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ABSTRACT The problem of the desorption of a lipid molecule from a lipid vesicle (donor) and its incorporation into another
vesicle (acceptor) at high acceptor concentrations, which has been investigated experimentally (Jones, J. D. and Thompson,
T. E., 1990. Biochemistry, 29:1593–1600), is analyzed here from a theoretical point of view, formulated in terms of the diffusion
equation with appropriate boundary conditions. The goal is to determine whether or not the observed acceleration of the
off-rate from a donor is caused by interaction with an acceptor vesicle at short range, or is simply the result of statistical
effects due the proximity of the acceptor and its influence on the probability of the test lipid returning to the donor. We
establish a correspondence between the theoretical parameters and the experimental, thermodynamic and dynamic variables
entering the problem. The solution shows that, because of the extremely high Gibbs activation energy for desorption of a
phospholipid, the process would always be first-order, even at very high vesicle concentrations. This means that acceleration
of the off-rate must be due to donor-acceptor interactions at short distances, as proposed in the experimental work.

INTRODUCTION

Biological problems are usually complex, by their nature,
because of the number and interdependence of the variables
involved. Consequently, the space of possible configura-
tions is very large, and their analysis and modeling often
require the use of computer simulations. However, if the
problems can be somehow simplified and rendered amena-
ble to treatment with analytical mathematical methods, the
information obtained is often more precise and can be cast
in simpler terms. The present article is an attempt at
presenting such a solution for a simplified problem in
biochemistry.

The problem we wish to consider is the desorption of a
lipid molecule from a lipid vesicle (donor) and its incorpo-
ration into another vesicle (acceptor), which has been in-
vestigated experimentally by following the time dependence
of a population of fluorescent (Roseman and Thompson,
1980) and, more recently, radioactively labeled phospholip-
ids initially located in the donor vesicles (McLean and
Phillips, 1981). This requires that the donor and acceptor
vesicles be separated for analysis of radio-label content,
which is normally achieved by using donor and acceptor
vesicles with a different charge (McLean and Phillips, 1981)
or size (Wimley and Thompson, 1991). It was found that at
small vesicle concentrations, the decay of radio-label in the
donors is first-order, that is, independent of the concentra-
tion of acceptor (Roseman and Thompson, 1980; McLean
and Phillips, 1981), but dependent only on the off-rate from
the donor vesicle. At high vesicle concentrations the process
also has a second-order component (Jones and Thompson,

1989; Jones and Thompson, 1990), which is to say that it
becomes faster as the concentration of acceptor vesicles is
increased. It was proposed that this second-order compo-
nent results from the interaction of two vesicles, a donor and
an acceptor, at short range, giving rise to an acceleration of
the intrinsic off-rate from the donor (Jones and Thompson,
1990). However, one possibility mentioned by those authors
but not quantitatively addressed is that this acceleration
could result simply from a statistical effect: at low concen-
trations of vesicles the most probable fate of the lipid
molecule that comes off the donor is to go back into it
before finding an acceptor vesicle, but at very high acceptor
concentrations this probability is altered because now there
is usually an acceptor vesicle in the vicinity. If this alterna-
tive explanation were correct, then perhaps there would be
no need to invoke donor-acceptor vesicle interactions to
explain the increased off-rate from the donors at large
acceptor concentrations. Here, we analyze this problem to
determine whether or not statistical effects could be respon-
sible for the acceleration of the intrinsic off-rate, and con-
clude that they could not—but the qualitative answer de-
pends on the magnitude of the variables entering the
problem in a decisive way.

We first define a simplified representation of the ex-
perimental situation considered and formulate the math-
ematical problem in terms of the diffusion equation with
appropriate boundary conditions. We then establish a
correspondence between the parameters in the mathematical
model and the experimental, thermodynamic, and dynamic
variables from a comparative analysis of the low acceptor
concentration regime in the theory and experiment. Finally,
we use the values thus obtained to analyze the theoretical
prediction for the high acceptor concentration regime. Fig. 1
is a scheme of the real situation and of the model used in the
present analysis. The radius of the donor lipid vesicle isa
and the average distance to the next vesicle (acceptor) isL.
Strictly, because we will also takea to be the length of the
lipid molecule, we are modeling the donor vesicle as a
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micelle. For the present calculation, however, this is correct
because the flip-flop movement of the phospholipids is very
slow and does not enter the experimental problem either,
because only initial rates are measured in the experiments
discussed here. Including the two leaflets of the membrane
in the mathematical model would require introducing an-
other concentric sphere, and would complicate the solution
enormously and unnecessarily. In a typical experiment, the
acceptor concentration is much larger than the donor con-
centration. Therefore, the probability that another donor-
type vesicle will be the recipient of the desorbing, test lipid
molecule (radio-labeled) is practically zero. The set of ac-
ceptor vesicles thus behaves as a sink of infinite capacity.

