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Flexibility of Duplex DNA on the Submicrosecond Timescale
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ABSTRACT Using a site-specific, Electron Paramagnetic Resonance (EPR)-active spin probe that is more rigidly locked to
the DNA than any previously reported, the internal dynamics of duplex DNAs in solution were studied. EPR spectra of linear
duplex DNAs containing 14-100 base pairs were acquired and simulated by the stochastic Liouville equation for anisotropic
rotational diffusion using the diffusion tensor for a right circular cylinder. Internal motions have previously been assumed to
be on a rapid enough time scale that they caused an averaging of the spin interactions. This assumption, however, was found
to be inconsistent with the experimental data. The weakly bending rod model is modified to take into account the finite
relaxation times of the internal modes and applied to analyze the EPR spectra. With this modification, the dependence of the
oscillation amplitude of the probe on position along the DNA was in good agreement with the predictions of the weakly
bending rod theory. From the length and position dependence of the internal flexibility of the DNA, a submicrosecond dynamic
bending persistence length of around 1500 to 1700 A was found. Schellman and Harvey (Biophys. Chem. 55:95-114, 1995)
have estimated that, out of the total persistence length of duplex DNA, believed to be about 500 A, approximately 1500 A is
accounted for by static bends and 750 A by fluctuating bends. A measured dynamic persistence length of around 1500 A
leads to the suggestion that there are additional conformations of the DNA that relax on a longer time scale than that
accessible by linear CW-EPR. These measurements are the first direct determination of the dynamic flexibility of duplex DNA
in 0.1 M salt.

INTRODUCTION

The nature of the flexibility of individual base pairs in been done to develop such probes for electron paramagnetic
duplex DNA has been an ongoing concern of biophysicatesonance (EPR) and nuclear magnetic resonance (NMR)
research. The fundamental question is: “whether simpléAlam and Drobny, 1991; Eimer et al., 1990; Robinson and
coupled Langevin equations and generalized diffusion equadrobny, 1995b; Robinson et al., 1997). NMR experiments
tions for such motions are valid at nanosecond times, in thgenerally use spin-active nuclear isotopes, such as deute-
presence of strong direct forces.” (Schurr et al., 1992). Theium (Mattiello and Drobny, 1994; Nuutero et al., 1994).
theory of deformability of an elastic filament in a simple Drobny has noted individual librational dynamics of sugars
solvent with normal viscosity is well developed, easy tothat are site and sequence dependent (Robinson et al., 1997).
implement, and test by experiment (Song et al., 1990; Wu et The model-free approach to analyzing EPR (Keyes and
al., 1987). This theory of the dynamics, when applied toBobst, 1995; Strobel et al., 1995; Thomas et al., 1975) and
duplex DNA, is capable of predicting both the mean squard&NMR (Lipari and Szabo, 1981, 1982a,b; Robinson and
amplitudes of twisting and bending oscillations of base pairDrobny, 1995a) data to extract dynamics information has
within the duplex DNA as well as the decay times of eachbeen heavily used in the last few years. The goal of the
of the normal modes of deformation. model-free approach is to determine the order parameters
The dynamics of DNA have been studied by such tech{or mean square amplitudes of motion) and internal corre-
niques as time-resolved fluorescence polarization anisofation times from experimental line width data. However,
ropy (Barkley and Zimm, 1979; Schurr et al., 1992), tran-for the EPR data presented herein, there exist no well
sient photodichroism (Allison et al., 1989), and electric developed methods for extracting a dynamics-sensitive line
birefringence (Hagerman, 1988). In all cases, because theidth, and therefore the traditional model-free approach is
probes were uniformly distributed along the length of theinappropriate. Nevertheless, the analysis used does yield the
DNA, the measured dynamic responses of the system werm@der parameters associated with the internal dynamics via
averaged over the entire DNA. To test theories of the elastithe mean square amplitude parameters, which are com-
properties of duplex DNA as a function of local sequencepletely equivalent to the order parametersobtained by a
and local position requires probes that can be placed unanmodel-free approach (Schurr et al., 1994). More impor-
biguously at specific sites along the DNA. Much work hastantly, the dynamics model of choice, which is the weakly
bending rod model, predicts the dependence of the order
. . o parameters on label position in the sequence and the length
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amplitudes of motion of base pairs (Hogan and Jardetzkypnds, and 3) the uniform modes, whose reorientation times
1979, 1980; Keyes and Bobst, 1995; Strobel et al., 1995). Anay be microseconds or longer.
careful reanalysis of much of these data has indicated that The weakly bending rod model of DNA dynamics relates
the apparently large amplitudes can be explained by #he mean square amplitudes of oscillation to the force con-
superposition of collective deformations and local motionsstant for bending between base pairs, which, in turn, is
at the base pair level that are individually of smaller ampli-simply related to the dynamic-flexural persistence length.
tude. For example, Eimer et al. (1990) found the amplitudeThe total duplex DNA persistence length is nominally
of motion to be~18° and was cited (Keyes and Bobst, around 500 A, and contains both dynamic and static com-
1995) as a demonstration that base pairs of DNA have largponents. Trifonov et al. (1987) suggested that the total
amplitudes of local motion, but when the data were reanapersistence lengtt®,, be written as the sum of a dynamic
lyzed by Nuutero et al. (1994), using a collective modescomponent,P,, and a static (structural) componerR,
model, the residual amplitudes of local motion were lessl/P, = 1/P, + 1/P4 Schellman and Harvey (1995) have
than 10°. confirmed the Trifonov relation. The Schellman—-Harvey
EPR labeling experiments have focused on replacingstimate folP is sequence dependent and ranges firgmy
natural bases with analogs modified to contain the EPRL370 A for a “many wedge model” tB, ~ 2000 A for the
active nitroxide radical as an integral part of the base. EarhAA-wedge model. To date, there have been no direct mea-
site-specific probes underwent substantial probe motiosurements on the dynamic component of DNA when not
with order parameters less than 0.4 (Keyes and Bobst, 1995ubjected to an external-distorting field. In the following
Strobel et al., 1995). Later developments generated a clagxperiments, we provide direct evidence for the dynamic
of probes with order parameters of 0.5 and 0.8 (Hustedt etomponent of the persistence length. We note that the EPR
al., 1993a, 1995). Recently, a new EPR-active spin-probegxperiments are sensitive to dynamics on the submicrosec-
Q, that has an order parameter greater than 0.95 (Miller edbnd time scale; therefore, our EPR measurements are not
al., 1995), has been synthesized, and we report here tteensitive to dynamics longer than a microsecond. The re-
results obtained by using it. Such a probe can be expected taxation observed in these experiments could be considered
have greater sensitivity to the collective modes that charado be fast dynamics due to bending (db), and the associated
terize the internal deformations of the DNA (Robinson andpersistence length is calle®,, There potentially are
Drobny, 1995a; Robinson et al., 1997) and be sensitive tslowly relaxing structures (srs) that relax on a timescale
dynamic processes with correlation times as long as onslower than our experiment can observe. The overall dy-
microsecond (Freed, 1976; Hustedt et al., 1993a). Magnetinamic persistence length would then be the sum in the same
resonance experiments uniquely distinguish among 1) rapitbrm as above: By = 1/P, + 1/Py, Substituting this
internal relaxation when the decay times are faster than onelation into the above expression, we suggest that the total
nanosecond, 2) the decay times for internal dynamics thenpersistence length is the sum of three components (Schurr et
selves when those decay times are on the order of nanoseak, 1997): 1P, = 1/P, + 1/Py, + 1/P
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Figure 1 illustrates the dependence of the mean square A similar treatment has been developed for bending.
bending oscillation amplitude (in rdd and the root mean There are two independent directions assumed to have the
square angular displacement (in degrees), for the centraame bending force constant, Due to the mean local
base (= (N + 1)/2) of the weakly bending rod model as a cylindrical symmetry, the mean squared amplitudes in both

function of the number of base paind, + 1, of DNA for

directions are the same. The total bending potential energy

various values of the dynamic persistence length. As showris U = Y2kn'An + ¥2k6'A8, wherek is the bending force
the mean square oscillation amplitude is sensitive to theonstant. Because there are oiy(not N + 1) bending
dynamic persistence length, easily distinguishing betweeangular coordinates; and 6 are vectors of lengthl, andA
500-, 750-, and 1250-A persistence lengths. In this papeis now the correspondiny X N matrix (Wu et al., 1987).
we will measurePy, using the weakly bending rod model By an argument similar to that given in Eq. la,

and demonstrate that the weakly bending rod model is valid

for the dynamics as a function of DNA length and probe

position on the DNA.

