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ABSTRACT The effects of p-benzoquinone (BQ) on photosynthetic and respiratory electron transport in a single algal
protoplast (radius, 100 mm) was investigated quantitatively by amperometric measurements using microelectrodes. Under
light irradiation (25 kLx) in the presence of 1.00 mM BQ, a single protoplast consumed BQ by (2.9 6 0.2) 3 10213 mol/s and
generated p-hydroquinone (QH2) by (2.7 6 0.3) 3 10213 mol/s, suggesting that BQ was quantitatively reduced to QH2 via the
intracellular photosynthetic electron-transport chain. The generation of QH2 increased with light intensity and with concen-
tration of BQ added to the outside solution but became saturated when the light intensity was above 15 kLx or the BQ
concentration was higher than 0.75 mM. The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, a photosynthetic electron-
transport inhibitor, decreased the generation of QH2 upon light irradiation, suggesting that BQ accepts electrons from a site
in the photosynthetic electron-transport chain after the photosystem II site. The presence of 1.00 mM BQ increased the
generation of photosynthetic oxygen by ;(2.6 6 1.0) 3 10213 mol/s, which was ;1.5–2 times larger than that expected from
the consumption of BQ. The electrons produced by the additional generation of oxygen is used to reduce intracellular species
as well as to reduce BQ.

INTRODUCTION

The quantitative detection and monitoring of redox species
inflowing or outflowing from a cell at the single, living cell
level is extremely important to elucidate biological func-
tions because cellular energy production by respiration and
photosynthesis are based on biological redox reactions. The
effects of electron-accepting redox species on biological
electron-transport chains have been studied conventionally
by oxygen electrodes (Barr et al., 1975; Inoue and Nish-
imura, 1971; Saha et al., 1971) or by spectrophotometric
measurements (Vernon and Shaw, 1969; Katoh and Pietro,
1967) in solutions suspended with chloroplasts and mito-
chondria. It is, however, difficult to quantitatively deter-
mine the fluxes of oxygen and electron mediators to or from
a single, living cell. We have recently determined the evo-
lution of oxygen from a single protoplast by using a micro-
electrode (Matsue et al., 1992). Microelectrodes have been
proven as an effective tool to probe the concentration of
redox species at the single-cell level. Amperometric mea-
surements using microelectrodes allow for refined data in
localized space on the scale of the tip size and have been
used for the imaging of living cells (Tsionsky et al., 1997)
and for the study of cellular processes such as catechol-
amine release (Wightman et al., 1996, 1988), NO release
(Malinski and Taha, 1992), photosynthesis (Matsue et al.,
1993, 1992), respiration (Lau et al., 1992), oxidative stress
(Arbault et al., 1995), and membrane permeability (Ya-

sukawa et al., 1998a,b). Many laboratories, including ours,
have done intracellular electrochemical measurements using
microelectrodes to monitor intracellular reactions; however,
the insertion of microelectrodes physically injures cells and
might trigger undesired intracellular reactions. It is, there-
fore, desirable to characterize a cell by extracellular mea-
surement to obtain data on the intact, living cells.

We report here the quantitative investigation of the ef-
fects of p-benzoquinone (BQ) on photosynthesis in a single,
living protoplast by extracellular measurements. We placed
a carbon-disk or an Au-disk microelectrode very close to a
single cell and monitored the localized concentrations of
BQ and hydroquinone (QH2) to determine the consumption
rate of BQ and the generation rate of QH2 at the single-cell
level. We also investigated the influence of light intensity,
BQ concentration, and electron-transport inhibitors, such as
3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), on the
generation rate of QH2 from a single, living cell. In addition,
photosynthetic oxygen evolution from a single protoplast
was determined by microamperometric measurement. The
oxygen evolution is markedly accelerated in the presence of
BQ in a solution.

