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ABSTRACT A conserved leucine residue in the midpoint of the second transmembrane domain (M2) of the ligand-activated
ion channel family has been proposed to play an important role in receptor activation. In this study, we assessed the
importance of this leucine in the activation of rat a1b2g2 GABA receptors expressed in Xenopus laevis oocytes by
site-directed mutagenesis and two-electrode voltage clamp. The hydrophobic conserved M2 leucines in a1(L263), b2(L259),
and g2(L274) subunits were mutated to the hydrophilic amino acid residue serine and coexpressed in all possible combina-
tions with their wild-type and/or mutant counterparts. The mutation in any one subunit decreased the EC50 and created
spontaneous openings that were blocked by picrotoxin and, surprisingly, by the competitive antagonist bicuculline. The
magnitudes of the shifts in GABA EC50 and picrotoxin IC50 as well as the degree of spontaneous openings were all correlated
with the number of subunits carrying the leucine mutation. Simultaneous mutation of the GABA binding site (b2Y157S;
increased the EC50) and the conserved M2 leucine (b2L259S; decreased the EC50) produced receptors with the predicted
intermediate agonist sensitivity, indicating the two mutations affect binding and gating independently. The results are
discussed in light of a proposed allosteric activation mechanism.

INTRODUCTION

g-Aminobutyric acid (GABA) is the major inhibitory neu-
rotransmitter in the mammalian central nervous system.
Several different classes of GABA-gated ion channel sub-
units and their isoforms have been cloned:a1–6, b1–4,
g1–3,d, e, r1–3,p, andx (Barnard et al., 1987; Cutting et
al., 1991; Garret et al., 1997; Hedblom and Kirkness, 1997;
Khrestchatisky et al., 1989; Olsen and Tobin, 1990;
Schofield et al., 1987; Whiting et al., 1997). These subunits
all belong to a ligand-gated ion channel gene family, the
acetylcholine receptor family, which includes nicotinic ace-
tylcholine (nACh), serotonin receptor type 3 (5-HT3), gly-
cine, and GABA receptors. More recently, an invertebrate
glutamate-gated chloride channel was added to this family
(Cully et al., 1994). The proposed topology of a nACh
receptor family subunit is a large extracellular N-terminal
domain, a long intracellular loop between the third and
fourth transmembrane domains, and four membrane-span-
ning segments (M1–M4), of which M2 is proposed to line
the pore (Akabas et al., 1994; Leonard et al., 1988; Noda et
al., 1982; Schofield et al., 1987; Xu and Akabas, 1996).

By analogy with other members of this family, the
GABA-gated ion channel is presumed to be a pentamer
(Chang et al., 1996; Cooper et al., 1991; Langosch et al.,
1988; Nayeem et al., 1994). The pentameric structure can be
formed by combinations of different subunit isoforms. The
prototypical recombinanta1b2g2 GABA receptor has phar-

macological and functional properties very similar to those
of the typical native GABAA receptors (Pritchett et al.,
1989; Sigel et al., 1990; Verdoorn et al., 1990), whereas the
exogenously expressedr1 homomeric GABA receptor is
similar to native GABAC receptors (Cutting et al., 1991;
Johnston, 1986; Polenzani et al., 1991; Sivilotti and Nistri,
1989).

Activation of GABA-gated ion channels includes agonist
binding and gating of the integral chloride-selective pore.
The structural determinants of GABA binding have been
found to be in the N-terminal domain of thea1 subunit
(F64; Sigel et al., 1992) andb2 subunit (Y157, T160, T202,
and Y205; Amin and Weiss, 1993) fora1b2g2 GABA
receptors. In contrast to binding, the structural determinants
of gating are still poorly understood. A leucine residue in
the midpoint of the M2 region is conserved through all
subunit isoforms in this receptor-operated ion channel fam-
ily and has been postulated to correspond to the kink point
of the pore-lining rod observed with electron microscopy
(Unwin, 1995). Unwin proposed that the M2 helices, by
bending toward the central axis, would allow the leucine
side chains to project inward and associate in a tight ring via
hydrophobic interactions and maintain the pore in the closed
state. When agonist binds to the receptor, the hydrophobic
interactions are weakened, the M2 regions twist, and the
pore opens (Unwin, 1995). Studies employing cysteine-
scanning mutagenesis, however, suggest that the gate is
more cytoplasmic than this conserved leucine (Akabas et
al., 1994; Wilson and Karlin, 1998; Xu and Akabas, 1996).
Whatever the precise role this leucine plays in receptor
activation, its absolute conservation across all members of
this receptor family, as well as its position within the
presumed pore, seems to warrant the attention it has re-
ceived (Auerbach et al., 1996; Chang et al., 1996; Chang
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and Weiss, 1998; Filatov and White, 1995; Labarca et al.,
1995; Revah et al., 1991; Tierney et al., 1996; Unwin, 1995;
White and Cohen, 1992; Yakel et al., 1993).