APPLICATION OF THE THEORY OF THE WEAKLY
BENDING ROD TO EPR SPECTRA

I ks T
(ME)m'(=)) =~ - QA™'Q, (1b)
whereA containsN — 1 eigenvalues. The uniform mode of
motion, for which the eigenvalue is zero, has been removed
from both A and Q. If we momentarily neglect the differ-
ence betweelN andN + 1 beads, then the mean squared

We summarize the simple and elegant weakly bending rod mjitudes from the bending and the twisting atithebase
model developed by Schurr and coworkers (Schurr et alyair are related through the bending and twisting force
1992; Song et al., 1990; Wu et al., 1987) to describe thgqnstants

modes of motion of DNA. Mathematically, DNA is treated
as a flexible rod-shaped object. Although duplex DNA may
be curved over a long distance, mean local cylindrical

(@D a
@D« @

symmetry is assumed to occur about each base, and each

base is attached _to neighboring bases by a Hookean spring. For a base pair at thi¢h position along a chain oN +
The model predicts the mean-square amplitudes of both) units, the mean squared amplitude at infinite time is

twisting (¢?) and bending(n?) of the ith base pair in a
duplex DNA consisting oN + 1 base pairs.

The total twisting potential energy i = Yaad' Ad,
wherew is the twisting force gonstan:f; is a column vector
of N + 1 twisting angles withp' its transpose, and is the

N + 1 byN + 1 harmonic coupling matrix, given in Eq. A3.

In terms of the normal modes of motion,

($(2)(e0)) = f dP($)d' dg"

—0co

cooexp—UlkgTh -
= QJ pfexp{—U/kBT} deP dp"Q
T
~STong, (1)

whereP(¢) is the Boltzmann probability distribution® is

(Allison et al., 1989; Hustedt et al., 1993a; Wu et al., 1987),

T
(Mi(0)?) = k'%(QAith)ii
N+ DT
- 1

_(N+Dh
T 1Py,

f(i, N)

f(i, N), (3)

wherei ranges from 1 toN + 1) and

2i — (N+ 2))2}1

f(i,N)E{1+3< N+ 1

(4)
which is nearly a function ofif{(N + 1)} only and not ofi

or N individually. Becausé(i, N) increases from 1 to 4 das
varies fromN/2 to N, the duplex DNA will exhibit four
times more amplitude of flexure at the ends than in the

the real, orthogonal transformation matrix that diagonalizegenter, regardless of length. The dynamic bending persis-

A, whereQ' Q = 1. A is the diagonal matrix of eigenvalues tence lengthP,,, is related to the dynamic bending force
of A, p = Q'¢ is the vector containing the normal modes, constantc by

dp™ = (dpy, dpy, . .

normal mode. The lowest eigenvalue Af A = 0, corre-

.,dpp), Kg is Boltzmann'’s constant, and
T is temperature. Each eigenvalueorresponds to a single

h _ kT

de_ K '

(5)

sponds to the uniform motion, which is treated separately.

Therefore, to study only the internal motions,= 0 is

whereh = 3.4 A is the distance between base pairs. Asso-

removed fromA ! and the associated column vector is ciated with each mode is a relaxation time. The equations

removed fromQ. The resulting matrixQA Q" is also
called the pseudoinverse 8f (MathWorks, 1996).

that generate the twisting and bending time constants are
given in Egs. A7, A9, and A15. The relaxation time for the
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Ith normal twisting mode is TABLE 1 Sequences for non self-complementary middle-
labeled DNA with the EPR-active spin-label Q

m(twist), = ylah,, (6) N+ 1 Sequence

wherey, is the twisting friction factor. Similarly, the relax- 14  5-d(GAC CTC GQA TCG TG)
ation time for theth normal bending mode (either interms 28  5-d(ATG GTG C-[14-mer]-ATG GTG C)

100 B5-d(TAC GAA CCT GAG CTA TTT CCC GGC
7(bend| = 'thg/Kb)\blv (7) T-[50-mer]-GGA AAG GTG GTG CTC ACT GGA GCA A)

. . . . Each duplex used the sequence given here with its 2AP-containing com-
Where.)‘m (defmed_ in Eqs. Al‘} and A15) IS _tHGh el_ge.n- plementary strand. The basic template came fronDtesophila melano-
value in the matrixA,, andvy, is the translational friction  gaster TATA-box binding protein TFIID gene, positions 1062 to 1151,
factor for the spherical bead of diametgr The size of the  where the A at position 1112 was replaced with Q, the spin-label. The

bead was chosen (Song et al., 1990) to ensure that ti€quence was chosen to have approximately a 1:1 ratio of GC and AT base
uniform modes of the model were consistent with the eXpairs, and also to avoid known oddities such as long runs of a single base.
perimentally determined values. The equations of motion

for flexure include the hydrodynamic interaction of the liquid chromatography (HPLC) and the trityl removed by 85% glacial
beads (Eg. A13), whereas Eq. 3 needs no hydrodynamigeetic acid in water. The spin-labeled sequences were then combined with
effects. It is not at all obvious that such equations (A13—a 10-50% excess of the corresponding unlabeled complementary strand.
A15) lead to exactly the same results as Eq. 3 in thefotal concentrations ranged from 60 to 5aM duplex DNA. The buffer

infinite-time limit, because neither the set of eigenvaluesPNE) in all cases was 10 mM sodium phosphate (pH 7.0), 0.1 mM EDTA,
nor the transformation matrix is the same as the analogoq";‘snOI 0.1 M NaCl. The EPR spectra were recorded digitally on an EPR
o '~ 79.4-GHz spectrometer previously described (Mailer et al., 1985, 1991), and
quantities of Eq. 1. Although Egs. A13 and Al5 are quitea commercial Bruker EMX spectrometer (Bruker, Inc., Billerica, MA).
distinct from Eq. 3, the mean square displacements at infiEPR parameters were 10 and 100 kHz modulation frequency, 1.0 G
nite time are identical when the transformation matrix ismodulation amplitude, and 1 and 2 mW microwave power (nonsaturating
suitably modified (see Eq. A25) and the relaxation times aré;on_ditions). Temcperature was regulatedt6.2°. Samples were kept in a
properly scaled (Eq. A17). re_fngerator at 4°C between meas_urements. EPR spectra were recorded
within 2 weeks of sample preparation.

Four DNA duplexes, of lengthd + 1 = 14, 28, 50, and 100 base pairs,
were designed such that each carried one spin-label Q in the middle
EXPERIMENTAL PROCEDURE position and are explicitly listed in Table 1 and schematically illustrated in
(MATERIALS AND METHODS) Table 2. The local base sequence about Q (6 base pairs including Q:
The site-specific pr_o_be usepl i_n_this work, Q, is a stabl_e nitroxide rad_icaIrTnci:d%EAchng?:inC; rzgse\;l\;id cg]n::rcvheccj)firtlhgaiﬁ gqfe,[fé t;g_;irzetrhzegg_er:gf
attached to a modified pyrimidine and base paired with 2-am|n0pur|nemidd|e containing Q was conserved in the 50-mers; and the 50-mer middle

2AP. Q was prepared as previously described_ (MiIIe_r etal, 199_5) USinE{:ontaining Q was conserved in the 100-mers, while both DNA sequence
both the naturally abundant“N,H,,] and the isotopically substituted length and probe position were varied. Each middle-labelee-(1 base

15 o ) :
[*™N.D,7] nitroxides. The structures of the spin-labeled base pairs, 2AFLQpair) sequence was cyclically permuted so that, when the spin-label was in
and A-T*, used previously (Hustedt et al.,

2 and d with th wrall 19936" :ijggs), are ShAOTW” '2 ';'gpositioni, the fractional position/(N + 1), was nearly maintained. This is
and are compared wi € naturally occurring base pairs, A1 and & schematically illustrated in Table 3 for the 28-mers. The valu€$i af),
Oligomers were prepared on an ABS 392 DNA synthesizer, sized wit

. 4, are available in Table 4.
denaturing polyacrylamide gel electrophoresis (APAGE), and purified on a q
Sephadex column, or purified by trityl-on reverse-phase high pressure

Obtaining internal dynamics from EPR spectra

The protocol described in detail by Hustedt et al., (1993a) and used here to

ON extract the internal dynamics of DNA was as follows. The EPR spectra of
DNA in PNE buffer were simulated using slow-motion density matrix
HYN o- -l h HYN H theory. TheA (splitting) andg chemical shift anisotrophy (CSA) tensors,
d_suxgr\z/_fm_ . NV\S_H d_sugjgr\z/_\‘N_ N/ the homogeneous line width, the inhomogeneous line width, the orientation
9 N=<NH___ O)—drygugar NHe - d d%ugar of the principal axis of thé andg tensors of the spin probe relative to the
H H helix axis of the DNA ;.), and the correlation times for the uniform
G----C 2AP----Q modes of motion were required for the analysis. The correlation times,
given in Table 5, were calculated by = 1/6D, and7, = 1/6D,. The
o diffusion coefficients for the uniform modeB, andD, , were calculated
N
" H H ;S=7<
Ny BH---0  CHs H\I‘N NH----Q_ ¢ TABLE 2 Schematic of length-dependence labeling strategy
sl /_\(N____NZ;\S_H P T WY of Table 1
N= N =
H O dsugr R g Length Series
A--T A--T* 14-mer: —Q—
28-mer: ——(14-mer)—
50-mer: (28-mer)

