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ABSTRACT The x-ray crystal structures of the cyanide derivative of Lucina pectinata monomeric hemoglobin | (L. pectinata
Hbl) and sperm whale (Physeter catodon) myoglobin (Mb), generally taken as reference models for monomeric hemoproteins
carrying hydrogen sulfide and oxygen, respectively, have been determined at 1.9 A (R-factor = 0.184), and 1.8 A (R-factor =
0.181) resolution, respectively, at room temperature (\ = 1.542 A). Moreover, the x-ray crystal structure of the L. pectinata
Hbl:cyanide derivative has been studied at 1.4-A resolution (R-factor = 0.118) and 100 K (on a synchrotron source A = 0.998
A). At room temperature, the cyanide ligand is roughly parallel to the heme plane of L. pectinata Hbl, being located ~2.5 A
from the iron atom. On the other hand, the crystal structure of the L. pectinata Hbl:cyanide derivative at 100 K shows that the
diatomic ligand is coordinated to the iron atom in an orientation almost perpendicular to the heme (the Fe-C distance being
1.95 A), adopting a coordination geometry strictly reminescent of that observed in sperm whale Mb, at room temperature. The
unusual cyanide distal site orientation observed in L. pectinata Hbl, at room temperature, may reflect reduction of the heme
Fe(lll) atom induced by free radical species during x-ray data collection using Cu Ka radiation.

INTRODUCTION

Lucina pectinatahemoglobin | [. pectinata Hbl) and Under physiological conditions, i.e., in the presence of
sperm whale RPhyseter catodgnmyoglobin (Mb) are gen- both oxygen and hydrogen sulfide, the Fe(ll) heme iron
erally taken as the prototype models for monomeric hemoatom of ferrous monomerit. pectinataHbl is readily
proteins carrying hydrogen sulfide and oxygen, respectivelypxidized to Fe(lll), with the concomitant formation of the
(see Springer et al., 1994; Bolognesi et al., 1997). Théneme Fe(lll):hydrogen sulfide adduct. The affinity of hy-
bivalve molluscL. pectinata living in sulfide-rich coastal drogen sulfide for ferrid_. pectinataHbl (K = 2.9 x 10°
sediments, houses chemoautotrophic symbiotic bacteria thM %, at pH 7.5 and 20.0°C) is-5000-fold higher than that
couple the energy released by the oxidation of the environebserved for ferrid_. pectinataHbll and Hblll, as well as
mental hydrogen sulfide to the fixation of carbon dioxide for ferric sperm whale Mb, mainly resulting from slower
into hexoses, which are the only source of carbon for thdigand dissociation. Hydrogen sulfide is released from ferric
mollusc. The biological function of hemoglobin I, Il, and Il L. pectinataHbl upon reduction of the heme iron atom. In
(Hbl, Hbll, and Hblll, respectively), located in the cyto- ferric L. pectinata Hbl, the heme iron-bound hydrogen
plasm of the mollusc bacteriocyte gill cells, is related to thesulfide is stabilized by hydrogen bonding with GIn(64)E7,
transport of hydrogen sulfide and oxygen, respectivelyand by aromatic-electrostatic interactions with residues
from the external environment to the symbiotic bacteria (se¢’he(29)B10, Phe(43)CD1, and Phe(68)E11l, forming the
Kraus and Wittenberg, 1990; Kraus et al., 1990; Wittenbergso-called Phe-cage. (Amino acid residues have been iden-
and Wittenberg, 1990; Rizzi et al., 1994, 1996; Bolognesi etified by their three-letter code, their sequence number,
al., 1997). Conversely, sperm whale Mb facilitates oxygerwithin parentheses, and their topological position, within
transport from circulating hemoglobin (Hb) to the mito- the helices of the globin fold (Perutz, 1979). For the num-
chondria and acts as the, @servoir during diving. Oxygen bering of the heme group atoms, the scheme of Takano
release from the binary sperm whale Mb:&liduct is mod- (1977) has been adopted.) The much lower affinity of hy-
ulated by lactate, which acts as an allosteric effector (sedrogen sulfide for ferri¢.. pectinataHbll and Hblll may be
Springer et al., 1994; Giardina et al., 1996). related to the perturbation(s) brought about in the ligand-
binding pocket by the OH group of Tyr(29)B10, which
alters the size and polarity of the distal “Phe-cage,” ham-
Received for publication 3 December 1998 and in final form 30 April 1999 pering its action in hydrogen sulfide stabilization. In a
‘comparable way, sperm whale Mb residues at positions E7,
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Rizzi et al., 1994, 1996; Bolognesi et al., 1997; Nguyen etMATERIALS AND METHODS
al., 1998).

