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ABSTRACT Force and displacement events from a single myosin molecule interacting with an actin filament suspended
between optically trapped beads (Finer, J. T., R. M. Simmons, and J. A. Spudich. 1994. Nature. 368:113–119) can be
interpreted in terms of a generalized cross-bridge model that includes the effects of Brownian forces on the beads.
Steady-state distributions of force and displacement can be obtained directly from a generalized Smoluchowski equation for
Brownian motion of the actin-bead “dumbbell,” and time series from Monte Carlo simulations of the corresponding Langevin
equation. When the frequency spectrum of Brownian motion extends beyond cross-bridge transition rates, the inverse mean
lifetimes of force/displacement pulses are given by cross-bridge rate constants averaged over a Boltzmann distribution of
Brownian noise. These averaged rate constants reflect the strain-dependence of the rate constants for the stationary filament,
most faithfully at high trap stiffness. Hence, measurements of the lifetimes and displacements of single events as a function
of the resting position of the dumbbell can provide a direct test of different cross-bridge theories of muscle contraction.
Quantitative demonstrations are given for Huxley models with 1) faster binding or 2) slower dissociation at positive
cross-bridge strain. Predictions for other models can be inferred from the averaging procedure.

INTRODUCTION

Unitary force and displacement steps have been observed
from interactions between single tethered molecules of the
muscle proteins heavy meromyosin and a 3–10-mm actin
filament, the latter held either by micron-sized latex beads
in the double laser trap (Finer et al., 1994) or by a mi-
croneedle (Ishijima et al., 1991, 1996). Their existence
confirms that muscle force arises from the summation of
individual force-producing events between an actin filament
and one myosin molecule, as suggested by A. F. Huxley
(1957) and evidenced by Gordon et al. (1966). Hence, it is
reasonable to assume that these events occur independently,
so that the amplitudes and durations of these events char-
acterize muscle action at the level of single-molecule inter-
actions rather than the half-sarcomere. The half-sarcomere
response sums contributions from cross-bridges with a wide
distribution of kinetics arising from the vernier spacings of
myosin heads (42.9 nm) and available actin sites (38.5 nm)
(Huxley, 1957), and observations on fibers or myofibrils are
usually reproduced in each half-sarcomere. There is a large
body of evidence for the hypothesis that muscle contraction
arises from strain-dependent cross-bridge transitions (Hib-
berd and Trentham, 1986; Cooke, 1987, 1997).

Experimental displacement-time series show random
fluctuations consistent with the Brownian motion of the
actin-bead system, or “dumbbell,” as well as discrete events
at random intervals from interaction with one or more

myosin molecules bound to a coverslip. In the limit of low
myosin density, these events appear as steps and arise from
the binding or dissociation of probably just one myosin-S1
head (Molloy et al., 1995b). To interpret these experiments
it is necessary to have a model in which cross-bridge tran-
sitions and Brownian forces on the beads are treated on an
equal footing. Myosin binding/dissociation changes the sub-
sequent Brownian motion of the dumbbell; the nature of this
motion can affect the incidence of cross-bridge transitions
(Block and Svoboda, 1995; Molloy and White, 1997), and
can therefore be used as a tool for modifying the behavior of
the cross-bridge, for example by changing the stiffness of
the traps. Modulation of cross-bridge kinetics by transla-
tional motion of filaments also explains why the cross-
bridge duty cycle in muscle is a strong function of the load
(Huxley, 1957).

Such a model is presented in the next section. The sim-
plest cross-bridge cycle (Huxley, 1957) is used for ease of
presentation, since the generalization to a comprehensive
actin-myosin cycle is straightforward. The model can be
written in terms of a Langevin equation of motion and, more
powerfully, as a generalization of Smoluchowski’s equation
for the displacement distribution to include cross-bridge
states (section 3). Steady-state solutions of the latter can be
generated numerically. Very simple analytic solutions (sec-
tion 4) exist when, as is usually the case, the correlation
times of Brownian motions of the dumbbell are much less
than the lifetimes of cross-bridge states. Then these motions
achieve their equilibrium (or Boltzmann) distribution within
the lifetime of each cross-bridge “level,” and the effective
transition rates between levels are averages of the strain-
dependent rate constants used for models of the muscle
sarcomere (Smith and Geeves, 1995).
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This result provides a deeper connection between single-
molecule experiments and the strain-dependent kinetics of
muscle contraction, and suggests new ways of testing mod-
els of contraction. The net rate of escape from a level is the
inverse of the mean lifetime of the level (Colquhoun and
Hawkes, 1977), which is experimentally available (Guilford
et al., 1997). At high trap stiffness, the strain-dependences
of the rate constants are little affected by Brownian aver-
aging, and can be explored by measuring mean lifetimes as
a function of the resting position of the dumbbell with
respect to the myosin molecule. If observed levels in force/
displacement records are associated with distinct states of a
cross-bridge cycle, strain-dependent rate constants as re-
quired for muscle cross-bridge theories can be reconstructed
directly from single-molecule force data at different trap
positions. Examples using Huxley models are presented in
section 4. These effects can be glimpsed in preliminary
results of Molloy et al. (1995a) with a driven sinusoidal
displacement of the traps.

Related experiments on the kinesin-microtubule motor
also reveal step events (Svoboda et al., 1993), but of a
different kind (Svoboda et al., 1994). The processive motion
of kinesin and related motors apparently requires two-
headed motor molecules with some cooperation between the
two heads, and semi-phenomenological models have been
proposed, for example by Peskin and Oster (1995) and
Derenyi and Vicsek (1996). The relation of these models to
the biochemical kinesin-microtubule-ATP cycle (Gilbert et
al., 1995; Ma and Taylor, 1997) is not yet clear, but the
methods of this paper might also be applied to kinesin-
microtubule motors.

THE BROWNIAN DUMBBELL MODEL

A simple but realistic model for the double-bead experiment
can be constructed by treating the actin-bead system as a
rigid dumbbell moving under elastic restoring forces from
the traps and cross-bridge, plus viscous drag and Brownian
forces acting on the beads. The tethered head is assumed to
be a single myosin-S1 molecule. Only longitudinal forces
and motions are treated explicitly. Brownian motions of the
detached myosin head and internal motions of the actin
filament can be incorporated within effective cross-bridge
binding and dissociation rates as their time scales are below
the correlation time of longitudinal displacement noise (typ-
ically 0.1–1 ms). The actin filament itself is almost inex-
tensible compared with the cross-bridge, and lateral dis-
placements of a filament with fixed ends can be ignored, so
the compliance of the actin-bead links is of more concern.
However, torsional motions in the actin filament are ex-
pected. A full discussion is given in the last section of this
paper.