MATERIALS AND METHODS

The carbon-disk electrode and the Au-disk electrode used in this study
were prepared as follows. The carbon fiber (Union Carbide, Danbury, CT)
pitch fiber; 10mm in radius) was slightly etched electrochemically (60 Hz,
AC voltage with 5–10 Vp-p) in a solution containing 0.5 mM K2Cr2O7 and
5.0 M H2SO4. An Au wire (10mm in radius) was also etched electrochem-
ically (300 Hz, AC voltage with 5–10 Vp-p) in a NaNO3 saturated aqueous
solution. The etched carbon fiber or Au wire was inserted into a soft-glass
capillary that was tapered with a micropipet puller (Narishige, Tokyo, type
PN-3). The carbon tip was sealed by dipping into an epoxy resin (Oken
Co., Tokyo). The epoxy resin in the capillary was hardened at 60°C for
12 h, and the Au tip region was thermally fused in vacuo. The tips were
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then carefully polished with a diamond grinder (number 5000) on a
turntable (Narishige model EG-6) to give disk-shaped carbon and Au
electrodes. The radii of the carbon-disk and the Au-disk microelectrode
were determined from steady-state voltammograms of 1.00 mM BQ and
4.00 mM Fe(CN)6

42 and found to be 7.7mm for the carbon disk and 8.0mm
for the Au disk. From microscopic measurements, the radius of the carbon
tip, including an insulating glass sheath, was 10mm, and the radius of the
Au tip was 13mm. The other end of the carbon fiber was connected to a
Cu wire with conductive paste (DOTITE, Fujikura Kasei) and used for the
lead to an external amplifier. The Au wire was spot welded with Cu wire
for the external lead.

Reagent grade p-benzoquinone (BQ), 2,5-dichloro-1,4-benzoquinone,
K4Fe(CN)6, K3Fe(CN)6, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU) were purchased from Wako Pure Chemicals (Tokyo, Japan) and
used without further purification. A protoplast with a radius of 100mm was
made from marine algaBryopsis plumosaby a method described in detail
elsewhere (Tatewaki and Nagata, 1970) in synthetic artificial sea water
containing 480.2 mM NaCl, 2.3 mM NaHCO3, 11.1 mM CaCl2, and 83.8
mM MgCl2. The single protoplast was isolated and transferred to a mea-
surement solution of synthetic artificial sea water containing 1.00 mM BQ.
The measurements were begun;20 min after the protoplast was prepared
in artificial sea water containing 1.00 mM BQ. All aqueous solutions were
prepared with distilled and deionized water. The position of the microelec-
trode was controlled by a three-dimensional manipulator system (Shimazu,
MMS-77) under an inverted microscope (Nikon, DIAPHOT 300). The
image was monitored on a CRT (NEC, PC-TV 455) through a CCD color
video camera (Sony, DXC-107A). Redox current was amplified with a
current amplifier (Nihon Kohden, CZE-2300). The electrode potential and
data acquisition were controlled with a personal computer (NEC, Tokyo,
98Note, SX/E) equipped with a 12-bit AD/DA board (AB 98–57B, Adtec,
Tokyo). The reduction of BQ near the protoplast was monitored by
amperometry at20.20 V versus Ag/AgCl and the oxidation of QH2 at 0.80
V or 0.50 V versus Ag/AgCl. The reduction current of the oxygen was
measured by differential pulse amperometry (DPA, 0.103 20.603
20.90 V, 0.503 3.003 0.50 s) using a carbon-disk electrode to avoid the
negative effects of BQ in solution. All measurements were performed at
25°C in a shielded box to remove electrical noises from external sources.
Light irradiation was performed with a built-in light source in the micro-
scope. These amperometric responses were converted into localized con-
centrations of BQ, QH2, and oxygen by using calibration lines. The
diffusion coefficients of BQ and QH2 were determined by potential-step
amperometry, and both were found to be 6.23 1026 cm2/s. The diffusion
coefficient of oxygen is 2.13 1025 cm2/s (Ikeuchi et al., 1995; Tsushima
et al., 1994). These values were used to determine the concentrations at the
surface of the protoplast.

