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Direct Tests of Muscle Cross-Bridge Theories: Predictions of a Brownian
Dumbbell Model for Position-Dependent Cross-Bridge Lifetimes and Step
Sizes with an Optically Trapped Actin Filament

D. A. Smith
The Randall Institute, King’s College, London WC2B 5RL, United Kingdom

ABSTRACT Force and displacement events from a single myosin molecule interacting with an actin filament suspended
between optically trapped beads (Finer, J. T., R. M. Simmons, and J. A. Spudich. 1994. Nature. 368:113-119) can be
interpreted in terms of a generalized cross-bridge model that includes the effects of Brownian forces on the beads.
Steady-state distributions of force and displacement can be obtained directly from a generalized Smoluchowski equation for
Brownian motion of the actin-bead “dumbbell,” and time series from Monte Carlo simulations of the corresponding Langevin
equation. When the frequency spectrum of Brownian motion extends beyond cross-bridge transition rates, the inverse mean
lifetimes of force/displacement pulses are given by cross-bridge rate constants averaged over a Boltzmann distribution of
Brownian noise. These averaged rate constants reflect the strain-dependence of the rate constants for the stationary filament,
most faithfully at high trap stiffness. Hence, measurements of the lifetimes and displacements of single events as a function
of the resting position of the dumbbell can provide a direct test of different cross-bridge theories of muscle contraction.
Quantitative demonstrations are given for Huxley models with 1) faster binding or 2) slower dissociation at positive
cross-bridge strain. Predictions for other models can be inferred from the averaging procedure.

INTRODUCTION

Unitary force and displacement steps have been observadyosin molecules bound to a coverslip. In the limit of low
from interactions between single tethered molecules of thenyosin density, these events appear as steps and arise from
muscle proteins heavy meromyosin and a 3gh0-actin  the binding or dissociation of probably just one myosin-S1
filament, the latter held either by micron-sized latex beadshead (Molloy et al., 1995b). To interpret these experiments
in the double laser trap (Finer et al., 1994) or by a mi-it is necessary to have a model in which cross-bridge tran-
croneedle (Ishijima et al., 1991, 1996). Their existencesitions and Brownian forces on the beads are treated on an
confirms that muscle force arises from the summation ofequal footing. Myosin binding/dissociation changes the sub-
individual force-producing events between an actin filameniequent Brownian motion of the dumbbell; the nature of this
and one myosin molecule, as suggested by A. F. Huxleyyation can affect the incidence of cross-bridge transitions
(1957) and evidenced by Gordon et al. (1966). Hence, it i$g|ock and Svoboda, 1995; Molloy and White, 1997), and
reasonable to assume that these events occur independenflyy, therefore be used as a tool for modifying the behavior of
so that the amplitudes and durations of these events chafyq cross-bridge, for example by changing the stiffness of

acterize muscle action at the level of single-molecule inter:[he traps. Modulation of cross-bridge kinetics by transla-
actions rather than the half-sarcomere. The half-sarcomerﬁaOnal motion of filaments also explains why the cross-

response sums contributions from cross-bridges with a Wid%ridge duty cycle in muscle is a strong function of the load
distribution of kinetics arising from the vernier spacings of Huxley, 1957)
myosin heads (42.9 nm) and available actin sites (38.5 nm() Such ’a modél is presented in the next section. The sim-

(Huxley, 1957), and 'observatlons on fibers or myoﬂpnls are lest cross-bridge cycle (Huxley, 1957) is used for ease of
usually reproduced in each half-sarcomere. There is a large

body of evidence for the hypothesis that muscle contractiorﬁ’resemaﬂon’ since the generalization to a comprehensive

arises from strain-dependent cross-bridge transitions (Hibgc_tin—my osin cycle is straightforward. The model can be
berd and Trentham, 1986: Cooke, 1987, 1997). written in terms of a Langevin equation of motion and, more

Experimental displacement-time series show rar]donpowerfull)./, asagenerali.zat.ion-ofquluchowski’s equqtion
fluctuations consistent with the Brownian motion of the for the displacement distribution to include cross-bridge
actin-bead system, or “dumbbell,” as well as discrete event§tates (section 3). Steady-state solutions of the latter can be

at random intervals from interaction with one or more 9enerated numerically. Very simple analytic solutions (sec-
tion 4) exist when, as is usually the case, the correlation
times of Brownian motions of the dumbbell are much less
Received for publication 7 January 1998 and in final form 27 August 1998.than the lifetimes of cross-bridge states. Then these motions
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This result provides a deeper connection between single-
molecule experiments and the strain-dependent kinetics of
muscle contraction, and suggests new ways of testing mod-
els of contraction. The net rate of escape from a level is the
inverse of the mean lifetime of the level (Colquhoun and
Hawkes, 1977), which is experimentally available (Guilford
et al., 1997). At high trap stiffness, the strain-dependences
of the rate constants are little affected by Brownian aver-
aging, and can be explored by measuring mean lifetimes as
a function of the resting position of the dumbbell with
respect to the myosin molecule. If observed levels in force/
displacement records are associated with distinct states of a
cross-bridge cycle, strain-dependent rate constants as re- C
quired for muscle cross-bridge theories can be reconstructed
directly from single-molecule force data at different trap
positions. Examples using Huxley models are presented in
section 4. These effects can be glimpsed in preliminary
results of Molloy et al. (1995a) with a driven sinusoidal
displacement of the traps.

Related experiments on the kinesin-microtubule motor
also reveal step events (Svoboda et al., 1993), but of a
different kind (Svoboda et al., 1994). The processive motion
of kinesin and related motors apparently requires two-
headed motor molecules with some cooperation between the
two heads, and semi-phenomenological models have be@MGURE 1 Schematic configurations in the double laser-trap experi-
proposed, for example by Peskin and Oster (1995) anghent, showing two optically trapped latex beads connected by an actin
Derenyi and Vicsek (1996). The relation of these models téilament and one S1-myosin molecule tethered to a fixed coverslip. For

. . . . . . simplicity, only one binding site on actin is shown, also just one free and
the biochemical kinesin-microtubule-ATP cycle (Gilbert et " 0 ng myosin state (Huxley, 19578) (The resting position of the

al.,, 1995; Ma and Taylor, 1997) is not yet clear, but the«gumbbell” with actin site at distanceto the right of a reference position

methods of this paper might also be applied to kinesin-in the myosin head.B) A thermally generated displacemeutt) of the

microtubule motors. dumbbell, resisted by the restoring foregu(t) from the traps, moves the
site tox + u(t) while the head stays freeCY Myosin binding to at this
displacement gives an extra left-directed force k(u(t)) on the dumbbell
(the diagram does not illustrate that binding is likely only wher- u(t)