f FerricL. pectinataHbl was prepared according to the method of Kraus and
L. pectinataHbl, Hbll, and Hblll, as well as sperm whale Wittenberg (1990). Ferric sperm whale Mb was purified from the hemo-

Mb, bind oxygen with similar affm'tyK % 25% 10° M l’ _ protein commercial preparations (from Sigma Chemical Co., St. Louis,
at pH 7.5 and 20.0°C). However, different stabilization moy, as previously reported (Lionetti et al., 1991). All chemicals (from
modes of the heme iron-bound ligand occur in ferrbus Merck AG, Darmstadt, Germany, and Sigma Chemical Co.) were of
pectinataHbl, Hbll, and Hblll, as well as in sperm whale analytical grade and were used without further purification.

Mb, as suggested by the very different values of the kinetic Crystals of ferricL. pectinataHbl (monoclinic space group: R2cell
parameters for the formation and dissociation of the hem&onstantsa = 50.7 Ab =388 A c =425A, p = 106.9°, at room
S . . femperaturea = 49.4 A,b = 37.9 A c = 41.4 A, B = 106.2°, at 100 K)
II‘OI’].OZ complexes. InL_' . pectllnataHbI,. the ,he,me iron- and of sperm whale Mb (monoclinic space group;;R2Il constantsa =
bound Q may be stabilized in a fashion similar to that g4 94 p-31.0Ac=353 A.B = 105.6°) were grown from ammonium
reported for hydrogen sulfide, i.e., by interaction with suifate solutions, as previously described (Lionetti et al., 1991; Rizzi et al.,
GIn(64)E7 and the “Phe-cage.” In. pectinataHbll and  1994). FerricL. pectinata Hbl:cyanide and sperm whale Mb:cyanide
HblIl, the heme iron-bound dioxygen may be stabilized bycomplexes were obtained by soaking the aquo-met crystals in their mother
hydrogen bonds to TyrB10 and GInE7 residues, as reportelaquor containing saturating -congentrations of the ligand, at pH 7.0 and
for Ascaris suunandParascaris equorurkib. Furthermore, 00T (emperature; the soaking time was 12 h.

. . . .. X-ray diffraction data were collected, at room temperature, on a Rigaku
in sperm whale Mb, the heme iron-bound ©stabilized by R-axis Il image plate system, coupled to a Rigaku RU200-HB rotating

a hydrogen bond to the distal His(64)E7 residue (see Kraug,ode generator. Processing of the diffracted intensities was conducted
and Wittenberg, 1990; Kraus et al., 1990; Wittenberg andising MOSFLM (Leslie, 1992) and programs from the CCP4 suite (CCP4,
Wittenberg, 1990; Springer et al., 1994; Rizzi et al., 1994,1994). For x-ray data collection at 100 K. pectinata Hbl:cyanide
1996; Giardina et al., 1996; Bolognesi et al., 1997). complex crystals were transferred to a solution containing 3.0 M ammo-
To address the question of diatomic ligand recognition by St“'g’?;fe' 3t0°g’ Q'tycer,‘t’_" 0.02M phos”ha;e ?Lt’:erél‘\’ﬂgf-}i’ as aopro:

. . . . . h .. _“tectant. Diffracted intensities were measured at the amburg Out-
hemOprOt.el.ns displaying quite different heme distal Sl.tesl’station c/o DESY on beamline BW7A\ (= 0.998 A) and processed as
anq regctlwty, the x-ray crystal structures of the cyanid€y.c . ived above (see Table 1).
derivative ofL. pectinataHbl and of sperm whale Mb have  The refinement of the cyanide derivativelofpectinataHbl and sperm
been determined at room temperature (Gurddiation), at  whale Mb (data at room temperature) was conducted through crystallo-
1.9-A and 1.8-A resolutionR-factor = 0.184, and 0.181, graphic restrained refinement procedures (Tronrud et al., 1987), alternated
respectively). Moreover, fak. pectinataHbI:cyanide com- tomodel buiIding/inspect.ion based on 'the “O” program packfage (Jongs et
pIex, the crystallographic analysis has been extended t@., 1991). For the.. pectinataHbl:cyanide complex, the starting atomic

. B coordinates used for phase calculation were those of Rizzi et al. (1994),
1.4-A resolution (on a synchrotron sourcB;factor = . - : : L _
referring to the aquo-met derivative, with residue substitutions as described

0.118) at .100 K. The present r?suns have been analyzed IR the Results and Discussion. The atomic coordinates of Lionetti et al.
parallel with those of monomeric (non)vertebrate hemoglo+1991), referring to the imidazole derivative, were used for the sperm
bin:cyanide derivatives. whale Mb:cyanide complex.

TABLE 1 Data collection and crystallographic refinement statistics for the cyanide derivatives of L. pectinata Hbl and sperm
whale Mb

L. pectinataHbl L. pectinataHbl Sperm whale Mb
(room temperature) (100 K) (room temperature)
Resolution range (A) 24.0-1.9 8.0-1.4 15.3-1.8
Completeness of data set 93.3% 92.3% 97.0%
Rmerge (%) 5.4 5.1 4.5
I/ (outer shell) 5.1 (2.0-1.9 A) 4.6 (1.45-1.43 A) 4.8 (1.9-1.8A)
Redundancy 4.1 3.0 3.9
Unique reflections 12,085 25,336 12,583
No. of active protein and heme atoms 1081 1103 1261
No. of solvent, cyanide and other ligand species atoms 81 204 6821 SO
AverageB-factors (&)
Main chain 30.4 7.1 40.5
Side chain 36.1 10.2 46.5
Solvent 51.2 23.3 57.5
Residues in most favored region of Ramachandran plot 96.7% 91.1% 92.5%
Residues in additional allowed regions of Ramachandran plot 3.3% 8.9% 7.5%
r.m.s. deviations
bond lengths (A) 0.015 0.019 0.014
bond angles (°) 2.40 2.59 2.75
planar groups (A) 0.011 0.019 0.014
B-factor correlation (&) 2.32 2.90 3.38

R-factor (all data) 0.184 0.119 0.181
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For bothL. pectinataHbl:cyanide and sperm whale Mb:cyanide deriv-
atives studied at room temperature, the heme distal ligand and the ordered
water molecules were omitted from model coordinates before the initial
phase calculations and refinement. Solvent molecules were added to the
atomic coordinates sets only after extensive positionalBafattor refine-
ment had been runR{factor ~ 0.23 for both complexes). The cyanide

ligand was fitted to its electron density only in the very final stages of the %

Phe 43 Phe 43

refinement. Tight stereochemical restraints were first applied to the ligand
coordination geometry and subsequently released, since systematic devia-
tions of the refined ligand from the expected stereochemistry were ob-
served. No restraint was imposed on the Fe-C-N angle, whereas the Fe-C
coordination bond was restrained to 2:20.4 A. The covalent C-N bond
length was restrained to 1.1# 0.08 A in thel. pectinataHbl:ligand B
adduct refinement (data at room temperature). On the other hand, consid~
ering that the C-N bond length in the sperm whale Mb:cyanide complex
consistently showed smaller values during the refinement, it was restrained
to 1.06 + 0.08 A. The two values adopted reflect C-N bond lengths
observed for the CNand HCN species, respectively, in model compounds
(Jones et a., 1988; Orpen et al., 1989).