The model can be understood in mechanical terms using
Fig. 1, which summarizes the geometry and the restoring
forces, assuming that the head contains a linear elastic
element (Ford et al., 1977). Fig. 1A defines the geometry of

the dumbbell at rest, with a binding site at distancex from
the tethered myosin. The traps exert a restoring force when
the dumbbell is displaced by Brownian forces on the beads
(Fig. 1 B), with an extra restoring force when myosin binds
(Fig. 1 C). If the head remains bound, the dumbbell moves
to balance the forces from the traps and cross-bridge, giving
a different resting position of the dumbbell (Fig. 1D).
Additional random displacements from Brownian forces
can be expected at any instant, so that in experimental
records each resting position is obscured by displacement
noise and must be defined as a local mean displacement, or
“level.” The size of the step produced when myosin binds to
a force-producing state is the difference between the two
levels, with an equal and opposite step if the head dissoci-
ates from the same state. The noise variance should be
smaller after binding because the net stiffness of the dumb-
bell has increased, and the observation of this effect by

FIGURE 1 Schematic configurations in the double laser-trap experi-
ment, showing two optically trapped latex beads connected by an actin
filament and one S1-myosin molecule tethered to a fixed coverslip. For
simplicity, only one binding site on actin is shown, also just one free and
one bound myosin state (Huxley, 1957). (A) The resting position of the
“dumbbell” with actin site at distancex to the right of a reference position
in the myosin head. (B) A thermally generated displacementu(t) of the
dumbbell, resisted by the restoring forcekt u(t) from the traps, moves the
site to x 1 u(t) while the head stays free. (C) Myosin binding to at this
displacement gives an extra left-directed force k(x 1 u(t)) on the dumbbell
(the diagram does not illustrate that binding is likely only whenx 1 u(t)
is within some binding range). (D) The dumbbell moves to its equilibrium
resting positionu 5 2kx/(k 1 kt) in which the forces k(x 1 u) andktu are
equal and opposite. Brownian forces also cause displacement fluctuations
(not shown) about this position. Displacements are marked by open arrows
and forces by filled arrows.
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Molloy et al. (1995a, b) supports this interpretation of
displacement steps.

When the traps are much more compliant than the cross-
bridge, the step produced on binding is equal to the working
stroke of the cross-bridge, defined as the filament displace-
ment (initial tension/stiffness) required to reduce its tension
to zero in the absence of any kinetic change. For simplicity,
head-filament interactions use one detached state and one
bound state per site. If force is generated by a two-stage
process (Huxley and Simmons, 1971) the total working
stroke is the sum of a binding stroke to relieve the initial
tension and a force-generating stroke to relieve extra tension
created by a conformational change of the myosin neck
(Holmes, 1997).

The number of actin sites available for binding may be
limited by their orientation on the double-helix, which pro-
vides some degree of azimuthal selection (Molloy et al.,
1995a) within each half-pitch (38.5 nm), but it is not clear
whether the filament rotates to present additional sites, so
the model is formulated by treating the number 2L 1 1 of
adjacent sites (L 5 0, 1, 2, . . . ) as afree parameter.

Let u(t) be the longitudinal displacement at timet of the
dumbbell. It is moved by the restoring force of the optical
traps with equivalent elastic stiffnesskt, viscous drag with
coefficientb from dumbbell motion in the surrounding fluid
of viscosityh, a net random Brownian forceFB(t) on both
beads, and cross-bridge tensionT in the direction of nega-
tive-x when the head is bound to the filament. The drag
force arises mostly from the beads, sob ' 2(6pha) for
beads of radiusa. The combined mass is small enough that
inertial forces can be neglected. Hence the Langevin equa-
tion of motion is

b
du

dt
1 ktu~t! 5 FB~t! 2 T~x 1 u~t!, t! (1)

whereT is shown as a function of the displacementx of the
central actin site from the resting position of the head. The
value ofx is set by the position of the traps with respect to
myosin, and this displacement becomesx 1 u when the
dumbbell is displaced. Cross-bridge tension arises when
S1-myosin binds to one site only, and is given by

T~x, t! 5 O
l52L

L

k~x 1 lc!nl~t!,

nl~t! 5 1, head bound to sitel
0, otherwise (2)

for cross-bridge stiffness k and 2L 1 1 possible binding
sites spaced byc 5 5.5 nm. There are 2L 1 2 cross-bridge
states. The origin ofx is defined so that tension from the
central site is kx. The transition probabilities for binding and
dissociation aref(x 1 lc 1 u(t)) andg(x 1 lc 1 u(t)) where
the functionsf(x) and g(x) define a two-state cross-bridge
model (Huxley, 1957). When trap stiffness is low, the
dumbbell may move over more than one half-pitch of the

actin double helix. This can be incorporated by shiftingx 1
u(t) up or down by 38.5 nm, since clusters of sites separated
by 38.5 nm are too widely separated to compete for the
same head.

This model contains two stochastic processes, bindings
and detachments of the head to and from actin as a Markov
process controlled by the above transition probabilities, and
the random force on the beads produced by collisions with
solvent molecules. Brownian force noise is uncorrelated on
virtually any time scale and therefore has a flat “white
noise” power spectrum. Classical arguments imply that the
variance of the Brownian force is infinite, so the correlation
function can be written using a Dirac delta function as

FB~t!FB~t9!#5 Cd~t 2 t9!, ~C 5 2bRT!. (3)

The relation betweenC and the drag coefficientb arises
from the law of equipartition of energy. It is easily verified
from a formal solution of the Langevin equation by equating
the mean potential energy of the noisy dumbbell in the traps
to RT/2, where R is Boltzmann’s constant and T the abso-
lute temperature (Reif, 1965). The dumbbell model is now
fully specified.

The model can be extended to include compliant linkages
between filament and beads, which can be of the same order
as cross-bridge compliance or less. Separate equations of
motion can then be set up for longitudinal motions of the
filament and each bead (Appendix A). As viscous drag on
the filament can be neglected, the Appendix shows that the
symmetric mode of motion of the beads is controlled by a
Langevin equation equivalent to Eq. 1, but with an apparent
cross-bridge stiffness including actin-bead linkages in series
with the cross-bridge. For reference, mathematical symbols
are collated in Table 1.