THE BROWNIAN DUMBBELL MODEL is within some binding range)D( The dumbbell moves to its equilibrium

resting positioru = —kx/(k + «,) in which the forces k( + u) andx,u are

A simple but realistic model for the double-bead experimemequal and opposite. Brownian forces also cause displacement fluctuations
can be constructed by treating the actin-bead system as(%f’t shown) abc_)ut this position. Displacements are marked by open arrows
. . . . and forces by filled arrows.
rigid dumbbell moving under elastic restoring forces from
the traps and cross-bridge, plus viscous drag and Brownian
forces acting on the beads. The tethered head is assumed to
be a single myosin-S1 molecule. Only longitudinal forcesthe dumbbell at rest, with a binding site at distamdeom
and motions are treated explicitly. Brownian motions of thethe tethered myosin. The traps exert a restoring force when
detached myosin head and internal motions of the actithe dumbbell is displaced by Brownian forces on the beads
filament can be incorporated within effective cross-bridge(Fig. 1B), with an extra restoring force when myosin binds
binding and dissociation rates as their time scales are beloyFig. 1 C). If the head remains bound, the dumbbell moves
the correlation time of longitudinal displacement noise (typ-to balance the forces from the traps and cross-bridge, giving
ically 0.1-1 ms). The actin filament itself is almost inex- a different resting position of the dumbbell (Fig. [0).
tensible compared with the cross-bridge, and lateral disAdditional random displacements from Brownian forces
placements of a filament with fixed ends can be ignored, sean be expected at any instant, so that in experimental
the compliance of the actin-bead links is of more concernrecords each resting position is obscured by displacement
However, torsional motions in the actin filament are ex-noise and must be defined as a local mean displacement, or
pected. A full discussion is given in the last section of this“level.” The size of the step produced when myosin binds to
paper. a force-producing state is the difference between the two

The model can be understood in mechanical terms usingevels, with an equal and opposite step if the head dissoci-
Fig. 1, which summarizes the geometry and the restoringtes from the same state. The noise variance should be
forces, assuming that the head contains a linear elastiemaller after binding because the net stiffness of the dumb-
element (Ford et al., 1977). Fig Aldefines the geometry of bell has increased, and the observation of this effect by

A

kx/(k+)  kx/(k+ic)
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Molloy et al. (1995a, b) supports this interpretation of actin double helix. This can be incorporated by shifting
displacement steps. u(t) up or down by 38.5 nm, since clusters of sites separated

When the traps are much more compliant than the crosdy 38.5 nm are too widely separated to compete for the
bridge, the step produced on binding is equal to the workinggame head.
stroke of the cross-bridge, defined as the filament displace- This model contains two stochastic processes, bindings
ment (initial tension/stiffness) required to reduce its tensiorand detachments of the head to and from actin as a Markov
to zero in the absence of any kinetic change. For simplicityprocess controlled by the above transition probabilities, and
head-filament interactions use one detached state and ottee random force on the beads produced by collisions with
bound state per site. If force is generated by a two-stagsolvent molecules. Brownian force noise is uncorrelated on
process (Huxley and Simmons, 1971) the total workingvirtually any time scale and therefore has a flat “white
stroke is the sum of a binding stroke to relieve the initialnoise” power spectrum. Classical arguments imply that the
tension and a force-generating stroke to relieve extra tensiovariance of the Brownian force is infinite, so the correlation
created by a conformational change of the myosin neckunction can be written using a Dirac delta function as
(Holmes, 1997). -

The number of actin sites available for binding may be Fe(t)Fe(t’) = Ca(t — t'), (C = 2BRT). 3)
limited by their orientation on the double-helix, which pro- The relation betweel€ and the drag coefficieng arises
vides some degree of azimuthal selection (Molloy et al.from the law of equipartition of energy. It is easily verified
1995a) within each half-pitch (38.5 nm), but it is not clear from a formal solution of the Langevin equation by equating
whether the filament rotates to present additional sites, Sthe mean potential energy of the noisy dumbbell in the traps
the model is formulated by treating the numbér 2 1 of {9 RT/2, where R is Boltzmann’s constant and T the abso-
adjacent sitesl(= 0, 1, 2, .. .) as dree parameter. lute temperature (Reif, 1965). The dumbbell model is now

Let u(t) be the longitudinal displacement at tirnef the  fyly specified.
dumbbell. It is moved by the restoring force of the optical The model can be extended to include compliant linkages
traps with equivalent elastic stiffness viscous drag with  petween filament and beads, which can be of the same order
coefficient from dumbbell motion in the surrounding fluid 55 cross-bridge compliance or less. Separate equations of
of viscosity n, a net random Brownian fordgg(f) on both  motion can then be set up for longitudinal motions of the
beads, and cross-bridge tensidmn the direction of nega-  filament and each bead (Appendix A). As viscous drag on
tive-x when the head is bound to the filament. The dragthe filament can be neglected, the Appendix shows that the
force arises mostly from the beads, Bo~ 2(67ma) for  symmetric mode of motion of the beads is controlled by a
beads of radiua. The combined mass is small enough that| angevin equation equivalent to Eq. 1, but with an apparent
inertial forces can be neglected. Hence the Langevin equayoss-bridge stiffness including actin-bead linkages in series
tion of motion is with the cross-bridge. For reference, mathematical symbols

are collated in Table 1.

du
Bat Kku(t) = Fg(t) — T(x + u(b), t) 1)
Monte Carlo simulations

whereT is .ShO\.Nn as afunct|on_ of the c_i!splacemgnnf the The simplest method of exploring the dumbbell model is
central actin site from the resting position of t_he head. The{hrough Monte Carlo simulations, which generate Brownian
value ofxis set by the position of the traps with respect ©torce and cross-bridge transitions in time. The price of

myaosin, ar_1d th's displacement pecomes— u whe_n the simplicity is that the time intervall between successive

dumbbell_ IS _dlsplaced. C_ross-brldge t_ens_|on arses Whepnoves must be much less than the damping time and the