RESULTS AND DISCUSSION

We investigated the Hill reaction (Hill, 1937), the electron
transfer from the photosynthetic electron-transport chain to
an electron acceptor, by microelectrochemical measurement
at a single-cell level. Fig. 1 shows responses of the reduc-
tion current for BQ and the oxidation current for QH2 upon
light irradiation at a carbon-disk microelectrode that was
placed close to a single protoplast (distance,;1 mm) in the
presence of 1.00 mM BQ. The reduction current of BQ
immediately decreased after light irradiation and reached a
steady state in 120 s, indicating that the concentration of BQ
at the protoplast surface decreased due to the consumption
of BQ by the Hill reaction. The reduction current of BQ
returned to its original level when the light was turned off.
The oxidation current for QH2 showed the opposite re-
sponse; the concentration of QH2 rapidly increased upon
light irradiation and decreased to its original level when the

light was turned off. The above results suggest that the BQ
that was added to the outside solution permeated through
the cell membrane to accept two electrons from the photo-
synthetic electron-transport chain to yield QH2, which dif-
fuses to the extracellular medium. The transient responses
when the light was turned on and off show that the release
of QH2 lags behind the consumption of BQ. This transient
capture of BQ without the instantaneous release of QH2 can
be attributed to a cellular pool of the BQ/QH2 redox couple
under light irradiation. The cellular pool could affect the
photosynthetic activity and other intracellular reactions. A
similar response was also observed when 2,5-dichloro-1,4-
benzoquinone was used as the redox mediator, but an im-
permeable mediator such as Fe(CN)6

32 (Yasukawa et al.,
1998a) showed no response. High permeability for redox
species is necessary to observe these kinds of light-induced
responses in the redox current.

From the amperometric responses, the consumption of
BQ and generation of QH2 by the photosynthetic Hill reac-
tion at the single-cell level were determined. If it is assumed
that diffusion is spherical and the concentration of redox

FIGURE 1 Responses of reduction current for BQ (a) and the oxidation
current for QH2 (b) upon light irradiation (25 kLx). A carbon microelec-
trode was placed approximately 1mm away from a protoplast membrane.
The potential was held at20.20 V versus Ag/AgCl for BQ and 0.80 V
versus Ag/AgCl for QH2. The reduction current of BQ immediately de-
creases upon light irradiation whereas the oxidation current of QH2 in-
creases. This phenomenon indicates that BQ is reduced to QH2 by a
photosynthetic electron-transport chain in the protoplast.
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species inside the protoplast is uniform in a steady state, the
generation rate of redox species (f) can be expressed by
(Cussler, 1984)

f 5 4prsD~Cs 2 C* !, (1)

wherers (cm) is the radius of the protoplast,C* (mol/cm3)
is the concentration of redox species at the bulk solution,Cs

(mol/cm3) is the concentration of redox species at the sur-
face of the protoplast, andD is the diffusion coefficient. We
measured the steady-state reduction current of BQ and the
steady-state oxidation current of QH2 at various electrode-
protoplast distances to determine the surface concentration
of BQ and QH2 in a steady state. Fig. 2 shows the responses
for the redox current as the carbon microelectrode moved
stepwise to the surface of a single protoplast. The reduction
current of BQ and the oxidation current of QH2 changed
stepwise and were synchronized with the step-by-step
movement of the microelectrode. It should be noted that
each step in the redox response is very flat; thus, the redox
reaction at the microelectrode should be in a steady state.
The steady-state redox current at each step was converted
into a localized concentration using a calibration line. The

variations in the concentrations of BQ and QH2 as a func-
tion of distance from the surface of the protoplast are shown
in Fig. 3. Under light irradiation, the concentration of BQ
decreases significantly whereas the concentration of QH2

increases in the region close to the protoplast due to the
photosynthetic Hill reaction. The decrease in the BQ con-
centration and increases in the QH2 concentration in the
dark is a consequence of the consumption of BQ and release
of QH2 by respiratory electron transport (Ikeda et al., 1996;
Rabinowitz et al., 1998).

