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Hydrodynamic Properties of Rigid Particles: Comparison of Different
Modeling and Computational Procedures
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ABSTRACT The hydrodynamic properties of rigid particles are calculated from models composed of spherical elements
(beads) using theories developed by Kirkwood, Bloomfield, and their coworkers. Bead models have usually been built in such
a way that the beads fill the volume occupied by the particles. Sometimes the beads are few and of varying sizes (bead
models in the strict sense), and other times there are many small beads (filling models). Because hydrodynamic friction takes
place at the molecular surface, another possibility is to use shell models, as originally proposed by Bloomfield. In this work,
we have developed procedures to build models of the various kinds, and we describe the theory and methods for calculating
their hydrodynamic properties, including approximate methods that may be needed to treat models with a very large number
of elements. By combining the various possibilities of model building and hydrodynamic calculation, several strategies can
be designed. We have made a quantitative comparison of the performance of the various strategies by applying them to some
test cases, for which the properties are known a priori. We provide guidelines and computational tools for bead modeling.

INTRODUCTION

Because of the great number and variety of intramoleculaBwanson et al., 1978). In these studies, the nonpointlike
interactions that exist, biological macromolecules fre-nature of the beads was accounted for in the description of
quently have strongly preferred, practically unique, confor-hydrodynamic interactions by means of modified-Oseen
mations. As a consequence, in solution, they behave as rigigtnsors (Rotne and Prager, 1969; Yamakawa, 1970; &arci
particles with a well-defined, specific shape. Simple geo-de la Torre and Bloomfield, 1977a), whereas the total fric-
metric models, such as spheres, ellipsoids, or cylinders catipnal forces at each element, from which the properties are
in some cases, be used to describe the solution propertiesomputed, were assumed to act at the bead centers. Such a
when the overall shape is almost symmetric and one accepsituation is unimportant for models with many small beads,
a low-resolution description. However, there are many sitbut has a noticeable effect when bead size is close to the
uations in which simple models are inadequate, and othersverall size of the particle (Gaecide la Torre and Bloom-
in which one wishes to study fine structural details. field, 1978; Wilson and Bloomfield, 1979). This deficiency
The problem of predicting the hydrodynamic propertieswas corrected in later works (Géaaate la Torre and Rodes,
(sedimentation and diffusion coefficients, relaxation times,1983; Garca de la Torre, 1989; Gaide la Torre and
intrinsic viscosity) of rigid macromolecules or particles of Carrasco, 1998). Some reviews on theory and applications
arbitrarily complex shape was faced in the pioneering workf rigid bead models are available (Teller et al., 1979;
of Bloomfield et al. (1967a,b). These authors worked withinGaréa de la Torre and Bloomfield, 1981; Gaacde la
the framework of the Kirkwood—Riseman theory of macro-Torre, 1981, 1989, 1992).
molecular hydrodynamics (Kirkwood, 1954; Riseman and Different points of view can be adopted in the construc-
Kirkwood, 1956), which had been initially applied to very tion of bead models for a given particle. In a straightforward
simple models of identical elements (Riseman and Kirk-approach, one would fill the particle with spherical ele-
wood, 1950), and devised procedures for calculating thenents, the only requirement being that the size and shape of
properties for models composed of equal or unequal sphethe resulting model should be as close as possible to that of
ical elements (beads). Some approximations contained ithe particle. Small, finely shaped details can be properly
the early bead model treatments (mainly related to thenodeled if one uses a great number of beads of varying size.
hydrodynamic interaction effect) that came from the origi- As will be shown below, this approach works well enough
nal Kirkwood-Riseman theories were removed in subsewhen the hydrodynamic treatment of the model rigorously
quent works (McCammon, 1976; Géicde la Torre and describes the hydrodynamic interactions. Another alterna-
Bloomfield, 1977a,b, 1978; Nakajima and Wada, 1977tive for bead modeling is the Bloomfield shell-model ap-
proach. As hydrodynamic resistance takes place on the
surface of the particle, Bloomfield et al. (1967a) and Filson
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equations. Accordingly, the required computer time is pro-1994; Navarro et al., 1995), we present here an up-to-date,
portional toN?, and increases greatly witk. This conflicts compact summary of the theory, at the same time introduc-
with the need to use many beads for the reproduction of finéng the quantities and notation that will be used in the
structural details, or for building shell models. In the clas-following sections of this paper.
sical Kirkwood—Riseman theory, approximations in the For a particle of arbitrary shape, the hydrodynamic resis-
treatment of hydrodynamic interaction lead to simple equatance is expressed by means of & & resistance or friction
tions in which the hydrodynamic properties are computedensor,=. Similarly, the Brownian diffusivity is expressed
from double sums over the elements. This requires a numbdry a 6 X 6 diffusion matrix, %, which is related to=
of operations of the order df?, so that the computer time through the generalized Einstein relationsip= kT= 2.
needed for highN is much smaller than for the rigorous Both Z and% can be partitioned in X 3 blocks, which
treatments. correspond to translatiorit), rotation ¢r) and translation—
This conflict between the wish for high-resolution or rotation coupling ), so that
shell models, the computing time required for rigorous . T 1
calculation, and the errors that approximate calculation will g = ( De Dy ) - kT( St S ) _ (1)
introduce is another motivation of the present study. From Dy Dy

the preceeding considerations, it seems important thafhe syperscript T indicates transposition. Fromtttgock,

model building and hydrodynamic treatments should b&he transiational diffusion and friction coefficients are given
discussed jointly. Approximate methods may be the mos

suitable choice for models with many beads, although their

—
=—tr =rr

performance will depend not only on the shape of the D, = ¥3Tr(Dy), (2)
particle (Garca de la Torre et al., 1983), but also on which
kind of bead model is used. f,= KT/Dy, 3)

The outline of this paper is as follows. In the next section
we summarize the basic theory of bead modeling, includin

both the rigorous and the approximate equations (such flom the eigenvalues of th®, tensor, that we simply

summary is helpful because even the latest reviews are no}%present ab,, D,, andD,. The reciprocals of the, values
somehow outdated). In the third section, we proceed with, b s

the essential aspect of this paper, namely the description anére given by

‘'where Tr is the trace of the tensor. Similarly, the five
Yotational relaxation timeg,(k =1, ..., 5), arecalculated

differentiation of the various procedures that can be used for 1/m, = 6D, — 2A, (4)
model building: bead, filling, and shell modeling. The com-

bination of the two theoretical approaches, rigorous and 1/, = 3(D, + Dy), (5)
approximate, with the various modeling procedures gives

rise to a variety of computational strategies. In the next 15 = 3(D: + Do), 6)
section of this paper, we test the various strategies, applying 1/7, = 3(D, + Dy), @)
them to simple model particles, for which almost exact

results are already available, including the sphere and ellip- 1/75 = 6D, + 2A, (8)

soids of varying axial ratios. We also consider a typical
application of this type of modeling, studying properties Ofwhere
oIigomeri_c arrays of globular supunits. The .procedures for D, = %(D, + D, + Dy) 9)
model building and hydrodynamic computations have been
implemented in computer programs that will be of public and
domain, freely downloaded from our Internet site. These
programs are listed and succinctly described in the last A=

sections of this paper. These relaxation times determine the time (or frequency)
dependence in dynamic electrooptical or spectroscopic
properties, including electric birefringence and dichroism