S1-myosin binds to one site only, and is given by lifetimes of cross-bridge states, and many Monte Carlo runs
are needed to build up displacement distributions. On inte-

L
_ grating the Langevin equation (Eq. 1) from tirpe= nA (n
T, 1) |§L k(x+ lc)n (D), integral) tot,, ; whereA(t,)A << 1, the next displacement
is
n() = 1, headbound to site
(0= 1 head bou (2) Ul = (L - AGAUEL) + LBBL) — T 1A} (4)
where
for cross-bridge stiffness k and_2+ 1 possible binding
sites spaced by = 5.5 nm. There arel2+ 2 cross-bridge tnes K + k(1)
t
states. The origin ok is defined so that tension from the Bt) = [ Fe)dt, A)= g 5)
central site is k. The transition probabilities for binding and tn

dissociation ardé(x + Ic + u(t)) andg(x + lc + u(t)) where

the functionsf(x) and g(x) define a two-state cross-bridge
model (Huxley, 1957). When trap stiffness is low, the
dumbbell may move over more than one half-pitch of the B(t,)> = CA = 23°DA (D = RT/B). (6)

B is an “impulse” integral of Brownian force over timkg
and is a random variable with a finite variance
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TABLE 1 Digest of mathematical symbols bilities of binding and dissociation, neglecting the change in

Symbol Definition displacement over that time. This algorithm is valid if

A Attempt frequency MDA << 1, fA, gA < 1. (7

a Bead radius

B(0) Impulse integral of Brownian force The first inequality requires many Monte Carlo steps before

¢ Actin monomer spacing the dumbbell comes to equilibrium in its potential well. This

C Correlation coefficient of Brownian forceC(= 2BRT) . ) o . ’

D Diffusion constant of dumbbell( = RT/B) condition is very'restrlctlve, giving large amounts of output

Fa(t) Brownian force on both beads correlated over time of order A/Hence, redundant output

f(x), g9  Binding and dissociation rates of actin-myosin should be thinned before writing to a file. However, the

fJ(X)' ?(X) g“’wbnga'ﬂ'ﬁveragid the'st ot algorithm itself is fast and therefore runs of’1§teps are

k‘(”‘ ) o dg:’;é;se:: ocity XP(u. 1) quite feasible. Results obtained with Eqs. 4—7 are shown in

k(D) kn(t) Fig. 2 for a modified Huxley model described in the caption,

K(X) f(x)/g(x) usingA = 10 ®sand kB = 2 X 10 s * from Table 2. The

I Actin site label [ = —L, L) in cluster basic features of these simulations are

2L+1 Number of actin sites available in cluster

M (%) Reaction matrixfl;; = —M,; = f(X), Moy = —My, = o After a single head binds to the filament, the mean level
9 of the displacements jumps from zero o= U,(x) =

n(® Actin-myosin binding index (0 or 1) —k(x + lc)/(k + k), for which tensions k( + Ic + u)

pi(X) Probability of crossbridge state i d f he head d | d .o

Pi(u, t)du  Probability of crossbridge stateand displacementsi(u + andku rom the e_a and trap are equal an OppOSIte,.
du) e The variance of displacements centered about zero is

R Boltzmann’s constant RT/k, when the head is detached, and the variance about

t Time o the levelU,(x) is RT/(K + ky);

569 Crossbridge tension in state e With low trap stiffness £, << k) the duty cycle or ratio

T Absolute temperature f “on” ti “off” ti il'b hi hai/

T(x, t) Crossbridge tension at tinte 0 on tlmgs to "o tlme_s wi ,em_uc ower thaig

u Dumbbell displacement if the amplitude of Brownian motion in the detached state

U(¥) Mean displacement of bound level to actin dite exceeds the binding range defined fify).

V,(u) Potential energy of traps at displacemant

Vo (U, X) Potential energy of traps and bound myosin, displacement It is desirable to have Monte Carlo algorithms for use

x Resting position of actin site from myosin with larger sampling times, saj = 1/A. In this case,

p Viscous damping coefficient of both beags £ 12mna) Brownian motion of the dumbbell between Monte Carlo

K¢ Combined stiffness of both traps ill be sianifi h h brid .

A Damping frequency (rads/s) of free dumbbell steps will be significant, so that each cross-bridge transition

A Damping frequency of dumbbell with bound myosin may occur with different rates at different times in the

) Solution viscosity interval A. Hence, the prediction problem must be solved

¢u(W) Boltzmann displacement distribution of free dumbbell within each time interval as well as from one Monte-Carlo

(U X)  Boltzmann distribution of dumbbell with bound myosin - gt time to the next. Fortunately, stochastic predictions can

7(X) Lifetime of crossbridge state '

be made analytically when Brownian maotion is fast relative
to cross-bridge transition rates. This requires a complete
statistical description of the dumbbell motion, which will be

using Eq. 3. An application of the central limit theorem presented elsewhere.
shows that the distribution & is Gaussian (Chandrasekhar,
ematicaldificutios associted with (he unaveraged BrownTHE GENERALIZED
ian force (Gardner, 1985). Hef2 is the diffusion constant
connected by Einstein’s relation to the damping coefficient,The dynamics of the dumbbell-cross-bridge system is con-
and the random ter/ is a diffusive displacement with a trolled by two interacting Markov processes for Brownian
Gaussian distribution of zero mean and varianbAZthe  motion and cross-bridge transitions, respectively. The
classical diffusion law). This algorithm has been used forBrownian motion of a single spherical particle can be pre-
motility assays (Brokaw, 1976; Pate and Cooke, 1991Ylicted in the statistical sense from the conditional probabil-
where the diffusion is unconstrained by trap forces. ity distribution of its x-displacementu at timet, given a
Monte Carlo simulation can proceed using a Gaussiamisplacement,, at an earlier timd,. This motion has the
random number generator for values®Bfand a separate Markov property that no history of previous displacements
generator of a uniformly distributed random numibdse- s relevant, since the change in displacement is determined
tween 0 and 1 (Press et al.,, 1992) for each cross-bridgey random force noise acting over the intervening period
transition. For a detached head, binding to kiteallowed and any change in cross-bridge tension. Each cross-bridge
if and only if r is less than the binding probability over time transition is assumed to be instantaneous on the time scales
A, with a corresponding rule if the head is initially bound. considered here. The conditional distribution obeys Smolu-
f(x + lc + u(t,))A andg(x + Ic + u(t,)A are the proba- chowski's equation (Chandrasekhar, 1943), which is a spe-
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FIGURE 2 Sample Monte Carlo simulations made from Egs. 5-7 using a modified Huxley model (Model 1), three adjacent actin sites spaced by 5.5 nm,
and three values/k = 0.1 (A), 1.0 B), and 10 C) of the ratio of trap to cross-bridge stiffness. The model is defined by a strain-dependent binding rate
f(x) = f exp(—a;x — a,x® — a,x*) with f = 10 s, a, = —3.0,a, = 2.0 anda, = 0.2, which favors positive strains, whitx) = 200 s * is constant.