In this study, we mutated the conserved M2 leucine to
serine in rata1, b2, andg2 subunits and observed that the
mutation in any one subunit shifted the GABA dose-re-
sponse curve of thea1b2g2 GABA receptors to the left. We
previously took advantage of this shift in the EC50 to
determine the stoichiometry of thea1b2g2 GABA receptor
(Chang et al., 1996), but here we report a more detailed
investigation of the activation and inhibition properties of
these mutant receptors. In addition to the shift in EC50, the
leucine mutations created spontaneously opening channels,
evident as an increase in the holding current at270 mV.
The spontaneously opening channels could be blocked by
the GABA receptor antagonist picrotoxin and, surprisingly,
by the competitive antagonist bicuculline. Based on our
results, a Monod-Wyman-Changeux allosteric model (Cha-
negeux and Edelstein, 1998; Colquhoun, 1973; Edelstein
and Changeux, 1996; Karlin, 1967; Monod et al., 1965) was
adopted to account for the activation features of thea1b2g2
wild-type and mutant GABAA receptors.

MATERIALS AND METHODS

Site-directed mutagenesis and
in vitro transcription

Rata1, b2, andg2L subunits were obtained by polymerase chain reaction
from a rat brain cDNA library (Amin et al., 1994). The three subunits were
cloned into pALTER-1 (Promega, Madison WI) betweenHindIII andXbaI
for a1 andg2 or SalI andBamHI for b2. The mutagenic oligonucleotides
used for making point mutations were previously described (Chang et al.,
1996). The mutagenesis was conducted by following the Altered Sites
protocol (Promega). All mutations were confirmed by dideoxyribonucle-
otide DNA sequencing (Sanger et al., 1977). A double mutation,b2(Y157S
1 L259S), was produced by subcloning a cDNA fragment containing the
bY157S mutation into thebL259S cDNA.

The wild-type and mutant cDNAs of thea1, b2, andg2 subunits were
linearized bySspI, which left a several hundred base pair tail for RNA
stability. For cRNA synthesis, RNase-free DNA templates were prepared
by treating linearized DNA with proteinase K. The capped cRNAs were
then transcribed by SP6 RNA polymerase, using standard protocols. After
degradation of the DNA template by RNase-free DNase I, the cRNAs were
purified and resuspended in diethylpyrocarbonate-treated water. cRNA
yield and integrity were examined on a 1% agarose gel.

Oocyte preparation and cRNA injection

FemaleXenopus laevis(XenopusI, Ann Arbor MI) were anesthetized by
0.2% MS-222, and ovarian lobes were surgically removed and placed in a
Ca21-free incubation solution consisting of (in mM) 82.5 NaCl, 2.5 KCl,
5 HEPES, 1 MgCl2, 1 Na2HPO4, 50 U/ml penicillin, 50mg/ml streptomy-
cin (pH 7.5). The lobes were cut into small pieces and digested with 0.3%
collagenase A (Boehringer Mannheim, Indianapolis, IN) in the above
solution at room temperature with continuous stirring until the oocytes
were dispersed (1–2 h). The oocytes were then thoroughly rinsed with the
above solution plus 1 mM Ca21. Stage VI oocytes were selected and
incubated at 18°C.

Micropipettes for cRNA injection were pulled from borosilicate glass
on a P87 horizontal puller (Sutter Instrument Co., Novato, CA), and the
tips were cut with scissors to;40mm OD. The cRNA for each subunit was

diluted 50- to 60-fold and mixed at a ratio of 1:1:1 for thea:b:g subunits.
Previous studies have indicated a fixed stoichiometry over a wide ratio of
injected wild-type and mutanta, b, andg cRNAs (Chang et al., 1996). The
cRNA was injected into the oocytes with a Nanoject microinjection system
(Drummond Scientific, Broomall, PA). The volume of the microinjection
into each oocyte was varied from 27 to 84 nl to provide a range of
expression levels. Typically, a total of 0.1–1 ng of cRNA was injected into
each oocyte.

Voltage clamp

One to three days after injection, oocytes were placed in a small volume
chamber (,100 ml) with a 300-mm nylon mesh support. The oocyte was
continuously perfused at a rate of 150–200ml/s with the oocyte Ringer’s
solution (OR2), consisting of (in mM) 92.5 NaCl, 2.5 KCl, 5 HEPES, 1
CaCl2, 1 MgCl2 (pH 7.5) and briefly switched to the solution (OR2) with
drug (e.g., GABA, picrotoxin, etc.). GABA was obtained from Calbiochem
Corp. (La Jolla, CA); picrotoxin and bicuculline were from Sigma Chem-
ical (St. Louis, MO); gabazine (SR95531) was from RBI (Natick, MA). All
drugs were prepared daily from powder, except bicuculline and gabazine,
which were prepared from stock solution that was previously aliquoted and
kept at220°C.

