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ABSTRACT A recent method to obtain the number of water molecules of hydration of multilamellar lipid vesicles using magic
angle spinning nuclear magnetic resonance has been re-examined. The previous interpretation divided the water into bulk and
interlamellar water and ignored water in defects (lakes) that are intrinsic to multilamellar lipid vesicles; the result was
inconsistent with x-ray results for the lipid DOPC. The new interpretation takes advantage of the reduction of lake water with
increased spinning and it uses osmotic pressure measurements to determine the loss of interlamellar water. The new result
for DOPC from magic angle spinning is consistent with x-ray results.

INTRODUCTION

Recently, a new method has been introduced to study hy-
dration of lipid bilayers that uses nuclear magnetic reso-
nance (NMR) magic angle spinning (MAS) (Zhou et al.,
1999). The first published results for dioleoylphosphatidyl-
choline (DOPC) bilayers were interpreted to give the num-
ber nw of interlamellar water molecules per lipid molecule
to be at least 37.5 in the La phase. This result is significantly
larger than the valuenw 5 32.56 0.8 obtained by Tristram-
Nagle et al. (1998) using x-ray methods. This new MAS
result would mean that the interfacial area/lipid is at least
A 5 77 Å2, rather than the previously obtainedA 5 72 Å2

(Tristram-Nagle et al., 1998; Rand and Parsegian, 1989),
and the corresponding 7–10% differences would be ob-
tained for the various bilayer thicknesses that are useful for
discussing protein–lipid interactions. Because these quanti-
tative NMR measurements took proper account of water
spin-relaxation times and possible intensity contributions
from spinning sidebands, an alternative explanation was
sought for the discrepancy with the x-ray results. In this
article, we offer a different interpretation of the new MAS
method that obtains good agreement with the x-ray results.

Figure 1 shows the MAS sample cell and a rough sche-
matic of the arrangement of multilamellar vesicles (MLVs),
which, for simplicity, are represented as having spherical
shapes. The central physical insight of Zhou et al. (1999)
was that MAS is equivalent to placing the MLVs in a
centrifuge cell. The MAS experiments are done in D2O,
which is about 10% denser than DOPC bilayers so that the
excess D2O centrifuges to the periphery of the spinning cell
and the MLVs are pushed to the central part. (One caveat
that may be mentioned is that the NMR signal comes from
H2O, which is a minor impurity in D2O in the MAS exper-

iment, and this raises the question whether the distribution
of H2O in the cell is the same as that of D2O. It is the same,
because the centrifugal energy difference of H2O molecules
in different parts of the MAS cell is negligible compared to
thermal energy kBT. In contrast, the centrifugal energy
difference of MLVs, or even single bilayers, compared to
D2O, is much larger than kBT because bilayers are so
massive.)

The first interpretation of the MAS results (Zhou et al.,
1999) made the classic assumption that all the water in the
system is either interlamellar water neatly situated between
well-stacked bilayers or is bulk water in the excess water
phase. This assumption has plagued the lipid field for many
years. It is the assumption made in the gravimetric (so-
called Luzzati) method (Rand and Parsegian, 1989). This
assumption has been widely recognized as incorrect for
multilamellar vesicles near full hydration (McIntosh and
Simon, 1986; Klose et al., 1988; Tristram-Nagle et al.,
1993; Nagle et al., 1996; Kodama et al., 1997; Koenig et al.,
1997). One now recognizes that there is a third kind of water
that fills the spaces between MLVs and any other defect
regions where the bilayers are not neatly stacked in well-
oriented arrays. This water is indicated in Fig. 1 by the
regions markedL, which may be thought of as “lake water.”
It is essentially bulk water, but confined to smaller regions
rather than the larger, truly excess, water regions that may
be called “oceans.” Ocean water is shown near the periphery
of the MAS cell in Fig. 1 and is markedO. In x-ray studies,
lake water does not contribute to the measured d-space in
the MLVs, but, as previously emphasized (Tristram-Nagle
et al., 1993; Nagle et al., 1996), it contributes to the total
weight, and this results in consistent overestimates ofnw

using gravimetric data.
The MAS NMR approach to study MLV hydration sees

two water populations in slow exchange (Zhou et al., 1999),
but this observation does not require that only two types of
water are present. In fact, much of the lake water will
contribute to the interlamellar water signal as a simple
estimate shows. Spherical MLVs that are of an order of 10
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mm in diameter have lakes with linear dimensions of order
1–4mm. Water in these lakes diffuses a distance of 5mm on
the NMR time scale (6 ms) and, therefore, samples the lipid
headgroup environment and has the same chemical shifts as
interlamellar water. It may also be noted that much of the
true interlamellar water will also diffuse into the lake re-
gions. The effective coefficient of diffusion of water
through La phase bilayers is about 2z 1029 cm2/s, so the
root mean square radial diffusion distance within MLVs is
about 500 Å. These considerations suggest that the MAS
method blurs the distinction between interlamellar and lake
water. Even some of the ocean water near the MLVs will be
seen by NMR as interlamellar water. (This could be called
continental shelf water, but it must be recognized that this is
an operational term, not a purely locational one, because,
due to the vagaries of diffusion, some of this water will not
have interacted with the MLVs on the NMR time scale and
some will have done.) However, for truly excess water
located more than 5mm from MLVs, the environment is
that of pure water on the NMR time scale.