Tension satisfies Eq. 2 with & 0.53 pN/nm. The unit of length is = 5.5 nm and k = 2.91 pN is the unit of force, giving = 5 X 10> units and\, =

2000 s, A = 22000 s* (Table 2). Calculations were made for= 5.5 nm (1 length unit). The step time satisfied condition (8) by a factor of at least

five. Displacements were recorded every 0.1 ms, also the sequence of cross-bridge states (1-4). The bound stated (24} ltaterespectively, and

their levels are as stated in the main text. Valuekasfdg were chosen to give duty ratios and lifetimes similar to published data at high ATP levels. Note
that the difference between the mean levels of the two states and the noise variance in the off state are decreasing functions of trap stiffdesg, but the
ratio increases.

cial case for overdamped particles of a Fokker-Planck equachanges the stable position= —kx(k + «;) of the dumb-
tion for the distribution of position and velocity. bell. Completeness is expressed by a sum rule over final
Smoluchowski’'s equation can be generalized in an obvistates
ous way to include the cycles of one or more interacting
myosin heads, by specifying the cross-bridge state simulta-
neously with the displacement. LBJ(u, t)du be the proba- 2
bility of displacements in the ranga,(u + du) at timet and
cross-bridge statg not listing the initial conditions. For Equations 8 can be formally derived from the Langevin
multiple actin sites, the cross-bridge state should includes gquation and the usual stochastic interpretation of the cross-
site indexl as before. In this case we have “Smoluchowski-pridge rate constants (Chandrasekhar, 1943; Doi and Ed-
Huxley” equations wards, 1988). They reduce to Smoluchowski’'s equation in
P 1 a/aViu) %P, the apsenge Qf crossjbridge transitions, and to the usual
b A ( 1) — chemical-kinetic equations in the absence of Brownian mo-
at poul du ou tion (D = 0). The following statement may assist readers
not familiar with Smoluchowski’'s equation: the first two
terms on each right-hand side can be written as minus the
u-derivative of a flux, arising from damping-limited drift in
the force of the elastic potential and from diffusion (Appen-
aPy(u,t) 1 9 (aVy(u) dix B). The Einstein relation in Eq. 6 ensures that the
ot Bau(au 2|) solution of Smoluchowki’'s equation tends to the correct

[ du P(u, t) du = 1. (10)

i

+ > (g(x+ Ic + u)Py — f(x + Ic + u)P,)

I=—L

9°P.
+D TZI +f(x+Ilc+ uP, — g(x +lc + u)P, TABLE 2 Parameter values for the Brownian dumbbell

2
u model
(8) Primary Derived
. . . . . — — —3 N . _ _ —8 N .
for the dumbbell moving in different elastic potentials a S‘O&i‘r’z“m' n=10x107N- B S‘lrﬁff’a 207> 107N
1 1 c=55nm A = k/B = 2420 s* (damping
V;(u) = 5 kU2, Vsi(u) = = [kU? + k(X + Ic + u)?] frequency)
2 2 — s
f =10 s * (models | and II) A= (k + k)/B = 26600 s*
(9) g=200s1 (RT/k)Y? = 8.94 nm (standard
devn.)

for each state. Note that the stiffness of the dumbbell with, _ g pN/nm (Smith and Geeves(RT/(k + x))2 = 2.70 nm
bound cross-bridge is ¥ «, (elastic elements in parallel) if  1995)

forcibly displaced at fixedk. However, the stiffness with RT =4 x 1072*J at 17°C k(RT/(k + K))** = 4.26 pN
respect to a forcible change k(by moving the traps or the (ke = 10 k) -
coverslide) is k/(k + k) (elements in series), which * = 01k (no feedback) D= RT/p = 1.93x 10 " m'ls
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equilibrium form (a Boltzmann distribution) at large times. 03 A
Although the drift and diffusion terms disappear on inte-
grating overu, closed equations for the probabilities of
cross-bridge states cannot be obtained in this way except for
the unphysical case whef&) andg(x) are independent of

X, when Huxley’'s equations with no additional noise terms
are recovered. To add phenomenological noise terms to the
Huxley equations, as was done by Thomas and Thornhill
(1995), is incompatible with this generalized Smoluchowski
theory. Extra terms should not be expected since kinetic
equations for the state probabilities already have a stochas-
tic interpretation (Nicolis and Prigogine, 1977; Saldana and
Smith, 1991).

These equations provide complete statistical predictions
for the behavior of the Brownian dumbbell. In general, they
must be solved numerically. A general analytic solution can
be constructed if the time scales of Brownian motion and
cross-bridge events are very different, but only steady-state
solutions will be considered here.

joint probabilities

joint probabilities

-0.5 0.0 0.5

u (unit=5.5nm)
The steady-state distribution of levels

- . FIGURE 3 Joint probabilities for displacement and cross-bridge state for
Much effort has been devoted to obtaining the dIStrIbUtlonHuxley model | with three available actin sites anek 1. The distribution