FIGURE 2 Spin-labels T* and Q, incorporated into base pairs A-T* and

N . (50- ),
2AP-Q. The native base pairs A-T and G-C are shown for comparison. 100-mer: (50-mer)
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TABLE 3 Schematic of position dependence labeling 1996), and was fixed at this value; this is the same tilt angle found for an
strategy, illustrating the cyclic permutation of sequence to earlier spin probe T* (Reese, 1996; Reese et al., 1996a,b).
move Q from the middle to either the left or right position The parameter3?), is the mean square oscillation due to the internal

dynamics, both collective and local, of a spin-label attached to a base at
positioni in the duplex DNA. We assume that the underlying distribution
Left 5-d(GAC CTC GQA TCG TG C TCC TCA ATG GTG C) of angles about the mean is symmetric and Gaussian. When the internal
Middle 5-d(ATG GTG GGA CCT CGQ ATC GTG CTC CTC A) motion is rapid, theA andg tensors are averaged. For thgensor, rapid
Right 5-d(CTC CTC AAT GGT GG ACC TCG QAT CGT G) motions average the tensor to give (Hustedt et al., 1993a)

Position Series for the 28 Base Sequences

Each Q-labeled strand was matched with its 2AP-containing complemen- _ _

. : s SAE-con (A 12 =12 1 Ay
tary strand. Cyclic permutation means figuratively joining the ends of the al —12 12 1
sequence to make a circle, then cutting the circle independently in thre <A>’Y> =11+ é <Bu> Ayy
different places to create the three different position members of eac <Azz> 1

1 —2/J\ A,
length sequence. The 28-mer sequences are shown. The 14-mer sequence (8)

is in bold.
with a similar expression for thg tensor. It is assumed that the amplitude

of motion is limited (/{B?) < 20°) and is applicable to both 1-dimensional
from the theory of Tirado and Garcia de la Torre for a right circular (1D) @nd 2D models of the dynamics. An order paramefgrmay be
cylinder of radiusR = 12 A and length 3.4< (N + 1) A, whereN + 1is  calculated,
the number of base pairs (Eimer et al., 1990; Hustedt et al., 1993a; Tirado

and Garcia de la Torre, 1980). _ (A,) —a _ 3(cogh) — 1

The no-motionA andg tensors, used to describe the interaction of the S A, — a 2
electron spin with the nitrogen nuclear spin and the magnetic fields, 9)
respectively, were obtained from left-, middle-, and right\,D, ] spin- 3 EXF{_2<Bi2>} +1 3
labeled samples of 14-mer duplex DNA in 50% w/v sucrose in PNE buffer = 2 ~1— E <B|2>a

(representative spectra are shown in Fig. 3). Spectra were obtained at 0°C

from the DNA in the high sucrose buffer, where all relaxation times are ) .
increased by a factor of 30 from those at 20°C in 0% sucrose in pNEWherea is the mean value of the three tensor elements and is independent

Under such conditions, some of the internal motion is removed, and th@f the averaging effects shown in Eq.($12>_was found by comparing the -
uniform modes are slow enough that, effectively, the EPR spectra are in théimulation using the averaged tensors with the experimental data. Fitting
no-motion (or powder pattern) limit. The rigid limg tensors were ob- WS performed on the ouFer wings of the sp_ectra until there was opt_lrr!al
tained by a best-fit to 94 GHz powder pattern spectra and then fixed. Th@dreement between the simulated and experimental spectra. The optimiza-
rigid limit A tensors were obtained by a best-fit to both 9.4 and 94 GHz!ion Process maximizes the correlation coefficigdt (minimizing X°)
powder pattern spectra using the rigid linitensors found as described (HustedtzeF al,, 1993a). Values & = 0.97 were obtained in all cases
above (Hustedt et al., 1993b). The inhomogeneous and homogeneous ifd1€re(B) is reported.

widths for each nuclear manifold were also allowed to vary. Ahtensor

elements for the'{'N,D, ] spin-label were calculated from th& tensors

for the [*°N,H,,] spin-label by the relationA([**N,H,,]) = 0.7131 X Analysis of internal dynamics as a function of
A([**N,D,,]), while the g tensors were taken to be the same for both length and position

isotopic forms of the spin-labe” andg tensors were individually deter-

mined for the left-, middle-, and right-labeled 14-mer DNAs in 50% The effective averaging of a base pair due to internal motions comes from
sucrose solution and applied to the corresponding 14-, 28-, 50-, an#wo sources; the collective bending modés,), and the independent local
100-mer left-, middle-, and right-labeled DNAs in PNE and 0% sucrosemotion of the base pair (containing the nitroxidg3), which is assumed
solution spectra. A single set 6fandg tensors, used to simulate all of the to be independent of position and length of the DNA. We assume that the
data of Fig. 3, failed to adequately fit the experimental spectra. Thereforenean-squared amplitudes of these motional processes are additive (Hustedt
we allowed the left-, middle-, and right-labeled DNAs each to be fitted by et al., 1993a),

an individual set of motion-independent tensors. The values oAthed ) ) ) ) ) )

g tensors, given in Table 6, are obtained by assuming that there is some (B = (i) +(6) + (B = Ani) +(B.  (10)
residual motion in the spectra of the samples in 50% sucrose, with a mean

square amplitude of 0.012 rathdependent of label position, according to  The length-dependent contribution is purely bending and is two-dimen-
Eq. 8 below. Finally, we assume that the collective modes contribute verysional. The length-independent contribution may be 1D, 2D, or three-
little to the residual motion of the base pairs in the 14-mer in 50% sucrosedimensional (3D).

The homogeneous and inhomogeneous line widths were individually ad-

justed for the spectra of the DNA in 0% sucrose PNE buffer. The tilt angle,

64, was experimentally estimated to be 20°, from both two-dimensionalThe effects of twisting on the total amplitude

(2D) NMR distance geometry measurements and EPR simulations (Alley, ) o )
Eqg. 8 was developed by assuming that #héensors were coincident with

the helix axis and that twisting could be neglected. In fact, however, the

TABLE 4 Position (i) of the spin-label Q in the duplex DNA spiq probe is tilted from the h(_elix ax_is by about_ 29°. We can (_:alculate the
molecules of length N + 1 base pairs, and the value of f(i, N) mqtlonal_ly _averaged_ tensors |nc_|ud|ng both tW|s_t|ng and_ flexing by aver-
for that position and length of the duplex DNA. aging a limited amplitude of motion about an arbitrary axis (Hustedt et al.,
1993a; Van et al., 1974). The trde(or g) tensor is rotated, by a Eulerian

N+1 ifefty f(i, N) i(middle) f(i, N) i(right) (i, N) rotation, ), consisting of 3 Euler angles, so that the spin-label is aligned

14 4 1.75 8 1.01 12 224 with the axis of libration,
28 8 1.65 15 1.00 22 1.86 ,
50 13 1.75 26 1.00 39 1.87 A" = RIOAR(), (1)
128 22 ;;; 51 1.00 76 1.78 where theR matrices are defined by Goldstein (1975) and Hustedt et al.

(1993a). Dynamic rotation by angein terms of a rotation around the new
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TABLE 5 Time constants, in nanoseconds, from theory for DNA of length 3.4 = (N + 1) A and radius 12.0 i\, in 0% sucrose and