THEORY

The mathematical model consists of two concentric spheres
of radii a andL (Fig. 1). Inside the small sphere (r , a) the
concentration isu0 and the diffusion coefficient isD0.
Outside (a , r , L), the concentration isu1 and the
diffusion coefficient isD1.

In each region (subscripts 0 and 1 are used as appropriate)
we must solve the diffusion equation

­u~r, t!

­t
5 D¹2u~r, t!, (1)

with the boundary conditions

r 5 0, u0~0, t! Þ ` (2)

r 5 a,5 D0

­u0~a, t!

­r
5 D1

­u1~a, t!

­r
­u0~a, t!

­r
5 2H/D0@u0~a, t! 2 qu1~a, t!#

(3)

and

r 5 L, u1~L, t! 5 0, (4)

whereH is the coefficient of surface transfer at the vesicle/
water interface. Because the set of acceptor vesicles func-
tions as a sink of infinite capacity we can use a perfectly
absorbing (Dirichlet) boundary condition atr 5 L. The
second boundary condition, atr 5 a (Eq. 3), deserves some
comment. Essentially it is a modified version of the radia-
tion boundary condition type (Carslaw and Jaeger, 1959).
Its meaning is easiest to see if we consider what happens in
a solution containing only donor vesicles. When equilib-
rium is reached (t3 `), there is no net transfer of lipid from
the vesicle to the solution. In this case the concentration in
solution (u1) is the equilibrium concentration of lipid, that
is, the monomer solubility in water. In equilibrium, the net
flux across the vesicle surface is zero,­u0(a, `)/­r 5 0, and
we obtain

u0~a, `! 5 qu1~a, `!.

Thereforeq is seen to be the equilibrium constant, that is,
the partition coefficient of the lipid between vesicle and
water,

q 5
@u0#eq.

@u1#eq.
,

which has an approximate value ofq 5 1010 (Tanford,
1980). Another way of looking at it is to think ofq as the
exponential of a potential difference between water and
vesicle (higher in water), corresponding to the higher free
energy of a lipid molecule in water.

The initial conditions are

r , a, u0~r, 0! 5 f0 (5)

a , r , L, u1~r, 0! 5 0 (6)

For our present purposes, we do not need the full solution
of this problem but only the time-dependence of the lipid
concentration in the donor vesicle, that is, in the regionr ,
a, which is given by

U~t! 5 4p E
0

a

u0~r, t!r2dr/~4pa3/3!. (7)

Let us define:

g 5 ÎD0/D1,

b 5 L/a,

and

e 5 Ha/D0.

In the Appendix we derive the solution of this problem
with the Laplace transform method (Carslaw and Jaeger,

FIGURE 1 Schematics of the model.
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1959) and show that the expression foru0(r, t) in Eq. 7 is

u0~r, t! 5 f0 O
n51

`

Rn~0!e2mn
2D0t/a2 (8)

whereRn(0)e2mn
2

D0
/a2t are the residues at thenth singulari-

ties of the solution in Laplace space and, in the summation,
the residue atm0 5 0 is excluded. This completes the
solution.

RESULTS AND DISCUSSION

Let us first consider the constants entering our problem and
their numerical values. The parameterq is the equilibrium
partition coefficient of the phospholipid between vesicle
and water,q 5 [u0]eq./[u1]eq.. It can be obtained from the
solubility of the lipid in water, which issw ' 10210 M
(Tanford, 1980), corresponding to a value ofq 5 1010 after
conversion to units of molecules/cm3.