of “levels” for records of single actin-myosin interactions p () is for free myosin and®,(u) for myosin bound to actin sité =
(Molloy et al., 1995b, Guilford et al., 1997), a level being a (-1,0,1), which appear from right to left in the figure with mean values
region of constant local mean displacement. Binding eventgiven by Eq. 19. The displacement distribution obtained by summing over
then appear as the transition from a high-variance level to atates is also sho_wn unlabeled. The cont_inuous curves_are the numerical
low-variance level, and the step size is defined as théteady-state solution of thPT Smoluchowsl_q-l-_luxl_ey equatlons (8). Normal-
. . ’ . zed histograms for the displacement distribution are built from corre-
difference in the mean displacements of each level. Thgponding Monte Carlo simulations with a total of 50,000 points (5 s
advantages of using this definition are that any drag or pushuration), using displacement bins of width 0.1 unié§ and 0.01 B):
from Brownian forces is canceled in taking the mean dis-differences between each histogram and the theoretical distribution are as
placements, and that at low trap stiffness<< k) the step expected for sample_counts? of order 50@at 0. All results use m_odel |
size is equal to the myosin working stroke as defined earligrAd parameters of Fig. 2 wik/k = 0.1 (%) and 10 B). The step size on
. ; _binding to sitel (working strokes) is the shift in mean displacement
Under conditions where only one head cycles at a time, thigetween the two distributions. At high trap stiffnesgk > 1 (B), the
working stroke is equal to the “ATP step length” if one standard deviation of each distribution is reduced (a%% but the work-
molecule of ATP is hydrolyzed by each cycle. ing stroke is reduced even more (as% so the separation of these
For constant bath conditions and no extema”y forceodistributions‘is reduceq. Note also that the actin kite 0 is kinetically
. . o . favored at high trap stiffness.
motion, a unique steady-state distribution of displacements
is expected which is characteristic of the proteins, the trap
stiffness and the resting position of the dumbbell. This
distribution can be built numerically from Monte Carlo
simulations, but can also be obtained directly from the; kx \2 //RT RT K, kx?
genera}llzed Smoluchowski quatlons (Fig. 3). For the Iatter( ) /(KI + K+ Kt) =k + (K + 2) RT"
numerical methods are essential even wifgnandg(x) are
independent ok. The motion of the dumbbell is bounded As a function of trap stiffness for a given site locatiqrihe
with no net flux at large displacements, &(u) and its  two distributions are best separated when= k/,/2, not
u-derivative must tend to zero as — . A robust numer-  with very high trap stiffness, as might have been expected.
ical method (Appendix B) confirms that the distributions Whenk, => k (achievable with negative-feedback modula-
remain close to Gaussian &sand g are increased up to tion of the trap positions) all displacements are small so the
viscoelastic damping frequencies, when cross-bridge trartraps act as force transducers and can be calibrated as such
sitions disturb the Boltzmann distribution of displacements(Simmons et al., 1996). Nevertheless, cross-bridge foxce k
The significance of the shift in level on binding can be does not appear as a sharp peak in the measured force
tested by standard methods, which compare it with pre- andistribution, but as a small shift in the mean value of a broad
post-step variances. For example, for the same populatiordistribution of cross-bridge force when the head is bound.
in each level, an F-test involves the square of the level shiffhe shift is small because the sized(k + ;) of the

divided by the sum of these variances (Weatherburn, 1968Jisplacement which mechanically equilibrates the dumbbell

which for the central site is

(11)

t
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is much smaller than the working strokeand is propor- Hence, the steady-state probabilitirgu x) for statei and
tional to k,~*. This reduction is built into the force calibra- displacement are

tion of the transducer, but the r.m.s. displacement noise

from Brownian motion is proportional ta,” 2. Thus the P1(Up) = pi(¥)a(W), - Pa(Ux) = pa(X)ez(ulx + Ic)

unfiltered signal-to-noise ratio fot, > k is also propor- (= —L,L),

tional to k,” 2, which is a decreasing function of trap

stiffness (Simmons et al., 1993). For example, wita 5.5  (Fig. 3), andx is fixed by the geometry of the system (Fig.
nm and parameters of Table 2, the F-quantitx# = 10  1). The probabilityp;(X) of cross-bridge stateis determined

is 0.173 and the standard deviation of force noise is 4.3 pNpy balancing the net rates of binding to and dissociation
(second-to-last entry in Table 2), whereas its maximunffom each actin site when averaged over the Brownian
value is 0.686 with a force noise of 0.77 pN. Since themotion, namely

corner frequency of force noise is proportionalo some
improvement can be made by low-pass filtering, which N
increases F in proportion to the reduction in bandwidth
(Svoboda and Block, 1994). However, specialized filters are ~ (15)
required to transmit sharp edges without broadening (Block

and Svoboda, 1995). By integrating the steady-state Smoluchowski-Huxley Egs.
8 overyu, this condition follows from the requirement that
the distributions and their first derivatives with respectito
vanish at largal. Hence, the state populations satisfy

{f(x + Ic + u)P,(u|x) — g(x + Ic + u)P,(u[x)} du = 0.

©

THE CASE OF FAST BROWNIAN MOTION

Gaussian distributions of displacements in each level argy(x) . f(x + Ic)

L
expected when the roll-off or “corner” frequencies of the p (x) = (x+ lc) G+ 1o)’ (P(¥) + 2 pal9) = 1)
power spectra of Brownian displacements in the free and =t

bound states are faster than the rates of escape by cross- (16)
bridge transitions, that is where
K¢ K+ Kk - ”
A>T, A>g (M= B’ A= s ) (12) f(x) = | f(x+u)ey(u) du,

For simplicity, head-filament interactions use one detached "
state and one bound stat_e_per site. For cross-bridge n_’:\tes gx) = f g(X) @,(ufx) du.

below 1000 s*, these conditions are reasonably well met in .

experiments using laser traps (typically~ 2000 s %, A ~ ~

101, at low trap stiffness) and in Table 2. They allow the Here f(x + Ic) and §(x + Ic) are the effective rates of
construction of approximate analytic solutions of the gen-binding to and dissociation from actin siteaveraged over
eralized Smoluchowski equations under steady-state and Boltzmann distribution of Brownian motions before the
transient conditions. These results are essential for develransition. When Eq. 12 applies, these averaged rates predict
oping Monte Carlo algorithms valid for larger time steps, the lifetime of each level, and standard results from the
for relating the amplitudes of the steady-state Gaussiatheory of discrete Markov processes (Colquhoun and
distributions of each level to cross-bridge kinetics, for pre-Hawkes, 1977) can be taken over without modification. For

d|Ct|ng the lifetime of each level and for deve|oping maxi- the multi-site HUXley mOdel, each tension level is associated

mum-likelihood methods. with only one state. Then the lifetime of each level is
Equation 12 implies that the distribution of Brownian exponentially distributed (a Poisson distribution of order

displacements of the dumbbell will usually come to equi-Z€0), and the mean lifetimes and, are again functions

librium between successive bindings and detachment®f X and given by

Equilibrium (Boltzmann) distributions in each state are

Gaussian distributiongp,(u) and ¢, (U) = @,(UX + Ic)

