
Spring Constants for Channel-Induced Lipid Bilayer Deformations
Estimates Using Gramicidin Channels

Jens A. Lundbæk*# and Olaf S. Andersen*
*Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021 USA, and
#Department of Neuroendocrine Pharmacology, Novo-Nordisk A/S, Måløv, DK-2760, Denmark

ABSTRACT Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conforma-
tional changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change
therefore includes a contribution from the associated bilayer deformation energy (DGdef

0 ), which provides a mechanism for
how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic
liquid-crystal model of the bilayer deformation show that DGdef

0 should be quantifiable by a phenomenological linear spring
model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales
with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant
and thereby evaluate quantitatively the DGdef

0 associated with protein conformational changes. Gramicidin channels can be
used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting mono-
mers. The monomer7dimer reaction thus constitutes a well characterized conformational transition, and it should be possible
to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how
DGdef

0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We
show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel
duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum
analysis of inclusion-induced bilayer deformations using independently measured material constants.

INTRODUCTION

The hydrophobic coupling between integral membrane pro-
teins and the bilayer acyl chains (Owicki et al., 1978) causes
protein conformational changes that involve the protein-
bilayer interface (Unwin and Ennis, 1984; Unwin et al.,
1988) to perturb the structure of the surrounding bilayer
(Israelachvili, 1977) (Fig. 1). (See Mouritsen and Andersen
(1998) for recent overviews of membrane structure and
function.) The energetic cost (DGtot

0 ) associated with a pro-
tein conformational change thus will include a contribution
from the associated bilayer deformation energy (DGdef

0 ), and
the bilayer material constants are among the determinants of
protein conformational preference and function (Owicki et
al., 1978; Mouritsen and Bloom, 1984; Gruner, 1985, 1991;
Huang, 1986; Andersen et al., 1992; Keller et al., 1993;
Brown, 1994; Lundbæk and Andersen, 1994; Lundbæk et
al., 1996, 1997).

The bilayer material constants vary as a function of the
bilayer lipid composition (Evans and Needham, 1987); the
associated changes inDGdef

0 may provide a mechanism for
the control of protein function by the membrane lipid com-
position. Changes in bilayer composition, for example, af-
fect the distribution among different functional states of

integral membrane proteins (Brown, 1994; Chang et al.,
1995a,b; Lundbæk et al., 1996) as well as their catalytic
activity (Caffrey and Feigenson, 1981; Johannsson et al.,
1981; Navarro et al., 1984; Starling et al., 1995). The
changes in protein function usually occur in the absence of
specific lipid-protein interactions (e.g., Devaux and Sei-
gneuret, 1985; Bienvenu¨e and Marie, 1994), and they can be
induced pharmacologically by compounds that alter the
bilayer’s phase propensity (e.g., McCallum and Epand,
1995).

The quantitative contribution ofDGdef
0 to DGtot

0 remains
poorly understood. Studies using model peptides suggest
that DGdef

0 can be substantial (Huang, 1986; Keller et al.,
1993; Lundbæk and Andersen, 1994; Lundbæk et al., 1996,
1997). The extrapolation of these results to integral mem-
brane protein function has been difficult, however. First, the
theory of inclusion-induced bilayer deformations (Huang,
1986; Helfrich and Jakobsson, 1990; Dan et al., 1994;
Nielsen et al., 1998) is complex, asDGdef

0 is the sum of three
contributions: a compression-expansion component, a
splay-distortion component, and an interfacial energy/sur-
face tension component (Fig. 1). The (relative) magnitudes
of these contributions toDGdef

0 vary as a function of the
underlying material constants, as well as the choice of
boundary conditions at the protein/lipid interface (Nielsen et
al., 1998). Second, it is not clear whether the quadratic
approximation used in elastic (liquid crystal) theories of
bilayer behavior (Helfrich, 1973; Huang, 1986) is valid
when the curvature radii are comparable to the membrane
thickness or whether macroscopic material constants can be
used to describe such systems (Helfrich, 1981). This latter
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concern is accentuated because the contributions toDGdef
0

are interdependent: a change in the splay-distortion modulus
will change not only the splay-distortion component but

also the compression-expansion component ofDGdef
0 , and

vice versa (Nielsen et al., 1998).
A potentially important simplifying feature was identified

by Nielsen et al. (1998), who showed thatDGdef
0 in many

cases can be quantified using a linear spring description,
where the bilayer material constants are lumped together in
a single phenomenological spring constant whose magni-
tude scales with the dimensions of the imbedded membrane
inclusion (protein). In this article we use results of previous
experimental studies (Kolb and Bamberg, 1977; Elliott et
al., 1983) to show thatDGdef

