCUSSION

In most theoretical considerations of electroporation (see
Introduction) mechanical forces generated by the pulse field
and their relationship to membrane deformation are often

overlooked. Neglecting this information can lead to incor-
rect analysis. Let us consider the energy of a flat piece of
membrane before pore formation. Increase of mechanical
energy related with its lateral extension in an electric field
can be calculated asDe 5 (g/K)emEm

2V, where g is the
initial tension,K is the area elasticity,em is the membrane
dielectric permitivity,Em is the electric field in the mem-
brane, and V is the volume of the membrane piece. The
increase of polarization energy can be written in the form
De9 5 (1/2)(em 2 eo)Em

2V whereeo is a dielectric permi-
tivity of the vacuum. Sinceg (in reality equal to twice the
surface tension divided by the membrane thickness) is usu-
ally close toK (Evans and Skalak, 1980) andem 2 eo differs
little from em, De is twice theDe9. It is obvious that energy
of extensil deformation cannot be omitted from energetic
considerations. This is why the present analysis concen-
trates on extensil deformation. Up to now only the ideal
elastic deformation has been considered in the proposed
electrocompression models of electroporation. The reason is
that the viscosity for area changes in cellular or artificial
membranes is very small (Evans and Hochmuth, 1978).
However, if short time impulses or “fatigued” membrane
with the increased viscosity is considered, the viscosity
contribution could be significant (adequate characteristic
times could be measurable). Keeping the above remark in
mind, we include viscosity into our theoretical consideration.

By using the results of our analysis of experimental data,
it is possible to estimate values of many important physical
parameters of the stratum corneum. By assuming that the
SC contains in its entire thickness;100 membranes (that
means puttingamH 5 1026 m) and by takingef 5 es 5
10210 F/m, gf 5 Kf, gs 5 Ks (Pawlowski et al., 1993) and
using Eqs. 37 and 44, one may obtain^Dep&f 5 3 z 104 J/m3

and^Dep&s 5 3 z 104 J/m3. These values of average critical
energy density are close to those obtained with a different

FIGURE 5 Example of a preliminary fitting of
the dependence of RIC9 on ta* for case II: “pulse
train” experiments. Equation 39 (solid line) is fitted
to eight experimental measurements of RIC9 in the
220–250 V range. RIC9 is the relative increase in
conductivity.
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FIGURE 6 Statistical treatment of experimental
data for case II: “pulse train” experiments. The
variablej9 is defined by Eq. 29. Solid line is the
fitting of Eq. 43. (A) Dependence of RIC9 on j9;
(B) dependence of RIC9 on j9 (averaged values);
(C) dependence of differentiated RIC9 on j9.
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method for membranes of single cells (Pawlowski et al.,
1996). Such results suggest that the proposed electrorheo-
logical model deserves further investigation. It also shows
that the mean value of energy for irreversible permeabili-
zation is one order of magnitude higher than that of energy
for reversible permeabilization. With the above assumptions
and estimations, Eqs. 35, 37, 38, 42, and 44–46 give quan-
titative and graphical (Fig. 7) descriptions of the full spec-
trum of critical energies. The difference between mean
values (in Gaussian profiles) of critical energies for electro-
poration in regions “f” and “s” is statistically significant.
The constant componentgso in the function of density of
probability (Eq. 42) suggests a subpopulation in the regions
of type “s” that is characterized by a relatively wide range
of critical energies. It is an open question how significant is
the contribution of sample-to-sample variability to standard
deviations of proposed Gaussian distributions. In other
words, how broad the biological divergence is.

TakingKf 5 Ks 5 106 N/m2 (Pawlowski et al., 1993) and
definitions under Eqs. 15 and 16, it is simple to calculate
that regional viscositieshf 5 2 z 103 Ns/m2 andhs 5 7 z 106

Ns/m2. The value ofhf is close to the value 102 Ns/m2

reported earlier for erythrocytes (Paulitschke and Nash,
1993), and the value ofhs is close to 105 Ns/m2, which was
obtained for long-term stretching ofN. crassamembrane
(Pawlowski et al., 1997).