Under spherical diffusion conditions, concentration (C)
of the redox species in the steady state can be expressed by
(Cussler, 1984)

C 5 ~Cs 2 C* !rs/~r 1 rs! 1 C*, (2)

wherer is the distance from the protoplast surface. In Fig.
3 c, the concentrations of BQ as a function ofrs/(r 1 rs)
were plotted to determine the surface concentrations of BQ.
From the intercepts atrs/(r 1 rs) 5 1, the surface concen-
trations of BQ were found to be 0.65 mM under light
irradiation (25 kLx) and 0.90 mM in the dark. The substi-
tution of these values into Eq. 1 gives the consumption rates
of BQ by a single protoplast. We determined the consump-
tion rates of seven different protoplasts and found the value
to be (2.96 0.2) 3 10213 mol/s under light irradiation (25
kLx) and (0.8 6 0.3) 3 10213 mol/s in the dark; thus,
photosynthesis under 25 kLx light consumed BQ;3–4
times more than respiration in the dark. Similarly, the sur-
face concentrations and generation rates of QH2 from single
protoplasts were also determined. The results are summa-
rized in Table 1. The generation rates of QH2 from a single
protoplast under light irradiation and in the dark are bal-
anced with the consumption rates of BQ, indicating that BQ is
almost quantitatively reduced to QH2 by the photosynthetic
and respiratory electron-transport chains in the protoplast.

The amperometric response is, in general, affected by the
shielding effect of the cell membrane (Schroeder et al.
1996) and by the cellular regeneration or consumption of
redox species (Fosset et al., 1991) when the microelectrode-
protoplast distance is within the size of electrode diameter.
In the present case, these undesired effects were small as
evidenced by the fact that the changes in concentrations of
BQ and QH2 with distance follow the theoretical relation-
ship (Fig. 3,c andd). As BQ and QH2 easily permeate the
protoplast membrane (Yasukawa et al., 1998a), interference
in the diffusion region by the membrane does not signifi-
cantly affect the amperometric response.

The light intensity affects the generation of QH2 from the
protoplast (Fig. 4). The magnitude of the response for the
oxidation current of QH2 to light irradiation increased with
an increase in the light intensity, although the pattern of the
responses was not significantly affected by the light inten-
sity. The inset in Fig. 4 is a plot of the response current
against the light intensity. The generation of QH2 is almost
proportional to light intensity up to 15 kLx. The response
becomes saturated when the light intensity is larger than 15

FIGURE 2 Responses of the reduction currents for BQ (a) and the
oxidation current for QH2 (b) when a carbon microelectrode moved step-
wise to the surface of the protoplast under continuous light irradiation (25
kLx) and in the dark. The potentials were set at20.20 V versus Ag/AgCl
for BQ reduction and at 0.80 V versus Ag/AgCl for QH2 oxidation. The
redox currents show staircase responses that are synchronized with the
movement of the microelectrode. The localized concentrations of BQ and
QH2 were determined from the step heights using calibration lines.

Yasukawa et al. Algal Protoplast Photosynthetic Activity 1131



kLx. This saturation intensity is similar to the value reported
in a recent study (Yasukawa et al., 1998a) in which oxygen
generation from the algal protoplast by photosynthesis
shows saturation at light intensity higher than 15 kLx. The
response of the QH2 oxidation current is also affected by the
initial concentration of BQ in the solution (Fig. 5). The
response to the light irradiation (25 kLx) increases with the
BQ concentration but tends to be saturated when the BQ
concentration is above 0.75 mM.

The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU), a photosynthetic electron-transfer inhibitor, dras-
tically reduces the response. The response of the oxidation
current for QH2 to light irradiation is;10 times smaller in

the presence of 5.00mM DCMU than that without DCMU
(Fig. 6). This concentration of DCMU can sufficiently in-
hibit the photosynthetic activity of algal cells as the DCMU
concentration that gives 50% inhibition of electron transport

FIGURE 3 The variation of the localized concentration of BQ (a) and QH2 (b) as a function of distance (r) from the surface of the protoplast. The
concentration of BQ decreases rapidly in the vicinity of the surface of the protoplast whereas the concentration of QH2 increases. (c andd) Plots of the
concentration versusrs/(r 1 rs) (rs, protoplast radius). The surface concentrations of BQ and QH2 at the protoplast membrane are determined from the
intercepts atrs/(r 1 rs) 5 1 of these plots.