The refinement of the 1.4-A-resolution datalofpectinataHbl (at 100
K) was performed starting from the refined atomic coordinates of the
Hbl:cyanide complex at room temperature. After atomic coordinates and
isotropicB-factor refinement (using the TNT package; Tronrud et al. 1987)
reached convergence (in the absence of ligatiictor = 0.157 at 1.4-A
resolution), individual anisotropiB-factors and atomic coordinates were C
refined using the SHELX program package (Sheldrick and Schneider,
1997). In the final refinement cycles, the cyanide ligand was fitted to Phe 43
electron density in the distal site and refined without any stereochemical
restraint.

The atomic coordinates and structure factors fforpectinata Hbl:
cyanide and the sperm whale Mb:cyanide complexes have been deposited
with the Brookhaven Protein Data Bank, from which copies are available His 93
[as data setd:. pectinataHbl (at room temperature), 1elt; pectinataHbl
(at 100 K), 1b0b; and sperm whale Mb (at room temperature), 1ebc (Abola
et al., 1997)].

Phe 43 Phe 43

Phe 43

RESULTS AND DISCUSSION
FIGURE 1 Stereo view of the heme distal site of the cyanide derivative

The crystal structure of the cyanide derivativelofpecti-  of L. pectinataHbl at room temperatured] and at 100 K B), as well as
nataHbl (data at room temperature) has been refined to anf sperm whale Mb at room temperatu@)(In the three figures the heme
R-factor of 0.184, at 1.9-A resolution, with ideal overall plane is apprqximately edge on, and the E helix is on the right-hand side.