0 indeed can be described by a
linear spring model. We further provide numerical estimates
for the phenomenological spring constants in hydrocarbon-
containing and hydrocarbon-free bilayers. The spring con-
stant in nominally hydrocarbon-free bilayers is in good
agreement with predictions based on macroscopic material
constants (Nielsen et al., 1998), which provides justification
for the use of elastic liquid crystal theories to describe
protein-induced bilayer deformations.

GRAMICIDIN CHANNELS AS
FORCE TRANSDUCERS

Gramicidin (gA) channels are miniproteins, formed by the
transmembrane dimerization of two monomers, one from
each monolayer of a bilayer (O’Connell et al., 1990) (Fig.
2). The nonconducting monomers are inserted into mono-
layers asb6.3 helices (He et al., 1994).

FIGURE 1 Hydrophobic coupling between an integral membrane pro-
tein and the bilayer acyl chains causes protein conformational changes that
involve the protein-bilayer interface, to alter the structure of the immedi-
ately surrounding bilayer. The total free energy of the protein conforma-
tional change (DGtot

0 ) will include a contribution from the associated
bilayer deformation energy (DGdef

0 ).

FIGURE 2 Gramicidin channel formation and bilayer deformation. (a) Two isolated monomers, one in each monolayer. (b) Schematic illustration of the
bilayer deformation associated with gA channel formation when the acyl chain packing at the channel/lipid boundary is constrained, that is, when the
director of the lipids in contact with the channel is parallel to the channel exterior and the bilayer normal. (c) Schematic illustration of the bilayer
deformation associated with gA channel formation when the acyl chain packing at the channel/lipid boundary is free, when the details of lipid packingat
the channel/lipid boundary can be ignored, and when the director is not parallel to the bilayer normal.d0 denotes the equilibrium thickness of the
unperturbed bilayer,u0 the deformation depth in each monolayer,r0 the channel radius, andu the angle between the local bilayer normal and the lipid
director representing the preferred orientation of the lipid acyl chains (the bilayer normal and lipid director are shown as vectors directed away from the
bilayer). The interrupted curves through the head groups (inb andc) depict the general shape of the membrane deformation.
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There is no evidence for specific interactions between gA
channels and their host bilayer (Providence et al., 1995;
Girshman et al., 1997). Furthermore, the helical pitch of the
gA channel is not affected by lipid phase transitions or acyl
chain length (Katsaras et al., 1992), meaning that the chan-
nel length can be considered invariant with respect to the
extent of the bilayer deformation (but see Mobashery et al.,
1997). When the length of the channel’s hydrophobic exte-
rior differs from the bilayer hydrophobic thickness, channel
formation will perturb the surrounding bilayer. This bilayer
deformation has an associatedDGdef

0 . Channel dissociation
is associated with a corresponding bilayer relaxation and a
DGdef

0 of equal magnitude but opposite sign. The average
channel lifetime (t) therefore depends on the magnitude of
DGdef

0 , and gA channels can be used as force transducers
(Lundbæk et al., 1996; Andersen et al., 1998) to evaluate the
membrane deformation energy.

The relation between the depth of the deformation in each
monolayer (u0) and the bilayer deformation energy
(DGdef

0 (u0)) is described using the linear spring approxima-
tion (Nielsen et al., 1998):

DGdef
0 ~u0! 5 H~2u0!

2, (1)

whereH is a phenomenological spring constant describing
the channel-induced membrane deformation. The magni-
tude ofH is determined by the bilayer area-compression and
splay-distortion (or bending) moduli, as well as the channel
radius (r0) and the boundary condition chosen to describe
the lipid packing at the bilayer/channel interface (Nielsen et
al., 1998), specifically the angleu between the bilayer
normal and the lipid director (denoting the preferred orien-
tation of the acyl chains) adjacent to the channel (Fig. 2).