Monte Carlo simulations

The simplest method of exploring the dumbbell model is
through Monte Carlo simulations, which generate Brownian
force and cross-bridge transitions in time. The price of
simplicity is that the time intervalD between successive
moves must be much less than the damping time and the
lifetimes of cross-bridge states, and many Monte Carlo runs
are needed to build up displacement distributions. On inte-
grating the Langevin equation (Eq. 1) from timetn 5 nD (n
integral) totn11 wherel(tn)D ,, 1, the next displacement
is

u~tn11! 5 ~1 2 l~tn!D!u~tn! 1 ~1/b!$B~tn! 2 T~x, tn!D% (4)

where

B~tn! 5 E
tn

tn11

FB~t! dt, l~t! 5
kt 1 k~t!

b
. (5)

B is an “impulse” integral of Brownian force over timeD,
and is a random variable with a finite variance

B~tn!
2 5 CD 5 2b2DD ~D 5 RT/b!. (6)
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using Eq. 3. An application of the central limit theorem
shows that the distribution ofB is Gaussian (Chandrasekhar,
1943). Working with this “impulse” function avoids math-
ematical difficulties associated with the unaveraged Brown-
ian force (Gardner, 1985). HereD is the diffusion constant
connected by Einstein’s relation to the damping coefficient,
and the random termB/b is a diffusive displacement with a
Gaussian distribution of zero mean and variance 2DD (the
classical diffusion law). This algorithm has been used for
motility assays (Brokaw, 1976; Pate and Cooke, 1991)
where the diffusion is unconstrained by trap forces.

Monte Carlo simulation can proceed using a Gaussian
random number generator for values ofB, and a separate
generator of a uniformly distributed random numberr be-
tween 0 and 1 (Press et al., 1992) for each cross-bridge
transition. For a detached head, binding to sitel is allowed
if and only if r is less than the binding probability over time
D, with a corresponding rule if the head is initially bound.
f(x 1 lc 1 u(tn))D and g(x 1 lc 1 u(tn))D are the proba-

bilities of binding and dissociation, neglecting the change in
displacement over that time. This algorithm is valid if

l~t!D ,, 1, fD, gD ,, 1. (7)

The first inequality requires many Monte Carlo steps before
the dumbbell comes to equilibrium in its potential well. This
condition is very restrictive, giving large amounts of output
correlated over time of order 1/l. Hence, redundant output
should be thinned before writing to a file. However, the
algorithm itself is fast and therefore runs of 107 steps are
quite feasible. Results obtained with Eqs. 4–7 are shown in
Fig. 2 for a modified Huxley model described in the caption,
usingD # 1026 s and k/b 5 2 3 104 s21 from Table 2. The
basic features of these simulations are

• After a single head binds to the filament, the mean level
of the displacements jumps from zero tou 5 Ul(x) [
2k(x 1 lc)/(k 1 kt), for which tensions k(x 1 lc 1 u)
andktu from the head and trap are equal and opposite;

• The variance of displacements centered about zero is
RT/kt when the head is detached, and the variance about
the levelUl(x) is RT/(k 1 kt);

• With low trap stiffness (kt ,, k) the duty cycle or ratio
of “on” times to “off” times will be much lower thanf/g
if the amplitude of Brownian motion in the detached state
exceeds the binding range defined byf(x).

It is desirable to have Monte Carlo algorithms for use
with larger sampling times, sayD $ 1/l. In this case,
Brownian motion of the dumbbell between Monte Carlo
steps will be significant, so that each cross-bridge transition
may occur with different rates at different times in the
interval D. Hence, the prediction problem must be solved
within each time interval as well as from one Monte-Carlo
step time to the next. Fortunately, stochastic predictions can
be made analytically when Brownian motion is fast relative
to cross-bridge transition rates. This requires a complete
statistical description of the dumbbell motion, which will be
presented elsewhere.

THE GENERALIZED
SMOLUCHOWSKI EQUATIONS

The dynamics of the dumbbell–cross-bridge system is con-
trolled by two interacting Markov processes for Brownian
motion and cross-bridge transitions, respectively. The
Brownian motion of a single spherical particle can be pre-
dicted in the statistical sense from the conditional probabil-
ity distribution of its x-displacementu at time t, given a
displacementuo at an earlier timeto. This motion has the
Markov property that no history of previous displacements
is relevant, since the change in displacement is determined
by random force noise acting over the intervening period
and any change in cross-bridge tension. Each cross-bridge
transition is assumed to be instantaneous on the time scales
considered here. The conditional distribution obeys Smolu-
chowski’s equation (Chandrasekhar, 1943), which is a spe-

TABLE 1 Digest of mathematical symbols

Symbol Definition

A Attempt frequency
a Bead radius
B(t) Impulse integral of Brownian force
c Actin monomer spacing
C Correlation coefficient of Brownian force (C 5 2bRT)
D Diffusion constant of dumbbell (D 5 RT/b)
FB(t) Brownian force on both beads
f(x), g(x) Binding and dissociation rates of actin-myosin
f(x), g(x) Brownian-averaged rates
Ji(u, t) Dumbbell flux (net velocity XPi(u, t))
k Crossbridge stiffness
k(t) kn(t)
K(x) f(x)/g(x)
l Actin site label (l 5 2L, L) in cluster
2L 1 1 Number of actin sites available in cluster
M (x) Reaction matrix (M11 5 2M21 5 f(x), M22 5 2M12 5

g(x))
n(t) Actin-myosin binding index (0 or 1)
pi(x) Probability of crossbridge state i
Pi(u, t)du Probability of crossbridge statei and displacements (u, u 1

du)
R Boltzmann’s constant
t Time
ti(x) Crossbridge tension in statei
T Absolute temperature
T(x, t) Crossbridge tension at timet
u Dumbbell displacement
Ul(x) Mean displacement of bound level to actin sitel
V1(u) Potential energy of traps at displacementu
V2(u, x) Potential energy of traps and bound myosin, displacementu
x Resting position of actin site from myosin
b Viscous damping coefficient of both beads (b 5 12pha)
kt Combined stiffness of both traps
lt Damping frequency (rads/s) of free dumbbell
l Damping frequency of dumbbell with bound myosin
h Solution viscosity
w1(u) Boltzmann displacement distribution of free dumbbell
w2(u, x) Boltzmann distribution of dumbbell with bound myosin
ti(x) Lifetime of crossbridge statei
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cial case for overdamped particles of a Fokker-Planck equa-
tion for the distribution of position and velocity.

Smoluchowski’s equation can be generalized in an obvi-
ous way to include the cycles of one or more interacting
myosin heads, by specifying the cross-bridge state simulta-
neously with the displacement. LetPj(u, t)du be the proba-
bility of displacements in the range (u, u 1 du) at timet and
cross-bridge statej, not listing the initial conditions. For
multiple actin sites, the cross-bridge state should includes a
site indexl as before. In this case we have “Smoluchowski-
Huxley” equations

­P1~u, t!