If the simple picture of packed spherical MLVs shown in
Fig. 1 were true, then one could estimate that the ratio of
lake water to interlamellar water is about 0.6. However,
MLVs generally have more complex shapes than simple
spheres. It is more likely that lake regions will be smaller
than shown because of deformation of the MLVs, especially
when under centrifugal force. It is therefore not feasible to
use geometrical models to try to account for this compli-
cated effect.

The other effect of centrifugation in a MAS cell, pointed
out by Zhou et al. (1999), is to remove interlamellar water
from within the MLVs. Since this reducesnw below that for
fully hydrated MLVs, Zhou et al. (1999) used their lowest

spinning frequencyv 5 3 kHz to estimatenw. (Incidentally,
extrapolating their data tov 5 0 gives an even largernw

that is$40 for DOPC.) However, these values are clearly
only upper bounds to the true interlamellarnw because of
the inclusion of lake waternl per lipid.

Nevertheless, the basic MAS measurement can be valu-
able because spinning at high frequency reduces the amount
of lake waternl. To implement this idea, we show in this
article that the loss of interlamellar waterDnw can be
separately measured using x-ray data taken under osmotic
pressure (Tristram-Nagle et al., 1998) together with a sim-
ple geometric conversion of MAS centrifugal force into
osmotic pressure. WhenDnw is added to the MAS data, the
sum decreases with increasingv, indicating that lake water
is indeed decreasing, consistent with the above picture.
Extrapolating to high spinning frequency then enables esti-
mation ofnw that is consistent with x-ray results.

DETERMINATION OF INTERLAMELLAR
WATER LOSS

The centrifugal force on a D2O molecule isF(r) 5 (Dm)v2r
wherev 5 2pn is the spinning angular frequency,r is the
distance from the spinning axis, andDm is the mass of D2O
minus the mass of an equivalent volume of MLVs (Dm 5
mD2O

2 rMLV VD2O
). It is more fundamental to work with the

centrifugal energyE(r),

E~r! 5 2EF~r!dr 5 ~Dm!v2@rw
2 2 r2#/2, (1)

where the choice of zero energy has been set tor 5 rw,
which is defined to be the radius that separates the MLV
region from bulk water. We note thatrw decreases asv
increases because more water is moved from the MLV
region to the bulk region and we now proceed to calculate
rw. Since the MAS chamber is a sphere (radiusrc ' 1.2
mm), the volume of the MLV region is

vMLV 5 ~4prc
3/3!~1 2 @1 2 ~rw/rc!

2#3/2!. (2)

We first divide vMLV by the volume of the MAS cell and
then consider the molecular partitioning of lipid and water,
where no is defined to be the number of ocean water
molecules per lipid given by the MAS data,nw 1 nl is the
number of water molecules per lipid in the MLV region
(including both interlamellar waternw and lake waternl)
and is given by the MAS measurement (where total water
nw 1 nl 1 no was fixed at 40 in the MAS experiment),VL 5
1303 Å3 is the measured molecular volume of DOPC (Tris-
tram-Nagle et al., 1998), andVw 5 30.3 Å3 is the room
temperature volume of the D2O molecule. This yields

@1 2 ~rw/rc!
2#3/2 5 noVw/@VL 1 ~nw 1 nl!Vw 1 noVw#. (3)

We next note thatDm increases with increasingv because
the average density of the MLV region,

rMLV 5
mL 1 ~nw 1 nl!mw

VL 1 ~nw 1 nl!Vw
, (4)

FIGURE 1 Rough schematic illustrating seven MLVs in a MAS cell
spinning about the central axis, which is perpendicular to the page. The
bilayer repeat isD 5 63 Å and typical radii are 10mm for the MLVs and
1.2 mm for the MAS cell, so there are many more bilayers per MLV than
depicted and many more MLVs. Lake water is indicated byL, bulk (ocean)
water byO, and interlamellar water (nw per lipid molecule) is between
bilayers in each MLV. The NMR MAS method sees only the shaded water
as bulk water.
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decreases as the denser D2O is moved to the ocean region.
MAS measurements yield an overall average fornw 1 nl,
but not ther dependence. However, the variation inDm is
only a few percent, so the average value will be used for all
r. Whenv 5 0, Dm 5 1.02 g/mole D2O and this increases
to about 1.12 g/mole at the highest spinning frequencies.

