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Structural Analysis of DNA-Chlorophyll Complexes by Fourier Transform
Infrared Difference Spectroscopy

J. F. Neault and H. A. Tajmir-Riahi
Department of Chemistry and Biology, University of Québec at Trois-Rivieres, C.P. 500, Trois-Rivieres, Québec G9A 5H7, Canada

ABSTRACT Porphyrins and metalloporphyrins are strong DNA binders. Some of these compounds have been used for
radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. This study was designed to examine
the interaction of calf thymus DNA with chlorophyll a (CHL) in aqueous solution at physiological pH with CHL/DNA(phosphate)
ratios (r) of 1/160, 1/80, 1/40, 1/20, 1/10, and 1/5. Fourier transform infrared (FTIR) difference spectroscopy was used to
characterize the nature of DNA-pigment interactions and to establish correlations between spectral changes and the CHL
binding mode, binding constant, sequence selectivity, DNA secondary structure, and structural variations of DNA-CHL
complexes in aqueous solution. Spectroscopic results showed that CHL is an external DNA binder with no affinity for DNA
intercalation. At low pigment concentration (r = 1/160, 1/80, and 1/40), there are two major binding sites for CHL on DNA
duplex: 1) Mg-PO,, and 2) Mg-N7 (guanine) with an overall binding constant of K = 1.13 X 10* M~ . The pigment distributions
are 60% with the backbone PO, group and 20% with the G-C base pairs. The chlorophyll interaction is associated with a
major reduction of B-DNA structure in favor of A-DNA. At high chlorophyll content (- = 1/10), helix opening occurs, with major
spectral alterations of the G-C and A-T bases. At high chlorophyll concentration (1/5), pigment aggregation is observed, which
does not favor CHL-DNA complexation.

INTRODUCTION

Porphyrins and their metal derivatives are strong DNAdiates, scavenging of free radicals and active oxygen spe-
binders, with association constants oP M *to 1 M~*  cies, and suppression or interference with metabolic activa-
(Lipscomb et al., 1996; Sari et al., 1990; Pasternack et altion by specific cytochrome (P-450) and other metabolizing
1986; Anantha et al., 1998). Some of these compounds havenzymes (Newmark, 1984; Arimoto et al., 1980; Dashwood
been used for radiation sensitization therapy of cancer andt al., 1991; Romert et al., 1992). Chlorophyllin was also
are targeted to interact with cellular DNA (Hill, 1991). On shown in vivo to efficiently inhibit precarcinogenic target
the other hand, diet has been shown to be an importardrgan DNA adduction by aflatoxin Bin trout (Breinholt et
determinant of human cancer risk (Doll, 1990; Doll andal., 1995) and 2-amino-3-methylimidazol [4,5-fquinoline
Peto, 1981). Several chemical constituents in fruits andn rats (Dashwood, 1992).

vegetables have now been purified and shown to protect Because the main target of metalloporphyrins can involve
against carcinogenesis in experimental animals, and son®NA or DNA adducts, the interaction of CHL with DNA

of these compounds are now in clinical trials (Farber, 1982has major biochemical importance. The present study is
Wattenberg, 1990; Hayatus et al., 1988; Dragsted et aldesigned to investigate DNA-CHL complexation in vitro
1993). Chlorophyll (CHL) (structure 1) and its derivatives and to provide structural information regarding the pigment
exert profound antimutagenic behavior against a wide rangpinding mode, association constant, sequence preference,
of potential human carcinogens (Lai et al., 1980; Kimm etand DNA secondary structure, using infrared spectroscopy.
al., 1982; Kimm and Park, 1982). Chlorophyllin, a food- To our knowledge, our structural information provides the
grade derivative of chlorophyll, has been used historically infirst spectroscopic evidence regarding DNA-CHL interac-
the treatment of several human conditions, with no evidencgon and should help to elucidate the nature of this biolog-
of human toxicity (Ong et al., 1986; Harrison et al., 1954;ically important complex formation. Recently, we have used
Young and Beregi, 1980), and recently it has been used agprational spectroscopy (infrared and Raman) for the struc-
a potent inhibitor of aflatoxin B hepatocarcinogenesis in tyra| characterization of several DNA-drug (Neault and
trout (Breinholt et al., 1995). It has been suggested that the ajmir-Riahi, 1996; Neault et al., 1995, 1996), DNA-cation
antimutagenic activity of chlorophyllin comes from its (Tajmir-Riahi et al., 1995a,b), and protein complexes
strong complexation with parent mutagens or their interme(Ahmed et al., 1995). We believe that Fourier transform
infrared (FTIR) difference spectroscopy can be also applied
here to characterize the nature of the DNA-pigment inter-
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variations) on CHL-DNA complexation, and it is cancelled upon spectral
subtraction. The spectra are smoothed with a Savitzky-Golay procedure
(Alex and Dupuis, 1989). The intensity ratios of several DNA in-plane
vibrations related to A-T and G-C base pairs and the B@tchings are
measured (with respect to the reference band at 968 cas a function of
CHL concentration with an error af 3%. These intensity ratio measure-