D1 is the diffusion coefficient of a lipid molecule in water
and is typically of the order of 53 1026 cm2/s (Jones and
Thompson, 1990).D0 is not so easy to estimate. Lateral
diffusion along the plane of the membrane in the donor
vesicle has little relevance to this process because we are
interested here in movement that brings the lipid to the
surface, leading to desorption. Moreover, what are mea-
sured experimentally are initial rates of desorption: thus the
flip-flop movement is not relevant either.D0 could then
correspond essentially to the wobbling of a lipid molecule in
and out of its cage in the lipid bilayer, as if this were a small
volume in the gas phase (interactions of the lipid tails will
hamper this movement, but we include this effect ine,
below). If we treat the situation as if the lipid would jump
with a rate given by the corresponding velocity in the gas
phase under identical conditions, for a lipid with a mass of
Mw ' 600 daltons (m ' 10221 g), a temperature of about
300 K, and a characteristic distancea . 20 Å (the length of
the lipid molecule), we would getD0 ' (a/2)(kT/m)1/2 '
1023 cm2/s. This is of course only an upper bound, because
interaction of the lipid with water, as it comes out of the
bilayer, will render the process slower than if it were in the
gas phase. The lower bound is the lipid diffusion coefficient
in water, about 53 1026 cm2/s. Jones and Thompson
(1990) used this value and we shall do that as well.

Consider now the expression for the label concentration
given by Eqs. 7 and 8. If the value ofm1 is much smaller
than all othermn, the corresponding rate will dominate the
entire process. Experimentally we know that, at low accep-
tor concentrations, the desorption process is described by a
single exponential law, exp(2kofft), controlled only by the
off-rate constant,koff. We show in the Appendix that, in
fact, m1 ,, mn for all n . 1, but let us for the moment
follow the consequences of this condition because they lead
to a better understanding of the physical meaning of the
terms in the solution. In this case, then, the total label
concentration in the donors isU(t) 5 f0e

2m1
2D0t/a

2

, from

which we see that the off-rate constant is

koff 5 m1
2D0/a

2 (9)

The expression for the rate constant in the activated state
theory (Eyring, 1935) for a process of the type considered is
of the form

koff 5 D0/a
2e2DG‡/kT (10)

(see for example Hill, 1960), which has a simple and intu-
itive meaning:a2/D0 is the time it would take for Brownian
diffusion to bring a lipid out of the membrane over the
distancea, considering only frictional interaction with wa-
ter; andDG‡ is the Gibbs activation energy barrier, which
contains the difference in interactions of the lipid with water
and the membrane, including lipid-lipid interactions and the
hydrophobic effect. The activated state for this process
corresponds to a situation in which the desorbing lipid is
almost entirely out of the bilayer (Nichols, 1985). With the
values forD0, a, and the off-rate constant for POPC (1-
palmitoyl-2-oleoyl-phosphatidylcholine) ofkoff 5 2.5 3
1026 s21, corresponding to a relaxation time of about 100
hours (Jones and Thompson, 1990) at 300 K, we can cal-
culate a Gibbs activation energy ofDG‡ 5 19 kcal/mol.

(Note: Jones and Thompson (1990), following Nichols
(1985), used a model due to Aniansson et al. (1976) that is
based on a derivation by Kramers (1940), and calculated the
Gibbs activation energy to be 23 kcal/mol. That model,
which obtains the off-rate using a formalism alternative to
the activated state method, leads to an expression that is
formally identical to that used here in Eq. 10. The difference
is that a characteristic distanced appears instead ofa: koff 5
D0/d

2e2DG‡/kT; d is the width of the free energy barrier
aboutkT units below the maximum, which is of the order of
1 Å: d ' a kT/DG‡, a . 20 Å being the length of the lipid
moiety in the bilayer. From an operational point of view,
over a temperature range that is not too broad, the two
formulas are equivalent: use of their expression simply
results in a slightly larger activation barrier (4 kcal/mol
more) and in an additional factor ofa2/d2 5 O(103) that,
together, give a factor that has the same value as that
obtained using 19 kcal/mol for the activation barrier, as we
do here. We prefer to use the activated state formalism
because it leads to a simpler expression and the interpreta-
tion of the results becomes clearer.)

The meaning of the parametere is interesting and de-
serves some discussion. From the 3rd boundary condition in
Eq. 3, we see thate 5 Ha/D0 is a dimensionless parameter,
proportional to the coefficient of surface transfer,H, at the
interface between vesicle and water. Thus,e is essentially
the probability of crossing the activation barrier of widtha
for desorption,e ' e2DG‡/kT. Actually, anticipating a result
derived in the Appendix, let us take

e 5 1/3e2DG‡/kT

which, with DG‡ 5 19 kcal/mol, has the valuee 5 6.663
10215.
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We can now obtain the solution of our problem for the
case of low acceptor concentration, using these parameter
values:q 5 1010, g2 5 D0/D1 5 1, b 5 100 (dilute regime,
b 5 L/a .. 1), ande 5 6.663 10215. We find that, using
Eq. 8, m1 ,, mn for all n . 1 (Appendix). Therefore,
indeed, the smallest rate completely dominates the process
and all we need to take into account is this first pole, atm1.
The time dependence of the total lipid concentration in the
donor vesicle is