­t
5

1

b

­

­uS­V1~u!

­u
P1D 1 D

­2P1

­u2

1 O
l52L

L

~g~x 1 lc 1 u!P2l 2 f~x 1 lc 1 u!P1!

­P2l~u, t!

­t
5

1

b

­

­uS­V2l~u!

­u
P2lD

1 D
­2P2l

­u2 1 f~x 1 lc 1 u!P1 2 g~x 1 lc 1 u!P2l

(8)

for the dumbbell moving in different elastic potentials

V1~u! 5
1

2
ktu

2, V2lW~u! 5
1

2
@ktu

2 1 k~x 1 lc 1 u!2#

(9)

for each state. Note that the stiffness of the dumbbell with
bound cross-bridge is k1 kt (elastic elements in parallel) if
forcibly displaced at fixedx. However, the stiffness with
respect to a forcible change inx (by moving the traps or the
coverslide) is kkt/(k 1 kt) (elements in series), which

changes the stable positionu 5 2kx(k 1 kt) of the dumb-
bell. Completeness is expressed by a sum rule over final
states

O
j
E du Pj~u, t! du 5 1. (10)

Equations 8 can be formally derived from the Langevin
equation and the usual stochastic interpretation of the cross-
bridge rate constants (Chandrasekhar, 1943; Doi and Ed-
wards, 1988). They reduce to Smoluchowski’s equation in
the absence of cross-bridge transitions, and to the usual
chemical-kinetic equations in the absence of Brownian mo-
tion (D 5 0). The following statement may assist readers
not familiar with Smoluchowski’s equation: the first two
terms on each right-hand side can be written as minus the
u-derivative of a flux, arising from damping-limited drift in
the force of the elastic potential and from diffusion (Appen-
dix B). The Einstein relation in Eq. 6 ensures that the
solution of Smoluchowki’s equation tends to the correct

TABLE 2 Parameter values for the Brownian dumbbell
model

Primary Derived

a 5 0.55 mm, h 5 1.0 3 1023 N z

s z m22
b 5 12pha 5 2.073 1028 N z

s z m21

c 5 5.5 nm lt 5 kt/b 5 2420 s21 (damping
frequency)

f 5 10 s21 (models I and II) l 5 (k 1 kt)/b 5 26600 s21

g 5 200 s21 (RT/kt)
1/2 5 8.94 nm (standard

devn.)
k 5 0.5 pN/nm (Smith and Geeves,

1995)
(RT/(k 1 kt))

1/2 5 2.70 nm

RT 5 4 3 10221 J at 17°C kt(RT/(k 1 kt))
1/2 5 4.26 pN

(kt 5 10 k)
kt 5 0.1 k (no feedback) D5 RT/b 5 1.933 10213 m2/s

FIGURE 2 Sample Monte Carlo simulations made from Eqs. 5–7 using a modified Huxley model (Model I), three adjacent actin sites spaced by 5.5 nm,
and three valueskt/k 5 0.1 (A), 1.0 (B), and 10 (C) of the ratio of trap to cross-bridge stiffness. The model is defined by a strain-dependent binding rate
f(x) 5 f exp(2a1x 2 a2x

2 2 a4x
4) with f 5 10 s21, a1 5 23.0, a2 5 2.0 anda4 5 0.2, which favors positive strains, whileg(x) 5 200 s21 is constant.

Tension satisfies Eq. 2 with k5 0.53 pN/nm. The unit of length isc 5 5.5 nm and kc 5 2.91 pN is the unit of force, givingb 5 5 3 1025 units andlt 5
2000 s21, l 5 22000 s21 (Table 2). Calculations were made forx 5 5.5 nm (1 length unit). The step time satisfied condition (8) by a factor of at least
five. Displacements were recorded every 0.1 ms, also the sequence of cross-bridge states (1–4). The bound states (2–4) havel 5 21,0,1, respectively, and
their levels are as stated in the main text. Values off andg were chosen to give duty ratios and lifetimes similar to published data at high ATP levels. Note
that the difference between the mean levels of the two states and the noise variance in the off state are decreasing functions of trap stiffness, but theduty
ratio increases.
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equilibrium form (a Boltzmann distribution) at large times.
Although the drift and diffusion terms disappear on inte-
grating overu, closed equations for the probabilities of
cross-bridge states cannot be obtained in this way except for
the unphysical case wheref(x) andg(x) are independent of
x, when Huxley’s equations with no additional noise terms
are recovered. To add phenomenological noise terms to the
Huxley equations, as was done by Thomas and Thornhill
(1995), is incompatible with this generalized Smoluchowski
theory. Extra terms should not be expected since kinetic
equations for the state probabilities already have a stochas-
tic interpretation (Nicolis and Prigogine, 1977; Saldana and
Smith, 1991).

These equations provide complete statistical predictions
for the behavior of the Brownian dumbbell. In general, they
must be solved numerically. A general analytic solution can
be constructed if the time scales of Brownian motion and
cross-bridge events are very different, but only steady-state
solutions will be considered here.

The steady-state distribution of levels

Much effort has been devoted to obtaining the distribution
of “levels” for records of single actin-myosin interactions
(Molloy et al., 1995b, Guilford et al., 1997), a level being a
region of constant local mean displacement. Binding events
then appear as the transition from a high-variance level to a
low-variance level, and the step size is defined as the
difference in the mean displacements of each level. The
advantages of using this definition are that any drag or push
from Brownian forces is canceled in taking the mean dis-
placements, and that at low trap stiffness (kt ,, k) the step
size is equal to the myosin working stroke as defined earlier.
Under conditions where only one head cycles at a time, this
working stroke is equal to the “ATP step length” if one
molecule of ATP is hydrolyzed by each cycle.

For constant bath conditions and no externally forced
motion, a unique steady-state distribution of displacements
is expected which is characteristic of the proteins, the trap
stiffness and the resting position of the dumbbell. This
distribution can be built numerically from Monte Carlo
simulations, but can also be obtained directly from the
generalized Smoluchowski equations (Fig. 3). For the latter,
numerical methods are essential even whenf(x) andg(x) are
independent ofx. The motion of the dumbbell is bounded
with no net flux at large displacements, soPj(u) and its
u-derivative must tend to zero asu 3 `. A robust numer-
ical method (Appendix B) confirms that the distributions
remain close to Gaussian asf and g are increased up to
viscoelastic damping frequencies, when cross-bridge tran-
sitions disturb the Boltzmann distribution of displacements.