To proceed, we make the standard assumption of strong
hydrophobic coupling between the channel and the bilayer
core, meaning that the bilayer deformation, 2u0, is given by

2u0 5 d0 2 l, (2)

where d0 is the equilibrium thickness of the unperturbed
bilayer core andl is the hydrophobic length of the channel
exterior (Fig. 2);l ' 2.2 nm (Elliot et al., 1983), meaning
that l usually is less thand0. This is important, as the use of
gA channels as molecular force transducers depends onl ,
d0, i.e., on the bilayer’s tending to pull the channels apart.

When the channel dissociates, the monomers separate a
distanced before the transition state is reached. The disso-
ciation rate constant (kdis) can be described as

ln$kdis% 5 2ln$t% 5 2DG‡/RT2 ln$t0%, (3)

whereDG‡ is the activation energy for channel dissociation,
R is the gas constant,T is the temperature in Kelvin, and
1/t0 is a frequency factor for the reaction.DG‡ can be
described as

DG‡ 5 DGint
‡ 1 DDGdef

0 5 DGint
‡ 1 H~~2u0 2 d!2 2 ~2u0!

2!

5 DGint
‡ 2 H~4u0 2 d!d, (4)

whereDGint
‡ is the intrinsic activation energy andDDGdef

0 is
the difference in bilayer deformation energy for deforma-
tions of 2u0 and 2u0 2 d. Combining Eqs. 3 and 4:

ln$kdis% 5 2~DGint
‡ 2 H~4u0 2 d!d!/RT2 ln$t0%, (5)

or

d~ln$kdis%!/du0 5 4Hd/RT. (6)

That is, ln{kdis} is a linear function ofu0 (or d0), which
allows for a determination ofH (assumingd is known).

ANALYSIS OF EXPERIMENTAL RESULTS

Fig. 3 shows the experimental dependence oft ond0 for gA
channels in monoglyceride bilayers (Kolb and Bamberg,
1977; Elliott et al., 1983). The results are shown as2ln{ t}
(5 ln{ kdis}) versusd0. d0 was varied by changing the acyl
chain length of the monoglyceride using monopalmitolein
(16:1), monoolein (18:1), monoeicosenoin (20:1), monoeru-
cin (22:1), or mononervonin (24:1). (In very thick bilayers
(C24:1/n-hexadecane,d0 5 6.9 nm) the gA single-channel
conductance is reduced more than 10-fold compared with
thinner bilayers, suggesting that the channel structure is

FIGURE 3 The dependence oft on d0. Results plotted as2ln{ t} ( 5
ln{ kdis}) vs. d0. The experiments were done using either squalene in 0.5 M
KCl (■) (C16:1, t 5 286 s; C18:1, t 5 37 s; C20:1, t 5 0.7 s (Elliott et al.,
1983));n-hexadecane in 1 M NaCl (Œ) (C16:1, t 5 5.3 s; C18:1, t 5 2.2 s;
C20:1, t 5 0.34 s; C22:1, t 5 0.05 s), or 1 M CsCl (�) (C18:1, t 5 2.2 s;
C20:1, t 5 0.30 s; C22:1, t 5 0.05 s; C24:1, t 5 0.015 s, plotted as open
symbol (Kolb and Bamberg, 1977));n-decane in 1 M NaCl (F) (C16:1, t 5
0.53 s; C18:1, t 5 0.26 s; C22:1, t 5 0.10 s (Kolb and Bamberg, 1977)). In
bilayers formed using squalene,t was determined from single-channel
experiments. Inn-hexadecane andn-decane-containing bilayers,t was
determined from autocorrelation experiments. The lines through the three
set of data points denote least-squares fits of straight lines to the data. The
bilayer hydrophobic thickness was determined from capacitance measure-
ments (Elliott et al., 1983; Benz et al., 1975). The horizontal lines for the
data in decane- and hexadecane-containing bilayers denote6 1 SD.
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altered (Kolb and Bamberg, 1977). Thickness-related
changes in gA channel structure do, in fact, occur in very
thick bilayers (Mobashery et al., 1997); we therefore ex-
clude the C24:1/n-hexadecane results from the quantitative
analysis. We further note that strong hydrophobic coupling,
meaning that Eq. 2 is obeyed, is expected to fail for mono-
glyceride/n-hexadecane bilayers withd0 . 6.0 nm (see
Discussion).) The hydrocarbon solvent was eithern-decane,
n-hexadecane, or squalene. Bilayers formed using squalene
are virtually hydrocarbon-free (Simon et al., 1977; White,
1978). For all three systems, ln{kdis} (or 2ln{ t}) is a linear
function of d0 over bilayer thickness changes that vary
between;0.7 nm (relative change,;25%) for monoglyc-
eride/squalene bilayers,;2.0 nm (relative change,;40%)
for monoglyceride/n-hexadecane bilayers, and;1.7 nm
(relative change,;30%) for monoglyceride/n-decane bilay-
ers. (The relative changes inu0 are even larger:.10-fold in
monoglyceride/squalene bilayers,;3-fold in monoglycer-
ide/n-hexadecane bilayers, and;2-fold in monoglyceride/
n-decane bilayers.) Each line is determined by only three (or
four) data points, but the large relative variations ind0 (and
u0) allow us to conclude that the relation betweenkdis (and
thusDGdef