: ments are used to quantify the amount of CHL binding to the backboge PO
CHy group and DNA bases.

CH,=CH

RESULTS AND DISCUSSION
DNA-CHL complexes

Scheme

sequence dependence, and biopolymer secondary structpé low chlorophyll concentrationr(= 1/160, 1/80 and
are provided. Furthermore, comparisons are made betweéd40), CHL binds directly to the backbone pgroup and
the DNA-CHL complexes and those of the correspondingndirectly (via H,0) to the N-7 site of the guanine bases

metalloporphyrin-DNA adducts, and the results are reportedhrough the central Mg cation. Evidence for direct cation-
here. phosphate coordination is concluded from the major inten-

sity increase (50%) of the RCantisymmetical stretching
band at 1222 cm*, together with the shift of this vibration
MATERIALS AND METHODS toward a lower frequency at 1220 cr (Figs. 1 and 2).
Similarly, the guanine band at 1717 cm(Alex and Du-
puis, 1989; DiRico et al., 1985; Spiro, 1987; Loprete and
Highly polymerized type I calf thymus DNA sodium salt (7% Na content) Hartman, 1993; Starikov et al., 1991; Keller and Hartman,
was purchased from Sigma Chemical Co. and was deproteinated by theg86: Prescot et al., 1984; Taillandier et al., 1985) gains in
addition of CHC} and ?soamyl alc_ohol in NaCl solution. _Crystalline intensity (25%) and shifts toward a lower frequency at1715
chlorophylla was from Sigma Chemical Co. and was used without further 4 N - . . .
purification. Other chemicals were of reagent grade. cm %, which is due to an indirect Mg-N-7 interaction via a
H,O molecule (Figs. 1 and 2). The bands at 1663 tm
(mainly thymine) (Alex and Dupuis, 1989; DiRico et al.,
Preparation of stock solutions 1985; Spiro, 1987; Loprete and Hartman, 1993; Starikov et
Sodium-DNA was dissolved to 2% w/w (0.05 M DNA(phosphate)) in 0.1 al", 199:,]'; Keller and Hartman, 1986; _PreSCOt e,t a_l" 198_4;
M NaCl and 1 mM sodium cacodylate (pH 7.30) at 5°C for 24 h with 1aillandier et al., 1985) showed an increase in intensity
occasional stirring to ensure the formation of a homogeneous solution. Thé30%) with no spectral shifting upon CHL interaction,
appropriate amount of chlorophyl(0.15-5 mM) was prepared in ethanol whereas the bands at 1609 (adenine) and 1485'cm
(chlorophyll is not soluble in D or D,O) and added dropwise to DNA (mainly cytosine) exhibited a minor increase in intensity

solution to attain desired CHL/DNA(P) molar ratios of 1/160, 1/80, 1/40, _ . e
1/20, 1/10, and 1/5 at a final DNA concentration of 1% w/w or 0.025 M with no frequency shift in the spectra of the CHL-DNA

DNA(phosphate). The pH solution was adjusted to 7.30—6.80, using"0mplexes (Figs. 1 ?nd B= 1/169)- The Observeq SPeCtra|
NaOH solution. The infrared spectra were recardeh after mixing of ~ changes show a direct Mg-Binding with an indirect
CHL and DNA solutions. The infrared spectra of DNA-CHL complexes Mg-H,O-N-7 coordination to the guanine bases. However,
with r > 1/5 could not be recorded as a solution because of solid gely minor indirect cation coordination via,B to the thymine
formation. 0O-2 atom can also be included, whereas metal ion binding
to the adenine and cytosine bases is negligible. It is worth
Physical measurements men'tionir)g that at th?s stage qf complexation, t'he Mg-DNA
binding sites are not involved in the Watson-Crick hydrogen
Infrared spectra were recorded on a Bomem DA3-0.02 FTIR spectrometeéonding network, and therefore this type of complexation

equipped with a nitrogen-cooled HgCdTe detector and KBr beam splitter. . . . .
The solution spectra are taken using AgBr windows with a resolution ofdoes not brlng about helix destabilization. It should be noted