The significance of the shift in level on binding can be
tested by standard methods, which compare it with pre- and
post-step variances. For example, for the same populations
in each level, an F-test involves the square of the level shift
divided by the sum of these variances (Weatherburn, 1968),

which for the central site is

S kx

k 1 kt
D2YSRT

kt
1

RT

k 1 kt
D ;

kkt

~k 1 kt!~k 1 2kt!

kx2

RT
. (11)

As a function of trap stiffness for a given site locationx, the
two distributions are best separated whenkt 5 k/u2, not
with very high trap stiffness, as might have been expected.
Whenkt .. k (achievable with negative-feedback modula-
tion of the trap positions) all displacements are small so the
traps act as force transducers and can be calibrated as such
(Simmons et al., 1996). Nevertheless, cross-bridge force kx
does not appear as a sharp peak in the measured force
distribution, but as a small shift in the mean value of a broad
distribution of cross-bridge force when the head is bound.
The shift is small because the size kx/(k 1 kt) of the
displacement which mechanically equilibrates the dumbbell

FIGURE 3 Joint probabilities for displacement and cross-bridge state for
Huxley model I with three available actin sites andx 5 1. The distribution
P1(u) is for free myosin andP2l(u) for myosin bound to actin sitel 5
(21,0,1), which appear from right to left in the figure with mean values
given by Eq. 19. The displacement distribution obtained by summing over
states is also shown unlabeled. The continuous curves are the numerical
steady-state solution of the Smoluchowski-Huxley equations (8). Normal-
ized histograms for the displacement distribution are built from corre-
sponding Monte Carlo simulations with a total of 50,000 points (5 s
duration), using displacement bins of width 0.1 units (A) and 0.01 (B):
differences between each histogram and the theoretical distribution are as
expected for sample counts of order 500 atu 5 0. All results use model I
and parameters of Fig. 2 withkt/k 5 0.1 (A) and 10 (B). The step size on
binding to site l (working strokes) is the shift in mean displacement
between the two distributions. At high trap stiffnesskt/k .. 1 (B), the
standard deviation of each distribution is reduced (as k21/2) but the work-
ing stroke is reduced even more (as k21), so the separation of these
distributions is reduced. Note also that the actin sitel 5 0 is kinetically
favored at high trap stiffness.
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is much smaller than the working strokex, and is propor-
tional tokt

21. This reduction is built into the force calibra-
tion of the transducer, but the r.m.s. displacement noise
from Brownian motion is proportional tokt

21/2. Thus the
unfiltered signal-to-noise ratio forkt .. k is also propor-
tional to kt

21/2, which is a decreasing function of trap
stiffness (Simmons et al., 1993). For example, withx 5 5.5
nm and parameters of Table 2, the F-quantity atkt/k 5 10
is 0.173 and the standard deviation of force noise is 4.3 pN
(second-to-last entry in Table 2), whereas its maximum
value is 0.686 with a force noise of 0.77 pN. Since the
corner frequency of force noise is proportional tokt, some
improvement can be made by low-pass filtering, which
increases F in proportion to the reduction in bandwidth
(Svoboda and Block, 1994). However, specialized filters are
required to transmit sharp edges without broadening (Block
and Svoboda, 1995).

THE CASE OF FAST BROWNIAN MOTION

Gaussian distributions of displacements in each level are
expected when the roll-off or “corner” frequencies of the
power spectra of Brownian displacements in the free and
bound states are faster than the rates of escape by cross-
bridge transitions, that is

lt .. f, l .. g Slt 5
kt

b
, l 5

k 1 kt

b D. (12)

For simplicity, head-filament interactions use one detached
state and one bound state per site. For cross-bridge rates
below 1000 s21, these conditions are reasonably well met in
experiments using laser traps (typicallylt ; 2000 s21, l ;
10lt at low trap stiffness) and in Table 2. They allow the
construction of approximate analytic solutions of the gen-
eralized Smoluchowski equations under steady-state and
transient conditions. These results are essential for devel-
oping Monte Carlo algorithms valid for larger time steps,
for relating the amplitudes of the steady-state Gaussian
distributions of each level to cross-bridge kinetics, for pre-
dicting the lifetime of each level and for developing maxi-
mum-likelihood methods.

Equation 12 implies that the distribution of Brownian
displacements of the dumbbell will usually come to equi-
librium between successive bindings and detachments.
Equilibrium (Boltzmann) distributions in each state are
Gaussian distributionsw1(u) and w2l(u) [ w2(u/x 1 lc)
whose means and variances were given in section 2:

w1~u! 5 S kt

2pRTD
1/2

expS2ktu
2

2RTD (13a)

w2~uux! 5 Sk 1 kt

2pRTD
1/2

expS2~k1kt!

2RT Su 1
kx

k1kt
D2D (13b)

Hence, the steady-state probabilitiesPi(u x) for statei and
displacementu are

P1~uux! 5 p1~x!w1~u!, P2l~uux! 5 p2l~x!w2~uux 1 lc!

~l 5 2 L, L!,
(14)

(Fig. 3), andx is fixed by the geometry of the system (Fig.
1). The probabilitypi(x) of cross-bridge statei is determined
by balancing the net rates of binding to and dissociation
from each actin site when averaged over the Brownian
motion, namely

E
2`

`

$f~x 1 lc 1 u!P1~uux! 2 g~x 1 lc 1 u!P2l~uux!% du 5 0.

(15)

By integrating the steady-state Smoluchowski-Huxley Eqs.
8 overu, this condition follows from the requirement that
the distributions and their first derivatives with respect tou
vanish at largeu. Hence, the state populations satisfy

p2l~x!

p1~x!
5 K̃~x 1 lc! ;

f̃~x 1 lc!

g̃~x 1 lc!
, ~p1~x! 1 O

l52L

L

p2l~x! 5 1!

(16)

where

f̃~x! 5 E
2`

`

f(x1u)w1(u) du,

g̃~x! 5 E
2`

`

g~x!w2~uux! du.