TABLE 1 Generation rate (mol/s) of BQ, QH2, and O2 from a
single algal protoplast in the presence of 1.00 mM BQ

Species In the dark Under light irradiation (25 kLx)

BQ 2(0.86 0.3)3 10213 2(2.96 0.2)3 10213

QH2 (0.46 0.2)3 10213 (2.76 0.3)3 10213

O2 (3.66 0.7)3 10213

O2 (1.06 0.3)3 10213*

The protoplast radius was 100mm.
*Without BQ in solution.

FIGURE 4 Response of oxidation current for QH2 upon light irradiation
at an Au microelectrode (0.50 V versus Ag/AgCl) that had been placed
approximately 1mm away from the protoplast membrane. Light intensity:
(a) 18.0 kLx; (b) 12.3 kLx; (c) 4.8 kLx; (d) 1.3 kLx. The magnitude of the
response increases with the light intensity. The inset shows the variation of
the oxidation current as a function of light intensity. The response is
saturated when the intensity is larger than 15 kLx.
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in intact algal cells is 1.03 1027 to 5.03 1027 M (Izawa
and Good, 1972; Matsue et al., 1993). DCMU selectively
blocks the electron transfer to plastquinone in photosystem
II (Mets and Thiel, 1989; Izawa and Good, 1972). The fact
that DCMU lowers the photo-induced intracellular reduc-
tion of BQ to QH2 indicates that BQ accepts electrons from
a site in the photosynthetic electron-transport chain after the
photosystem II site. In the dark, however, the addition of
5.00 mM DCMU did not obviously affect the oxidation
current of QH2 that was generated from the protoplast.
DCMU does not inhibit the respiratory electron-transport
chain of the algal protoplast at this concentration level.

We also determined the variation of reduction current of
oxygen upon light irradiation to investigate the interaction
of BQ with the intracellular electron-transport process. Fig.

7 shows the responses of oxygen reduction current to light
irradiation (25 kLx) in the presence of 1.00 mM BQ. The
reduction current rapidly increased upon light irradiation
and then decreased rapidly to give a steady-state value.
Switching the light off returns the reduction current to the
original level. As the reduction current is directly propor-
tional to the localized concentration of oxygen (Matsue et
al., 1992) the current response reflects the change in the
oxygen concentration at the surface region of the protoplast.
The response without BQ was studied recently (Matsue et
al., 1992); the peak of the oxygen concentration appearing
immediately after light irradiation is related to the rate of
photosynthetic electron transport (i.e., light reaction), and
the oxygen concentration in the steady-state appearing later
is limited by the generation of photosynthesis-related chem-
icals such as NADP1 and ADP (i.e., dark reaction). The
response pattern was significantly affected by adding BQ
into the culture medium. With 1.00 mM BQ in the medium,
the response of the oxygen reduction current showed no
peak and remained constant at a level of the peak height that
was observed without BQ. This indicates that the oxygen
generation in the presence of 1.00 mM BQ is controlled by
the photosynthetic electron-transport process throughout the
light irradiation period. As BQ can efficiently accept two
electrons from the electron-transport chain, the generation
of oxygen proceeds efficiently without the regeneration of
photosynthesis-associated chemicals by the dark reaction.

Steady-state oxygen generation from a single protoplast
under continuous light irradiation (25 kLx) was determined
by the same method as used for BQ and QH2 and was found
to be (1.06 0.3)3 10213 mol/s without BQ and (3.66 0.7)
3 10213 mol/s with 1.00 mM BQ in the solution (see Table
1). It appears that the additional electron flow from the
photosynthetic electron-transport chain to BQ generates ex-

FIGURE 5 Relationship between the oxidation current of the released
QH2 and the concentration of BQ that was added to the outside solution
under light irradiation (25 kLx). A carbon microelectrode (0.80 V versus
Ag/AgCl) was placed approximately 1mm away from the protoplast
membrane. The concentration of QH2 become saturated when the concen-
tration of BQ is above 0.75 mM.