Recording microelectrodes were formed by pulling a filamented boro-
silicate glass (OD5 1.0 mm and ID5 0.75 mm) with a P87 Sutter
horizontal puller. The electrodes were filled with 3 M KCl and had
resistances of 1–3 MV. The perfusion chamber was grounded through a
KCl agar bridge. The standard two-electrode voltage-clamp technique was
carried out using the GeneClamp 500 voltage-clamp amplifier (Axon
Instruments, Foster City, CA). The current signal was filtered at 10 Hz and
recorded on paper with a Gould EasyGraf chart recorder (Gould Instrument
Systems, Valley View, OH). At the same time, on-line digitization of the
signal at 20 Hz with 12-bit resolution was carried out by using the
MacADIOS Data Acquisition Board (GW Instruments, Somerville, MA)
and Igor software (Wavemetrics, Lake Oswego, OR) in conjunction with a
set of macros to drive the GW board (Bob Wyttenbach, Cornell University,
Ithaca, NY) in a Macintosh (Apple Computer, Cupertino, CA).

Data analysis

Dose-response relationships of the agonist or antagonist were fit with one
of the following equations, using a nonlinear least-squares method:
Activation:

I 5
Imax

1 1 ~EC50/@A#!n (1)

Inhibition:

I 5
Imax

1 1 ~@A#/IC50!
n (2)

where I is the peak current response at a given concentration of drug A
(agonist or antagonist),Imax is the maximum current response, EC50 is the
concentration of the agonist with a half-maximum activation, IC50 is the
antagonist concentration yielding a half-maximum inhibition, andn is the
Hill coefficient.

The measured holding current (atVm 5 270 mV) in oocytes expressing
mutant receptors includes the current through the spontaneously opening
channels (Ispont) in addition to the background leakage current of the
oocyte. Because the mutant receptors had a dramatically impaired picro-
toxin sensitivity, we were unable to determine the contribution of the
leakge current by blockingIspontwith picrotoxin. Therefore, to approximate
Ispont, the observed total holding current for the oocytes expressing the
mutant receptors was corrected by subtracting the mean leakage current (at
Vm 5 270 mV) determined in oocytes expressing wild-typea1b2g2
GABA receptors (218 6 5 nA, mean6 SD, n 5 9).
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Dose-response relationships normalized to take into account the spon-
taneous openings of the mutant receptors as well as the maximum open
probability of the wild-type receptor were simultaneously fit to the follow-
ing allosteric model of activation (see Scheme III in the Discussion):

R5
1

1 1 L~1 1 ~@GABA#/KR!!n/~1 1 ~@GABA#/KR*!!
n

(3)

whereKR andK*R are the agonist binding affinities of the closed and open
receptor, respectively,L is [R]/[R*] or the ratio of the equilibrium occu-
pancies of the closed and open forms of the unbound receptor, andn is the
maximum number of GABA molecules that can bind to the receptor (two
in our case) (Edelstein and Changeux, 1996).KR and K*R were free
parameters for the fit but were assumed to be constant for all mutant and
wild-type receptors. TheL values were experimentally derived for the
mutant receptors, butL was a free parameter for the wild-type receptor,
because spontaneous activation in this case was not resolvable. The data
from the abgm combination were excluded because, as opposed to the
other mutant combinations,Ispont was significantly higher than would be
predicted from the EC50 shift. Whenabgm was included in the fit, the sum
of the squared errors increased dramatically, and simulation with these
derived parameters indicated that theabgm data were the major source of
error. Furthermore, we derivedKR and K*R by a different method (see
below) that was independent of the experimentally determined values of L.
In this case, theKR andK*R values were nearly identical to those derived
from the fit in the absence of theabgm data.

As an alternative method, we determined the affinity of the open state
(K*R) from the following equation (Edelstein and Changeux, 1996):

EC50 5 KR*~În2 2 1! (4)

Simulations demonstrated that the EC50 approached a lower limit asL
decreased (Fig. 6A, small open circles and dashed line). Therefore, the
lower bound EC50 was extrapolated from the EC50s of theabmg, abmgm,
andambmg combinations. In this manner we derived a value of 0.11mM
for K*R, which is similar to the value we determined in the simultaneous fit
described above (0.12mM). KR (78.6mM) and wild-typeL (100744) were
then determined from a nonlinear least-squares fit of Eq. 3 to the wild-type
data. The fit converged to the sameKR and L regardless of the starting
values, suggesting that the parameters were well defined by the data. For
the simultaneous fit described above, we derived values of 78.5mM and
88,934 forKR and wild-typeL, respectively. Equations 1–3 were fit using
ChanFit, a home-written nonlinear least-squares iterative search program.