THEORY AND COMPUTATIONAL PROCEDURES decays, fluorescence anisotropy decay, and nuclear mag-

Basic theory: Rigorous methods netic resonance relaxation. The way in which thealues

) ) ) enter in the calculation of those properties has been de-
'I_'he theoretical foundations of the hydrodynamic 9a|C“|?"scribed elsewhere (Géecde la Torre et al., 1997, 1999).
tions necessary for bead models have been described in agometimes, rotational dynamics is characterized in terms

series of publications ((,Ba'mde la Torre and Bloomfield, of just one relaxation timez, which is the harmonic mean
1977a, 1978, 1981; Gdecide la Torre and Rodes, 1983; ot the five r. values (Gar@ de la Torre et al., 1997)
Garca Bernal and Gafaide la Torre, 1980; Garzide la

Torre, 1989). Because a succinct and complete summary of 1N

the results can only be found in some specialized publica- mi=— >t (11)
tions (Garta de la Torre, 1989; Gdrzide la Torre et al., i=1

(D% + Dg + Dg - D]_Dz - D1D3 - D2D3)1/2. (10)
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It can easily be seen thaf, is related to the trace dd,,, radii, o; and oj,
R;R; of+ 0-2/1 RiR;
1 f; T; = (8m R-)‘l(l + 2t e ")).
™= 8D, 6kT' 12 o R~ R 3 R’
whereD, = ¥3Tr(D,,) andf, = KT/D,. This equation is only valid if}; = o; + o;. Otherwise,

The 6 X 6 diffusion tensofs, and particularly thét and ~ beads andj overlap and if they have the same radiusthe
tr blocks, depend on the origin to which they refer. Theexpression fofl;; is (Rotne and Prager, 1969)
proper choice is the so-called center of diffusibn(Harvey 1 IR 3 R.R.
and Garca de la Torre, 1980), which coincides with the T, (( _J)| + ")_ (18)
symmetry center for a centrosymmetric particle. Otherwise, 320 32 Rjo
9 is first calculated at some arbitrary origi@, and then the Now we define a Bl X 3N supermatrix’3 composed of

- 670

position vector oD with respect tdO is calculated as 3 X 3 blocks:
roo=1| Yoo Bi = (L/G)1, (20)
Zop where
Dyy + Dzz _ny _sz -1 Dyz _ Dzy _
_ rr_ ny ' Dxx +erzz _D;rz thrx _ D;rz gi - 67TT]00'i (21)
- r r r r tr tr 3 . .. .. . . .
—-D*¥ —-DY DY + D¥ DY — D is the Stokes’ law friction coefficient of beadwith radius

0, Mo being the viscosity of the solvent. This supermatrix is
(13)  then inverted to obtain aNBx 3N supermatrix,

and finally the blocks ofp are recalculated d. For thett €=R" (22)
block, the transformation is that is partitioned in 3x 3 blocks,C;;, which in turn gives
. the components oE as

Do = Di.o = Uop* Dy * Uop + Dy * Ugp — Ugp * Dy -
" ! " (14 Ee= > 2 G, (23)
i
where E,=32U-C, (24)
i
0 ~Zop  Yop
Uop = ( Zop 0  —Xop ) (15) Eer= 22U Cyr Y, (25)
~Yoo Xop 0 b
) ) where
The theory of hydrodynamic properties of bead models
provides a procedure to calculate the components.oA 0 -z vy
key concept in bead model hydrodynamics is the hydrody- U=\ 32 0 —x | (26)
namic interaction effect. The frictional force experienced by R 0

a bead depends ot only on its relative velocity and its gy thec; tensors, the intrinsic viscosity can be calcu-
friction coefficient, but also on the frictional forces that act lated directl

) i y. First, a particular point that is called the
at all the other beads. From the Cartesian coordinates angscosity center has to be located. The procedure is simple,
radii of theN beads in the model, the 8 3 hydrodynamic

. . X : et but the corresponding equations are lengthy and the reader
interaction tensors between beadmdj, T;(i,] = 1,..., s referred to Gara de la Torre and Bloomfield (1978).
N) are calculated. This tensor was originally formulated bythen the coordinates®(« = x, y, 2) are calculated with

Oseen as that origin, and the intrinsic viscosity is given by:
T = (8moRy) (I + RRy/RY), (16) uncorr _ Na 1 o
[71] MnO IE JE 15 % f CIJ rJ

wherel is the unit tensor an®;; is the distance vector

between elemenisandj. In the derivation of Eq. 16, it was 1 1

implicitly assumed that the size of the elements is much 50 X2 - 30 22 Crf
smaller thanR;. Rotne and Prager (1969) and Yamakawa ot B o* B

(1970) derived a new expression valid for interacting ele- 1

ments of equal size, which was later generalized by @arci + 20 > Cﬁ*ﬁ ), (27)
de la Torre and Bloomfield (1977a) for elements of different at B
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where N, is Avogadro’s number an#¥l is the molecular Basic theory: Approximate methods

weight of the macromolecule. . . . . . )
Summarizing, the computational route is as follows: fromSince the pioneering work of Kirkwood, (Kirkwood, 1954;

the Cartesian coordinates and radii of beads, we calculal:é'rkwoc’d an_d R|seme_1n, 1948), it has been known that
the T tensors (Eq. 17) and build tH# supermatrix (Egs. ydrodynamic properties can be calculated by means of
19 2'6) which is inverted (Eq. 22) to obtaifi The com- approximate, simple formulas that, at the cost of some error
po’nenté of= are calculated from Eqs. 23-25. The,is in the numerical results, offer the great advantage of having
inverted to obtairfs, which is partitioned into four 3<’3 much smaller computational requirements. All these ap-

blocks, from which the translational and rotational proper—prOXima"e equations involve just a double sum, over pairs of
ties aré calculated from Egs. 2—10 beads, of a simple term, which depends on the interbead