The analysis also yields the weighted areas of regions
kfSf 1 ksSs > 5 Sn. It means that if the other areas do not
respond to the electric field,kf 5 ks, and the area of natural
routesSn 5 (1/100)So, thenkf andks equal 0.05. It means
that, with these assumptions, our results show that pores
should close faster than they open. To remove that open/
close time asymmetry,Sn would have to be 17% ofSo.

According to Eq. 39, in case II, for the same value oft*a,
values of RIC9 should be the same if other parameters of

analysis are kept constant. In general, the values of rheo-
logical parameters (Ks, hs) of membranes may depend on
the dynamics of stretching and may change with pulse
frequencyf 5 1/T (Barnes et al., 1989). For example, the
elasticity Ks may increase and/or the viscosityhs may
decrease with increasing frequency. It can cause decrease of
the value ofts. At the first approximation, we may assume
thatt*a/ts 5 (t*a/ts(0)) 1 xf, wherets(0) is the value ofts at f 5
0, andx is the linear coefficient of the Taylor expansion of
ts aroundf 5 0. With the above assumption, Eq. 39 was
used to analyze results of frequency dependence of RIC9
(Fig. 8). By fitting of the modified Eq. 39 as a function of
frequency, the values ofa9 5 0 (preliminary fitting),b9 5
2.784 6 0.204, t*a/ts(0) 5 0.2 (estimated by usingt*a 5
1.25 s,ts 5 7 s), andx 5 0.029 s were obtained. The last
value has no statistical significance. It is difficult to discuss
these results because there are no known data available, but
it will not be difficult to extend the present analysis when
there are more time-dependent data of the electroporation of
the stratum corneum available in the future.

APPENDIX 1

In the “f”-type region, characterized by parameters of the Voight-Kelvin
rheological model (m.r. 1, Fig. 2), the relative increase of area of the
membrane caused by the action of the electric field is described by the
equation

DSf/Sf 5 ~1/Kf!E
2`

t

$1 2 exp@2~~t 2 z!/tf!#%~dff/dz!dz,

(A1)

where ff is a function describing the evolution of the extensil stresses
caused by the action of electric field in the “f”-type membrane,z is a time
variable, tf is the retardation time of region “f,” andd/dz is symbol for

FIGURE 7 Spectrum of obtained values of critical en-
ergies for electroporation in regions of type “f” and “s,”
respectively.g is the density of probability, max(g) is the
maximal value ofg in a given distribution, andDep is the
critical energy of electroporation. Solid lines are obtained
from transformation of lines in Figs. 4C and 6C.
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differential,

ff 5 dfSO
i50

N

$Q@z 2 iT# 2 Q@z 2 ~iT 1 t!#%D, (A2)

where df is the amplitude of extensil stress in the region “f,”Q is the
Heaviside theta function, andNT 1 t # t.

When putting into Eq. A1, it is easy to obtain

DSf/Sf 5 ~df/Kf!E
2`

t

$1 2 exp@2~~t 2 z!/tf!#%

z HO
i50

N

$d@z 2 iT# 2 d@z 2 ~iT 1 t!#%Jdz,

(A3)

whered is the Dirac delta function.
Integrating formula A3 leads to the equation

DSf/Sf 5 ~df/Kf!

z SO
i50

N

$exp@2~~t 2 iT 2 t!/tf!# 2 exp@2~~t 2 iT!/tf!#%D, (A4)

which can be rewritten in the form

DSf/Sf 5 ~df/Kf!$exp@2~~t 2 t!/tf!#

2 exp@2~t/tf!#%O
i50

N

exp~iT/tf!.
(A5)

By calculation of the sum of the geometric series in Eq. A5 one can
obtain

~DSf/Sf 5 ~df/Kf!$exp@2~~t 2 t!/tf!# 2 exp@2~t/tf!#%

z $$1 2 exp@~N 1 1!T/tf#%/$1 2 exp~T/tf!%%.

(A6)

At any moment of observationt 5 NT 1 t, it is easy to show that

DSf/Sf 5 ~df/Kf!$$1 2 exp~t/tf!%/$1 2 exp~T/tf!%%

exp@~T 2 t!/tf!]$1 2 exp@2~~t 1 T 2 t!/Tf!#%.