. lectron density for the ligand (2Fo-Fc map, contoured atievel) has
StereOChemlc‘?‘l parameters (S_ee Table 1)_' The rms coor een displayed together with the distal site residues, which are neighboring
nate error estimated for the sigma-A plot is 0.21 A (Readihe bound cyanide. The figure was drawn with MOLSCRIPT (Kraulis,
1986). A view of theL. pectinataHbl distal site, in the 1991).
presence of the cyanide ligand, is shown in FigAl
together with the ligand electron density. The averBge The orientation of the ligand, parallel to the heme plane,
factor for protein atoms is 32.9%430.4 A2 for backbone s totally unexpected, as compared to coordination model
and 36.1 & for side-chain atoms, respectively) and 512 A compounds and hemoglobin:cyanide complexes (see Table
for solvent atoms, whereas the ligand displ&yfactors of  2). Concerning the location of the cyanide ligand with
25.1 A2 and 38.9 & for the C and N atoms, respectively. respect to the heme iron (the latter being contained within
The cyanide diatomic ligand is parallel to the heme plane, athe porphyrin pyrrole N atoms plane), it should be noted that
a distance of2.5 A, oriented approximately along the line the Fe-N-C and the Fe-C-N angles are approximately equal
connecting the methinic bridge CHB and CHD atoms. The(~80°), the measured Fe-C(cyanide) and Fe-N(cyanide)
C-N covalent bond length observed in the refined structuralistances being 2.54 A and 2.64 A, respectively. Moreover,
is 1.21 A, and the Fe-C distance is 2.54 A (see Table 2). Théhe perpendicular to the heme plane, passing through the Fe
orientation of the diatomic ligand in the distal pocketlof atom, almost bisects the C-N covalent bond. Allowing for
pectinata Hbl is essentially dictated by contacts to the the obvious structural differences, the cyanide location in
distal-site “Phe-cage” residues Phe(29)B10 (3.96 A)the L. pectinataHbl distal site is reminescent of that ob-
Phe(43)CD1 (3.31 A), and Phe(68)E11 (3.93 A). Moreoverserved for the photodissociated CO molecule in ferrous
a hydrogen bond between the cyanide N atom andperm whale Mb (Teng et al., 1994; Schlichting et al.,
GIn(64)E7 OE1 atom (3.05 A) is observed. As a result 0f1994).
such distal-site interactions, the ligand is completely solvent The crystal structure of. pectinataHbl cyanide deriv-
inaccessible, as defined by a 1.4-A-radius probe. ative at 100 K has been refined tdrefactor value of 0.119,
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with ideal overall stereochemistry (see Table 1). Besides th&he C-N covalent bond length observed in the refined
1091 protein atoms and the 202 located water molecules, thgtructure is 1.06 A.
refined model includes alternative conformations for eight In sperm whale Mb, the cyanide ligand is in contact with
side chains (Lys(11)A9, Ser(12)A10, Ser(13)A11, Phe(43)CD1 (3.63 A) and Val(68)E11 (3.35 A), essentially
Lys(16)A14, Ser(18)A16, Lys(42)C7, and Val(76)E19). through the N atom, which, in turn, is hydrogen bonded to
The averag®-factor for the protein atoms is 8.5°47.1 A2  the His(64)E7 NE2 atom (2.68 A) (see Table 2). His(64)E7
for main-chain and 10.2 Afor side-chain atoms, respec- locks the ligand in the distal site and makes it fully inac-
tively), whereas the average solvéhtactor is 23.3 K. The  cessible to solvent. Indeed, besides cyanide, no residual
cyanide ligand displayB-factors of 4.8 K and 7.2 K for  electron density (indicative of buried water molecule(s)) is
the C and N atoms, respectively. The estimate rms coordipresent in the heme distal site. Thus the overall cyanide-
nate error is 0.07 A (Read, 1986). binding mode to the heme iron of sperm whale Mb is in
At 100 K (see Fig. B), the cyanide ligand is coordinated agreement with what has been observed for cyanide com-
to the heme iron oL. pectinataHbl, with an orientation plexes of monomeric (non)vertebrate hemoglobins (see Ta-
approximately perpendicular to the porphyrin plane. Theble 2), human Hb (Paoli et al., 1997), nitrophorin-1 (Weich-
Fe-C-N angle is 177°, and the Fe-C coordination bond issel et al., 1998), and peroxidase frérthromyces ramosus
virtually coincident with the heme normal. The Fe-C dis- (Fukuyama et al., 1995).
tance (1.95 A; see Table 2) is compatible with a full coor- Comparison of the sperm whale Mb:cyanide complex
dination bond between the two atomic species, the C-Mstructure (here described) with that of the same adduct
bond length being 1.15 A. No significant deviation of the Fein  6,7-dicarboxy-1,2,3,4,5,8-hexamethylheme-substituted
atom from the porphyrin pyrrole N atoms plane is observedsperm whale Mb (6,7-dicarboxyheme-substituted Mb; Neya
The cyanide is in contact with the “Phe-cage” residueset al., 1998) shows substantial agreement between the two
Phe(29)B10 (3.28 A), Phe(43)CD1 (3.60 A), and molecular models. The r.m.s.d. calculated over 158 C
Phe(68)E11 (3.80 A), whereas the ligand N atom is hydropairs of the two Mb structures, crystallized in the space
gen bonded to the GIn(64)E7 OE2 atom (3.00 A). More-group P2 (this study) and in the space group P6 (Neya et
over, the cyanide is fully inaccessible to solvent. al., 1998), respectively, is 0.56 A. Concerning the binding
The overallL. pectinataHbl three-dimensional struc- mode of cyanide to sperm whale Mb and to 6,7-dicarboxy-
tures, studied at room and cryotemperatures, are in stridteme-substituted Mb, quite satisfactory agreement between
agreement. The r.m.s.d. calculated over the whote C the coordination stereochemical parameters is observed (see
chains (at the two temperatures) is 0.33 A, reflecting minorTable 2). Nevertheless, 6,7-dicarboxyheme-substituted Mb
modifications in the crystal packing contacts induced bydisplays a slightly shorter Fe-C coordination bond (1.89 A;
unit cell contraction upon freezing. The refinementlof see Table 2) as compared to that of the sperm whale Mb:
pectinataHbl at high resolution has allowed a verification cyanide adduct here reported, and a significantly longer C-N
of the amino acid sequence proposed by Rizzi et al. (1994hond length (1.25 A; see Table 2), possibly reflecting the
on the basis of partial peptide sequence analysis and theodified electronic structure of the 6,7-dicarboxyheme. The
aguo-met protein structure there reported. Indeed, corre@pparent decreased bond order within the cyanide (reflected
tions to five amino acid locations were deemed necessaryyy the 1.25-A C-N distance) may also result from restraints
based on the 1.4-A refined model. The modified residuesmposed during the crystallographic refinement or from
are Glu(3)A>Ser, Thr(11)A9-Lys, Ser(114)G13>Ala, partial disorder of the bound ligand. In this respect, it should
Glu(137)H18->Met, and Glu(139)H20>Arg. Moreover, be noted that a C-N distance of 1.31 A has been reported for
the N-terminal residue (Ser(1)) was found to be acetylatedthe 5,10,15,20-tetramethylporphyrin-substituted sperm
The amended amino acid sequence was adopted inLhoth whale Mb:cyanide adduct (see Table 2; Neya et al., 1993).
pectinataHbl:cyanide complex refinement processes here Analysis of the Protein Data Bank archives of three-
reported. dimensional macromolecular structures (Abola et al., 1997)
The sperm whale Mb:cyanide complex was refined to arshows a substantial fluctuation in the coordination geometry
R-factor value of 0.181 (at room temperature) with goodof cyanide to monomeric hemoproteins (see Table 2). Al-
overall stereochemistry (see Table 1). The heme Fe-C(cydahough a comparison between hemoglobin structures re-
nide) coordination distance is 2.02 A, and the Fe-C-N angldined at fairly different resolutions is achieved with diffi-
is 166°, the Fe atom being in plane with respect to theculty, the inspection of Table 2 allows the following
porphyrin pyrrole N atoms. The ligand orientation is almostconsiderations.
perpendicular to the heme plane (see FigC)1 the Fe-C Data reported in Table 2 indicate that the C-N covalent
bond deviating by~10° from the heme normal. The rms bond length is broadly clustered around three values, which
coordinate error estimated from the sigma-A plot is 0.21 Aare compatible with an undissociated HCN species (expect-
(Read, 1986). The avera@efactor for the protein atoms is ed bond length 1.09 A), with a CNanionic species (ex-
43.4 R (40.5 A2 for main-chain and 46.5 Afor side-chain  pected bond length 1.15 A), and with a loosened bond order
atoms, respectively), and the average solv@sactor is  within the diatomic ligand or a partly disordered CN
57.6 A2, whereas the cyanide ligand displaggactors of  species (observed bond lengths1.2 A) (Botschwina and
42.4 R and 45.5 K for the C and N atoms, respectively. Sebald, 1983; Jones et al., 1988). In this respect, among the
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data here presented, the 100 K, 1.4-A resolution structure dfhis study was partially supported by grants from the Italian Ministry for
L. pectinataHbl:cyanide adduct, in consideration of the University, Scientific Research and Technology (MURST, target-oriented