In Egs. 25 and 27, for rotation and viscosity, respectively,d's_llfﬁnces ar:jc_i thet_bead frlc'qoan_:cl)(efflug,nt ?r radlu. Kirk
the subscript uncorr stands for uncorrected, in the sense that e paradigmatic case Is Kirkwood's formula (Kirk-

the so-called volume corrections are not yet included, an&vlooféégmi for, (or D, |=ka/3) modified by Bloomfield et
therefore results from them may suffer from the deficiencie ( a) for unequal beads,

mentioned in the Introduction. These corrections will be EN
described below. i1 €

The hydrodynamics of the arbitrarily shaped rigid particle fi= - - (32)
simplifies for the case of axisymmetric particles, which is 1+ (67 EiN:l &)™ 2:\; E]N g9y !

also the case of the test particles used in the numerical

calculations that we report later. When referring to the main For rotation, similar formulas for individual coefficients
axes of an axisymmetric particle, the translational and ro{Hearst, 1962) have been generalized to calculate the full
tational tensors are diagonal. Thi&, only has the diagonal rotational friction tensor (Garaide la Torre et al., 1987).
componentd;" = f® = {® andf] = {& wherez isH the The resultis

symmetry axis. Similarly, we have componefitsaandf| for —uncorr _ (p —1 -1 .p. -1

Z,., D and D! for D, andD;* andD| for D,,. Individual S = Auncor + Auncon” B * Auncord (33)
Einstein relationshipsp = kT/f, hold for any of these or
components (for instancB! = kT/l). At this point, the

friction and diffusion tensors refer to the center of diffusion
calculated as described above for the general case. In mamyhere
practical instances, the particle has a center of symmetry
with which the hydrodynamic center should coincide. In N

this case, the Cartesian axes can be centered on it, so that Auncorr = _2 Gui- Ui, (35)
evaluation of the center of diffusion (Eg. 13) and subsequent =1

translation of the hydrodynamic tensors is not necessaryand

Finally, of the five relaxation times (Eq. 4—8), there are

Dtmcorr — kT(AJnlcorr + AJnlcorr' B- Auncorga (34)

only three distinct values given by NN
B=—-2> 245U~ T;- U, (36)
.= (6D;) "t = f/(6KT), (28) i

(29) where theU; matrices are given by Eq. 26. The bead
positions refer to an approximate hydrodynamic cender,

7= (2D} +4D) ' = [KT(2ff: + 4D, (30) 9ivenby

7, = (5D; + D)~ = [KT(5/ + 1D,

and the harmonic mean relaxation time is given by Eq. 12 foa= G D¢ (37)
with i
1 (2fF + 1A Finally, for the intrinsic viscosity, we adopt the expres-
= 3 (31)  sion of Tsuda (1970a,b).
Nam
andD, = (2D, + Du) [M]uncorr = ﬁ E R
The rotational diffusion of macromolecules is detected by i

the time or frequency dependence of electrooptic or spec-
troscopic properties, such as electric birefringence and di-
chroism, fluorescence anisotropy and nuclear magnetic res-
onance. The time functions can be calculated by combining
the rotational quantitiesDy, and ther,) and the physical AR + Rf)RR,-COSaij - R Ri2(1 + 7 coday)
quantities corresponding to each property, as described else-+ 10R° )]
where (Gar@ de la Torre et al., 1997, 1999). I

1 3 RRcosq;
Ly %4(2 zmaj(% (39

i i i
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Further details, such as particular expressions for axisym¥this must be kept in mind when using shell-type models

metric particles, or a performance analysis for various typ{see below), in which the particle’s volume is not filled by

ical models, are described elsewhere (Gade la Torre et beads. A frequent situation is that of models composed of

al., 1983, 1987). identical spheres. In such a case, the volume correction for
viscosity reduces to

Volume correction for rotation and [(m] = [ + [M]uncom (42)

intrinsic viscosity

, - where ], = 5N,V,/2M; is the intrinsic viscosity of a

It was soon clear that the r.otgnon_al frlgt.|on calculated fromsingle bead (monomer) with voluryg and molecular mass
Eq. 25 or 33, and the intrinsic viscosities calculated froli_ This particular result has been reported in previous

Eq. 27 or Eq. 38_” are in some way erroneous When app”e(}‘/orks (Bianchi and Peterlin, 1968; Yoshizaki et al., 1988;
to models in which one or a few spheres have a size closg\be et al., 1991).

to that of the whole particle. Actually, for a single sphere,

these equations give the erroneous resgfs™°" = 0 and

[Mluncorr = O instead of the Kirchoff and Einstein expres-

sions. Wilson and Bloomfield (1979) proposed a modeIingTYPES OF MODELING

strategy in which each bead in the model is replaced by #n a general sense, a bead model is any representation of a

cubic array, and the procedure has been successfully usedparticle as an array of spherical frictional elements. In all

other works (Gara Bernal and Gafaide la Torre, 1981; cases, individual, Stokes-law friction coefficients, are

Allison and McCammon, 1984). The evident drawback isassigned to each element, and the hydrodynamic interaction

that, as the number of elements increases by a factor of &etween them is accounted for by means of the Oseen or

the computing time of the rigorous procedure increases bynodified Oseen tensors.

8% = 512. This is unimportant for bead models with a few However, for any given particle, there are different strat-

subunits [for instance for oligomeric arrays of spheres (Garegies for building the hydrodynamic bead model. Indeed,

cia Bernal and Garaide la Torre, 1981)] but it may pose a different modeling methods have been used from the very

serious problem for other types of model. first works in this field (Bloomfield, 1966; Bloomfield et al.,
With this problem in mind, Gafairde la Torre and Rodes 1967a,b; Bloomfield and Filson, 1968).

(1983) developed (from rigorous hydrodynamics) a simple, We shall refer hereafter to three different classes denoted

additive correction for the rotational friction tensor, that wasas bead model(in strict sense)shell model and filling

successfully tested in various cases. The so-called volummodel(see Figure 1).

correction for the rotational properties is an additive contri-

bution to the diagonal components of the rotational friction

tensor, Bead model

2, = EU"T+ 6moV, (39) We shall keep the term bead model, in a strict sense, for a
_ _ . . _ modeling method in which the particle is represented by as
wherel is the unitary tensom, is the solvent viscosity and few beads as possible, identical or different, and occupying

Vis the volume of the model, equal to approximately the volume of the particle. The array of beads
should have an envelope that resembles the shape of the
4 N particle as closely as possible. A schematic illustration in
V=37 20, (40)  two dimensions is shown in Fig.A. Another trivial exam-

ple is a string of colinear spheres as the bead model of a rod.
A classical example of bead modeling is Bloomfield's

For the intrinsic viscosity, a similar correction is possible. Model for T2 bacteriophage (Bloomfield et al., 1967b)