(A7)

The above general equation, in the case whent > T ,, t > tf, can be
written in the form

DSf/Sf 5 ~df/Kf!~t/T!$1 2 exp@2~t/tf!#%. (A8)

In the case of one pulse,t 5 T andt 5 t, Eq. A7 can be simplified to
the well-known form

DSf/Sf 5 ~df/Kf!$1 2 exp@2~t/tf!#%. (A9)

In the “s”-type region, characterized by parameters of the Voight-
Kelvin rheological model with an “asymmetric comb” (m.r. 2, Fig. 2), the
relative increase of area of the membrane caused by the action of the
electric field is described by the equation

DSs/Ss 5 ~1/Ks!E
2`

t

$1 2 exp@2~~t 2 z 2 t!/ts!#%~dfs/dz!dz,

(A10)

where fs is a function describing the evolution of the extensil stresses
caused by the action of electric field in the “s”-type membrane,ts is the
retardation time of region “s,” andt is a parameter describing time with
“frozen” changes in area due to the blocker.

When substitutingfs in Eq. A10 by

fs 5 dsSO
i50

N

$Q@z 2 iT# 2 Q@z 2 ~iT 1 t!#%D, (A11)

whereds is the amplitude of extensil stress in the region “s,” and by putting
t 5 NT 1 t, and calculatingt as t 5 (N 2 i)(T 2 t) for pulses

FIGURE 8 Dependence of RIC9 on frequency.
RIC9 is the relative increase in conductivity,f is
the pulse frequency.
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corresponding to the indexi, one can obtain

DSs/Ss 5 ~ds/Ks!SO
i50

N

$exp@2~~N 2 i!t/ts!#

2 exp@2~~N 1 1 2 i!t/ts!!%D.
(A12)

The summation in Eq. A12 leads to the result

DSs/Ss 5 ~ds/Ks!$1 2 exp@2~N 1 1!t/ts#%. (A13)

By using thet 5 N 1 1 variable, the above equation can be written in the
form

DSs/Ss 5 ~ds/Ks!$1 2 exp@2~~~t 2 t!/T! 1 1!t/ts#%.
(A14)

Now assuming thatt .. t and t .. T, Eq. A14 may be written as

DSs/Ss 5 ~ds/Ks!$1 2 exp@2~tt!/~Tts!#%. (A15)

APPENDIX 2

When estimating the increase in mechanical stress when an external
electric field is applied perpendicular to the surface of a flat, nonconducting
and volumetrically noncompressible dielectric membrane immersed in
conducting liquid, one can use balance equations as follows:

Tzz1Mzz 5 0, (A16)

Txx1Mxx 5 0, (A17)

Tyy1Myy 5 0, (A18)

where Tij are components of mechanical stress tensor in the membrane, Mij

are components of Maxwell stress tensor in the membrane, z is the
coordinate in the direction of the applied field, and x and y are coordinates
in directions perpendicular to applied electric field.

Components of the Maxwell stress tensor can be calculated by using the
formula

Mij 5 e~2EiEj 2 E2dij!/2, (A19)

wheree is dielectric permitivity of the medium,E is the magnitude of the
electric field in the medium, anddij is the Kronecker delta.

Simple calculation shows that

Mzz 5 emEm
2 /2, (A20)

Mxx 5 2emEm
2 /2, (A21)

Myy 5 Mxx, (A22)

where the subscript m means in the membrane (in general in the region “f”
or “s”).

Equations A16–A18 and A20–A22 lead to the expressions below:

Tzz 5 2emEm
2 /2, (A23)

Txx 5 emEm
2 /2, (A24)

Tyy 5 Txx. (A25)

The extensil stressdm, defined as

dm 5 ~Txx1Tyy!/2 2 Tzz, (A26)

can be written as

dm 5 emEm
2. (A27)

When putting

Em 5 DVsc/~amH!, (A28)

where DVsc is the voltage difference across SC andamH is the total
thickness of the membrane in the direction of electric field, one can obtain

dm 5 em@DVsc/~amH!#2. (A29)
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