24 cm* and 100500 scans. The sample preparation and spectral mefhat the di.reCt MQ_'PQ coordination and ind'ireCt Mg-N-7
surements are carried out under green light (to avoid photodegradation ¢iguanine) interaction through @ are found in the crystal
chlorophyll in CHL-DNA complexes). Each set of infrared spectra was structure of d(CpGpCpGpCpG) oligonucleotide, stabilizing
taken (three times) on three identical samples with the same DNA a”‘i'eft-handed Z-DNA conformation (Gessner etal 1985) on

pigment concentrations. The water subtraction was carried out with 0.1 Nll.h basis of th tr icr Its. the M tion bindin
NaCl solution as a reference at pH 6.5-7.5 (Alex and Dupuis, 1989). A € basis of the spectroscopic results, the Mg catio g

good water subtraction is achieved as shown by a flat baseline around 22d@ the backbone POand the guanine N'? sites is also
cm™?, where the water combination mode is located. This method is asuggested for the MgATP complexes with calf thymus
rough estimate but removes the water content in a satisfactory wayDNA in hydrated films (Bhattacharyya et al., 1988). Raman
Because of the insolubility of chlorophyll inJ®, we did not run the same spectroscopic studies also showed direct Mgz-INDding
experiments in BO solution. The difference spectra [(DNA solution for the Ma-DNA combplexes in aqueous solution (Lan lais
CHL solution) — (DNA solution)] are produced, using a sharp DNA band Y p . q g_

at 968 cm* as internal reference. This band, due to deoxyribose c-c€t al., 1990). On the basis of the FTIR spectroscopy, direct

stretching vibrations, exhibits no spectral changes (shifting or intensityand indirect Mg cation binding to the phosphate group and

Materials
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FIGURE 2 Intensity ratio variations for several DNA in-plane vibrations
at 1717 (G, T), 1663 (T, G,A, C), 1609 (A), 1494 (C, G), and 1222 tm
(PG, stretch) as a function of chlorophyll (CHL) concentration (different
CHL/DNA(P) molar ratios).

Absorbance

Because pigment interactions occur mainly through the
backbone P® group and the guanine bases, the relative
intensity variations of the bands at 1222 ch{PQ, stretch)
and 1717 cm® (mainly G) were calculated for each CHL
concentration.

The double-reciprocal plot of 1/(— 1y) versus 1A) is
linear, and the binding constark) is estimated from the
o = ratio of the intercept to the slopég, is the initial relative
s CHI/DNA(P) = 1/5 intensity of the specific DNA absorption band, ani the

diff. relative intensity at different CHL concentrations).(The
. . . overall binding constant for CHL-DNA complexes is esti-
1800 ]4.00 1000 600 1800 1400 1000 600 mated to beK = 1.13 X 104 Mil. Similar intenSity ratio
-1 measurements were used as a function of pigment concen-
Wavenumber  (cnr) tration to estimate th&(P) for the phosphate and th&G)
FIGURE 1 FTIR spectraf) and difference spectra [(DNA soluion  OF the guanine bases. The calculated binding constants
CHL solution) — (DNA solution)] (8) for the uncomplexed calf thymus WereK(P) = 2.90X 10*M~tandK(G) = 4.40x 1M~ .
DNA and its chlorophyll (CHL) adducts in aqueous solution at pH 6.8—7.3 Similar methods, based on the intensity ratio variations of
with differgnt CHL/DNA(P) molar re_itios in the region of 1800—600 ¢n the Raman and infrared vibrational frequencies, have been
(the baselines are shown broken linej: used to determine the binding constants of diethylstilbestrol
(intercalating drug) binding to polynucleotides (Neault and

the base N-7 atom of guanine or adenine was found in th(l-ajmIr Riahi, 1997) and the Ciig = cation binding to

solid-state and solution structures of Mg-guanosife-5 fononucleotides (Tajmir-Riahi et al., 1988)