That possibility was hinted at in a preliminary publication Shown in Fig. 2. o _

(Garéa de la Torre, 1989) and included in the HYDRO Many other examples are Qescnbed in the literature; one
computer program (Gai@ide la Torre et al., 1994). In a of the earliest exam_ples belng Bloomfield’s model for a
recent work, we have provided the theoretical justification®0Vine serum albumin (Bloomfield, 1966) or the model for
and tested the correction in various instances (@adeila e T-éven bacteriophage, in which the massive head is
Torre and Carrasco, 1998). As in the case of rotationa]EPresented by just one large sphere, and the rodlike por-

friction, the correction consists of adding a simple term,

where theo; are the individual bead radii.

tions by a string of smaller beads (Garae la Torre and
Bloomfield, 1977c). When modeling elongated structures,
5NAV,, the essential criterion is that the model has the same length
[n] =50 + [Mlincor (41)  and volume as the particle. This criterion is usually followed
when modeling rods (Hagerman and Zimm, 1982) and has
We recall thatV is the total volume of the bead model, also been used for the modified ellipsoid model (Gate
understood as the sum of the volumes of all the spheresa Torre and Bloomfield, 1977a,b, 1978).
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FIGURE 2 Bloomfield’'s bead model for T2 bacteriophage, as proposed
by Bloomfield et al. (1967b).

Shell model

For a compact, solid particle, hydrodynamic friction occurs
actually on its surface. In the case of a real macromolecule
such as a globular protein, this may indeed be the case,
because the interior of the protein is inaccessible to solvent.
Even if the macromolecule is somehow porous or perme-
able to the solvent, the fluid inside it is trapped, moves
along with it, and belongs to the hydrodynamic particle. Itis
therefore the particle’s surface that counts.

With this idea in mind, Bloomfield et al. (1967a) and
Filson and Bloomfield (1967) proposed the shell model, in
which the particle’s surface is represented by a shell-like
assemblage of many small, identical frictional elements.
The bead radiusg, can be taken such that neighboring
beads are tangent (although some minor voids and overlaps
are acceptable). The limit of a continuous shell (smooth
FIGURE 1 Twp-dimensional analogies of the varigl_Js model typ&ks. ( surface) is approached by increasing the number of ele-
20?31?;?2 o(énel.s"m sense)B) Shell model. €) Filling model. ©) -y otq while decreasing the size, and the properties calcu-

lated for the shell will approach the properties of the particle
being modeled. Calculations can be made by varyingnd
the results can be extrapolated to the> 0, N — oo limit.

The above mentioned strategy of cubic substitution (Wil- Examples of shell modeling were given by Bloomfield et
son and Bloomfield, 1979; GéeBernal and Gafaide la  al. for spheres and ellipsoids (Bloomfield et al., 1967a;
Torre, 1981) can be included within the category of beadrilson and Bloomfield, 1967; Bloomfield and Filson, 1968).
modeling, in which one, a few, or all the beads can beThis type of model was also used by Tirado and Gads
replaced. For instance, for the T2 model in Fig. 2, it isla Torre for calculating properties of short cylinders with a
possible to simply replace the huge bead representing th@oderate length-to-diameter ratio (Tirado and Gade la
phage head. In other models, consisting of few beads oforre, 1979, 1980; Tirado et al., 1984).
similar size, all the beads will be replaced. Such would be A schematic representation of shell modeling is presented
the case of the dimeric and oligomeric structures that will ban Fig. 1 B. Some procedure has to be developed for placing
used later in this paper. the spherical beads (specifying their coordinates) on the

As mentioned above, there is an alternative strategy, theurface, so that each bead is nearly tangent to its neighbors.
cubic substitution, which is intended to remove some of theDne possibility is for the beads also to be tangent to the
difficulties involved in rotational and viscosity calculations. inner face of the surface. Alternatively, beads can be cen-
In this procedure, each bead is replaced by a cubic array déred on the surface (our choice), or tangent to the outer
smaller spheres of a radius such that their total volume is théace; the small differences among these possibilities must
same as that of the parent sphere. vanish in the limit of very small bead size. The modeling
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procedure is particularly easy for revolution bodies, likebut, as shown below, they may introduce appreciable errors;
ellipsoids or cylinders, for which beads can be placed at théhe rigorous hydrodynamics requires much larger, but still
parallel circumferences defined by planes perpendicular taccessible amounts of CPU time.

the main symmetry axis. Thus, by stacking rings of beads of

varying ring radius, we can build smooth shell models. An
example is presented in Fig A3

Itis evident that the finest details of an irregular, arbitraryIn an alternative modeling method, the volume occupied by
shape can be modeled if one increases the resolution, &se particle can be filled by elements, which is the proper
determined by the element radias The adequate compu- procedure for some properties that depend specifically on
tational procedure consists of repeating the calculations fothe particle volume. Such is the case for the angular depen-
models with decreasing, and extrapolating the results to dence of radiation (light or x-ray) scattering from the par-
the shell-model limit,c — 0. However, this substantially ticle. An evident example is the radius of gyration, that
increases the computing time necessary for calculating théetermines the angular dependence at small scattering vec-
hydrodynamic properties. The number of elements requiretbrs. In a commonly used procedure for predicting scattering
to cover the surface area of the partickejs given byN = diagrams, the particle is filled with scattering elements and,
cS(4ma?), wherec < 1 is some numerical factor according from their coordinates and size (the same information that is
for the voids between touching spheres. The computer timesquired for hydrodynamics), the scattering structure factor
grows as\? or N3, depending on the hydrodynamic methodis calculated using the Debye formula (Muller et al.,
(approximate or rigorous) used, and it will therefore in-1983a,b; Muller, 1983; Pavlov and Fedorov, 1983; Pavlov
crease with decreasingaso “ or o~ 6, respectively. As an et al., 1986).
orientation for the reader, we give the following computing The filling model can be programmed as follows. A
times in a Silicon Graphics MIPS R1000 180MHz CPU, for portion of a regular lattice is spatially superimposed on the
a structure witiN = 500, about 30 minutes for the rigorous particle. The dimensions of such a portion are taken as the
methods and about 2 seconds for the approximate, doubleaaximum dimensions of the particle in three mutually per-
sum methods. The approximate methods are much fastgpendicular directions, thus assuring that the whole particle’s
volume is covered by the network. An algorithm specifying
the shape of the particle is required; the task of which will
simply be to decide whether or not a given point in space is
within the particle. This is applied to all the nodes in the
lattice, and model elements are placed at those nodes that
belong to the particle. Here, the elements are beads of radius
o. A simple cubic lattice would suffice, but, for the calcu-
lations reported in this paper, we have preferred a hexago-
nal, closest-packing lattice. A schematic picture of the fill-
ing model is presented in Fig.Q.