RESULTS

Hydrophilic substitution of the conserved M2
leucine in the a1, b2, or g2 subunits increased
the GABA sensitivity

The conserved leucine in the putative second transmem-
brane domain (M2) was mutated to serine in rata1, b2, and
g2 subunits (a1L263S,b2L259S,g2L274S). These mutants
will be designatedam, bm, gm, and wild-typea1, b2, g2
will be designateda, b, g. cRNAs were mixed in the
combinationsabg, ambg, abmg, abgm, ambmg, ambgm,
abmgm, and ambmgm and injected intoXenopus laevis
oocytes. Representative GABA-activated currents from
these combinations are presented in Fig. 1A, and the dose-
response relationships are presented in Fig. 1B. The EC50s
and Hill coefficients from a fit of the Hill equation to these
data are provided in Table 1. All of the mutations increased
the sensitivity of the receptors to GABA. The same symbols

for the various receptor combinations used in Fig. 1B are
used throughout the manuscript.

Studies of muscle nACh receptors demonstrated that each
additional subunit carrying a mutation at the homologous
leucine residue imparted a;10-fold increase in ACh sen-
sitivity (Filatov and White, 1995; Labarca et al., 1995).
Knowing theabg stoichiometry (twoas, twobs, and oneg;
Chang et al., 1996), we can assess the shift in sensitivity as
a function of the number of mutated subunits (Fig. 1C).
Although there was a correlation, in contrast to results from
the nACh receptor, there was not a clear stepwise relation-

FIGURE 1 The conserved leucine mutation shifted the dose-response
relationship for GABA to the left. (A) Representative GABA-activated
currents in oocytes expressing differerent combinations of leucine muta-
tions. Vertical scale bar: 225, 40, 190, 75, 190, 40, and 160 nA, from the
top to bottom traces. (B) Plot of the GABA dose-response relationship for
several oocytes of each combination. The solid lines are the best fit of the
Hill equation (Eq. 1) to the data. The dashed line is the fit of the wild-type
GABA dose-response relationship. Parameters from these fits are provided
in Table 1. (C) Plot of the relationship between the number of mutant
subunits in the pentamer and the EC50, assuming a stoichiometry of twoa
subunits, twob subunits, and oneg subunit (Chang et al., 1996). Although
the shift in EC50 depended on the number of mutant subunits, the shift
exhibited a saturation when three or more subunits carried the leucine
mutation. The open circle representsabg.
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ship between the number of mutant subunits and the EC50.
For example, the EC50 for the all-mutant receptor
(ambmgm) was shifted less than that ofabmg or ambmg
(Table 1). These data indicate a subunit nonsymmetry in
either the role these leucines play in activation or in the
degree of perturbation imparted by the mutation.

Hydrophilic substitution of the conserved M2
leucine in the a1, b2, or g2 subunit-induced
spontaneous openings of the GABA receptor

In addition to the shift in GABA sensitivity, oocytes ex-
pressing mutant subunits required a larger holding current to
voltage clamp the membrane at270 mV compared to
oocytes expressing the wild-type receptor. This holding
current was blocked by the GABA receptor antagonist pic-
rotoxin, indicating that it was due to spontaneously opening
GABA receptors (see next section). Fig. 2A is a plot of the
ratio of the holding current at270 mV in the absence of
GABA (Ispont) to the maximum GABA-activated current
(IGABA) for each subunit combination. These ratios are also
provided in Table 1. Although Fig. 2B shows that the
degree of spontaneous opening (Ispont/IGABA) increased as a
function of the number of mutant subunits in the pentamer
(dashed line), the ratio was highest when theb subunit
carried the mutation.

The spontaneously opening channels were
blocked by picrotoxin

The current traces in Fig. 3A show picrotoxin-mediated
block of the GABA-activated (10mM) current for the
wild-type receptor. The current traces in Fig. 3B are exam-
ples of the picrotoxin blockage of the holding current in
oocytes expressingambmgm GABA receptors. The holding
current decreased in response to picrotoxin in a dose-depen-
dent manner. Fig. 3C shows the dose dependence of pic-
rotoxin-mediated inhibition for all receptor combinations.
The IC50s and Hill coefficients determined from fitting Eq.
2 to these data (continuous lines) are provided in Table 2.
The observation that picrotoxin blocked the holding current
supports our conclusion about spontaneously opening mu-

tant GABA receptors. Furthermore, the observation that
these mutations shift the picrotoxin sensitivity indicates that
this leucine residue may play a role in the picrotoxin-
mediated antagonism. As shown in Fig. 3D, there was a
marked correlation between the IC50 and the number of
mutant subunits in the pentamer, although a comparison of
the single isoform mutants (ambg, abmg, and abgm) re-
vealed that theg subunit mutation had the most pronounced
effect on picrotoxin sensitivity.