9-9 The calculated binding constants for the CHL interaction
monophosphate (Mg-GMP), Mg-deoxyguanosings®no- ., ihe hackbone phosphate roupgP) = 2.90 x 10*
phosphate (Mg-dGMP), and Mg-adenosirieatonophos- phosp g '

o SRS M™! and K(G) = 4.40 X 10° M™%, provide additional
phate (Mg-AMP) complexes (Tajmir-Riahi, 1990a,b, 1991)'evidence re(ga)rding the backbone fggoup as a primary

astze;?é%ujggg?hg tc?ri b?:ggéfenssﬁrtﬁsoma: Clgilrfdagﬁarget and the guanine N-7 atom as the secondary site for the
P 9 P ' ' Mg cation coordination. The value obtained for the binding

mononucleotides (Muller and Crothers, 1975; Tuite and . :
Kelly, 1995: Tuite and Norden, 1994 Neault and Tajmir- constant is also comparable with those of the hydrated Mg

Riahi, 1997: Tajmir-Riahi et al., 1988). Assuming that a(:atlon coordination to DNA and RNA in agueous solution

. . (Izatt et al., 1971; Danchin, 1972). At a chlorophyll con-
mgjlg(r:uﬁgmtﬁlaez?ltlgvcinogczqurjatti)g:]geci\nn tt?ee e(;;tlizﬂg dI_Dl\lAcentration of 2.5x 10~ * M, the distributions of the bound
' ' CHL are ~60% with the backbone PQyroups and~20%
DNA + CHL & DNA: CHL K (1)  with the G-C base pairs (Fig. 3).
A strong band at 1652 cnt in the spectrum of the
_ [DNA:CHL] )  DNA-CHL adduct (absent from the spectrum of the free
~ [DNA]JCHL] (2) DNA) was related to the CHL in-plane vibration at 1659

CHI/DNA(P) = 1/10
diff.
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100 (diethylstilbestrol) concentration, which was attributed to a
o el partial helix opening and DNA melting, upon drug com-
807 plexation (Neault and Tajmir-Riahi, 1996). The interaction
1 , POz bound . of several cations with DNA also results in a major increase

o sg in the intensity of DNA vibrations due to the cation coor-
0 ‘0 - dination and helix destabilization (Tajmir-Riahi et al.,

10 | o b 1995a,b). At this stage, not only is the Mg cation the main
20 = DNA binder, but an extended H-bonding network between
10 | the biopolymer donor atoms and the chlorophyll polar
0 groups can also be detected during complexation. Evidence

o 100 200 300 400 500 600 700  {orthis comes from major spectral shifts of the chlorophyll
Concentration of chlorophyll — (x10'M) vibrations at 1736, 1659, and 1608 chrelated to the