50% sucrose, at T = 0, 10, 20, 30, 40°C

T
0°C 10°C 20°C 30°C 40°C
N+1 7L 7 T 7 T i 7L 7 T T
0% w/v sucrose
11 12.32 6.95 8.73 4.92 6.47 3.65 4.97 2.81 3.94 2.22
12 14.32 7.45 10.14 5.28 7.52 3.91 5.78 3.01 4.58 2.38
14 18.82 8.44 13.34 5.98 9.89 4.43 7.60 341 6.02 2.70
15 21.35 8.92 15.13 6.32 11.22 4.69 8.62 3.60 6.83 2.85
20 37.21 11.33 26.37 8.03 19.55 5.95 15.03 4.57 11.90 3.62
22 45.18 12.28 32.02 8.70 23.74 6.45 18.24 4.96 14.45 3.93
28 75.37 15.11 53.41 10.71 39.59 7.94 30.43 6.10 24.10 4.83
30 87.68 16.05 62.13 11.38 46.06 8.43 35.41 6.48 28.04 5.13
50 284.4 25.42 201.5 18.01 149.4 13.35 114.8 10.26 90.92 8.13
60 441.4 30.08 312.8 21.32 231.9 15.80 178.3 12.15 141.2 9.62
100 1578 48.7 1118 34.5 828.8 25.59 637.1 19.67 504.4 15.58
n* 1.78 131 1.00 0.80 0.65
50% w/v sucrose
11 309.6 174.7 168.1 94.80 99.44 56.09 63.02 35.55 42.22 23.82
12 359.8 187.3 195.3 101.6 115.6 60.13 73.24 38.11 49.07 25.53
14 473.0 212.0 256.7 1151 151.9 68.09 96.27 43.16 64.50 28.91
15 536.7 224.3 291.3 121.7 172.4 72.03 109.2 45.65 73.18 30.58
20 935.3 284.7 507.6 154.5 300.4 91.43 190.4 57.94 127.5 38.82
22 1136 308.6 616.4 167.5 364.7 99.11 231.2 62.81 154.9 42.08
28 1894 379.9 1028 206.2 608.4 122.0 385.6 77.32 258.3 51.80
30 2204 403.5 1196 219.0 707.8 129.6 448.6 82.13 300.5 55.03
50 7148 638.9 3879 346.7 2295 205.2 1455 130.0 974.7 87.12
60 11096 756 6022 410.4 3563 242.8 2258 153.9 1513 103.1
100 39655 1224 21522 665 12735 393 8071 249.2 5408 167.0
n* 44.7 25.2 154 10.1 7.0
From Tirado and Garcia de la Torre, 1980.
*m is viscosity in cP.
z-axis, is carried out by the rotation matrix, For small amplitude averaging, = (£%(=)) and (1— v) = %2+ u, and the
) B’ matrix is proportional tqx. Small amplitude averaging makes f&|
cos§ sing O small and the averaged tensor matrix,(A), is nearly diagonal when
Re= —siné cosé 0 (12)  transformed back into the original frame. When Eq. 13 is applied to the
0 0 1 case for 2D flexural motion (in which the two axes of flexural motion are

The dynamically averaged tensor is(A’) =
written specifically as

(RA'RY, which can be

(AY=A —B (13)
where
P«(Ail - Ay 2uAL, Y2(1 — v)Ags
B = 2puAL, —w(AL — Ax) Y21 - v)Ay

Yol — VA Yo(1— 1)Ab

0

andpu = (sir? &) andv = (cos¢). We may find(A) by rotating back into

the original frame,

(A = RIQ)(AYRQ) = A — R(Q)B'R(QY).

(14)

When the underlying distribution is Gaussian, with variag&&x)), it
follows that the quantitieg. and v depend on a single parametgf(x)),

m = Y2(1 — exp{—2(&(=))})

and

v = exp{—¥(§(=))}.

perpendicular to the axis of the spin-label), ther: (82()), and the result

is Eg. 8. We can use Egs. 12-14 to include the effect of the torsional
motion on theA andg tensors; Eq. 12 must be applied twice to obtain the
result. In the first averaging, the spin-label is tilted &y, = 20°, and
averaged by(¢;(*)?). Eq. 2 gives(d;(«)? = (n,(=)?(x/a), where the
quantities on the right-hand side can be estimai¢d € 3.75) (Robinson
etal., 1997; Schurr et al., 1992). Second, the resultant tensor is tilted by 70°
and averaged over the bending (about both axes). This is compared with the
effects of just tilting by 90° and averaging over the two librational axes for
bending (Eqg. 8).

RESULTS

Table 1 lists the specific sequences of the middle-labeled
duplex DNA studied. Tables 2 and 3 schematically illustrate
the labeling schemes used. Each duplex Nas 1 base
pairs and is referred to as aN (+ 1)-mer. EPR spectra of
the 14-mer DNA duplexes in 50% sucrose and PNE buffer
are shown in Fig. 3, along with simulations that assume no
dynamics. Spectra are shown in Fig. 4 for tHaN[D,]-
labeled and 'N,H,.]-labeled DNA duplexes in PNE at
0°C, for left-labeled (i, N) = 1.75, see Table 4)N +
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T TABLE 6 Rigid-limit tensor elements used for
all simulations.
X y z
L h
| Vo //\ 1SN-SL 94 GHZ left
AV g ) = g 2.0089 2.0068 2.0031
\ / Ve /’ A(14N) G 6.13 6.00 36.45
| V \ \ ] A(15N) G 8.60 8.42 51.12
= middle
g g 2.0086 2.0064 2.0026
g 15N-SL 9.4 GHz A(14N) G 5.81 5.75 36.75
=l \ 1 A(15N) G 8.15 8.07 51.53
5 right
4 M\,\/\V"\[’ g 2.0087 2.0066 2.0029
o A(14N) G 6.24 6.03 36.29
. A N . A(15N) G 8.75 8.45 50.89
i [ 14N-SL 9.4 GH
} R \\wm-/\\ J \ /\//ﬁ_ﬂﬁf Tensors were constrained such tAgt*N) = 0.7131x A(**N).
¥2(N + 1), are linearly related ttN + 1. The best, least
. squares linear relation betweés?) and (N + 1) is shown
I .
m = o 0 s ™ © - for each data set, independently. However, the mean

Relative Field (Gauss) squared amplitudes of the left- and right-labeled DNAs
depart markedly from linearity above 50 base pairs. There-
FIGURE 3 9.4 and 94 GHz CW-EPR spectra of rigid-limit 14-mers of fore, the data for the left- and right-labeled DNAs at 100

duplex DNA labeled with Q in 50% w/v sucrose in PNE at 0°To . . .
[1N,D,,] left-labeled 94 GHz spectrumMiddle) [**N,D, ] middie-la- base pairs are neglected, for the moment, from the linear fits

beled 9.4 GHz spectrumB6ttom) [**N,H, ] left-labeled 9.4 GHz spec- 1N Fig. 5. From these SlOpSS, an approxirﬂate bending force
trum. These spectra and the remaining left-, middle-, and right-labelecconstant ofic = 1.61x 10~ ** + 0.08x 10 **ergs/rad can
14-mer analogs in 50% w/v sucrose in PNE at 0°C were fit to the tensorge estimated for the middle-labeled DNA. Similarly,is

given in Table 6 corresponding to their label position. The average homoq 23 % 10711 + 0.09 x 10 ! ergs/raa for the left-labeled

geneous center line width for4N,H,,] left-, middle-, and right-labeled _ —11 —11
DNA was 0.85 G with a 0.58 G inhomogeneous broadening. The homoDNA’ andk = 1.23x 10 +0.05x10 ergS/raa for

geneous line widths for low- and high-field lines for téN,D, ] left-,  the right-labeled DNA at 0°C.
middle-, and right-labeled DNA at 94 GHz were, on average, 0.87 G and We now consider why the values §8?) (Fig. 5) depart
0.80 G, respectively, with 0.7 G and 0.58 G inhomogeneous broadeningrom the linear dependence oh+ 1 as predicted by Eq. 3
r?te hc’_r;é’lge”eo;s_ ”:tel ":)idlthj I];?l:llewt-QaZ% Egh'ﬁe'd lines fbr’NLDlg o oor the left- and right-labeled cases, but not for the middle-
ert-, mi e-, andri -labele at 9. Z were, on average, 0. . .
and 0.90 G with Og.OO G inhomogeneous broadening. EPRgspectra olrabeled ca}se wheN + 1 IS _between 50 and 100 bas_e paII’S:
right-labeled DNA are not shown. The correlation coefficient, R, defined ON€ possible explanation is that the modes of motion are in
elsewhere (Hustedt et al., 1993a), was between 0.97 and 0.99 for eadhe intermediate time regimen of linear CW-EPR and are
simulation. not sufficiently rapid to fully average the tensors. This
requires that we now examine the predictions of the theory
of the weakly bending rod to estimate the time constants of
1)-mers. Simulations were performed using theand 7, the various modes.
values given in Table 5. Only the homogeneous linewidths The time constants for the internal dynamics due to
and(p?), the measure of internal dynamics, were adjusted tawisting, iy, and bendingz,enqy Were calculated from
optimize the fit of the simulations to the data; all other Egs. 6 (Allison et al., 1989; Wu et al., 1987) and 7 (Song et
parameters were fixed. al., 1990), respectively. The time constants for the four
longest motional modes as a function of DNA length are
shown in Fig. 6, for bending (Fig. & andc) and twisting
(Fig. 6,b andd), calculated with the parameters correspond-
ing to PNE buffer at 20°C (Fig. & andb) and 50% sucrose
Egs. 3 and 10 predict that the values 8f) depend on both  w/v in PNE buffer at 0°C (Fig. 6¢ andd). Note thatrend)
the label position and the total number of base pairs in thef the longest bending mode (0% sucrose, 20°C) exceeds 10
duplex DNA. The theory of Egs. 3 and 10 suggests {8at  nanoseconds at (and above) 60 base pairs duplex DNA. This
should be approximately a linear function & - 1). In  is slower than the fast motion limit and should be excluded,
Fig. 5, the mean squared amplitudes of oscillati@g), or partially excluded, from the calculation @f?). The
obtained from the spectra as illustrated in Fig. 4, are plotted,..q) for the second longest mode exceeds 10 ns at about
as a function of length for the left-, middle-, and right- 110 base pairs. For middle-labeled DNA, the longest mode
labeled N + 1)-mers, from spectra of 14 to 100 base pairs(the fundamental or horseshoe shaped mode) contributes
at 0°C. The values ofB?), for the middle-labeled case~ only to translational relaxation and not at all to rotational

Analysis of bending amplitude as a function of
length and position
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, < , This qualitatively explains why the middle-labeled DNAs
do not appear to markedly deviate from linearity, as do the
left- and right-labeled DNAs.