The spontaneously opening mutant channels
were inhibited by bicuculline

According to the classical view, a purely competitive inhib-
itor should have no intrinsic activity; it would simply oc-
cupy the binding site and prevent agonist binding. Fig. 4A
shows the inhibition ofIspontby the presumably competitive
inhibitor, bicuculline, in oocytes expressingambmgm sub-
units. Fig. 4B is a plot of the relationship between the
fraction of the current blocked and the bicuculline concen-
tration. Equation 2 was fitted to these data and yielded an
IC50 of 1.106 0.06mM and a slope factor of 1.206 0.04
(n 5 3). Note that the block by bicuculline was incomplete;
only 0.416 0.03 of Ispontwas inhibited. We also examined
the actions of the presumed competitive antagonist gabazine
(SR95531) onambmgm receptors. The IC50 and slope factor
were 0.156 0.01mM and 1.106 0.06, respectively, with
a fractional block of only 0.136 0.02. Thus gabazine
blocks less ofIspontthan bicuculline. These data suggest that
bicuculline and gabazine can stabilize the channel in the
closed state and support the view that they may not be pure
competitive antagonists of the GABAA receptor, but more
likely are allosteric inhibitors, as has been proposed from
the actions of these compounds on alphaxalone- and pen-
tobarbital-activated currents (Ueno et al., 1997).

The effects of a GABA binding site mutation and
the conserved leucine mutation are independent

As shown in a previous study (Amin and Weiss, 1993), the
binding site mutationb2Y157S shifted the GABA dose-
response curve to the right (952-fold), yielding an EC50 of

TABLE 1 EC50, Hill coefficients, and Ispont/IGABA for the various subunit combinations

Combination
EC50 (mM)
(fold shift) Hill N Ispont/IGABA N No. of mutants*

abg 45.86 1.6 (1) 1.576 0.04 5 NA NA 0
abgm 1.046 0.052 (44) 1.436 0.07 3 0.296 0.07 15 1
ambg 0.226 0.02 (208) 1.046 0.06 4 0.226 0.03 14 2
abmg 0.0526 0.005 (881) 0.816 0.03 5 5.896 0.58 15 2
ambgm 0.0956 0.003 (482) 1.156 0.03 4 1.106 0.15 14 3
abmgm 0.0696 0.01 (664) 0.716 0.02 4 25.96 8.7 15 3
ambmg 0.0386 0.007 (1205) 0.976 0.09 5 4.516 0.60 17 4
ambmgm 0.0666 0.002 (694) 1.076 0.02 5 2.486 0.48 19 5

Values are mean6 SEM; N 5 number of oocytes.
*Number of mutant subunits within the pentamer, assuming a stoichiometry of 2;2;1 for abg.
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43,580 mM. The b2L259S mutation shifted the dose-re-
sponse curve to the left (881-fold), yielding an EC50 of
0.052mM (Table 1). If the effects of the two mutations were
independent, the double mutant (b2Y157S1 L259S) would
have an EC50 intermediate of the two individual mutants;
that is,;47.6mM. Fig. 5 A shows examples of currents in
oocytes expressingab(Y157S1 L259S)g receptors in re-
sponse to a range of GABA concentrations. The resting
current of these oocytes was much higher than that of
control oocytes, indicating that the receptors were opening
spontaneously. Fig. 5B plots the average fractional activa-
tion of the mutant receptor versus GABA concentration
(filled squares). The continuous line is the best fit of the Hill
equation to the data points, yielding an EC50 of 59.96 6

1.39mM and a Hill coefficient of 0.836 0.07 (n 5 3). The
dashed lines are GABA dose-response relationships of
ab(L259S)g receptors (left), ab(Y157S)g receptors (right),
and the predicted relationship (47.6mM), assuming an
independent effect of the two mutations (middle). For the
receptors containing both thebY157S andbL259S muta-
tions, the observed EC50 of 59.96 6 1.39 mM was very
close to the predicted value of 47.6mM, suggesting that the
effects of the two mutations were independent.

FIGURE 2 The leucine mutation created spontaneously opening GABA
receptors. (A) cRNAs were mixed in a 1:1:1 ratio for all combinations and
injected into oocytes. One day after injection, the oocytes were two-
electrode voltage-clamped at270 mV. The holding currents in the absence
of GABA (Ispont) and the maximum GABA-activated currents (IGABA)
were measured and plotted as a ratio. (B) Plot of the relationship between
the number of mutant subunits in the pentamer andIspont/IGABA, assuming
a stoichiometry of twoa subunits, twob subunits, and oneg subunit
(Chang et al., 1996). The dashed line is from a linear regression to the data
points. Although the degree of spontaneous opening appeared to increase
as a function of the number of mutant subunits in the pentamer, the
correlation was not statistically significant (r 5 0.12,p . 0.05).