U~t! 5 f0e
2m1

2D0t/a2 (11)

and the process is a single exponential decay, consistent
with the experimental observation in the dilute regime
(Jones and Thompson, 1990), with a rate constant for de-
sorption,koff 5 m1

2D0/a
2. Also, as shown in the Appendix,

m1
2 5 3e, giving m1

2 5 e2DG‡/kT.
Now, for the case of very high acceptor vesicle concen-

tration we let the parameterb 5 L/a become small, corre-
sponding to a small average intervesicle distanceL, keeping
all other parameters fixed. But we find that, ifb 5 10 or
evenb 5 1, we still obtainm1 ,, mn for all n . 1, andm1

2 5
3e, given any reasonable choice for the experimental con-
stants. This means thatm1

2 is independent ofL. The answer
to our problem is therefore clear: with the experimental
values for the constants entering the problem, the off-rate is
independent of vesicle concentration. In principle this
would not have to be so, judging only from the functional
dependence of the solution onb. But the very small value of
e, which arises from the very large activation barrier for
desorption, has that consequence. This conclusion is quali-
tatively independent of the particular values assigned to the
parameters in the model. Even if the other parameters,
namelyD0, D1, andq, were somewhat off, the value ofe is
so small that it determines the result. In particular forD0

(the parameter that probably has the largest uncertainty), use
of a different value would lead to a different, though still
very small,e. Notice also thatD0m1 appears as a product in
Eq. 9, and thus cannot be varied independently while re-
maining consistent with the experimental values of the
off-rate constants at low acceptor concentration.

We conclude that a statistical effect arising from changes
in probabilities of return to the donor vesicle caused by a
shorter average acceptor-donor distance (high vesicle con-
centrations) cannot explain the acceleration of the off-rate in
those conditions. If this were the only effect, the process
would always be first-order, as indicated by the present
calculation. Another explanation is therefore needed, such
as that presented by Jones and Thompson (1990), according
to which a nearby acceptor induces a perturbation of the
donor vesicle, resulting in an acceleration of the normal
desorption process.
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Wiegel for many discussions. This work was supported in part by grants
PRAXIS/PCUA/P/B10/73/96 from FCT and FMRX-CT96-0004 from the
TMR program of the EU.

APPENDIX

With the substitutionu 5 v/r, the diffusion equation (Eq. 1) becomes

­v~r, t!

­t
5 D

­2v~r, t!

­r2 . (A1)

Applying the Laplace transform,

V̂~r, s! 5 E
0

`

v~r, t!e2stdt, (A2)

we obtain the subsidiary equation:

D
­2v~r, t!

­r2 5 sV̂2 rf0. (A3)

The solution for the regionr , a is

V̂0~r, s! 5 A0cosh~l0r! 1 B0sinh~l0r! 1 rf0/s,
(A4)

wherel0 5 =s/D0. Now reverting back to theu-notation, withV̂0 5 Û0r,
we obtain

Û0~r, s! 5 A0

cosh~l0r!

r
1 B0

sinh~l0r!

r
1

f0
s

. (A5)

Applying the boundary condition (Eq. 2) requires thatA0 5 0, so we have

Û0~r, s! 5 B0

sinh~l0r!

r
1

f0
s

. (A6)

For the regiona , r , L the solution is

Û1~r, s! 5 A1

cosh~l1r!

r
1 B1

sinh~l1r!

r
. (A7)

Using the boundary condition atr 5 L (Eq. 4) this gives

Û1 5
B1~sinh~l1r! 2 tanh~l1L!cosh~l1r!!

r
, (A8)

wherel1 5 =s/D1 andÛ1 5 V̂1/r. Now we use the boundary conditions
at r 5 a (Eq. 3); the first one,D0 (­/­r) Û0 5 D1 (­/­r) Û1, gives forB1:

B1 5
2D0B0~cosh~l0a!l0a 2 sinh~l0a!!

D1~sinh~l1a! 2 tanh~l1L!cosh~l1a!
2 l1a cosh~l1a! 1 l1a tanh~l1L!sinh~l1a!!

Using the second BC atr 5 a (Eq. 3),

­Û0

­r
5 2

H~Û0 2 qÛ1!