0 ) andu0 can be described by a linear spring model
over a (surprisingly) large range ofu0 (or d0).

The slopes of the ln{kdis} versusd0 plots vary with the
hydrocarbon solvent:d(ln{ kdis})/ dd0 in bilayers formed
from monoglyceride/squalene solutions is four- or ninefold
larger than in monoglyceride/n-hexadecane bilayers or
monoglyceride/n-decane bilayers (Table 1). Using Eq. 6,H
can be estimated knowingd, the distance the monomers has
moved apart before reaching the transition state for channel
dissociation. The transition state reflects the breaking of
some of the hydrogen bonds that stabilize the dimer. Re-
moving a single hydrogen bond at the join between the
monomers decreases the channel stability 500-fold (Durkin
et al., 1993). The alternatingL-D sequence of gA (Sarges and
Witkop, 1965), however, means that the monomers can be
connected only by two, four, or six hydrogen bonds, as the
two monomers rotate relative to each other; we therefore
assume the transition state is reached when two hydrogen
bonds are broken, i.e., when the monomers have moved
0.16 nm apart. The ensuing estimates ofH are summarized
in Table 1.

DISCUSSION

The present analysis shows that the dependence of gA
channel lifetime on bilayer thickness can be described by a

phenomenological elastic spring model, which is applicable
to both solvent-containing and solvent-free bilayers, over a
quite large range of thickness variations. gA channels form
by the transmembrane association of two monomers, which
causes channel formation to be associated with a well de-
fined change in bilayer thickness (when the channel length
is less than the bilayer thickness). gA channels therefore
should be suitable for quantitativein situ estimates of the
bilayer deformation energy associated with a change in the
match between bilayer thickness and the hydrophobic
length of an integral membrane protein (cf. Gruner, 1991).

We first compare the magnitude of the spring constant in
nominally hydrocarbon-free bilayers with predictions based
on the theory of elastic liquid crystal deformations using
macroscopic, continuum values for the material moduli. We
then show that the assumption of strong hydrophobic cou-
pling should be valid under the conditions used to determine
the spring constant. We finally comment on previous at-
tempts to analyzeDGdef

0 associated with a gA channel-
induced deformation of hydrocarbon-containing bilayers.

Our estimate for the spring constant for the solvent-free
gA/monoglyceride system, 696 6 kJ/(mol nm2), is inde-
pendent of the channel’s hydrophobic length because the
slope of the ln{kdis} versusd0 relation is independent of the
channel length (Eq. 6). The magnitude ofH, however,
depends on our choice ofd (Eq. 6), which we take to be 0.16
nm based on the alternatingL-D sequence and experimental
results on the effects of removing a single residue at the join
between the monomers that form the channel (Durkin et al.,
1993). The value ofd is unlikely to be larger than 0.16 nm,
but could be smaller, in which caseH would be larger than
indicated in Table 1. Given this uncertainty, the estimates
for H compares well with predictions based on a continuum
theory of liquid crystal deformations, as detailed below.