FIGURE 3 The leucine mutations impaired the picrotoxin-mediated an-
tagonism. (A) GABA-activated currents (10mM GABA) in the presence of
increasing concentrations of picrotoxin. (B) Antagonism of the spontane-
ously openingambmgm GABA receptors by increasing concentrations of
picrotoxin. (C) Average dose-response relationship for picrotoxin on all
possible receptor combinations. For the wild-type receptor, the antagonism
of the GABA-activated current (10mM GABA) is plotted. For all others,
the block of the current in the absence of GABA is plotted. The continuous
line is the best fit of Eq. 2 to the data points. Parameters from the fits are
presented in Table 2. (D) Plot of the picrotoxin IC50 as a function of the
number of mutant subunits in the pentamer, assuming a stoichiometry of
two a subunits, twob subunits, and oneg subunit (Chang et al., 1996). The
IC50 increased with increasing number of mutant subunits. Also note that
the g mutation produced the largest impairment of picrotoxin sensitivity.
The dashed line is from a linear regression to the data points (r 5 0.83,
p , 0.01).
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DISCUSSION

Comparison to other receptors

Serine substitution of the conserved leucine created spon-
taneously opening receptors in both heteromerica1b2g2
and homomericr1 GABA receptors (Chang and Weiss,
1998). Unlikea1b2g2 GABA receptors, however, homo-
meric r1 spontaneously opening mutant GABA receptors
were closed by low concentrations of GABA and reopened
by GABA concentrations greater than 1mM (Chang and
Weiss, 1998). This difference in the two GABA receptor
classes suggests either a different contribution for the
leucines in receptor activation or a difference in the degree
of perturbation induced by the mutation in the different
subunits.

Our results fromabg GABA receptors demonstrated that
agonist sensitivity increased with the hydrophilic substitu-
tion of the conserved M2 leucine. This is in agreement with
studies ina7 neuronal nACh receptors (Revah et al., 1991),
5-HT3 receptors (Yakel et al., 1993), and heteromeric mus-
cle nACh receptors (Akabas et al., 1992; Filatov and White,
1995; Labarca et al., 1995). Hydrophilic substitution of the
conserved M2 leucine also created spontaneously opening
channels, in agreement with observations ina1b1 GABA

receptors (Tierney et al., 1996) and thea subunit of muscle
nicotinic acetylcholine receptors (Auerbach et al., 1996).

In the muscle nACh receptor, substitution of each addi-
tional subunit imparted an additional;10-fold increase in
agonist sensitivity (Filatov and White, 1995; Labarca et al.,
1995). Thus, in terms of the shift in EC50, the effects of the
mutations were approximately symmetrical with respect to
the five subunits. In a previous study (Chang et al., 1996)
we observed that the effects of mutating the twoa subunits
or two b subunits in GABAA receptors were multiplicative
in terms of the EC50 shift (additive in terms of the free
energy), although the contributions of theam, bm, andgm

subunits were nonsymmterical. In the present study, when
combinations of mutant subunit classes were coexpressed,
we did not observe a strong relationship between the num-
ber of mutant subunits and the EC50 shift, as observed for
the nACh receptor. For example, the EC50 of the combina-
tions ambmg and abmgm were decreased more than the
triple mutantambmgm. One possibility is that the relation-
ship between the number of mutant subunits and the EC50

(as well asISpont/IGABA) depends upon whether the mutant
subunits are neighbors within the pentamer; that is, the
effects of the mutations on neighboring subunits were not
completely independent.

If the hydrophobic interactions between the conserved
M2 leucines were important for maintaining the receptor in
the closed state, as has been proposed (Unwin, 1995), the
weakening of this interaction by substitution with a less
hydrophobic amino acid would reduce the energy barrier for
channel opening. Our results show that substitution of the
conserved M2 leucine with serine in thea, b, or g subunit
increases the GABA sensitivity and creates spontaneously
opening GABA receptors. This is consistent with the hy-
pothesis that the conserved M2 leucine in all five presumed
subunits may be important for GABA receptor gating and
the mutation either weakens the contacts that hold the
channel closed or strengthen the contacts that hold the
channel open. Mutation of a nearby threonine residue in the
r1 M2 domain (Pan et al., 1997) or a nearby leucine in the
nACh M2 domain (Akabas et al., 1992) could also produce
constitutively open channels, suggesting that other M2 res-
idues in addition to the conserved leucine may also play a

FIGURE 4 Bicuculline and gabazine inhibited the spontaneously open-
ing GABA receptors. (A) Bicuculline blocked Ispont of ambmgm in a
dose-dependent manner. (B) The average fraction of inhibition is plotted as
a function of bicuculline or gabazine concentration. The continuous line is
the best fit of Eq. 2 to the data points, which gave an IC50 of 1.106 0.06
mM and a Hill coefficient of 1.206 0.04 for bicuculline (n 5 3) and an
IC50 of 0.156 0.01mM and a Hill coefficient of 1.106 0.06 (n 5 3) for
gabazine. Bicuculline blocked 0.416 0.03 of Ispont, whereas gabazine
blocked only 0.136 0.02.