Fo 1 .
= > f(x+lc), m=g(x+lc) (18)

whose means and variances were given in section 2: (X) -
ke \Y? KeUP which amounts to an ergodic interpretation of Eq. 16 for the
¢ =5 7] &P oRT (13a)  occupation probabilities. These relationships were checked

by computing the displacement distributions (Eq. 14) using
172 2 Egs. 13, 16, and 17. For the parameters used in Fig. 3 the
K+ Kk (k+Kt)/ kx . R .
@x(Ux) = ex u+ 7 (13b)  results are graphically indistinguishable from the direct so-
2mRT 2RT \ Tk lution of the Smoluchowski-Huxley equations shown in the
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figure. However, differences appearfifand/org are in-  (Model |, Fig. 4A) or the dissociation rate (Model Il, Fig. 4
creased by a factor of 1000, which violates conditions (EqB). The original model (Huxley, 1957) has asymmetry in
12) for fast Brownian motion. To summarize, cross-bridgeboth: all three models produce a population of bound heads
kinetics determine the occurrence of different levels,biased toward positive and hence give net isometric ten-
whereas the step size sion in muscle. At low trap stiffness¢( << k), Brownian
motion is large and any strain-dependence of the “isomet-
U = —kx+lc)(k+ ) (19) ric” ratesf(x) andg(x) is largely washed out, whereas when
from the detached-state level to a bound-state level is des; => k these rate constants are preserved. Low valués of
termined by geometry and the elastic constants, Ksec- have been chosen to approximate the observed rates, which
tion 2). are lower than those expected in fibers; this may be due to
Brownian-averaged rate constants enable xtiepen-  unfavorable positions or orientations of the head with re-
dence of the corresponding steady-state populations to B&ect to F-actin. Nevertheless, the strain-dependendgs of
compared for different cross-bridge models, which cannofndg(x) can be determined experimentally from level his-
be readily distinguished from results at just one restingograms at different resting dumbbell positions using Egs.
position of the dumbbell. For a two-state model, the com-16 and 17, and the results should discriminate between
parisons that can be made are illustrated in Fig. 4 for twgnodels | and Il. Force rather than displacement data are
variations of the Huxley model in which the required kinetic preferable, because strain-dependent kinetics are preserved

asymmetry with respect tois put either in the binding rate 0nly at high trap stiffness where the Brownian motion of the
filament is reduced.

Analogous predictions for thedependence of step sizes
T | T T T | T in A. F. Huxley’s model can be understood by combining
Eq. 19 with kinetic considerations, which select the most
favorable binding site for each resting position. kpr< k
and a given value af, Eq. 19 predicts quantized step sizes
—C—X, —X, C—X, . . . .proportional tax and separated by the
monomer spacing = 5.5 nm, but the frequency of these
steps in the time record is controlled by the apparent binding
constantsK(x + Ic) for | = —1,0,1 .. .. (Eq. 16), which
show a single maximum. If the stiffness of the dumbbell
with bound head is low, then these binding constants vary
slowly with x and the binding range (defined, say, by
K(x) > 0.2K,,,,) may be larger than the site spacing. In that
case, multiple steps arising from adjacent actin sites are
T I l l I l statistically possible for each resting position (FigAp If
the cross-bridge is very stiff (k&= 2 pN/nm) and the traps
also, then the binding rangextan be<5.5 nm so only one
site is selected for eaoh(Fig. 5B). The figure also shows
that step sizes selected in this way are periodix imodulo
the site spacing; a 5.5 nm shift in resting position transfers
the same cross-bridge kinetics to the next actin site. Hence
the range of possible step sizes #il resting positions is
kinetically selected and equal to the binding range.

100

10

2, g% (s7)

0.1

0.01

X (unit = 5.5nm) DISCUSSION

) » ) Limitations of the model
FIGURE 4 Brownian-averaged rate constaris); "g(x) as a function of
actin site positiorx and trap stiffness/cross-bridge stiffneggk for two An important limitation of the model is that internal Brown-
contrasting versions of the Huxley mode}) Model | with an asymmetric ian motions of the myosin head and actin filament are not
binding ratef(x) biased toward positiv& but a strain-independent disso- d ibed licitly. but absorbed i ffecti iti d
ciation rate g (see Fig. 2)Bf Model Il, with a symmetric binding rate escribed explicitly, but absorbed In e.ec Ve posi IO!’I- e
f(x) = f exp(~kx®/2RT) but a strain-dependent dissociation rate favoring pendent' rate ?OnStant_S of the cross-brldgg cycle. This pro-
negative strains, namety(x) = g for x < x, or g exp(—b(x — x)) for x < cedure is valid only if dumbbell motion is slower than
X wherex, = —0.35 (in units of 5.5 nm) antl = 2.8. These forms can be  sjgnificant internal motions. This can be demonstrated for
interpreted in terms of strain-blocked ADP release or ATP binding (Smithany thermally activated reaction. Let the reaction rate be
and Geeves, 1995). For high trap stiffnesgk( = 10), the Brownian k(X) = A exp(— AE(X)/RT) whereA is the attempt frequenc
averaged rates are close to the unaveraged rate corf§kyuméx) since the p . . p q y
amplitude of the Brownian noise is small. At low trap stiffness the Produced by 'nte'jnal mOT[IOOS adE(x) the position-depen-
strain-dependence is small and the models are not so well differentiateddent energy barrier to binding (Kramers, 1940). The expo-
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(1996) and Yoshimura et al. (1984), while bending modes
may be slower. Condition (20) is usually satisfied, as the
corner frequencyA of displacement noise in current trap
experiments is in the range 0% s (Table 1).

The elastic constants of the actin filament prohibit sig-
nificant stretching and bending under the forces available
(the cross-bridge or Brownian forces). The linear stiffness
of a 1 um regulated filament is 0.065N/m (Kojima et al.,
1994) and the bending stiffness, which can be estimated
from a torsional rigidity of 8x 1072° N - m (Tsuda et al.,
1996), is similar. The r.m.s. lateral displacement of the
middle of a fixed-end filament from thermally driven bend-
ing is estimated at 0.28. nm (Doi and Edwards, 1988),
where L is the length in microns. A similar estimate for
thermally driven torsional oscillations gives an r.m.s. twist
of ~30,/L°, or 2° per protomer (a higher figure is found by
Yoshimura et al.). These motions are likely to be important
in determining the availability of binding sites to the head.
However, under some conditions the whole actin-bead sys-
tem might also rotate slowly about an axis through the trap
centers, exposing more binding sites over the rotation
period.