D0
,

we obtain forB0,

B0 5 2Ha2f0D1

~sinh~l1a! 2 tanh~l1L!cosh~l1a! 2 l1a cosh~l1a!

1 l1a tanh~l1L!sinh~l1a!!/

~s~cosh~l0a!l0aD0D1sinh~l1a!

2 cosh~l0a!l0aD0D1tanh~l1L!cosh~l1a!
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2 cosh~l0a!l0a
2D0D1l1cosh~l1a!

1 cosh~l0a!l0a
2D0D1l1tanh~l1L!sinh~l1a!

2 sinh~l0a!D0D1sinh~l1a!

1 sinh~l0a!D0D1tanh~l1L!cosh~l1a!

1 sinh~l0a!D0D1l1a cosh~l1a!

2 sinh~l0a!D0D1l1a tanh~l1L!sinh~l1a!

1 Ha sinh~l0a!D1sinh~l1a!

2 Ha sinh~l0a!D1tanh~l1L!cosh~l1a!

2 Ha2sinh~l0a!D1l1cosh~l1a!

1 Ha2sinh~l0a!D1l1tanh~l1L!sinh~l1a!

1 Ha2qD0cosh~l0a!l0sinh~l1a!

2 Ha2qD0cosh~l0a!l0tanh~l1L!cosh~l1a!

2 HaqD0sinh~l0a!sinh~l1a!

1 HaqD0sinh~l0a!tanh~l1L!cosh~l1a!!!,

which, upon some rearrangement, and defining

g 5 ÎD0/D1,

b 5 L/a,

z5 l0a,

and

e 5 Ha/D0,

gives

B0 5 2
f0a

sSz cosh~z! 2 ~1 2 e!sinh~z!

e

1
g2q~z cosh~z! 2 sinh~z!!

1 2 gz coth~z~1 2 b!! D
(A9)

What we need is the time-dependence of the amount of material inside
the sphere of radiusa, that is,

4p E
0

a

u0~r, t!r2dr. (A10)

Thus, all we require is the inverse transform ofU0,

u0~r, t! 5
1

2piE
C

Û0~r, s!estds, (A11)

whereC represents an appropriate contour of integration in the complex
plane (Carslaw and Jaeger, 1959). The solution in Laplace space (Eq. A6)

is thus

U0~r, s! 5 f03
1

s
2

ae sinh~zr/a!

rsSz cosh~z! 2 ~1 2 e!sinh~z!

1
eg2q@z cosh~z! 2 sinh~z!#

1 2 gz coth~z~1 2 b!! D4
. (A12)

There are terms of the form sinh(=s) (note thatz 5 =s/D0a) both in the
numerator and in denominator of the fraction in Eq. A12, but, as long as
=s represents the same branch in both, the fraction is a single-valued
function of s.

In order to use the residue theorem, we need the zeros of the denomi-
nator of the second term in the right-hand side of Eq. A12. There is a
first-order pole ats 5 0 (z 5 0), which cancels out with that coming from
the initial condition. (It appears that there is another factor ofz in this
denominator asz3 0, but the numerator,ae sinh(zr/a), also contains this
factor asz3 0.) We are then left with the task of finding the values ofz,
other thanz 5 0, such that:

z cosh~z! 2 ~1 2 e!sinh~z! 1
eg2q@z cosh~z! 2 sinh~z!#

1 2 gz coth~z~1 2 b!!

5 0. (A13)

Eq. A13 has no real roots. We follow the standard procedure (Carslaw and
Jaeger, 1959) and write

z5 im

r 5 r/a

and Eq. A12 becomes:

Û0~r, s! 5 f0F1s 2
e sin~rm!

srG~m! G, (A14)

where

G~m! 5 m cos~m! 2 ~1 2 e!sin~m!

1
eg2q~m cos~m! 2 sin~m!!

1 2 gm cot~m~1 2 b!!
. (A15)

The solution is

u0~r, t! 5
1

2piE
C

Û0~r, s!estds

5
f0

2piE
C

S1s 2
e sin~rm!

srG~m! Destds

5 f0S1 2 O
n50

`

Rn~t!D, (A16)

whereRn(t) is the residue at thenth singularity. The residue ats 5 0 (n 5
0) is 1 and cancels out the term coming from the initial condition, as
already noted following Eq. A12, so we shall not need to consider this
residue again. The expression

e sin~rm!

srG~m!
est
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has real and simple poles at the zeros (all real and simple) ofG(m). Using
m2 5 2sa2/D0 and definingt 5 D0t/a

2, the residue at each pole is given
by

Rn~t! 5 Rn~0!e2mn
2t, (A17)

where

Rn~0! 5 2
2e sin~rmn!

rmnF­G~m!