(17)

Here f̃(x 1 lc) and g̃(x 1 lc) are the effective rates of
binding to and dissociation from actin sitel, averaged over
a Boltzmann distribution of Brownian motions before the
transition. When Eq. 12 applies, these averaged rates predict
the lifetime of each level, and standard results from the
theory of discrete Markov processes (Colquhoun and
Hawkes, 1977) can be taken over without modification. For
the multi-site Huxley model, each tension level is associated
with only one state. Then the lifetime of each level is
exponentially distributed (a Poisson distribution of order
zero), and the mean lifetimest1 andt2l are again functions
of x and given by

1

t1~x!
5 O

l52L

L

f̃~x 1 lc!,
1

t2l~x!
5 g̃~x 1 lc! (18)

which amounts to an ergodic interpretation of Eq. 16 for the
occupation probabilities. These relationships were checked
by computing the displacement distributions (Eq. 14) using
Eqs. 13, 16, and 17. For the parameters used in Fig. 3 the
results are graphically indistinguishable from the direct so-
lution of the Smoluchowski-Huxley equations shown in the

3002 Biophysical Journal Volume 75 December 1998



figure. However, differences appear iff and/or g are in-
creased by a factor of 1000, which violates conditions (Eq.
12) for fast Brownian motion. To summarize, cross-bridge
kinetics determine the occurrence of different levels,
whereas the step size

Ul~x! 5 2 k~x 1 lc!/~k 1 kt! (19)

from the detached-state level to a bound-state level is de-
termined by geometry and the elastic constants k,kt (sec-
tion 2).

Brownian-averaged rate constants enable thex-depen-
dence of the corresponding steady-state populations to be
compared for different cross-bridge models, which cannot
be readily distinguished from results at just one resting
position of the dumbbell. For a two-state model, the com-
parisons that can be made are illustrated in Fig. 4 for two
variations of the Huxley model in which the required kinetic
asymmetry with respect tox is put either in the binding rate

(Model I, Fig. 4A) or the dissociation rate (Model II, Fig. 4
B). The original model (Huxley, 1957) has asymmetry in
both: all three models produce a population of bound heads
biased toward positivex and hence give net isometric ten-
sion in muscle. At low trap stiffness (kt ,, k), Brownian
motion is large and any strain-dependence of the “isomet-
ric” ratesf(x) andg(x) is largely washed out, whereas when
kt .. k these rate constants are preserved. Low values off
have been chosen to approximate the observed rates, which
are lower than those expected in fibers; this may be due to
unfavorable positions or orientations of the head with re-
spect to F-actin. Nevertheless, the strain-dependences off(x)
andg(x) can be determined experimentally from level his-
tograms at different resting dumbbell positions using Eqs.
16 and 17, and the results should discriminate between
models I and II. Force rather than displacement data are
preferable, because strain-dependent kinetics are preserved
only at high trap stiffness where the Brownian motion of the
filament is reduced.

Analogous predictions for thex-dependence of step sizes
in A. F. Huxley’s model can be understood by combining
Eq. 19 with kinetic considerations, which select the most
favorable binding site for each resting position. Forkt ,, k
and a given value ofx, Eq. 19 predicts quantized step sizes
2c2x, 2x, c2x, . . . .proportional tox and separated by the
monomer spacingc 5 5.5 nm, but the frequency of these
steps in the time record is controlled by the apparent binding
constantsK̃(x 1 lc) for l 5 21,0,1, . . . . (Eq. 16), which
show a single maximum. If the stiffness of the dumbbell
with bound head is low, then these binding constants vary
slowly with x and the binding range (defined, say, by
K̃(x) . 0.2K̃max) may be larger than the site spacing. In that
case, multiple steps arising from adjacent actin sites are
statistically possible for each resting position (Fig. 5A). If
the cross-bridge is very stiff (k. 2 pN/nm) and the traps
also, then the binding range inx can be,5.5 nm so only one
site is selected for eachx (Fig. 5 B). The figure also shows
that step sizes selected in this way are periodic inx modulo
the site spacing; a 5.5 nm shift in resting position transfers
the same cross-bridge kinetics to the next actin site. Hence
the range of possible step sizes forall resting positions is
kinetically selected and equal to the binding range.

DISCUSSION

Limitations of the model

An important limitation of the model is that internal Brown-
ian motions of the myosin head and actin filament are not
described explicitly, but absorbed in effective position-de-
pendent rate constants of the cross-bridge cycle. This pro-
cedure is valid only if dumbbell motion is slower than
significant internal motions. This can be demonstrated for
any thermally activated reaction. Let the reaction rate be
k(x) 5 A exp(2DE(x)/RT) whereA is the attempt frequency
produced by internal motions andDE(x) the position-depen-
dent energy barrier to binding (Kramers, 1940). The expo-

FIGURE 4 Brownian-averaged rate constants ˜f(x), ˜g(x) as a function of
actin site positionx and trap stiffness/cross-bridge stiffnesskt/k for two
contrasting versions of the Huxley model. (A) Model I with an asymmetric
binding ratef(x) biased toward positivex but a strain-independent disso-
ciation rate g (see Fig. 2). (B) Model II, with a symmetric binding rate
f(x) 5 f exp(2kx2/2RT) but a strain-dependent dissociation rate favoring
negative strains, namelyg(x) 5 g for x , xI or g exp(2b(x 2 xI)) for x ,
xI wherexI 5 20.35 (in units of 5.5 nm) andb 5 2.8. These forms can be
interpreted in terms of strain-blocked ADP release or ATP binding (Smith
and Geeves, 1995). For high trap stiffness (kt/k 5 10), the Brownian
averaged rates are close to the unaveraged rate constantsf(x), g(x) since the
amplitude of the Brownian noise is small. At low trap stiffness the
strain-dependence is small and the models are not so well differentiated.
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nential factor is the probability of the fluctuation giving
virtually instantaneous bonding; this is the basis for the
stochastic interpretation of chemical kinetics (Nicolis and
Prigogine, 1977). In the presence of filament motion,x is a
function of time so the probability of bonding at timet is
exp(2DE(x(t))/RT). The formula applies unchanged if the
preceding motions in the potential well are undisturbed
by moving the barrier, which must therefore vary slowly
in comparison with the attempt frequency, that is,
d ln DE(x(t))/dt ,, A. Thus a necessary condition for the
validity of the Brownian dumbbell model is

l~t! ,, A (20)

whereA is the frequency of the motion considered.
For myosin-S1,A ; 105 s21 if the head is detached

(Thomas et al., 1980) and 107 s21 if the head is bound with
ATP (Svensson and Thomas, 1986), which precedes disso-
ciation from actin. The amplitudes of orientational fluctua-
tions of the (tethered) detached head might be at least 20°
(Svensson and Thomas, 1986). The actin filament with
fixed ends undergoes thermally induced torsional and bend-
ing motions. Torsional relaxation frequencies in the range
10(4–5) s21 have been observed by Prochniewicz et al.

(1996) and Yoshimura et al. (1984), while bending modes
may be slower. Condition (20) is usually satisfied, as the
corner frequencyl of displacement noise in current trap
experiments is in the range 10(3–4) s21 (Table 1).