TABLE 2 Picrotoxin antagonism for the wild-type and
mutant GABA receptors

Combination IC50 (mM) Hill N No. of mutants*

abg 0.966 0.05 1.336 0.02 4 0
abgm 23.66 2.46 0.846 0.01 4 1
ambg 5.916 0.80 0.826 0.03 4 2
abmg 3.296 0.18 0.876 0.02 5 2
ambgm 65.66 9.5 0.826 0.01 4 3
abmgm 2156 24 0.796 0.01 3 3
ambmg 1376 15 0.776 0.02 4 4
ambmgm 3336 11 0.926 0.03 5 5

Values are mean6 SEM; N 5 number of oocytes.
*Number of mutant subunits within the pentamer, assuming a stoichiom-
etry of 2;2;1 for abg.
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role in receptor activation. Although this study is unable to
assign the gate to the conserved M2 leucine as has been
postulated (Unwin, 1995), our results suggest that this
highly conserved leucine may play an important role in the
gating of heteromericabg GABA receptors.

Effects of antagonists

Mutation of this conserved leucine in any one of the three
subunit isoforms impaired the antagonism by picrotoxin. In
terms of the effects of the mutation in each of the three
subunits, the rank order was different from that for the shift
in GABA EC50 and spontaneous opening. It is not possible
to equate this order with the degree of contribution of this
leucine in the actions of picrotoxin, because the mutations
could disrupt the structure in the three subunits to different
degrees. For example, all subunits could contribute equally
to the picrotoxin binding site, but the mutation may impart

a greater structural change in theg subunit. There was,
however, a significant correlation between the number of
subunits carrying the leucine mutation and the shift in
picrotoxin sensitivity, although the contributions were not a
product of the individual shifts. For example, the mutation
in the g subunit, of which there is only one copy in the
pentamer (Chang et al., 1996), imparted a greater shift in
picrotoxin sensitivity of the spontaneously opening recep-
tors (IC50 5 23.66 2.5mM) than eitheram (IC50 5 5.916
0.80 mM) or bm (IC50 5 3.29 6 0.18 mM), for which the
pentamer contains two copies of each.

Other residues have been identified in the M2 domain
that also impair the actions of picrotoxin in both GABA
(Enz and Bormann, 1995; French-Constant et al., 1993;
Gurley et al., 1995; Wang et al., 1995; Zhang et al., 1995;
Zhang et al., 1994) and glycine (Pribilla et al., 1992) recep-
tors. In addition, cysteine scanning mutagenesis demon-
strated that picrotoxin protected pCMBS2 modification of
aVal257Cbut notaThr261C(Xu et al., 1995), the fourth and
eighth residues from the presumed start of TM2. The con-
clusion was that picrotoxin was acting at the level of
aVal257, allowing access of the modifying reagent to the
more extracellularaThr261. The leucine residue we have
mutated is even more extracellular thanaVal257 and
aThr261, although all three residues are presumed to be
exposed to the channel lumen (Xu and Akabas, 1996).
Because our leucine mutation altered the gating kinetics of
the receptor, it is possible that this perturbation had a
secondary effect on the actions of picrotoxin, and therefore
these data do not allow us to distinguish between an allo-
steric or pore-blocking mechanism for picrotoxin (see Dis-
cussion in Zhang et al., 1994).

According to the traditional view, a competitive antago-
nist should simply occupy the binding site for the agonist
and have no intrinsic activity on its own. We therefore
expected that if bicuculline were competitive it would have
no effect on the spontaneously opening receptors. Surpris-
ingly, the spontaneously opening mutantabg GABA recep-
tors were inhibited by the GABAA receptor competitive
antagonist bicuculline. Thus, in the strictest sense, bicucul-
line is not a pure competitive antagonist, but rather acts in
an allosteric manner (Ueno et al., 1997). In this scenario,
bicuculline would bind with greater affinity to the resting
than the open state, thereby stabilizing the closed state of the
channel.

Activation mechanism

We can begin to consider our results in terms of the fol-
lowing simple activation mechanism for the wild-type re-
ceptor (Del Castillo and Katz, 1957):

R7 AR7 A2R

8

A2R*

(I)

FIGURE 5 The effects of a binding site mutation and the conserved
leucine mutation were independent. (A) Examples of GABA-induced cur-
rents in oocytes expressingabY157S1 L259Sg GABA receptors. These
receptors also demonstrated spontaneous opening. Application of GABA
induced a greater inward current in a dose-dependent manner. (B) Plot of
the average GABA dose-response relationship of the oocytes expressing
abY157S1 L259Sg GABA receptors (f). The continuous line is the best
fit of the Hill equation to the data points with an EC50 of 59.966 1.39mM
and a Hill coefficient of 0.836 0.07 (n 5 3). The leftmost dashed line is
the dose-response relationship forabL259Sg, and the rightmost dashed line
is the dose-response relationship for the binding site mutantabY157Sg
(Amin and Weiss, 1993). The middle dashed line is the predicted dose-
response relationship, assuming the effects of the binding site and leucine
mutations were independent (47.6mM).
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where the receptor (R) can bind an agonist molecule (A) to
form the complex AR and bind a second agonist molecule to
form the complex A2R, from which it can undergo a con-
fomational change and open (A2R*). For the mutant recep-
tors that open in the absence of GABA, we must add a
transition from the unbound closed state (R) to an unbound
open state (R*):

R 7 AR7 A2R

8 8

R* A2R*

(II)