FIGURE 5 @) The step sizeU,(x) = —k(x + h + Ic)/(k + K in In Huxley’s model Brownian motion of the detached
Huxley's model (Eq. 19) for binding to actin siteis determined by the  waaq jts binding to actin, and subsequent isomerizations
resting positiorx of the dumbbell and varies linearly with The frequency . ; . . .

of steps of each size is indicated by the degree of gray shading (shown fdpto gforce-holdlng state are Combmed_ Into a smglg prqcess
model 1), proportional to the strength of myosin binding (Eqg. 16). For the (SMith and Geeves, 1995). Force-holding states with differ-
samex value, multiple step sizes separated by the actin site spacing ~ ent bound nucleotides are also combined. Thus, the com-
possible if the binding range is large as shov).With large cross-bridge  posite binding raté(x) could be much less than the r&g)
stiffness and a force-generating transition after binding, the binding rangefyr Brownian-induced binding to the initial attached state,

in x are narrow and the step size-i&k(x + h + Ic)/(k + k), whereh is the titis the latt h tial fact t
throw distance (Huxley and Simmons, 1971). In this case, step sizes aJB“ Itis the latter wnose pre-exponential 1actor Sets an upper

localized~—kh/(k + «,) but realized only when the head is very close to liMit for the frequency of translational motion.
an actin site. Distances are shown in unitxcf 5.5 nm. The unaveraged rate constants describing single-mole-

cule experiments might differ from those in a muscle fiber
with the same proteins and sarcoplasmic conditions. For
nential factor is the probability of the fluctuation giving example, unfavorable positioning of the dumbbell would
virtually instantaneous bonding; this is the basis for thelower the attempt frequency and give smaller binding rates
stochastic interpretation of chemical kinetics (NiCO"S andf(x) than exist in fibers. Tethering the myosin head to a
Prigogine, 1977). In the presence of filament motiofs @ coverslip might change its kinetics, either through electro-
function of time so the probability of bonding at timés  static effects or by modifying the internal motions it can
exp(—AE(X(1))/RT). The formula applies unchanged if the make. Torsional disorder in the thin filament may also be
preceding motions in the potential well are undisturbedgifferent in the two systems.
by moving the barrier, which must therefore vary slowly
in comparison with the attempt frequency, that is, . .
d In AE(x(®))/dt << A. Thus a necessary condition for the |8 there a universal step size?
validity of the Brownian dumbbell model is This simple Brownian dumbbell model predicts that step
sizes, and bound-state lifetimes at high trap stiffness, vary
AD <A (20) with the resting position of the dumbbell. How are these
whereA is the frequency of the motion considered. predictions related to various claims for force pulses and
For myosin-S1,A ~ 10°> s ! if the head is detached displacement steps of fixed size, for example 5 pN/10 nm or
(Thomas et al., 1980) and 16 ' if the head is bound with  greater (Finer et al., 1994; Ishijima et al., 1996) or 2 pN/5
ATP (Svensson and Thomas, 1986), which precedes dissaim (Molloy et al., 1995b)? The answer is probably a con-
ciation from actin. The amplitudes of orientational fluctua- sequence of the kind of strain-dependent kinetics expected
tions of the (tethered) detached head might be at least 2Gfom fiber cross-bridge models, inadequate long-term posi-
(Svensson and Thomas, 1986). The actin filament witition control, undesirable forms of mechanical compliance,
fixed ends undergoes thermally induced torsional and bendand different methods of data analysis.
ing motions. Torsional relaxation frequencies in the range The binding range of myosin heads to a fixed actin
10“® s71 have been observed by Prochniewicz et al.filament is dependent on cross-bridge stiffness but is esti-
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mated at~10 nm for k = 0.5 pN/nm after phosphate is cation). Actin-bead compliance appears in series with cross-
released (Smith and Geeves, 1995). This range can span thoidge compliance when the head is bound (Appendix A),
or possibly three neighboring actin sites, so multiple boundand out-of-phase bead motions which distort these links are
state levels spaced by 5.5 nm are possible, particularly aemoved by averaging the position signals from each bead.
low trap stiffness where the range is broadened by BrownBoth forms of compliance could be responsible for some
ian motion (Fig. 4). Displacement distributions sélected  worrying features of single-molecule force data (Finer et al.,
levels in displacement data of Molloy et al. (1995b) are1994; Molloy et al., 1995b; Guilford et al., 1997). Duty
spaced by~11 nm and could therefore arise from next- ratios of under 0.01 for force pulses at physiological ATP
nearest neighbor sites if additional levels at half that spacindgvels are far lower than values near unity expected for the
are also present in the record. However, it is very difficult tofew positively strained heads in the sarcomere (themselves
achieve long-term stability of the trap positions to nanome-a small fraction of the total) which produce active tension in
ter precision, so the predicted position dependences may bhgometric muscle. The low duty ratio could be partly due to
explored in an uncontrolled way, generating large steps onlfower binding rates in single-molecule experiments, but
when the resting position favors the bound head. In thesenainly to rates of dissociation above 100*swhich are
circumstances, displacement steps near the upper limit deharacteristic of negatively strained heads produced in
fined by the binding range (10 or 5 nm for% 0.5, or 2 shortening muscle, rather than rates of order i(phase 4)
pN/nm, respectively), and corresponding force pulses (5 ofor tension-generating heads in isometric muscle (Smith,
10 pN) should always be visible. 1998). Similarly, trap data for the lifetime of the bound state
Cross-bridge model 1l of this paper predicts short-lived(Molloy, 1995a) show only a modest increase witlinsuf-
negative force pulses; if these arise from cycling crossficient to give duty ratios near unity. Perhaps compliant
bridges they can always be prolonged by lowering the ATFbead linkages reduce the degree of strain-blocking of ADP
concentration. release at positive strains. Alternatively, loss of trap stiff-
A fixed working stroke independent of the resting posi- ness at high frequencies may allow occasional large nega-
tion of the dumbbell is possible if the cross-bridge is verytive displacements which promote rapid dissociation from
stiff and there is a post-binding transition of the myosinactin.
head from a low-force to a high-force state (Huxley and Computational methods for obtaining levels and dwell
Simmons, 1971). In this case, the binding stroke would bdimes from the time records are not the subject of this paper,
very small and the working stroke as defined earlier wouldbut in fact the generalized Smoluchowski equations allow
be dominated by the second process. If nanometer positiaime construction of maximume-likelihood algorithms which
control could be achieved, this model would yield frequentdo away with the need to identify levels and lifetimes. They
steps only in small ranges &fvalues (Fig. 3B), an extreme  will be presented elsewhere.
form of kinetic selection. However, the need for long-term
position control could be avoided if it were known that the
binding kinetics is selecting very narrowwindows, as in ~ APPENDIX A
Fig. 5B. For example, all statistically identified steps of the . . .
same size in a long data run or pooled data should thefhe effect of compliant actin-bead links
correspond to a single value &f or two or three discrete f the beads are loosely linked to the actin filament with stiffnes® per
values spaced by 5.5 nm if the traps are weak. In the sam@k, then the displacements(t), us(t), u(t) of the beads and the filament
way, pooled data for the lifetimes of the bound head mayrom thgir resting positions in the absence of myosin are given by coupled
belong to a single value provided their mean levels are the -2"gevin equations
same to within sampling error, and this could be verified by Bdu, «
testing for a Poisson distribution. The lifetimes of stepped—= —* _ u, + Fy(t) +
regions with different levels should not be pooled, because 2.dt 2
if the level is kinetically selected then different levels would
correspond to different-values, whose mean lifetimes may _EE _ K U, + Fylt) + ﬁ(u —u,)=0
be different (model I1). The compliance of the actin filament 2 dt 22~ "2 2 2
(0.015 nm/pN per micron, Kojima et al., 1994) is insuf-
ficient to broaden the binding range in single-molecule Badu k.