As mentioned above, the filling model is, in principle,
inefficient for hydrodynamic calculations because it in-
cludes internal beads that do not contribute to friction. For
a given particle volume, the number of beads needed to fill
it is N = 3qV/(4ma®), whereq < 1 is a numerical factor
accounting for the voids between spheres. Thus, the com-
puting time grows dramatically with decreasiogso° or
o~ ®, for the rigorous and the double-sum calculations, re-
spectively. Furthermore, we shall describe later the compu-
tational deficiencies associated with filling models. How-
ever, such models do have some advantages. For example,
for particles of complex shape, programming is simpler than
(b) with a smooth shell model. In addition, it may be advanta-

geous to use the same model for both scattering and hydro-
dynamic calculations if the properties of both types are
available.

Based on the filling model, an alternative model, which
avoids the hydrodynamic problems but which is still com-
patible with scattering, can be proposed. In such a model,
the innermost beads are simply removed, so that we are left

FIGURE 3 Shell models for an ellipsoid with axial ratp= 4. (o)  With a shell model in which the particle surface is described
Smooth shell. B) Rough shell. in a rough manner, with some discontinuities (edges or

Filling model and rough-shell model
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corners of the lattice) that will become less important wherntwo-fold interest. Apart from the theoretical aspects, the
the resolution is increased by decreasingVe shall referto  conclusions can be applied to particles that are compact and
this as the rough-shell model, which is schematically rep+ot too elongated, and particularly to globular proteins.
resented in Fig. D. A model of this type for a revolution Smooth shell models for a sphere are easily programmed
ellipsoid is displayed in Fig. B. At the limit wheno — 0, by stacking rings of beads of varying ring size (in analogy
the model converges to the shell model of the smoothwith parallels on the Earth’s surface). (See Fig. 3). Filling
surface. The computing time depends on the number o&nd rough shell models are extracted from a closest-packing
beads or the resolution required, just as it does with théattice, as described above. For the three models, calcula-
smooth shell model. tions are carried out using both the rigorous procedures and
The practical implementation of this procedure is ex-the approximate formulas summarized above. The calcula-
tremely simple. A bead is considered internal when it istions are made for a series of decreasing bead diameters,
completely surrounded by other beads; the number of beadmd the results are extrapolated to zero bead size, using
that are in touch with it (at a distance equal to)2s linear or, in most cases, quadratic extrapolation. For the
maximum, equal to the coordination number of the lattice rigorous method, the computer time needed restricted the
which equals 12 for the hexagonal lattice that we use. In thealculation to models with several hundred beads, whereas
modeling protocol, a filling model is first constructed. the double-sum formulas could be evaluated for many thou-
Eventually, the radius of gyration and other scattering resand beads.
lated properties can be calculated at this stage. Next, the Ratios between the calculated translation friction coeffi-
beads that, according to this criterion, are internal are reeient of the model and the exact value of a sphere of radius,

moved to obtain the rough-shell model. a, f(exact)= 6mmqa, are presented in Fig. 4. It is clear that
both smooth and rough shell models give the exact result at
RESULTS AND DISCUSSION the limit of zero bead size. The extrapolated values for the

approximate methods are as good as those from the rigorous
In this section, we use models of the various types, to whiclprocedure. For the filling model, the rigorous calculations
we apply both rigorous and approximate hydrodynamicextrapolate to the correct result, whereas the approximate
computation. This is done for simple particles whose hy-method fails remarkably in this case.
drodynamic properties are perfectly known, and can be A similar analysis can be made for the rotational friction
calculated from exact, analytical expressions. The perforcoefficient, whose exact value for a sphere is given by
mance of the procedures for the different properties can bg(exact) = 8mna® = 610V, WhereV, is the sphere’s
expressed in terms of the ratio of the calculated property tgolume. Again, we note that the approximate results extrap-
the exact values, or as the percent deviation, olate correctly to the same limit as the rigorous results (see
propertycalc) _Fig. 5). For rotation, we can chooge whether or not to
)_ (43) include the volume correction. In Fig. S0f), one can
propertyexact — 1 appreciate the effect of the volume correction for the shell

These deviations are to be judged comparatively to thénodel. For discreter, the corrected results are somewhat
precision of the experimental methods used to measure tH¥gher than the uncorrected (the correction is positive). The
hydrodynamic properties. Experimental errors and numeriinfluence of the volume correction superimposes on the
cal uncertainties in final values of the properties depend offects of the modeling procedure and finite bead size, and
a variety of circumstances, but if we say that typical valueghe resulting ratios are more or less close to unity, depend-
are, very roughly, of up to 2% for translation (ultracentrif- ing on the case. However, at the shell-model limit, the
ugation and light-scattering), up to 4% for rotation, and upcorrection vanishes, and both corrected and uncorrected
to 8% for intrinsic viscosity, the deviations in the modeling results converge to the exact value. This is quite simple to
results that would fall below these percentages would béinderstand. If the surface area of the partifieis covered
considered as not relevant (different estimates for the typiby nearly touching beads of radies their number will be
cal errors would not change the overall conclusions). N = cS(4mo”), wherec is some numeric constant that

We first consider the simplest case of a spherical particleaccounts for the voids between tangent spheres. The total
and discuss the results in terms of the type of model. Theryolume of theN beads will then bé/,,, = cSo/3 (we recall
we consider ellipsoidal models, which are useful for show-thatV,,, in Egs. 37 and 40 is the volume of the model, not
ing the errors introduced by the approximate methodsthat of the particle). Therefore, as the bead size is decreased,
which are more noticeable for elongated shapes. We alsig., o — 0, we haveV,, — 0; in other words, the correction
consider a dimer and some oligomeric structures. vanishes at the limit of an infinitely thin shell. This argu-
ment is not exclusive of the spherical geometry; rather, it
can be generalized to particles of arbitrary shape.

In Fig. 5 (bottom), we display rotational results for the
filing model. It is evident that only the rigorous results,
An analysis of the results for the spherical model and thosevithout the volume correction, are adequate. It has already
for different models using a hydrodynamic approach has &een mentioned that internal beads are hydrodynamically

deviation(%) = 10(<

Spherical particles: Shell models versus filling
models, and adequacy of the volume correction
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FIGURE 4 Ratios between the calculated translation friction coefficient Cla

of the modelf,, and the exact value of the sphere.
FIGURE 5 Ratios between the calculated translation friction coefficient

of the modelf,, and the exact value of the sphere.