When the area compression-expansion modulus (Ka) and
the splay-distortion modulus (Kc) for the bilayer are known,
one can predictH using the following expression, which can
be derived from the scaling relations in Nielsen et al. (1998,
p. 1975):

H 5 H*SKa

K*a
DnSKc

K*c
Dm

, (7)

whereH*, K*a, andK*c denote a reference parameter set and
n andm are empirically determined coefficients.K*a 5 142.5
pN/nm andK*c 5 28.5 pN nm; the magnitude ofH*, n, and
m depends on the choice of boundary conditions at the
channel/bilayer interface (Nielsen et al., 1998). When the
boundary condition is constrained, that is when the director
of the lipids in contact with the channel is parallel to the
channel exterior and the local bilayer normal (cf. Fig. 2b),
H* 5 63.6 kJ/(mol nm2), n 5 0.667, andm 5 0.334; when
the boundary condition is free, when the details of lipid
packing at the channel/lipid boundary can be ignored and
the lipid director is tilted relative to the bilayer normal (cf.
Fig. 2 c), H* 5 21.7 kJ/(mol nm2), n 5 0.717, andm 5
0.287. (Nielsen et al. (1998) should be consulted for a

TABLE 1 Spring constants for the gA channel/
monoacylglyceride bilayer system

Solvent
d(ln{ kdis})/ dd0

(nm21) H (kJ/(mol nm2))

Squalene 8.96 0.7 696 6
n-Hexadecane 2.26 0.2 176 2
n-Decane 1.06 0.1 86 1

Results are given as mean6 SEM.
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discussion of the physical significance of the different
boundary conditions.)

For pure monoolein bilayers,Kc is estimated to be 366
4 pN nm (Chung and Caffrey, 1994).Ka has been estimated
to be 1406 50 pN/nm for nominally hydrocarbon-free
monoolein/squalene bilayers (White, 1978; Hladky and
Gruen, 1982) and 2106 20 pN/nm for monoolein bilayers
formed from pentane (Alvarez and Latorre, 1978). (The
uncertainties inKa were estimated using Monte Carlo meth-
ods (Alper and Gelb, 1990), assigning a 30% uncertainty to
the electrocompression coefficient reported by White
(1978).) Using these values forKa andKc, and approximat-
ing the gA channel as having a cylindrical shape,H is
predicted to be between 686 15 kJ/(mol nm2) and 896 6
kJ/(mol nm2) if the boundary conditions were constrained
(Fig. 2 b), and between 236 6 kJ/(mol nm2) and 316 2
kJ/(mol nm2) if the boundary conditions were free (Fig. 2c).
The experimental estimate forH is in good agreement with
predictions based on the constrained boundary condition,
and two- to threefold larger than predictions based on the
relaxed boundary condition. (The theoretical predictions for
H depend on the gA channel radius, which is known only
with some uncertainty (cf. Woolf and Roux, 1996; Table 2).
Our predictions were based on a channel radius (r0) of 1 nm,
which could be an overestimate by up to 0.2 nm. Such an
overestimate ofr0 would entail that the predictedH would
be too large, by 10% or more, which would only strengthen
the agreement between the experimental estimate and the
predictions based on the constrained boundary conditions.)
If d were less than 0.16 nm, the discrepancy between the
experimental estimate forH and the prediction(s) based on
the relaxed boundary conditions would be even larger.

Considering the number of parameters involved when
predictingDGdef

0 (or H) using the theory of liquid-crystal
deformations (Huang, 1986; Nielsen et al., 1998), the agree-
ment between the observed and predictedH (for the con-
strained boundary condition) could be due to a fortuitous
cancellation of errors. Although that possibility cannot be
excluded, we consider the agreement to provide consider-
able support for using the theory of liquid crystal elastic
deformations to describe membrane protein-induced pertur-
bations of lipid bilayers (even though the extension to
biological membranes may be complicated by their hetero-
geneous, asymmetric lipid composition). With that proviso,
the agreement between our estimate forH in nominally
hydrocarbon-free monoglyceride/squalene membranes and
the prediction based on the constrained boundary conditions
indicates that the lipid organization at the protein/lipid in-
terface (in hydrocarbon-free bilayers) should be described
using the constrained boundary condition, in agreement
with the conclusion of Huang (1986).