The above argument qualitatively demonstrates that

modes with long correlation times do not cause as much
_ spectral-position averaging as do modes with the same

.

14-mer

/\/’ amplitude but faster correlation times. This argument can be
made more quantitative. We can lessen or down-weight the
4 contribution to the spectral-position averaging of modes
whose dynamics are too slow for rapid pre-averaging. Eq. 3

can be modified to weight differently the contribution of the
B 28-mer 1 individual modes to the calculation ¢f?),
kBT N—-1

i ] (mi(»)?) = T > W QA (15)
=1
L 50-mer 4 where we take a phenomenological functional form for the
weighting factors,
- . W, = exp{—7 - AA 1. (16)

In Eq. 16,w;, is a weighting factor that depends on the

L 100-mer 1 relaxation time of théth motional mode and on the dynam-
ics of a spin-label attached to thta base pair (see Eq. A17).

\ When the relaxation time is very fast, the weighting factor

- -4 for each mode is one and decreases toward zero as the
relaxation time of the associated mode increases. We can

| 1 1 | 1

25 25 0 25 25 estimate AA from the approximate resonance condition
Relative Field (Gauss) (Griffith and Jost, 1976):
FIGURE 4 Spectra of'fN,H,,] (left column and [°N,D,,] (right col- A(9) = A,,co$0 + A, sinfo

umn) left spin-labeled + 1)-mer duplex DNA at 0°C in PNE buffer, with
simulations overlaid. TheA and g tensors are given in Table 6; the or
correlation times are given in Table 5. A 20° tilt angle was used; homo-

geneous line widths and3?) were optimized to fit the simulations to AA = A(g) — A(O) ~ (AL — AZZ)SiHZG.
spectra. The values ¢B?) are

145 15 The total angular displacement|& = \/2(n,()?), for an
individual mode. Therefore,

14-mer 0.0196 0.0260

28-mer 0.0286 0.0366 kT
50-mer 0.0432 0.0444 AA = ‘ A — sinz( p .2,\1),
100-mer 0.0545 Ar= A - A « QN

For the typical amplitudes of motion and tensors (Table 6)

the maximum relaxation time for which the fast motion
relaxation. In contrast, the second longest mode contributesssumption will be valid is on the order of nanoseconds. To
considerably to the middle-labeled DNA's rotational relax- see how well the weighted, weakly bending rod theory
ation. However, for the left- and right-labeled DNA, the accounts for the data, th@?) of Fig. 7 are compared with
longest mode contributes more than half that of the totatheoretical values obtained using Eq. 10 and @ cal-
rotational relaxationr - AA < 1 conventionally represents culated from Eq. 15, with no adjustable parameters. The
the fast motion limit, wherer is the time constant of the 7(,e,q, Were calculated from Egs. 7 and A17. The bending
dynamics process antiA is the distance between spectral force constant and the length-independent contribution
lines, in Hz, that the motion averages (Hustedt et al., 1993&;32) were those obtained from the middle-labeled DNA at
Nordio, 1976). For spin-labels, wheneveof a process is 0°C (see Fig. 5 legend). The results of the weighted fitting
longer than a few nanoseconds, the EPR spectrum is not imre shown in Fig. 7.
the fast motion limit. Consequently, because the longest The small dots in Fig. 7 are the theoretical value$gsh
mode contributes more to the relaxation of the left- andas a function of length, calculated with the weighted,
right-labeled DNA, the deviation from linearity should be- weakly bending rod theory (Eq. 15). The weighting ac-
gin around 60—70 base pairs. For the middle-labeled DNAcounts nicely for the deviation in the data seen for the left-
deviation from linearity should begin around 110 base pairsand right-labeled 100-mers. Even the 50-mer, consisting of

17)
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FIGURE 5 The mean squared oscillation paramégy (racf), and the r.m.s. angular displacemefis,(deg) on right-hand axis due to the internal
dynamics of DNA, as a function dff + 1 base pairs of duplex DNA labeled on the right)((i ~ %2N), the middle O) (i =~ ¥2N), and the left ) (i =
¥aN), and a 50-mer labeled at position 8)((i ~ ¥1oN) all at T = 0°C. Each data set is least-squares fit to the linear model, wigéyelepends linearly
on (N + 1) (as suggested by combining Egs. 3 and 10). Each fit is shown by its respective solid line. The slopes and intercepts are

Left Middle Right
Slope (rad/bp) * 10° 0.51+ 0.02 0.39+ 0.02 0.51+ 0.04
Intercept (rad) 0.0185= 0.0005 0.016Z 0.0004 0.0210+ 0.0005

The left- and right-labeled 100-mer DNAs and the 50-mer labeled at position 6 were not included in the fits. Er¢gfs #oe reported as1o.

a different sequence of DNA labeled at position 6, is reasingle scale factor on all of the bending relaxation times (see
sonably well accounted for by the theory. At eadhthe  Eq. A17) to vary to obtain an optimized fit. The bending
increasing order of the simulaté@?) for left-, middle-, and  force constant increased by around 15%. The results are
right-labeled DNA is the same as the experimef@i) for  given in the legend of Fig. 7.

the left-, middle-, and right-labeled DNA. The solid and Figure 8 overlays EPR spectral simulations and data for
dashed lines that go near the dots in Fig. 7 are approximatifie middle-labeled 28-mers in PNE and 0% sucrose from 0
theoretical values ofg?) as a function of length, calculated to 40°C. How the width of the spectra systematically pull in
using approximately constaiiN values and are drawn only and(B?) increases with increasing temperature is illustrated.
to help the reader visualize the dependencg8ffon probe  The predicted rates of the uniform modes also increase, as
position and DNA length. At small values of, the slopes given in Table 5. In Fig. %?), as a function of length for

of the left- and right-labeled DNA lines are approximately only the middle-labeled DNA, is shown at temperatures of
twice as steep as that of the middle-labeled DNA line, in0, 10, 20, 30, and 40°C. Fitting all the data shown in Fig. 9,
good agreement with the theory (Eq. 4), which predicts axcept for the two high-temperature 14-mers, and assuming
ratio of approximately 1.8. The constraint that all curvesa single T independent bending constant gives a valee
must come to a single value ¢82) in the limitas N + 1)  1.44x 10 ** + 0.04 X 10 ** ergs/rad. The low-temper-
goes to zero may be too harsh a constraint, because differeature data (0—10°C) considered separately are best-fitted by
positioning of the labels and different sequences may noa bending constant = 1.62 X 10 ' + 0.05 x 10!
extrapolate to the same point. Nonetheless, the model wasgs/rad. The high-temperature data (30 and 40°C) are
constrained with this criterion. best-fitted byx = 1.27 x 10! = 0.08 x 10 ' ergs/rad.

We used the weighted, weakly bending rod theory toThe ratio of bending force constants from the low-temper-
obtain an optimized persistence length that uses all of thature data to those of the high-temperature data is about 1.2,
data shown in Fig. 7. We performed a least squares optimindicating that the bending force constant may be tempera-
zation of the theory in Egs. 10 and 15 on the data for theure dependent. The intercepts, i.e., the values of@Pe at
left-, middle-, and right-labeled DNAs. We allowed the each temperature determined from the single bending con-
bending force constant, the single intercépf), and a  stant model were, to within experimental error, the same as
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@) flexural taus, 20C, 0%suo b) torsional taus, 20C, 0%suc stochastic processes similar to those that drive diffusion in
1 ‘ ‘ ‘ ‘ ‘ the solvent. One might expect that the temperature depen-
dence of{82) would correlate with that of the viscosity of
the buffer solution;n,,(T), even thoughB2) is an equilib-
rium property andn,(T) is a transport property of the
system. The solid line in Fig. 10 is a plot of /()
multiplied by a scaling factor versus temperature (see leg-
end for details). The extension of this modabtted ling to
low temperatures shows that the limiting value(gf) is
0.0 = 0.001 radians. Both of these models are in excellent
. o T . o e 1 agreement with the experimental data ¢8f), and suggest
number of base pairs number of base pairs that theA andg tensors are independent of DNA motion.
Figure 11 shows the comparison(gf) versusN + 1 for
the middle-labeled-T* DNA and the middle-labeled-Q
DNA at T = 0°C. The slope of thég?) versusN + 1 curve
for the T*-labeled DNA at 0°C<olid line) is approximately
0.6 times as steep as the slope for the Q-labeled DNA at 0°C
(solid line), suggesting that the bending force constant for
T* is 1.6 times larger than for Qx = 2.53 x 10 ! =
0.41 X 10 ** ergs/rad for T*- and k = 1.61x 10 ** +
0.08 X 10 ! ergs/rad for Q-labeled DNA. If we neglect
the T* 96-mer data at 0°G; becomes = 1.65x 10~ +
0.40x 10 ** ergs/rad (dashed-dotted lije essentially the

time constant (ns)
time constant (ns)

c) flexural taus, 0C, 50%suc d) torsional taus, 0C, 50%suc
—y T T

time constant (ns)
SN
=

time constant (ns)

10° ‘ ‘ : : Ll same value as Q. The possible origin of thealue differ-
© berofbapars O amberofbasrs ences for T* and Q will be considered in the Discussion
section.