FIGURE 3 Calculated distributions of the chlorophyll bound to the P'gme”t ?XOCyC“C COO, %O' and C-O stretching V_lbra'
backbone PQgroup and G-C base pairs in aqueous solution with a DNA tions (Fujiwara and Tasumi, 1986; Bardwell and Dignam,
concentration of 0.025 M (phosphate), as a function of CHL concentrationl 987), upon DNA interaction (Fig. 1).
(M) based on a binding constant i§f= 1.13x 10* M™%, for the bands at It is important to note that chlorophyll complexation with
1717 em* (G) and 1222 cm* (PO,). DNA leads to a partial reduction of B-DNA structure in
favor of A-DNA. Evidence for this conformational transi-
tion comes from the shifts of the DNA marker bands at 1717
cm ! (Fujiwara and Tasumi, 1986; Bardwell and Dignam, (G, T) to 1710 cm?, 1222 (PQ) to 1224 cm*, and 841
1987) that shifted to lower frequencies upon DNA com-(phosphodiester) to 829 c¢m (Fig. 1). The shifts of these
plexation (Fig. 1 = 1/160). conformational indicators (Loprete and Hartman, 1993;
The Mg cation is four-coordinate in the CHL complex, Keller and Hartman, 1986; Taillandier et al., 1985), together
when it is dissolved in nonpolar solvents, whereas in aquewith the emergence of a new band at 860 ctrare related
ous solution the Mg coordination extends to five or six byto the reduction of the B-DNA structure and the formation
cation interaction with HO or other oxygen atoms from of A-DNA, upon CHL interaction (Fig. 1, 1/10). The marker
neighboring CHL molecules (as axial ligands), forminginfrared bands for B-DNA structure are positioned at 1717
dimers or polymers in the aggregated state (Fujiwara andm * (G, C), 1222 cm* (PQ, stretch) and 840—836 cm
Tasumi, 1986; Bardwell and Dignam, 1987). Upon DNA (sugar-phosphate) (Loprete and Hartman, 1993; Starikov et
interaction, the axial ligand is replaced by the backbong POal., 1991; Keller and Hartman, 1986). When B-to-A transi-
group (directly) or by the guanine base N-7 atom (indirectlytion occurs, these marker bands are shifted to 1710-1700
via H,0), because the major affinity of the Mg cation cm *, 1240-1225 cm* and 825-800 ci', respectively,
toward the backbone phosphate binding is well demonand a new band appears-a870—860 cm* (Loprete and
strated (Eichhorn and Shin, 1968). It is important to noteHartman, 1993; Keller and Hartman, 1986; Taillandier et
that the presence of the axial ligands on the Mg cation dal., 1985).
not favor CHL intercalation into the A-T or G-C base pairs At high CHL concentrationsr(= 1/5), pigment aggrega-
(because of the steric blockage), and complex formation i§on occurs, which does not favor chlorophyll-DNA inter-
limited to the outside binding mode. action. Evidence for this comes from a major loss of the
At r = 1/10, a major increase in the intensities of severaintensity of DNA vibrations at 1717, 1663, 1609, 1494, and
DNA in-plane vibrations at 1717 cnt (G, T), 1663 cm® 1222 cm * (Figs. 1B and 2). The spectral changes observed
(T, A, G, C), 1609 cm* (A), 1494 cm * (C, G), and 1222 are due to a partial dissociation of the CHL-DNA com-
cm ! (PO, stretch) was observed as a result of partial helixplexes in favor of pigment-pigment interaction at high CHL
opening (Fig. 2). The partial helix melting provides addi- conentration. The aggregation of the porphyrins and their
tional binding sites for CHL complexation. Evidence for metal derivatives is known, and the effects of pigment
this was obtained from a major intensity increase and frepolymerization on DNA complexation are well investigated
quency shift of the bands at 1663 cfio 1665 cm !, 1609  (Pasternack et al., 1983a,b). Similarly, the aggregation of
cm 'to 1602 cm?, and 1494 cm' to 1492 cmit in the  chlorophyll through its central Mg cation is reported (Ok-
spectra of the CHL-DNA complexes formed at high pig- sanen et al., 1996, and references therein). The Mg cation
ment concentration (Fig. A). The spectral changes ob- expands its coordination from 4 to 5 or 6 by interaction with
served were due to the participation of the G-C and A-Tsolvent molecules and the porphyrin ring external donor
base pairs on CHL complex formation. The positive featurestoms (Oksanen et al., 1996, and references therein). It
at 1713, 1602, 1492, 1341, 1179, and 1066 ¢nin the  should be noted that the difference spectrum obtained at
difference spectra of the CHL-DNA complexes formed athigh pigment concentration (= 1/5) shows marked simi-
r = 1/10, are due to a major increase in the intensity oflarities to those of the CHL-DNA complexes formed with
DNA vibrations, upon helix destabilization (Fig.B). Sim-  low pigment contents (Fig. 1, 1/40). This indicates that the
ilar increases in the intensity of several DNA in-plane CHL-DNA complexation is mainly limited to the low pig-
vibrations were observed in the presence of high DESnent concentrations, where CHL aggregation does not occur.
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Additional evidence regarding the DNA-CHL complex- 1.13 X 10* M~*. The CHL-DNA interaction is accompa-
ation at low pigment concentrations comes from the majonied by a major reduction of the B-DNA structure in favor
spectral shifts of several chlorophyll vibrations at 17360f A-DNA. At high CHL concentration, a partial helix
cm ! (C=0 stretch), 1689 cm' (C=0 stretch), 1659 opening occurs, and the pigment aggregation does not favor
cm ! (C=0 and G=C stretch), and 1608 cnt (C=N and  CHL-DNA complexation.

C==C stretches) (Fujiwara and Tasumi, 1986; Bardwell and

Dignam, 1987) toward lower frequencies on DNA interac-

tion (Fig. 2). Other absorption bands at 1260, 1183, 1040The Natur}al Sciences and Engineering Research_Council of Ca}nada and
and 798 Crﬁl, in the free pigment spectrum are related tOFCAR (Quidec) are gratefully acknowledged for their support of this work.
the chlorophyll C-O and C-C stretches (Fujiwara and Ta-
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