The centrifugal energyE(r) is equivalent to an osmotic
energy,

E~r! 5 P~r!Vw, (5)

where P(r) is the osmotic pressure at radiusr. Standard
x-ray D-spacing measurements on MLVs under osmotic
pressure (Rand and Parsegian, 1989) obtain the loss in
interlamellar waterDnw using

Dnw 5 @D~0! 2 D~P!#A/2Vw, (6)

whereD(P) is the D-spacing under osmotic pressureP and
A is the area per lipid in the bilayer. Technically, one should
allow for A to be a function ofP, but, for the largest osmotic
pressures applied at the center of the MAS cell (less than 7
atmospheres for 10 kHz) and using the measured area
compressibilityKA 5 188 dyn/cm (Tristram-Nagle et al.,
1998), the decrease inA is only about 1% and will be
neglected. This is equivalent to neglecting the change in
bilayer thickness. TheD(P) data that were used to calculate
Dnw in Eq. 6 were obtained by Tristram-Nagle et al. (1998).
Figure 8 of that paper showsD9W(P); to convert toD(P) just
addD9B.

Conventionally, fits to x-ray data obtainP(D) in terms of
the conventional forms for interbilayer interactions, such as
hydration repulsion, van der Waals attraction, and repulsive
fluctuation pressures. The fit used in this article used the
steric definition of water space thickness (McIntosh and
Simon, 1993), whereD9w 5 D 2 45.3 Å for DOPC (Tris-
tram-Nagle et al., 1998). Using this convention, the expo-
nentially decaying hydration force hasl 5 2.22 Å and
prefactorPh 5 5.5 z 108 erg/cm3, the exponentially decaying
fluctuation pressure haslfl 5 5.8 Å and prefactorPfl 5 5 z
106 erg/cm3, and the van der Waals attraction has Hamaker
parameterH 5 4.7 z 10214 erg (Tristram-Nagle et al., 1998).
(Other combinations of the parameter values fit theP(D)
data equally well; this ambiguity makes no difference in this
application.) Then,P(D) was inverted numerically to obtain
D(r) at each radiusr in the MAS experiment. The total
water lossDnw was then obtained by integrating over all
radii r using Eq. 6 where the variableP is replaced byr
using Eqs. 5 and 1,

Dnw 5 vMLV
21 E

0

rw

Dnw~r!4pr@rc
2 2 r2#1/2 dr. (7)

RESULTS AND DISCUSSION

Figure 2 shows results for the loss of interlamellar water
Dnw as a function of spinning frequency squaredn2, which

is proportional to spinning energy and osmotic pressure.
Figure 2 also shows the MAS result (Zhou et al., 1999) for
bulk (ocean) waterno. The increase in ocean water exceeds
the loss of interlamellar water because lake water is also
squeezed out of the MLV region into the ocean. In other
words, ocean water is increasing and interlamellar water is
decreasing, but the latter decrease is not as large as the
former increase because lake water is also decreasing and
this also feeds the increase in the ocean water. This effect is
also quantitated in Fig. 2, which shows the amount of lake
water, nl 5 40 2 no 2 nw(0) 1 Dnw, where 40 is the
gravimetric total number of water molecules in the MAS
experiment andnw(0) 5 32.5 is the x-ray value for un-
stressed samples corresponding ton 5 0.

Figure 3 shows the MAS result for nonocean water,nwl,
which is called interlamellar water in (Zhou et al., 1999),
but which, in this interpretation, is the sum of lake and
interlamellar water,nwl 5 nl 1 nw. As spinning frequency
increases,nwl(n) decreases because both lake water and

FIGURE 2 Ocean waterno (open circles), loss of interlamellar water
Dnw (solid squares), and lake waternl (open triangles) as a function of the
square of the spinning frequency (v/2p)2 (in kHz2).

FIGURE 3 MAS result for nonocean waternwl 5 nw 1 nl (solid
squares) and result fornwl 1 Dnw (open circles) as a function of the square
of the spinning frequency (v/2p)2 (in kHz2).
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interlamellar water are squeezed out of the MLV region.
Using the result from the previous section, we can add back
the loss of interlamellar waterDnw at eachn. This gives
nl(n) 1 (nw(n) 1 Dnw(n)) 5 nl(n) 1 nw(0), which is shown
asnwl 1 Dnw in Fig. 3. This latter curve should approach the
unstressed, zero frequency, valuenw(0) for interlamellar
water if all the lake water is squeezed out at highn. Indeed,
nwl 1 Dnw does decrease monotonically as shown in Fig. 3,
although it is difficult to extrapolate its value for largen
from that figure. For this purpose it is more convenient to
plot nwl 1 Dnw versusn22, as shown in Fig. 4. If one
chooses to take the curvature of the three data at highestn
seriously, one would extrapolate to a value a bit higher than
the x-ray result. This would be consistent with the possibil-
ity that there might be lake water that is highly resistant to
centrifugation; one prime candidate would be lake water
that is between MLVs that are near the bulk ocean because
the centrifugal energy is very small at this location. How-

ever, given the obvious noise in the MAS data, it is at least
as reasonable to conclude that extrapolation is consistent
with the x-ray resultnw(0) 5 32.56 0.8 (Tristram-Nagle et
al., 1998).
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