In hydrocarbon-containing bilayers, the free boundary
conditions should prevail, as the lipid packing problem at
the protein/bilayer interface will be reduced because the
hydrocarbon can fill any void created at the protein/lipid
interface when the angle between the lipid director and the
protein surface differs from zero (cf. Fig. 2c). Hydrocar-

bons thus exert a similar effect on protein/bilayer interac-
tions as they do on bilayer7nonlamellar phase transitions
in pure lipids (Kirk and Gruner, 1985). In addition, for
either boundary condition, the compression and splay con-
tributions toDGdef

0 are reduced because the hydrocarbon can
be squeezed out from between the acyl chains, which re-
ducesH further, to below predictions based on the free
boundary conditions (in a hydrocarbon-free bilayer), as is
observed (cf. Table 1).

An implicit assumption in the above analysis, and all
previous work on membrane protein/lipid bilayer interac-
tions, is that the hydrophobic coupling between the chan-
nel’s exterior surface and the bilayer is sufficiently strong to
ensure that Eq. 2 is valid. The range of membrane thickness
variations that were used in the experiments of Kolb and
Bamberg (1977) and Elliott et al. (1983) is so large, how-
ever, that it is necessary to validate the assumption of strong
hydrophobic coupling. Following Andersen et al. (1998),
strong hydrophobic coupling should prevail, and Eq. 2
remain valid, as long as

d~DGdef
0 ~u0!!

d~2u0!
5 4Hu0 , DG*hydrophobic, (8)

whereDG*hydrophobicdenotes the hydrophobic energy asso-
ciated with exposing a unit length (1 nm) long segment of
the channel exterior (or bilayer acyl chains) to water. The
hydrophobic energy is;20 kJ/(mol nm2) (Sharp et al.,
1991) and the gA channel radius is 1 nm, soDG*hydrophobic'
125 kJ/(mol nm). Strong hydrophobic coupling therefore
should prevail as long as 2u0 # 0.9 nm ord0 # 3.1 nm (in
monoglyceride/squalene bilayers), 2u0 # 3.6 nm ord0 #
5.8 nm (in monoglyceride/n-hexadecane bilayers), and
2u0 # 8.1 nm ord0 # 10.3 nm (in monoglyceride/n-decane
bilayers). Comparing these limits to the data in Fig. 3, the
assumption of strong hydrophobic coupling should be valid,
except for mononervonin/hexadecane bilayers, which were
excluded from the quantitative analysis.

Previously, Helfrich and Jakobsson (1990) evaluated the
deformation energy in hydrocarbon-containing bilayers. In
their analysis theDGdef

0 associated with gA channel forma-
tion in hydrocarbon-containing bilayers was evaluated using
a sandwich approximation in which the hydrocarbon was
assumed to be localized in a separate phase in the membrane
interior. A bilayer-compressing force therefore would work
on two springs in series: one spring denotes thinning the
bilayer to the hydrocarbon-free thickness and is character-
ized by an area compression-expansion modulusKa

1; an-
other spring denotes compression of the hydrocarbon-free
bilayer and is characterized by an area compression-expan-
sion coefficientKa

2 z Ka
2 is expected to be;1000 z Ka

1 (Hel-
frich and Jakobsson, 1990). Thus, when the bilayer thick-
ness is varied by changing the acyl chain length, thinning
the bilayer to the hydrocarbon-free thickness would be an
almost constant minor contribution toDGdef

0 (Helfrich and
Jakobsson, 1990; Durkin et al., 1993). The hydrocarbon
should not influence the membrane thickness dependence of
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DGdef
0 . The solvent dependence ofH (Fig. 3 and Table 1)

does not support the sandwich approximation. This finding
could have been predicted from the results of McIntosh et
al. (1980), who found that the longer hydrocarbons are
interdigitated parallel to the acyl chains and not positioned
in the middle of the bilayer.