The elastic constants of the actin filament prohibit sig-
nificant stretching and bending under the forces available
(the cross-bridge or Brownian forces). The linear stiffness
of a 1 mm regulated filament is 0.065N/m (Kojima et al.,
1994) and the bending stiffness, which can be estimated
from a torsional rigidity of 83 10220 N z m (Tsuda et al.,
1996), is similar. The r.m.s. lateral displacement of the
middle of a fixed-end filament from thermally driven bend-
ing is estimated at 0.25uL nm (Doi and Edwards, 1988),
where L is the length in microns. A similar estimate for
thermally driven torsional oscillations gives an r.m.s. twist
of ;30uL°, or 2° per protomer (a higher figure is found by
Yoshimura et al.). These motions are likely to be important
in determining the availability of binding sites to the head.
However, under some conditions the whole actin-bead sys-
tem might also rotate slowly about an axis through the trap
centers, exposing more binding sites over the rotation
period.

In Huxley’s model Brownian motion of the detached
head, its binding to actin, and subsequent isomerizations
into a force-holding state are combined into a single process
(Smith and Geeves, 1995). Force-holding states with differ-
ent bound nucleotides are also combined. Thus, the com-
posite binding ratef(x) could be much less than the ratek(x)
for Brownian-induced binding to the initial attached state,
but it is the latter whose pre-exponential factor sets an upper
limit for the frequency of translational motion.

The unaveraged rate constants describing single-mole-
cule experiments might differ from those in a muscle fiber
with the same proteins and sarcoplasmic conditions. For
example, unfavorable positioning of the dumbbell would
lower the attempt frequency and give smaller binding rates
f(x) than exist in fibers. Tethering the myosin head to a
coverslip might change its kinetics, either through electro-
static effects or by modifying the internal motions it can
make. Torsional disorder in the thin filament may also be
different in the two systems.

Is there a universal step size?

This simple Brownian dumbbell model predicts that step
sizes, and bound-state lifetimes at high trap stiffness, vary
with the resting position of the dumbbell. How are these
predictions related to various claims for force pulses and
displacement steps of fixed size, for example 5 pN/10 nm or
greater (Finer et al., 1994; Ishijima et al., 1996) or 2 pN/5
nm (Molloy et al., 1995b)? The answer is probably a con-
sequence of the kind of strain-dependent kinetics expected
from fiber cross-bridge models, inadequate long-term posi-
tion control, undesirable forms of mechanical compliance,
and different methods of data analysis.

The binding range of myosin heads to a fixed actin
filament is dependent on cross-bridge stiffness but is esti-

FIGURE 5 (A) The step sizeUl(x) 5 2k(x 1 h 1 lc)/(k 1 kt) in
Huxley’s model (Eq. 19) for binding to actin sitel is determined by the
resting positionx of the dumbbell and varies linearly withx. The frequency
of steps of each size is indicated by the degree of gray shading (shown for
model I), proportional to the strength of myosin binding (Eq. 16). For the
samex value, multiple step sizes separated by the actin site spacingc are
possible if the binding range is large as shown. (B) With large cross-bridge
stiffness and a force-generating transition after binding, the binding ranges
in x are narrow and the step size is2k(x 1 h 1 lc)/(k 1 kt), whereh is the
throw distance (Huxley and Simmons, 1971). In this case, step sizes are
localized;2kh/(k 1 kt) but realized only when the head is very close to
an actin site. Distances are shown in units ofc 5 5.5 nm.
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mated at;10 nm for k 5 0.5 pN/nm after phosphate is
released (Smith and Geeves, 1995). This range can span two
or possibly three neighboring actin sites, so multiple bound-
state levels spaced by 5.5 nm are possible, particularly at
low trap stiffness where the range is broadened by Brown-
ian motion (Fig. 4). Displacement distributions ofselected
levels in displacement data of Molloy et al. (1995b) are
spaced by;11 nm and could therefore arise from next-
nearest neighbor sites if additional levels at half that spacing
are also present in the record. However, it is very difficult to
achieve long-term stability of the trap positions to nanome-
ter precision, so the predicted position dependences may be
explored in an uncontrolled way, generating large steps only
when the resting position favors the bound head. In these
circumstances, displacement steps near the upper limit de-
fined by the binding range (10 or 5 nm for k5 0.5, or 2
pN/nm, respectively), and corresponding force pulses (5 or
10 pN) should always be visible.

Cross-bridge model II of this paper predicts short-lived
negative force pulses; if these arise from cycling cross-
bridges they can always be prolonged by lowering the ATP
concentration.

A fixed working stroke independent of the resting posi-
tion of the dumbbell is possible if the cross-bridge is very
stiff and there is a post-binding transition of the myosin
head from a low-force to a high-force state (Huxley and
Simmons, 1971). In this case, the binding stroke would be
very small and the working stroke as defined earlier would
be dominated by the second process. If nanometer position
control could be achieved, this model would yield frequent
steps only in small ranges ofx values (Fig. 5B), an extreme
form of kinetic selection. However, the need for long-term
position control could be avoided if it were known that the
binding kinetics is selecting very narrowx-windows, as in
Fig. 5B. For example, all statistically identified steps of the
same size in a long data run or pooled data should then
correspond to a single value ofx, or two or three discrete
values spaced by 5.5 nm if the traps are weak. In the same
way, pooled data for the lifetimes of the bound head may
belong to a singlex value provided their mean levels are the
same to within sampling error, and this could be verified by
testing for a Poisson distribution. The lifetimes of stepped
regions with different levels should not be pooled, because
if the level is kinetically selected then different levels would
correspond to differentx-values, whose mean lifetimes may
be different (model II). The compliance of the actin filament
(0.015 nm/pN per micron, Kojima et al., 1994) is insuf-
ficient to broaden the binding range in single-molecule
experiments.

What determines the duty ratio?

The interpretation of force data is complicated by unwanted
compliance in the actin-bead linkage, and a loss of trap
stiffness at high frequencies when using a feedback system
with finite bandwidth (R. M. Simmons, personal communi-

cation). Actin-bead compliance appears in series with cross-
bridge compliance when the head is bound (Appendix A),
and out-of-phase bead motions which distort these links are
removed by averaging the position signals from each bead.
Both forms of compliance could be responsible for some
worrying features of single-molecule force data (Finer et al.,
1994; Molloy et al., 1995b; Guilford et al., 1997). Duty
ratios of under 0.01 for force pulses at physiological ATP
levels are far lower than values near unity expected for the
few positively strained heads in the sarcomere (themselves
a small fraction of the total) which produce active tension in
isometric muscle. The low duty ratio could be partly due to
lower binding rates in single-molecule experiments, but
mainly to rates of dissociation above 100 s21 which are
characteristic of negatively strained heads produced in
shortening muscle, rather than rates of order 1 s21 (phase 4)
for tension-generating heads in isometric muscle (Smith,
1998). Similarly, trap data for the lifetime of the bound state
(Molloy, 1995a) show only a modest increase withx, insuf-
ficient to give duty ratios near unity. Perhaps compliant
bead linkages reduce the degree of strain-blocking of ADP
release at positive strains. Alternatively, loss of trap stiff-
ness at high frequencies may allow occasional large nega-
tive displacements which promote rapid dissociation from
actin.