­m G
m5mn

.

The expression for our solution is then

u0~r, t! 5 f0 O
n51

`

Rn~0!e2mn
2t, (A18)

where, in the summation, we already exclude the residue atm 5 0 (s 5 0),
as noted above. Carrying out the differentiation yields

­G~m!

­m
5 cos~m! 2 m sin~m! 2 ~1 2 e!cos~m!

2
eg2qm sin~m!

1 2 gm cot~m~1 2 b!!

2

eg2q~m cos~m! 2 sin~m!!~2g cot~m~1 2 b!!
2 gm~21 2 cot2~m~1 2 b!!!~1 2 b!!

~1 2 gm cot~m~1 2 b!!!2

The residues are then given by

22e sin~rmn!e
2mn

2t/~r mn~cos~mn! 2 mnsin~mn!

2 ~1 2 e!cos~mn! 2
eg2qmnsin~mn!

1 2 gmncot~mn~1 2 b!!

2

eg2q~mncos~mn! 2 sin~mn!!~2g cot~mn~1 2 b!!
2 gmn~21 2 cot2~mn~1 2 b!!!~1 2 b!!

~1 2 gmncot~mn~1 2 b!!!2 .

The concentration of lipid in the vesicle as a function of time is

U~t! 5 4pE
0

1

u0~r, t!r2dr/~4p/3!

5 3 O
n51

`

e2mn
2tE

0

1

Rn~0!r2dr (A19)

Experimentally (Jones and Thompson, 1990), in the dilute regime, the
process is a single exponential decay with an off-rate constantkoff 5 2.53
1026 s21 at 300 K (a relaxation time of about 100 hours). In this regime
(b .. 1, sayb 5 100), usingD0 andD1 5 5 3 1026 cm2/s (g 5 D0/D1

5 1), a 5 20 Å, q 5 1010, ande 5 6.663 10215, we can plot the function
G(m)/m. (Division bym takes out them-factor in the numerator of Eq. A14;
cf. comment preceding Eq. A13.) The plot (Fig. 2) shows that the first zero,
m1 5 1.413 1027, is much smaller than any other. A magnification of the
initial portion shows the location of the smallest zero (Fig. 3). Moreover,
for the first pole, atm 5 m1, the value of 3*0

1Rn(0) r2dr (essentially5 1)
is much larger than that for any other pole. Thus, all we need to take into

account is this first pole,m1, and the time-dependence of the total lipid
concentration in the donor vesicle is

U~t! 5 f0e
2m1

2t. (A20)

This is consistent with the experimental observation of a single exponential
decay in the dilute regime. Notice thatm1

2D0/a
2 5 koff.

The effect of vesicle concentration, that is, the average distance to the
next vesicle, is represented by the parameterb 5 L/a in our model. It could
affect the mathematical problem in two ways: through the effect ofb on the
relative location of the zerosmn of G(m) and through the effect ofb on the
values ofmn that contribute most of the decay. It turns out that, with the
values ofq, g, ande given, the functionG(m) is independent ofb (a plot
with b 5 1.1 looks exactly the same as that in Fig. 2). The lack of
dependence ofm1 on b can be understood from the following consider-
ations. Some rearrangement ofG(m) 5 0 leads to:

cot~m! 5
1

mF1 2 e
1 2 gm cot~m~1 2 b!!

1 2 gm cot~m~1 2 b!! 1 bG, (A21)

whereb 5 eg2q. Now, let

f~m! 5
1 2 gm cot~m~1 2 b!!

1 2 gm cot~m~1 2 b!! 1 b
, (A22)

then

lim
m301

f~m! 5
~b 2 1 1 g!

~b 2 1 1 g! 1 b~b 2 1!
> 1

FIGURE 2 Location of the zeros ofG(m) (poles).

FIGURE 3 Location of the smallest zero.
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for any b becauseb 5 g2qe is very small (,1024). For smallm, we can
expand cot(m) 5 1/m 2 m/3 1 . . . (which is justified because of the very
small value ofm1) in Eq. A21 and find:

m1
2/~3e! 5 f~m1! 5 1.

Thus, there is no dependence ofm1 on b.
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