FIGURE 6 Responses of oxidation current for QH2 upon light irradia-
tion (18 kLx) without (a) and with (b) 5.0 mM DCMU in solution. An Au
microelectrode (0.50 V versus Ag/AgCl) was placed approximately 1mm
away from the protoplast membrane. The addition of DCMU drastically
reduces the response of the oxidation current. DCMU inhibits the photo-
system-II-driven electron-transport to block the reduction of BQ via the
photosynthetic Hill reaction. The site from which BQ accepts electrons is
in the photosynthetic electron-transport chain after photosystem II.

FIGURE 7 Responses of oxygen reduction current upon light irradiation
(25 kLx) without (a) and with (b) 1.00 mM BQ in solution. A carbon
microelectrode was placed approximately 1mm away from a protoplast
membrane. The reduction current for the oxygen was measured by differ-
ential pulse amperometry (DPA, 0.103 20.603 20.90 V vs. Ag/AgCl,
0.503 3.003 0.50 sec). The generation oxygen rate in the presence of
1.00 mM BQ is large compared with that without BQ. BQ functions
efficiently as an electron-acceptor to accelerate the photosynthetic electron
transfer to increase the oxygen generation.
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tra oxygen from the protoplast; however, an analysis of
material balance discloses a different aspect. The presence
of 1.00 mM BQ increased the oxygen generation rate from
a single protoplast by 23 10213 to 3 3 10213 mol/s. If we
assume a stoichiometric redox reaction, this additional ox-
ygen generation requires the consumption of 43 10213 to
6 3 10213 mol/s BQ as the oxidation of water to oxygen is
a four-electron process and the reduction of BQ to QH2 is a
two-electron one. However, the consumption of BQ by a
single protoplast under light irradiation (25 kLx) is only
(2.96 0.2)3 10213 mol/s (see Table 1). Thus, the electrons
produced via additional oxygen generation should be used
to reduce some intracellular species as well as to reduce BQ.
It is well known that the BQ/QH2 redox couple acts as an
effective electron mediator to facilitate the reduction of
biological molecules (Ikeda et al., 1996). In addition, an
analysis of transient response (Fig. 1) suggests that the
BQ/QH2 couple is pooled under light irradiation. This in-
crease in oxygen generation could be a consequence of the
intracellular reduction that is mediated by the BQ/QH2

couple. Another possible explanation for the additional ox-
ygen generation in the presence of BQ is that BQ activates
the intrinsic photosynthetic activity. A detailed and quanti-
tative tracing of intracellular species will clarify the mech-
anism for unexpected oxygen generation upon light irradi-
ation in the presence of BQ.

CONCLUSION

A quantitative analysis of the effects of BQ on photosyn-
thetic activity was done using microamperometric measure-
ments. A microelectrode was placed close to an algal pro-
toplast, and the redox responses of BQ, QH2, and oxygen
were measured to trace the localized concentrations of these
species around a single, intact algal protoplast (radius, 100
mm). The results showed that BQ permeated through the
cell membrane and accepted two electrons from the photo-
synthetic and respiratory electron-transport chain to form
QH2, which was released from the protoplast. The BQ
inflowing into the cell is almost quantitatively reduced to
QH2 by photosynthetic and respiratory electron-transport
chains in the protoplast. The consumption of BQ by photo-
synthesis in a single protoplast under 25 kLx light irradia-
tion was (2.96 0.2)3 10213 mol/s, which was three to four
times larger than that by respiration. These effects of BQ
were blocked in the presence of 5.00mM DCMU. The
addition of 1.00 mM BQ to the culture medium increased
photosynthetic oxygen generation from (1.06 0.3)3 10213

mol/s to (3.66 0.7)3 10213 mol/s. The increase in oxygen
generation was 1.5–2 times larger than that expected from
the consumption of BQ by the protoplast. The reducing
power produced by the additional oxygen generation is
consumed for the reduction of BQ to QH2 as well as for the
reduction of intracellular species, which is probably medi-
ated by the BQ/QH2 redox couple.
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