In conclusion, gA channels can be used to measure the
phenomenological spring constant that describes the mem-
brane deformation energy associated with an imposed
change in bilayer lipid packing. The spring constant in
nominally hydrocarbon-free bilayers is in good agreement
with the value predicted using an elastic liquid-crystal the-
ory of bilayer deformations, which provides support for the
use of macroscopic material constants when evaluating
membrane protein-bilayer interactions and for the neglect of
the higher-order terms in the expression for the membrane
deformation energy (Helfrich, 1973, 1981). Moreover, the
energetics of channel-bilayer interactions can be described
by a linear spring model even in hydrocarbon-containing
bilayers, which suggests that gA channels can be used to
evaluate the mechanical properties of bilayers of arbitrary
chemical composition (including the bilayer component of
biological membranes). Thus, because the spring constant
scales as an approximately linear function of protein radius
(Nielsen et al., 1998), one should be able to use experimen-
tally determined spring constants to evaluate the bilayer
deformation energy associated with protein conformational
changes in many different membrane environments.
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Bienvenüe, A., and J. S. Marie. 1994. Modulation of protein function by
lipids. Curr. Top. Membr.40:319–354.

Brown, M. F. 1994. Modulation of rhodopsin function by properties of the
membrane bilayer.Chem. Phys. Lipids.73:159–180.

Caffrey, M., and G. W. Feigenson. 1981. Fluorescence quenching in model
membranes. III. Relationship between calcium adenosinetriphosphatase
enzyme activity and the affinity of the protein for phosphatidylcholines
with different acyl chain characteristics.Biochemistry.20:1949–1961.

Chang, H. M., R. G. Reitstetter, and R. Gruener. 1995a. Lipid-ion channel
interactions: increasing phospholipid headgroup size but not ordering
acyl chains alters reconstituted channel behavior.J. Membr. Biol.145:
13–19.

Chang, H. M., R. Reitstetter, R. P. Mason, and R. Gruener. 1995b. Atten-
uation of channel kinetics and conductance by cholesterol: an interpre-
tation using structural stress as a unifying concept.J. Membr. Biol.
143:51–63.

Chung, H., and M. Caffrey 1994. The curvature elasticity-energy function
of the lipid-water cubic mesophase.Nature.368:224–226.

Dan, N., A. Berman, P. Pincus, and S. A. Safran. 1994. Membrane-induced
interactions between inclusions.J. Phys. II.4:1713–1725.

Devaux, P. F., and M. Seigneuret. 1985. Specificity of lipid-protein inter-
actions as determined by spectroscopic techniques.Biochim. Biophys.
Acta.822:63–125.

Durkin, J. T., L. L. Providence, R. E. Koeppe II, and O. S. Andersen. 1993.
Energetics of heterodimer formation among gramicidin analogues with
an NH2-terminal addition or deletion: consequences of a missing residue
at the join in channel.J. Mol. Biol. 231:1102–1121.

Elliott, J. R., D. Needham, J. P. Dilger, and D. A. Haydon. 1983. The
effects of bilayer thickness and tension on gramicidin single-channel
lifetime. Biochim. Biophys. Acta.735:95–103.

Evans, E., and D. Needham. 1987. Physical properties of surfactant bilayer
membranes: thermal transitions, elasticity, rigidity, cohesion, and col-
loidal interactions.J. Phys. Chem.91:4219–4228.

Girshman, J., D. V. Greathouse, R. E. Koeppe, and O. S. Andersen. 1997.
Gramicidin channels in phospholipid bilayers with unsaturated acyl
chains.Biophys. J.73:1310–1319.

Gruner, S. M. 1985. Intrinsic curvature hypothesis for biomembrane lipid
composition: a role for nonbilayer lipids.Proc. Natl. Acad. Sci. U.S.A.
82:3665–3669.

Gruner, S. M. 1991. Lipid membrane curvature elasticity and protein
function. In Biologically Inspired Physics. L. Peliti, editor. Plenum
Press, New York. 127–135.

He, K., S. J. Ludtke, Y. Wu, H. W. Huang, O. S. Andersen, D. Greathouse,
and R. E. Koeppe, II. 1994. Closed state of gramicidin channel detected
by x-ray in-plane scattering.Biophys. Chem.49:83–89.

Helfrich, W. 1973. Elastic properties of lipid bilayers: theory and possible
experiments.Z. Naturforsch.28C:693–703.

Helfrich, W. 1981. Amphiphilic mesophases made of defects.In Physique
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