FIGURE 6 Time constants of the first four internal modes of motion for ~ The analysis O(B|2> in Figs. 7-11 neglects the effects of
bo_th tors_ional and flexural dynamics as a function of the number of bas«iorsiona' motion entirely. We showed in Eq. 13 how the
pairs, usingPy, = 1250 A,h = 3.4 A, and computed from Egs. 6 and 7. - . .
(@) Flexural, 7peng) 20°C, 0% sucrosebj Torsional, 20°C, 0% sucrose. effects_ of tVVIStII'.lg could be included to g'Ye the overall
(0) Flexural, 0°C, 50% sucrosed)(Torsional, 7isy,, 0°C, 50% sucrose. tensorial averaging. For purposes of assessing the effects of
The torsional force constant = 4 - 10 *? ergs/rad and torsional friction  twisting, we assuméB2) = 0 and, in Fig. 12, compare the
factorsv; =a§ : 28;23 erg- Sec/r/ad inPE'\éE ?E)Z((:)OC andy, =d 2(-:7 '| 10|’i_1 ftwo methods of averaging the tensors. The order parameter,
erg- sec/radin 0 sUcrose wi/v in at 0°C were used. Calculation o H H 2
thtgaJ bending time constants using the scaled model, in whijct 1 beads S, of E.q' 9 s shown as a fL.mCtlon qp;) for two pre-
with radius 15.9 A replacedN + 1 base pairs, are discussed in the faveraglng quels' Method 1 is the Standlard method apply-
Appendix. In 0% sucrose w/v in PNE at 20°C, bending constant1.5 X ing Eqg. 10 which averages over two bending angles, and the
10~ ** erg/rad and bending rotational friction facteg, = 3mmhd = 3.0 X spin system is aligned with the helix axis. Method 2 uses
102 erg - sec/rad were used; and in 50% sucrose w/v in PNE at 0°C Eq. 14 and assumes that the spin probe is tilted by 20° and
Yo = 1.4X 10 * erg- sec/rad. is averaged byd?) about thez-axis and(n?) aboutx andy.
For a given{B?, method 2 reduce§ more because it
includes the twisting. Thé3?) used in the original method
those obtained from the best-fit straight line of each of thelmethod 1) multiplied by 0.9 give the same valuesSf
data sets at each temperature. found for method 2 (see Fig. 12), hence, dpB§), or more
Figure 10 shows DNA length independe(82 as a precisely 2n?) estimated by method 1, can be corrected for
function of temperature. The values ¢2) were obtained twisting by multiplying that estimate by 0.9. In essence, the
from the data of Fig. 9 (see legend) and depend approxiB?) values reported are not due entirely to bending, but
mately linearly on temperature over the small (40°) tempercontain about a 10% contribution due to the twisting about
ature range. However, fitting @32 to a linear function of the DNA helical axis.
temperature cannot be a complete description, because it
provides no insight into the limiting value df32) at ex-
treme_ly low temperatulres. We SuggesF thag) may be . The temperature dependence of the amplitudes
described by a model in which the motion of the probe is_, . .
) . ; of internal motion
constrained by a simple harmonic well (see legend for
model). Figure 10 shows a fitl6tted ling of this model to  Wilcoxon and Schurr (1983) examined the nature of the
the (B2). The model does not include zero point librational potential governing the interaction of adjacent base pairs.
amplitude because the reference spectra for whicK@he They found that, if the potential were a square well, tRgp
values were obtained contain the zero point librational mowould be independent of temperature, whereas if the poten-
tion. As a second model, it may be tH@f) is governed by tial were harmonic, thefP,, would be inversely propor-



3266 Biophysical Journal Volume 77 December 1999

0.09 T 172

0,08 % 4 162

y (rad®)

2
B, (deg)

(B

Lo o middle l_ aq

¢ ¢ left

o a right

iy Jay pos 6 - 573
Weighted fit :

|
0 L | L H | 1 L 1 t | Il ‘ o
0 10 20 30 40 50 60 70 80 90 100 110

Number of Base Pairs

FIGURE 7 The mean squared oscillation paraméggy, due to the internal dynamics of DNA as a function\bf 1 base pairs of duplex DNA labeled

on the right () (i = %4N), the middle Q) (i =~ ¥2N), and the left ) (i =~ ¥4N), and a 50-mer labeled at position&)(i ~ ¥10N all at T = 0°C, including

the weighting of Eq. 16dot9. The data are modeled using Egs. 10 and 15, assuming a $Byle,, and« for all four spin-label positionsg = 1.61-
10 ** erg/rad, 7, = 2.2 X 10 *° sec, and2) = 0.0167 rad at 0°C. The standard error to the fitéis= 3.3 X 103 The 7, are calculated according

to Egs. 7 and A17. A best-fit of the model to the data allows optimization of all three parameters, and they §te97 + 0.29)- 10 *°sec,k = (1.83+
0.12)- 10~ ** erg/rad, and(B82 = 0.0174= 0.0012 rad (¢ = 1.88 X 10 3). This optimized fit decreases the origing by a factor of 3. The weighted

fits drawn through the data (dashed lines for the middle- and left-labeled DNAs and solid lines for the right- and 6-position-labeled DNASs) aisuahly a v
guide using approximatéN values to come close to the theodofs.

tional to temperature. The theory of Eq. 3 predicts that, for

a temperature-independentthe proportional (to tempera- | |
ture) model would describe a harmonic well, and a temper- 73K
ature-independent model would describe a square well. TN

p
{(B? — (B}, as a function of temperature, should behave
in the. same way as(z?) in Eq. 3, because these are the B
experimental data corresponding tm?). - ‘ ]
Figure 13 shows the difference quanti§gf) — (82} as A

a function of temperature for the 50-mer DNAs. The data

L 293K 1
were fit to a temperature-dependent and a temperature- /Wv

independent model, as suggested above. Table 7 shows th

fits of these models to the data with their errors. The lines | : e 303K i
in Fig. 13 depict a proportional modéh?) = m'T, for the

left-, middle-, and right-labeled DNAs. The temperature- - .
independent model is a poorer model for these data than ig /Q\ /\M\/M 313K
the proportional one, despite the scatter in the data points.. \/

From the values of(i, N) in Table 4, Eq. 3 would predict
that the ratio of slopes of the left- and right-labeled DNA

data to that of the middle-labeled DNA data should be inthess w0 20 -0 o 1 20 30 40 50 60
range from 1.8 to 1.9, which compares favorably to the Relative Field (Gauss)

EXpe”ment_a”y determined value of ﬁBO_.l (see Table 4). FIGURE 8 Qf°N,D,,] middle-labeled 28-mer duplex DNA from 0 to
Eq. 3 predicts that the slope for the middle-labeled DNA4o°c cw-EPR data overlaid with simulations. N.B. Spectral width de-
should be 0.77 10 racf/K, which also compares favor- creases with increased internal dynamics. Homogeneous linewidths and
ably with the fitted value of (0.7% 0.02)- 10 % radf/K in (B?) (Fig. 9) were obtained by optimizing the best-fit simulations to the
Table 7. spectra.