shielded and cannot contribute to the hydrodynamic propvolume of the particley,; for the closest-packing construc-
erties because they do not experience friction. When rigortion, the fractiong = V,/V,, is @ = 0.74. Then the total
ous hydrodynamic interaction is used, the shielding effect isesult for the corrected coefficient is found to he= (1 +
accounted for properly [see Gaaale la Torre and Bloom- )61V, and the ratio to the exact value ist1q = 1.74,
field (1977a) and Schmitz (1977)] and internal beads do notvith an error of 74%, which coincides very well with that
contribute. Therefore, the inclusion of internal beads in thound numerically from Fig. 5kotton). The same kind of
filing model is not reflected in the results. However, if the reasoning can be applied to a particle of any shape. There-
hydrodynamic interaction is described in an approximatefore, it is clearly demonstrated that the volume correction is
fashion, shielding is incomplete and the internal beads proinadequate for filling models.
vide a nonzero, incorrect contribution that makes the results Numerical work analogous to that for rotation has been
worse, which is why the approximate methods give erronedone for viscosity, using the rigorous and approximate
ous limits for the filling model (see Figs. 4 and Botton)). procedures for the three types of model. The calculated-to-
The inclusion of volume correction in the filling model exact ratios follow the same trend as for rotation. In fact, the
adds further errors. It is clear from Fig. Batton) that the  corresponding curves are very similar to Figs. 4 and 5 and
results are about twice the exact ones. This can be explainede not reproduced here. In summary, the effects of model-
as follows. Thef"°°"values for shell models, and for the ing procedure, hydrodynamic treatment, and volume correc-
filing model with rigorous hydrodynamics, are already tion are the same as for rotational diffusion.
exact without the volume correction, as justified above. The The conclusions from this study of the spherical particle
volume of the filling modelV,, is a fraction close to 1 of the will be listed and summarized along with those from other
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models at the end of this paper. We simply remark that théhe exact results. These departures are larger than the un-
use of filling models should be avoided and that the volumecertainties associated to the extrapolations, which indicates
correction is unnecessary for shells. Thus, both strategiethat the approximate methods introduce some errors, albeit
will be discarded in the study of the following models. not large, in this case.

Dimer

. . . Ellipsoids
A simple model for which nearly exact, theoretical results P

are available is the dimer, which is composed of two touch-The hydrodynamic properties of revolution ellipsoids, with
ing spheres. The most interesting situation is when the tweemiaxe®, b, anda, and axial ratigp = a/b are known from
spheres are of the same size; because this is when tigxact formulas (Perrin, 1936; Simha, 1940). The ellipsoid
difference in hydrodynamic behavior from that of a spher-has therefore been used since the earliest studies (Bloom-
ical particle is greatest. field et al., 1967a; Filson and Bloomfield, 1967; Garcie

For the dimer of identical spheres, practically exact re-la Torre and Bloomfield, 1977a, 1978) as a benchmark for
sults are available for translational coefficients (Swanson etesting modeling and computational strategies for non-
al., 1978; Goldman et al., 1966), rotational coefficientsspherical particles. Our main purpose now is to test the shell
(Davis, 1969), and intrinsic viscosity (Wakiya, 1971; Bren- modeling procedures, although, for the sake of complete-
ner and O’Neil, 1972). For translation and rotation, both theness, we will also summarize previous results for bead
coefficients associated to the center-to-center line (parallefpnodels.
and a perpendicular axes are available. The overall transla- Bead modeling of prolate ellipsoids has been described in
tional coefficient isf, = 1/(1f] + 2/f"), and an analogous detail in a series of publications. For a prolate ellipsoid, the
expression gives the rotational coefficigptwhich is re- bead models consists of a string of colinear, touching beads,
lated to the mean harmonic relaxation time. We have apwith sizes decreasing from the center toward the ends; the
plied our diverse modeling and computational strategies tdeads are inwardly tangent to the surface of the ellipsoid
the dimer, using the various strategies, including the smootkBloomfield et al., 1967a). Using the rigorous hydrodynam-
shell model depicted in Fig. 6. The results for the variousics, it was shown that the properties of long prolate ellip-
hydrodynamic properties are listed in Table 1. soids were accurately predicted for a volume-equalized

In bead modeling, the volume correction seems to imbead model (Gafal de la Torre and Bloomfield, 1977a,
prove the rotational calculation, especially rotation alongl978). This illustrates one of the key criteria for bead
the center-to-center axis. However, the performance is besmodeling: for elongated shapes, the bead model must re-
with results extremely close to the exact ones, when th@roduce both the length and the volume of the particle. In
cubic substitution is used. With shell models, the results thagontrast, forp close to 1, the models failed to predict
we obtain with the smooth-shell and rigorous calculationgotational coefficients and intrinsic viscosity. More recently,
are excellent, with deviations from the exact ones of aboutt has been shown that the introduction of the volume
1% for most properties. corrections (Eq. 39—41) removes this deficiency and gives

If the shell model is calculated with the approximatea reasonably good prediction of the properties over the
hydrodynamics, the results for translation, parallel rotationwhole range of axial ratios. For more details, see our recent
and intrinsic viscosity show departures of about 5% frompublication on the volume correction (Gaicde la Torre
and Carrasco, 1998). In contrast, bead models of ellipsoids
have also been used to test the approximate hydrodynamics
with worse results: the rotational coefficients and the intrin-
sic viscosity for highp are in error by 15-25% (Gdecde la
Torre and Bloomfield, 1978; Gdrxide la Torre et al.,
1987).

In the present study, we have constructed both smooth
and rough shell models for ellipsoids, examples of which
are displayed in Fig. 3. We first consider the results for
translational diffusion coefficientf,. In Fig. 7A we note
that, in all four cases, the deviations oscillate about zero,
and the average absolute deviation is smaller than 2%. The
performance of the smooth shell model with rigorous hy-
drodynamics is particularly excellent with the small fluctu-
ations most probably attributable to the extrapolations. We
therefore conclude that the shell-modeling predictsftioé
[ ellipsoids correctly, even with approximate hydrodynamics.
o A similar analysis of the intrinsic viscosityy] result leads
FIGURE 6 Smooth-shell model for a dimer of identical spheres.  to the results displayed in Fig.B. The errors from rigorous
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TABLE 1 Intrinsic viscosity and rotational and translational coefficients for a dimer

Hydrodynamic Volume
Modeling Strategy Calculation Correction i ], filfiy foolfi s fl gty fholfy folfa [ml/[m)s

Bead Rigorous NO 1.230 1.392 1.333 0.00 2.67 0.00 0.64
Bead Rigorous YES 1.230 1.392 1.333 2.00 4.67 3.23 1.64
Bead cubic substitution Rigorous NO 1.276 1.458 1.392 1.77 3.79 2.75 1.34
Smooth shell Rigorous NO 1.286 1.446 1.388 1.83 3.75 2.78 1.37
Smooth shell Approximate NO — — 1.336 1.84 3.75 2.81 1.30
Exact — — 1.290 1.449 1.392 1.78 3.76 2.74 1.39

hydrodynamics still fluctuate about zero, although theirimate formula show a systematic error of close to 10%. We

absolute values are larger than those obtainef],faiith an ~ conclude that the rigorous method gives the corrgttfgr

average of 2—-3%. In contrast, the results from the approxthe shell models of ellipsoids, whereas the approximate
double sum does not. It is interesting to note that the error
of the approximate method for the shell model of the ellip-