In the absence of agonist, the receptors are at equilibrium
between R and R*. In the presence of agonist, the receptors
would open by the normal activation pathway (R3 AR3
A2R 3 A2R*). For this mechanism to describe our data
(e.g., increased agonist sensitivity), the mutations must also
cause alterations in the binding affinity. This is not consis-
tent with the results fromab(Y157S1 L259S)g receptors,
which suggested that the effects of the binding site and
conserved leucine mutations were independent. Alterna-
tively, we could consider the activation in terms of the
following, more general, allosteric Monod-Wyman-Chan-
geux activation mechanism (Changeux and Edelstein, 1998;
Colquhoun, 1973; Edelstein and Changeux, 1996; Karlin,
1967; Monod et al., 1965):

R ¢O¡
KR

AR ¢O¡
KR

A2R

L8 Lc8 Lc28

R* ¢O¡
KR*

AR* ¢O¡
KR*

A2R*

(III)

As for Scheme II, in the absence of GABA, the receptor is
in equilibrium between R and R*. There is evidence that
nACh receptors can open in the absence of agonist, giving
further experimental credence to this allosteric activation
mechanism (Jackson, 1984, 1986).KR andK*R are the ago-
nist binding affinities of the closed and open receptor,
respectively;L is [R]/[R*] or the ratio of the equilibrium
occupancies of the closed and open forms of the unbound
receptor; andc is K*R/KR. As originally proposed for this
allosteric model, the open state has a higher affinity for
agonist than the closed state (K*R , KR), and therefore this
model predicts that the mutant receptors with a lowerL
(greater degree of spontaneous opening) would be more
sensitive to agonist (lower EC50). As shown in Fig. 6A,
there was a strong correlation betweenL and the EC50 for
the experimental data, supporting such an allosteric activa-
tion mechanism.

The symbols in Fig. 6B replot the dose-response rela-
tionships for the mutant receptors (as in Fig. 1B), but in this
case the plot takes into account the spontaneous opening;
that is, the intercept of the ordinate is the fraction of recep-
tors that are open in the absence of GABA. These wild-type
and mutant dose-response relationships were simulta-

neously fitted with Eq. 3 (based on Scheme III) to derive
KR, K*R, and wild-type L. The L values for the mutant
receptors were experimentally determined. The thick solid
lines in Fig. 6B represent the binding curves of the open and
closed states, respectively, and the dashed lines are the

FIGURE 6 An allosteric mechanism can describe the activation of the
wild-type and mutant receptors. (A) The large symbols are a plot ofL
(IGABA/Ispont) versus the EC50 of the various receptor combinations. The
small open circles are the prediction for Scheme III withKR 5 78.5mM,
KR* 5 0.12mM. The dashed line connects the small open circles. (B) The
symbols are a plot of the dose-response relationship for the various mutant
receptor combinations (as in Fig. 1B), but in this case taking into account
the spontaneous opening; that is, the intercept of the ordinate is the fraction
of receptors that are open in the absence of GABA. The two thick solid
lines represent the binding functions of the open (left) and closed (right)
states with affinities of 0.12mM and 78.5mM, respectively. The dashed
lines are the predicted dose-response relationships for Scheme III, using
parameters determined from the simultaneous fit of Eq. 3 to these data. The
allosteric activation mechanism gave an excellent description of the acti-
vation of the wild-type and mutant receptors, except forabgm, which
exhibited a greaterIspontthan that predicted from the shift in EC50 and was
therefore not included in the fitting process (see Materials and Methods).
For the purpose of display, the dashed line through theabgm data points
was generated using anL value (94.4) that was adjusted to describe the
experimentally observedabgm dose-response curve.
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predictions of Scheme III. This allosteric mechanism, with
constantKR and K*R, gave an excellent description of the
activation of the mutant GABA receptors. This further sup-
ports a role for this leucine residue in receptor gating. For
the wild-type receptor, Scheme III and the estimated values
of KR, K*R, andL predict aPopenof 9.9 3 1026, 0.007, and
0.84 from the R, AR, and A2R states, respectively. There-
fore, entry into R* and AR* is negligible, and wild-type
receptors essentially activate via Scheme I. For the sponta-
neously opening mutant receptors, however,L is signifi-
cantly lower than in the wild-type receptor, and thus the
channel readily enters states R* and AR*.

Based on these data, we would conclude that an allosteric
mechanism such as that in Scheme III is a reasonable
working hypothesis for the activation of thea1g2b2 GABA
receptor. Normally, spontaneous openings in the absence of
GABA are rare, and the wild-type receptor exhibits a linear
mechanism of activation (Scheme I). It is the mutation-
induced destablization of the closed state that revealed the
underlying allosteric activation mechanism. It is worth test-
ing whether such an allosteric mechanism for the GABAA

receptor, via alterations inL, might account for the actions
of select GABA receptor modulators.

This research was supported by National Institutes of Health grants
NS36195 and NS35291.
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