. L . . . project “Biocatalysis and Bioconversions”), from the Italian Space Agency
ligand binding stereochemistry and hydrogen bonding, i ASI, grant ARS-98-174), and from the Italian National Research Council

cpmpatlble with the presence of_ an unprqtonated GNe-  (cNR. target-oriented project “Biotechnology”).
cies. On the other hand, despite the differing C-N bond
lengths observed in the refined (room temperature) struc-
tures of L. pectinataHbl and sperm whale Mb cyanide REFERENCES
complexes (see Table 2), a less firm conclusion on the _ . .
. f the ligand can be drawn. in vie 0]‘Abola, E. E., J. L. Sussman, J. PrlIL_Jsky, a}nd N. O. Manning. 1997. Protein
protonation statg(s) 0 : elg _W » 1N View ~ Data Bank archives of three-dimensional macromolecular structure.
the lower resolution achieved and the associated rms atomicMethods EnzymoR77:556-571.
coordinate errors. Bisig, D. A., E. E. Di lorio, K. Diederichs, K. H. Winterhalter, and K.
; ; ; i ; Piontek. 1995. Crystal structure of Asian elephdfliephas maximys
ConSIdenng the heme iron (.:Oordmatlon ogeometry (See cyanomet myoglobin at 1.78 A resolution: Phe29(B10) accounts for its
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