12 soids is very similar to that found earlier with beads models
I ® Rigorous, smooth shell (Garca de la Torre and Bloomfield, 1978).
8 L O Approximate, smooth shell . . . . .
i A Rigorous, rough shell As described in subsection Basic theory: Rigorous meth-
4L A Approximate, rough shell ods, the rotational dynamics can be characterized in terms of
A 6 different quantities. For the presentation of data in Fig, 7
0 - e $ g f ° ﬁ we have chosen the mean rotational friction coefficient (Eq.
- O 31), which is related to the harmonic mean of the relaxation
-4 - 0 times (Eqg. 12). The errors fdy in the four cases show no
8 i systematic trend. The fluctuation due to extrapolation and
| (a) model imperfections are larger than those for the other two
12 | ! I properties although the average error is around zero. Similar
12 plots (not shown) for other rotational quantities show the
I (b) same situation, which leads us to conclude that the rota-
S 8 i tional quantities of ellipsoids are predicted correctly with
T a4l A N both rigorous and approximate hydrodynamics. This is in
'g | A agreement with a result with bead models of a rod, for
T 0 |- ® A ® ° ° which the rotational coefficient from the approximate
S - ° A method is correct at high aspect ratio (Garde la Torre et
o “4- i al., 1987).
o i A A
o gL o A N
12 L o ? Q ! OLIGOMERIC STRUCTURES
12 Oligomeric structures, in which a few elements are arrayed
8 i © in a polygonal or polyhedral array, are typical examples of
i bead modeling (Bloomfield and Filson, 1968; Garde la
4L . A Torre and Bloomfield, 1978; Gdi@Bernal and Garaide la
° A 4 o o Torre, 1981).
0L e ¢ o ° For more compact structures, anomalies of the type that
- o o A motivated the volume correction have been detected. Before
4 - i a the proposal of the volume correction, Gar@®@ernal and
8 i Garcea de la Torre (1981) used the cubic substitution for
| A these structures and tabulated results of various properties
-12 [ | ‘ ! ‘ ‘ for a number of geometries, which have been widely used

0 2 4 6 8 10 12 14 (Garéa de la Torre, 1989). When the volume correction was
. : applied to these structures (Gade la Torre and Carrasco,
Axial ratio, p 1998) the results were not entirely satisfactory.
In the present work, prior analyses of the oligomeric
FIGURE 7 Percent‘ deviation f_rom _the exact vaIL_Jes of the results fromstructureS are complemented with shell-model calculations.
shell model ca_lcul_atlons for eII|p50|ds_;. Cases with smc_)oth and rothAlthough no exact results are available for these structures
models, and with rigorous and approximate hydrodynamigsT¢ansla- ) ; !
tion friction coefficient. B) Intrinsic viscosity. C) Rotational friction ~among the various strategies, the shell model and the cubic

coefficient. substitution are probably the most accurate. Because the
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shell model results still include some imperfections due to The calculation of the basic propertiesD,, [7], the five
extrapolation, we chose as the reference values in this case etc.) using rigorous hydrodynamics, the previously pub-
those obtained for bead models with cubic substitution. Tdished HYDRO (Gar@ de la Torre et al.,, 1994) (file:
illustrate the performance of the various methods, we jushydrox_x.f; where x denotes the version number) com-
consider a set of hexamers with different geometries anguter program can be used. During the course of this work
therefore varying compactness, from a linear string to arwe have developed various computer program that are de-
octahedron. The results for translation, rotation, and viscosscribed below.
ity are given in Table 2. It is well clear that the results from APPROX (file: hydosu_x.f) is a subroutine that imple-
the cubic substitution are almost identical to those from thenents all the approximate double-sum formulas. Its input
shell model with rigorous hydrodynamics, and we expectdata and the computed quantities are the same as those for
that both, in turn, should be nearly exact. The plain (unsubHYDRO. The use of the two subroutines is very similar.
stituted) bead model gives reasonable results for translatiolBased on the experience obtained in the present work con-
but shows the well-known failure for rotation and viscosity. cerning the volume correction, which was an integral part of
Finally, it is interesting to note that, unlike in the case ofthe calculations with older versions of HYDRO, we now
the sphere or the ellipsoid, the shell model with approximatéeave that correction as a user-decided option.
hydrodynamics gives bad results in the present case. The The most novel software pieces are several subroutines
spherical particle and the octahedral array of spheres have intended to build shell models and the intermediate filling
common the fact of being isometric; tensors representingnodels used for scattering-related properties. For an arbi-
physical quantities, like the inertia and friction tensors, haverarily shaped particle, the intermediate filling model is built
three identical eigenvalues. In some regards the two partby RFILL (file: rdfill_x.f), from which one can calculat®,
cles have an aspect ratio of unity. However, the shell modeind the scattering-related properties using CAFILL (file:
with approximate calculation performs well for the spherecafill_x.f). The rough shell model to be used for hydrody-
but badly for the octahedral array, perhaps because theamics is then built by using subroutine RSHELL (file:
sphere and the ellipsoid are simple convex bodies, whereashell_x.f). We have even designed a program, SHELL-
the oligomeric arrays are geometrically more complex, withSYM (file: shesym_x.f) that constructs smooth shell models
holes, convex, and concave parts, etc. Such structural feger the particular (although frequent and/or useful) case of
tures may influence the performance of the shell model withparticles composed of axially symmetric blocks (spheres,
approximate hydrodynamics more than the overall aspeatylinders, or ellipsoids). Finally, we have a subroutine,
ratio of the particle. SH_RG_EX (file: extrap_x.for) which drives a model-
building subroutine along with HYDRO or APPROX, to
perform calculations with variable and extrapolate to the
COMPUTER PROGRAMS shell model limit.
The computer program used to produce the objects in Figs. All those pieces of software are complemented by an-
2 and 3 is the POLYRAY raytracing software, which is of other subroutine, SOLPRO, which takes the bead model
public domain and can be found in the Internet (see, fodata and the basic properties calculated by HYDRO, and
instance, http://ftp.tu-clausthal.de/pub/TEXT/mirror/pov- calculates a number of more complex solution properties,
ray/polyray). both dynamic quantities such as nuclear magnetic resonance

TABLE 2 Results for the hydrodynamic properties of hexameric arrays

Trigonal
Strategy Hexagon Prism Octahedron Linear String

f(6)ff(1)

Cubic substitution 1.13 1.05 1.02 1.29

Bead model 1.07 (6) 0.96 (8) 0.93(9) 1.26 (2)