¢
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FIGURE 9 The mean squared oscillation paramés@y, due to the internal dynamics of DNA is plotted as a function ofthe 1 base pairs of duplex
DNA for middle-labeled i(~ ¥2N) DNA at T = 0° (O), 10° ), 20° (), 30° (*), and 40°C {). The data are least-squares fit to the md@&} = [(N +
1ksT/6k] - (i, N) + (82, assuming a single, temperature-independent, force constani1.44 = 0.04)- 10~ ** ergs/rad. The data, when analyzed at
each of the five temperatures, gave the following:

Slope: o - 10* (rad/bp)

Temperature (°C) k = o, - 10" (ergs/rad) (B = o (radf)

0 3.92+ 0.20 1.61+ 0.08 0.015+ 0.001

10 3.96+0.14 1.64+ 0.06 0.022+ 0.001

20 4.68+ 0.26 1.44+ 0.04 0.029+ 0.001

30 5.60+ 0.60 1.24+0.14 0.036= 0.001

40 5.60+ 0.40 1.29+ 0.08 0.042+ 0.001
DISCUSSION (we used very low concentrations to avoid such effects,

. . . . mg/ml). We suggest that the 14-mers may be susceptible to
The effects of the bending relaxation times of the internal iy 0
. . . . .—a structural transition around 25°C that was not detected by
collective motional modes of motion must be included in

the calculation of internal dynamics. These effects are con?Ither circular dichroism (CD) or a ultra violet (UV)Vis

sistent with the apparent falloff of8? with increasing monitored melting curve. CD and UV temperature studies

length for the distally labeled DNAs (Fig. 7). The relaxation Eperformetﬂ uerdF?I;the same c?nce?t{ra]\tlon and b'l“Ter Coréd"
times were not measured but calculated from theory; neytons as the experiments) of these very 14-mer du-

ertheless, the agreement with data indirectly confirms thaplexes gavhe no indication hOf ;’:my EUCh str:JcturaI changesl
the calculated correlation times are of the correct order ofd@t@ notshown). To test whether there could be a structura

magnitude. In particular, the time scale for the |ongeslrearrangement of the labeled base pair relative to the helix

internal mode is confirmed by the absence of a falloff of @XS t0 give large5?) values, we fixeds?) in the lineshape

(B? as a function of duplex length for the middle-labeled @nalysis for the 14-mer duplex at 30 and 40°C, appropriate
DNA, implying that this longest mode does not contribute to their theoretical?) values, and allowed the tilt angle to
to the rotational relaxation for middle-labeled DNA. The optimize the fits. The simulations for the high temperature
weakly bending rod model works very well to qualitatively data best-fit the theorize¢s?) values when the tilt angle,
explain the position dependence @) in duplex DNA. 641, Was increased from 20° to 27°. Therefore, one possible
Within the framework of the weakly bending model, we explanation for the(B?) values of the 14-mers at high
can now begin to consider data that heretofore seeme@mperature could be an increase in the tilt angle of the
anomalous. The higher temperature 14-mer duplex DNAprobe in these samples.
data of Fig. 9 are left out of the pooled fit because of the In addition to large(s?) values for the 14-mers, the left-
large and unexplained deviation from the trend above 20°Cand right-labeled 50-mers show different dynamics (Fig.
The 14-mers are susceptible to concentration effects (stacd-3) as well above 25°C. It is quite possible that the higher
ing) at low temperatures and produce depre¢gédvalues temperature data for these 50-mers analyzed at a larger tilt
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angle (~27°) would also yield decreasé@?) values. Be- well, and if the force constant were independent of temper-
cause there are no independent data to support a structueure, ther{n?) would be temperature independent. If the
rearrangement, it seems premature to investigate this furthg@otential surface were harmonic, thénf) should be pro-
quantitatively. The above are two different examples thaportional to the temperature. In fitting the harmonic model
suggest a structural rearrangement between 20 and 30°Cto the data we find that the slope for the left-, right-, and
We now consider whether the bending potential is bettemiddle-labeled 50-mers of DNA are consistent with the
described as a harmonic or square well. The temperatursame quantities measured by fittig? as a function of
dependence dfp?) (examined via {8%) — (83} in Fig. 13)  length shown in Figs. 5 and 7. The fit to the proportional
indicates whether the interactions of adjacent base pairs araodel is significantly better than the fit to the temperature-
governed by a square or harmonic potential. If the potentiaindependent model because the standard error for the pro-
surface in which the r.m.s. excursions occur were a squargortional model is half that of the standard error for the
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temperature-independent model. Thus, the data suggest thEterefore, we do not reportRy,, associated with the data in
the potential surface is characterized better as harmonic thahis temperature range.

square well. Additionallyx may itself have a weak tem- The low temperature (0—-10°C) data for the middle-la-
perature dependence (Schurr et al. 1992). The data in Figbeled DNAs in Fig. 9 were analyzed to givexkavalue of

9 (see legend) and 13 are suggestive of a changebove  (1.62+ 0.05)- 10 **ergs/rad. The fit to the(8?) values for
20-25°C. The apparent changedabove 20°C may reflect the left-, middle-, and right-labeled DNAs at 0°C in Fig. 7
either a true change in the bending potential, or a structurakere also consistent with thisvalue, which was obtained
change in which the tilt angle of the probe is increasedfrom Figs. 5 and 9. When thg?) in Fig. 7 were analyzed
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TABLE 7 Slopes and intercepts of the temperature analyses of {(82) — (82)}

Data Sets Fit to Intercept Slope Standard Error
Model Models (rac®) (rac?/K) (rac®) x 10°
Proportional to T Left-right label — (1.4 0.1) x 1074 5.8
Middle label — (0.75= 0.02) X 10~* 1.4
Independent of T Left-right label 0.039 0.004 — 8.5
Middle label 0.022+ 0.001 — 2.4

by a best-fit model in whichk, (82), and 7, were all (82) to zero @lashed ling in Fig. 10 predicts no internal
optimized, the value ok increased by less than 15%. The amplitudes of motion at low temperatures and suggests that
value of(82) and 7, changed by 5 and 10%, respectively. our tensors were well chosen. Tlgeand A tensors were
These differences are on the order of the uncertainty in eacbptimally fit using a combination of EPR frequencies. As
of the parameters, which is also calculated from the fitting.llustrated in Fig. 3,9 tensors are best found at high fre-
If the differences in the values of are considered to be quency (94 GHz) and tensors are more prominent at low
significant, then one might consider the consequences. It iBequency (9.4 GHz). The spectra at both frequencies are
possible that there may be a greater stiffness, or a largavell accounted for by nondynamics simulations with a
bending force constant, in the more distal regions of lineasingle set ofA andg tensors. The tensors were then adjusted
duplex DNA, and such features are not treated adequately iaccording to Eqg. 8 to account for the residual motion of
the simple weakly bending rod theory. The estimatedor (82 = 0.012 rad and are reported in Table 6.
must be taken to be in the range of (1.620.05)- 10 * These experiments extend testing of the weakly bending
ergs/rad when considering only the middle-labeled basesrod theory beyond previous studies. Hustedt et al. (1993a)
and in the range of (1.8% 0.12)- 10 ** ergs/rad when  asked whether the values ¢82) would increase linearly
considering all labeled positions. These two ranges someawith DNA duplex length for a centrally labeled base pair. It
what overlap one another. was shown thatB?) did increase linearly with duplex length
The inclusion of the internal collective twisting motions using the T* probe (see Fig. 2), givingRy,, of 2500+ 700
reduces the contribution of flexure by 10%, and increased at 20°C. Here, we examined whethg?) would follow
the best-fit value of the bending force constant (and therebthe same trend as a function of length and label position
P4w by 10% (Fig. 12). The best estimate for the dynamicwith the spin probe Q. Both labels give good agreement
bending persistence lengtR,, (reported to &), obtained between the experimental results and the predictions of
from the middle-labeled data, is thus 1580100 A at 20°C.  theory, in that both demonstrate a linear relation between
Similarly, the estimate obtained from fitting all the labeled (8% and (N + 1). However, the estimates 8%, using the
positions simultaneously, when corrected also for the twistspin probe Q are only about 0.60-0.68 times the earlier
ing dynamics, gives a value of 1700200 A at 20°C. The estimates obtained using the T* probe (see Fig. 11). When
persistence lengths that we have measured relate primarigonsidering why such differences might exist, one should
to the dynamic flexural component of the persistenceconsider three aspects: 1) the two probes may not necessar-
length, for dynamic processes occurring on the submicroily be expected to give the same dynamic persistence
second time scale. Permanent bends have almost no impdenhgths because the optimumRy, values may not be com-
on this estimate, and would only alter the analysis bypletely independent of the probe; 2) a 1.47-1.66-fold dif-
slightly changing the diffusion coefficients as estimated byference in persistence lengths needs to be considered in the
the theory of Tirado and Garcia de la Torre (1980). Com-context of the reported errors, and relative to the total
putations done in our laboratory indicate that a permanenpersistence length; and 3) the probes are measuring different
bend on the order of 5° per base pair, variously phased)NAs.
would change the diffusion coefficients by a negligible We do not necessarily expect the Q probe and the T*
amount. The relative tilt angle of the base to the mean heliyrobe to report the same persistence length using the same
axis could be changed by a few degrees, but not enough tmodel of DNA motion in the analysis. The unknown dis-
markedly alter the results presented herein (Okonogi et altribution of orientations and unknown local angular motions
1997). of the T* probe relative to the DNA differ significantly from
The length-independent motion of the probe scales witlthose for the Q probe as a result of design, and may alter the
solvent viscosity (Fig. 10) and has a #°1° r.m.s. oscil- dynamics reported accordingly. Although T* is better than
lation amplitude in each of the two directions perpendiculammany other probes used now and in the past because of
to the helix axis, at 20°C. These estimates are for DNA inits relatively high-order parameter, it is still considered a
0% wi/v sucrose in PNE at 20°C and compare well with the“floppy” probe with its remaining one degree of freedom.
current estimate of 7-10° r.m.s. oscillation amplitude usingThe data using Q may be more reliable in that Q has no
an ethidium probe intercalated into duplex DNA (Shibata etdegrees of freedom independent of the base. The length-
al., 1985; Wilcoxon and Schurr, 1983). The extrapolation ofindependent amplitude of motion of T* is governed by the
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size of the pocket around it that is created by neighboringndicating a higher order parameter and a more tightly
base pairs winding in the helix. This point was demonstratedoupled probe. Thus, these data show an inverse correlation
in a previous paper (Hustedt et al., 1995). Examination obetweenT,, and dynamics. Thd,, of melting refers to a