KL
experiments. o g 22U WU W)

KL

2(u—u1)=0

+ Fat) = T(x+u,t) =0, (A1)

. S
What determines the duty ratio? where B, is the drag coefficient ané, the Brownian force on the actin

The interpretation of force data is Complicated by unwantedilament. The drag coefficient can be estimated by treating the filament as

l in th tin-bead link d | ft an ellipsoid of revolution (Happel and Brenner, 1983), and is rather small
compliance In the actin-bead linkage, and a 0ss of tra BalB =~ 0.06 for a filament Jum long). Hence, the viscous relaxation time

stiffness at high frequencies when using a feedback system) ., for longitudinal motions of actin with respect to the bead is likely to
with finite bandwidth (R. M. Simmons, personal communi- be 10 s or below. On any longer time scale the actin filament must be in
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mechanical equilibrium at all times, so is the flux of dumbbells in an ensemble, using Einstein’s relafor-
RT/B. M(x) is a matrix of the rate constarf(x) andg(x), andV a diagonal
U+ u Fat) = T(x+u,t) matrix of the elastic potentials of Eq. 9. The solutions vary rapidly at large
= 2 + KL (AZ) displacements because the Boltzmann factors tend to be preserved under

nonequilibrium conditions. It is useful to define new variables

replaces the last equation of Al. Ligu, + u,)/2 andw = u, — u,, which .
are the coordinates for in-phase and out-of-phase motions of the two beads. Q(u) - exp(V(u)/RT) P(u)’

The remaining equations of motion yield uncoupled equations for the dQ( ) (BZ)
symmetric and antisymmetric modes of motion, namely R(u) _ exp(—V(u)/RT) du
u .
_B a — KU+ F(t) - T(X +u, t) =0, (A3a) which satisfy the coupled first-order differential equations
Baw wt K % expvuRDRW)
I t =exX u u),
_EE - TW + Fz(t) - Fl(t) =0 (A3b) du (B3)

whereF(t) = F,(t) + F,(t) + FA(t) is the net Brownian force. Note that the dj =DM (X + u)exp(—V(u)/RT)Q(u)
modes are uncoupled only if both bead-filament links have the same du '

stiffness, and that Eq. A3a is apparently of the same form as the original

Langevin Eg. 1. However, the cross-bridge tension is a function of filamentThe first boundary condition is satisfied{ s finite at largeu , while Egs.
displacementi and not the average displacemérdf the beads. On using B1-B3 can be used to rewrite the no-flux condition at infinity in the form
Eq. 2 and substituting = 0 + (F5 — T)/k_, this Langevin equation can

be rewritten as *

M(x + uP(u) = D[R(») = R(=»)] =0 (B4)

—

p & i+ BO-Txrin=0 (A9

which is satisfied ifR(u) — 0 as u — <. For vectors of dimensioN (in

whereT(x, 1) is given by Eq. 2 with k replaced by the stiffness the present problerN = 2(1 + L)) there are R asymptotic conditions on
R, which are sufficient to define a unique steady-state solution of khe 2
- Kk, first-order differential equations in B3.
k= K+ K (A5) Hence numerical integration can start frofh = 0 at some large

negative value ofi, varying the starting vecto® until R — 0 at large
positiveu. The solution can then be normalized as in Eq. 10. This method
was implemented in Fortran 77 using the root-finding subroutine “newt” of
R Press et al. (1992) and a simple stiff differential-equation integrator using
= the Backward Euler method with Gauss-Jordan matrix inversion. The
F(O) = Fa(®) + Fo(0) + (1 KL n(t))FA(t)' (AB) dominant influence of the Boltzmann factors ex(u)/RT) at large u
guarantees that the method converges quickly and is very robust. For the
where n(t) = 1 if myosin is bound and O otherwise. Equation A4 is parameters used in Fig. 3, the numerical solutions agree to graphical
equivalent to the original Langevin equation with an effective cross-bridgeaccuracy with the approximate forms from Eqgs. 14, 16, and 17, significant
stiffnessk. The Brownian force includes a small contribution from the deviations occurring only whehand/org are raised by a factor of 100 or

of the cross-bridge and bead linkages in series, and

filament which is reduced when myosin binds. more.

APPENDIX B I'am grateful to Prof. R. M. Simmons for discussions and a careful reading
of the manuscript, to Prof. R. Streater for useful comments on the steady-

Steady-state solutions of generalized state solution of the Smoluchowski-Huxley equations, and for discussions

Smoluchowski equations with Drs. J. Molloy, P. Guilford, and A. Trombetta.

Numerical solutions can be obtained by a shooting method, since tht-erhIS work was supported by a grant from the Wellcome Trust.
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