Shell model, rigorous 1.13(0) 1.04 (0) 1.02 (1) 1.3

Shell model, approximate 1.06 (6) 0.94 (11) 0.89 (13) 1.23(5)
f(6)/f (1)

Cubic substitution 2.23 1.61 1.47 1.96

Bead model 2.67420) 2.11 ¢31) 2.22 (51) 2.42 (-23)

Shell model, rigorous 2.21(1) 1.60 (1) 1.46 (1) 2.01(3)

Shell model, approximate 2.05(8) 1.52 (6) 1.26 (14) 1.95(1)
[1(6)/[](1)

Cubic substitution 15.3 11.6 10.9 28.9

Bead model 18.9+(24) 16.5 (-42) 15.9 (-46) 309¢7)

Shell model, rigorous 15.6 (2) 11.5(1) 11.1 (1) 28.9 (0)

Shell model, approximate 13.1 (14) 10.5(9) 9.8 (10) 24.5 (15)

Results of the hexamers (6) are normalized to those of the monomer, i.e., of the constituting spheres.
The numbers in parentheses are the percent deviation from the cubic substitution results.
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relaxation, transient electric birefringence, etc.) as well agloomfield, V. A., W. O. Dalton, and K. E. V. Holde. 1967b. Frictional
other equilibrium properties including Scattering form fac- cpefficien_ts of multisubunit structures. 1. Application to proteins and
" . . . viruses.Biopolymers5:149-159.

tor, govolume, .and many dlmensmnless combinations O(%Ioomfield, V. A, and D. P. Filson. 1968. Shell model calculations of
solution properties. More details on SOLPRO can be found" transiational and rotational frictional coefficients.Polym. Sci. Part C.
elsewhere (Gafaide la Torre et al., 1997, 1999). 25:73-83.

All these software modules are of public domain and carBrenner, H., and M. E. O'Neil. 1972. On the Stokes resistance of multi-
be downloaded from the Internet from our web site, http:// particle system in a linear shear fieldhem. Eng. Sci27:1421-1439.

Davis, M. H. 1969. The slow translational and rotation of two unequal
leonardo.fcu.um.es/macromol. spheres in a viscous floiChem. Eng. Sci24:1769-1776.

Filson, D. P., and V. A. Bloomfield. 1967. Shell model calculations of
rotational diffusion coefficientsBiochemistry 6:1650—-1658.

Garce Bernal, J. M., and J. Gaecde la Torre. 1980. Transport properties

Summarizing the findings of the various parts of the present and hydrodynamic centers of rigid macromolecules with arbitrary shape.

; ; Biopolymers.19:751-766.
StUdy’ the main conclusions are: Garca Bernal, J. M., and J. Gaecde la Torre. 1981. Transport properties

Bead models in the strict sense (With few elements) of oligomeric subunit structure®iopolymers20:129-139.
[ )
Garca de la Torre, J. 1981. Rotational diffusion coefficiemtsMolecular

provide. a convenient way of C_aICU|ating hydrOdynam?C Electro-Optics. S. Krause, editor. Plenum Press, New York. 75-103.

properties. The volume correction provides an easy, iNGarca de la Torre, J. 1989. Hydrodynamic properties of macromolecular
expensive way of correcting the Kirkwood—Riseman assembliesn Dynamic Properties of Macromolecular Assemblies. S. E.
treatment of rotation and viscosity. Harding and A. J. Row, editors. The Royal Society of Chemistry, Cam-

The hvdrod . ti lculated f dels of bridge University Press, Cambridge, U.K. 3-31.
[ ]
€ hydrodynamic properties cajculated from models o Garcm de la Torre, J. 1992. Sedimentation coefficients of complex biolog-

the filling type can be ex'[_rem.ely erroneous, par'FiCU|ar|y ical particles.In Analytical Centrifugation in Polymer Science and
when the volume correction is applied for rotation and Biochemistry, S. E. Harding, A. J. Rowe, and J. C. Horton, editors. The
viscosity, and when the properties are calculated from the Royal Society of Chemistry, Cambridge University Press, Cambridge,

imate. doubl f | U.K. 333-345.
approximate, dou ?_Sl.jm ormufas. Garca de la Torre, J., and V. A. Bloomfield. 1977a. Hydrodynamic
e The volume correction is not necessary for shell models. properties of macromolecular complexes. I. TranslatBiopolymers.

e Shell-model calculations with the approximate double- 16:1747-1763.
sum formulas give the exact results for a spherical parGarca de la Torre, J., and V. A. Bloomfield. 1977b. Hydrodynamic
ticle. Thus the approximate methods (APPROX) with properties of macromolecular complexes. Il. Rotati@opolymers.

hell-modeling is potentially useful f ly spherical o oo T8
Shell-modeling 1S potentially usetul for nearly spherica Garcm de la Torre, J., and V. A. Bloomfield. 1977c. Hydrodynamic

particles, such as some globular proteins. Nonetheless, aproperties of macromolecular complexes. Iil. Bacterial virusaspoly-
separate calculation with the rigorous procedures (HY- mers.16:1779-1793.
DRO) should also be made, and the properties calculate@arca de la Torre, J., and V. A. Bloomfield. 1978. Hydrodynamic prop-

by double extrapolation, as in FigAdandB and 5A andB erties of macromolecular complexes. IV. Intrinsic viscosity theory with
! ’ applications to once-broken rods and multisubunit proteBispoly-

. . . . mers.17:1605-1627.
These conclusions will provide a useful guidance for | , .

. . . . . Garca de la Torre, J., and V. A. Bloomfield. 1981. Hydrodynamic prop-
refme_d or novel calculation _Of properties, _by application of ~ gpies of complex, rigid, biological macromolecules. Theory and appli-
the different model strategies, for a variety of structures cations.Quart. Rev. Biophysl4:81-139.

ranging from the regular shapes of the oligomeric, multisub-Garéa de la Torre, J., and B. Carrasco. 1998. Intrinsic viscosity and

i i ; rotational diffusion of bead models for rigid particlésur. Biophys. J.
unit proteins to the oddly shaped structures of bacteriophage. 27540 BET
Garcm de la Torre, J., B. Carrasco, and S. E. Harding. 1997. SOLPRO:

- Theory and computer program for the prediction of SOLution PROper-
We acknowledge support by grant PB96-1106 from the DifecGleneral ties of rigid macromolecules and bioparticle€sur. Biophys. J.25:

de Enséanza Superior. B.C. is the recipient of a predoctoral fellowship 351_372.
from the same source.

CONCLUSIONS

Garcm de la Torre, J., S. E. Harding, and B. Carrasco. 1999. Calculation of
NMR relaxation, covolume and scattering-related properties of bead
models using the solpro computer prograBur. Biophys. J.28:
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