Computational methods for obtaining levels and dwell
times from the time records are not the subject of this paper,
but in fact the generalized Smoluchowski equations allow
the construction of maximum-likelihood algorithms which
do away with the need to identify levels and lifetimes. They
will be presented elsewhere.

APPENDIX A

The effect of compliant actin-bead links

If the beads are loosely linked to the actin filament with stiffnesskL/2 per
link, then the displacementsu1(t), u2(t), u(t) of the beads and the filament
from their resting positions in the absence of myosin are given by coupled
Langevin equations

2
b

2

du1

dt
2

kt

2
u1 1 F1~t! 1

kL

2
~u 2 u1! 5 0

2
b

2

du2

dt
2

kt

2
u2 1 F2~t! 1

kL

2
~u 2 u2! 5 0

2
bA

2

du

dt
2

kL

2
~u 2 u1! 2

kL

2
~u 2 u2!

1 FA~t! 2 T~x 1 u, t! 5 0, (A1)

wherebA is the drag coefficient andFA the Brownian force on the actin
filament. The drag coefficient can be estimated by treating the filament as
an ellipsoid of revolution (Happel and Brenner, 1983), and is rather small
(bA/b ' 0.06 for a filament 1mm long). Hence, the viscous relaxation time
bA/kL for longitudinal motions of actin with respect to the bead is likely to
be 1026 s or below. On any longer time scale the actin filament must be in
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mechanical equilibrium at all times, so

u 5
u1 1 u2

2
1

FA~t! 2 T~x 1 u, t!

kL
(A2)

replaces the last equation of A1. Letũ(u1 1 u2)/2 andw 5 u2 2 u1, which
are the coordinates for in-phase and out-of-phase motions of the two beads.
The remaining equations of motion yield uncoupled equations for the
symmetric and antisymmetric modes of motion, namely

2b
dũ

dt
2 ktũ 1 F~t! 2 T~x 1 u, t! 5 0, (A3a)

2
b

2

dw

dt
2

kl 1 kt

2
w 1 F2~t! 2 F1~t! 5 0 (A3b)

whereF(t) 5 F1(t) 1 F2(t) 1 FA(t) is the net Brownian force. Note that the
modes are uncoupled only if both bead-filament links have the same
stiffness, and that Eq. A3a is apparently of the same form as the original
Langevin Eq. 1. However, the cross-bridge tension is a function of filament
displacementu and not the average displacementũ of the beads. On using
Eq. 2 and substitutingu 5 ũ 1 (FA 2 T)/kL, this Langevin equation can
be rewritten as

2b
dũ

dt
2 ktũ 1 F̃~t! 2 T̃~x 1 ũ, t! 5 0 (A4)

whereT̃(x, t) is given by Eq. 2 with k replaced by the stiffness

k̃ 5
kkL

k 1 kL
(A5)

of the cross-bridge and bead linkages in series, and

F̃~t! 5 F1~t! 1 F2~t! 1 S1 2
k̃

kL
n~t!DFA~t!. (A6)

where n(t) 5 1 if myosin is bound and 0 otherwise. Equation A4 is
equivalent to the original Langevin equation with an effective cross-bridge
stiffness k̃. The Brownian force includes a small contribution from the
filament which is reduced when myosin binds.

APPENDIX B

Steady-state solutions of generalized
Smoluchowski equations

Numerical solutions can be obtained by a shooting method, since the
steady-state form of Eqs. 8 defines a two-point boundary problem. The
boundary conditions are thatPj(u) and their first derivatives go to zero as
u 3 `, the second condition giving no net velocity at large displacements.
The method is illustrated by writing the equations in vector form as

­P~u, t!

­t
5 2

­J~u, t!

­u
2 M ~x 1 u!P~u, t! 5 0 (B1)

where

J~u, t! 5 2b21
­V~u!

­u
P 2 D

­P

­u

; 2D expS2V~u!

RT D ­

­uSexpSV~u!

RT DPD

is the flux of dumbbells in an ensemble, using Einstein’s relationD 5
RT/b. M (x) is a matrix of the rate constantsf(x) andg(x), andV a diagonal
matrix of the elastic potentials of Eq. 9. The solutions vary rapidly at large
displacements because the Boltzmann factors tend to be preserved under
nonequilibrium conditions. It is useful to define new variables

Q~u! 5 exp~V~u!/RT!P~u!,

R~u! 5 exp~2V~u!/RT!
dQ~u!

du

(B2)

which satisfy the coupled first-order differential equations

dQ
du

5 exp~V~u!/RT!R~u!,

dR
du

5 D21M ~x 1 u!exp~2V~u!/RT!Q~u!.

(B3)

The first boundary condition is satisfied ifQ is finite at largeu , while Eqs.
B1–B3 can be used to rewrite the no-flux condition at infinity in the form

E
2`

`

M ~x 1 u!P~u! 5 D@R~`! 2 R~2`!# 5 0 (B4)

which is satisfied ifR(u)3 0 as u 3 `. For vectors of dimensionN (in
the present problemN 5 2(1 1 L)) there are 2N asymptotic conditions on
R, which are sufficient to define a unique steady-state solution of the 2N
first-order differential equations in B3.

Hence numerical integration can start fromR 5 0 at some large
negative value ofu, varying the starting vectorQ until R 3 0 at large
positiveu. The solution can then be normalized as in Eq. 10. This method
was implemented in Fortran 77 using the root-finding subroutine “newt” of
Press et al. (1992) and a simple stiff differential-equation integrator using
the Backward Euler method with Gauss-Jordan matrix inversion. The
dominant influence of the Boltzmann factors exp(2V(u)/RT) at large u
guarantees that the method converges quickly and is very robust. For the
parameters used in Fig. 3, the numerical solutions agree to graphical
accuracy with the approximate forms from Eqs. 14, 16, and 17, significant
deviations occurring only whenf and/org are raised by a factor of 100 or
more.
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