Fig. 11 (0°C data) shows that the slopegff) versusN + state of transition to separate strands, whereas dynamics is
1 for the Q- and T*-labeled DNAs are very similar up to the motion limited to a well near a local potential minimum.
96-mer and 100-mer bp data points. If the length-indepenThe dynamics observed by the present experiments reflect
dent contribution for the 96-mer were increased by 0.01Zxcursions within the potential well of the 10.4 base pairs
rad?, then the slopes are identical. Secondary structurgber turn B-form DNA. The B-form nature of the duplex
changes, either local to the probe or global, may be ocCUTBNA is confirmed by CD of the 14-mer duplex DNA in the
ring as the DNA gets longer. Hence, the pocket surroundingtandard PNE buffer from 0 to 60°C () to 75°C (full melt,

the T* probe may be restricting the length-independenigata not shown) and 2D-NMR data (Alley, 1996). All EPR
motion of T* and lowering the overall dynamics reported in gata presented here are acquired between 0 and 40°C, well
the (Bf) value. Q is not expected to have this problempejow the onset of melting (about 50°C for the 14-mers). It
because it is rigidly fused to the base, and a subtle changgoyid be obvious in the EPR spectra if there were any
in the groove dimensions would not affect the length-inde-single stranded DNA present (in slow exchange with the

pendent contribution to the overall dynamics. _sample), because EPR experiments are very sensitive (as
The 1.47-1.66-fold difference between the pooled T*|q\ as 1% sensitivity) to rapidly reorienting spins.

value of 2500+ 700 A and the final Q value of 1508 100

A is not as significant as it may seem. The difference of
1000 A between the twBy,, values is only about 1.2 times
the sum of their standard deviations. Equally relevant ar&ONCLUSIONS

the percentages of the total inverse persistence length thg\t,e suggest that the total persistence lengthis the sum

these two estimates account for.Rf is 500 A, then the of three components (Schurr et al., 19971~ 1/P, +

estimated contribution to the total inverse persistence Iengttl1/P + 1/P,. The Schellman—Harvey estimate fsor the
db srs -

. o .
fzrgnl t?; P‘g’ (t)r: Qis 33ti 3A)|-ar.1d tfrr]om thedefo?tO'I;/ 'Sf th static contribution to the persistence lend®y,is sequence

— (7. bOIh percentages fie in he range o 0ol .edependent and ranges froml370 to~2000 A. Assuming
total inverse persistence length, representing rather simil

h nami im vel her ~ 1500-17
percentages of the, Fhe dynamic estimate de eop_ed geFPg,,, 500 . 00
. . A, the Schellman—Harvey static estimate, and the literature
The sequences of DNA used in the two experiments wer

quite different. In particular, there are AT-base pair rich%t ~ 500 A, we estimate,,; ~ 1500 A and that slowly
regions in the vicinity of the T* probe that are not found in relaxing structures play an important part in defining the
the vicinity of the Q probe. The longer T*-containing se- overall persistence length. In short, each of the three terms

quences are more GC-base pair rich. If AT sequences au%ontributes about one-third to thg total persi_stence _Iength.
more flexible than GC, then this tends to enhance thei The novelty of these short-time dynamic persistence
dynamics of the short pieces of T*-containing DNA relative [€"9th measurements implies that practically nothing is
to that of the longer T*-containing DNAs. Therefore, the known about its dependence on the sequence, the position of
slope of the line of mean square amplitude as a function of€ 12bel. or the length of the DNA. We have shown that the
length would tend to be less for the T*-containing DNA. duantity(?) that we measure does match the simple theory
Hence, AT-rich regions near the probe could account foi" Several important ways. 1) there is a linear relation
some of the differences seen. The model used in analyzingetween our measureg) and the length of the DNA; 2)
the data herein does not account for different dynamics dugUr measured3y) does increase as the probe is placed
to different base pair sequences. This is a limitation of thdurther from the middle of the DNA, in very good quanti-
model; however, future work will expound on the sequencéatiVe agreement with the predictions of the theory; 3) the
dependence of dynamics. There are marked differences fheory, as adapted for our EPR experiment, predicts that the
the flexibility of AT and GC repeats (Okonogi et al., 1997). apparent mean squared amplitudes will vary with DNA
The presence of an A-T* base pair increasesithéor an ~ length in a nonlinear manner due to the time scale of the
11-mer duplex DNA by less than one degree. It has beefternal bending modes; and 4) the increase in the measured
suggested by others (Strobel et al., 1995) that such a rise i#?) values as a function of increasing temperature follows
T, indicated a change in the flexibility, i.e., stiffening of the the predictions of the theory with no new adjustable param-
molecule, due to the presence of the A-T* pair. The preseters. Thus, the quantity we measure does bear a strong
ence of Q and its base pair, 2AP, actually decrease$ the resemblance to the mean square amplitude of motion as
of an 11-mer duplex DNA by about 7 degrees (Miller et al., predicted by the weakly bending rod theory. We do not
1995). By the same reasoning, the molecule should becondiscuss the effects of sequence in this paper, but the results
more flexible by the presence of the 2AP-Q pair. We doof extensive experiments on the effects of sequence to
measure a smaller persistence length, but al{ #fevalues  modulate the dynamic bending rigidity have been per-
for the Q probe are much less than for the probe T*formed, and will be presented elsewhere.
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APPENDIX wherekg is Boltzmann’s constant, arflis the temperature in Kelvin.

For an ensemble of\| + 1)-coupled oscillators with nearest neighbor
We now give a more complete account of the application of the eleganinteractions, the analogous problem is written in terms of a vector of
theory of the weakly bending rod model developed by Schurr and coworkangular displacementsh, and theN + 1 by N + 1 matrix A,
ers (Schurr et al., 1992; Song et al., 1990; Wu et al., 1987) to describe the

effects of dynamics on linear CW-EPR spectra. Mathematically, DNA is o
treated as a flexible rod-shaped object and, although duplex DNA may be - by
curved over a long distance scale, mean local cylindrical symmetry is b= :
assumed to occur about each base. This symmetry arises from the helical :
nature of duplex DNA: each base is connected to its neighbor by bonds that ¢N+1

act as Hookean springs that resist both twisting and bending. The discusa[nd
sion of rotational dynamics is in terms of displacements about a body

fixed-axis system coincident with the DNA molecule in its canonical form. 1 -1 0 --- 0

The principal axis is taken to be ttzaxis, which is coincident with the -1 2 -1

local helix axis. The mean squared displacement aboue-thas, (A,(t)?), :

corresponds to the twisting of DNA, whereés,(t)? and (A(t)?), the A= 0 -1 2 (A3)
mean squared displacements abwaindy, correspond to the bending of : 0 -1 )

DNA. The mean local cylindrical symmetry of the DNA allows the 2 -1

simplifying assumption that the mean squared displacements alaoaty 0 C -1 1

are the same an@,(t)>) = (A,(t)?. Moreover, the rotations in the three
different directions are taken to be driven by statistically independentThe potential energy i8 = Y2a$'Ad. Diagonalizing thell + 1) X (N +
processes, and thus, cross terms in the displacements, sUS[(B&,(t)), 1) matrix A yields theN + 1 eigenvalues\ and the Nl + 1) X (N + 1)
vanish. The displacements include all modes of motion: the length-indematrix of eigenvector®: Q'AQ = A. Each eigenvalue and eigenvector
pendent modes (motion of the spin probe or the base pair independent @brresponds to a motional mode; all the eigenvalues are non-negative.
the DNA to which it is attached); the internal collective modes (dynamicsDefining the normal modes’ coordinatps= Q'¢ results inU = Yaap'Ap
at one point of the molecule as a consequence of motions from the rest @fnd the equilibrium average becomes
the molecule); and the uniform modes (overall tumbling of the molecule as
a rigid body). This model forms the basis for our discussion of how an
idealized piece of duplex DNA may relax: it is very simple and has few @)(oo)a)‘(oo))
adjustable parameters.

If DNA had no internal motion but tumbled with uniform motion as a
rigid cylinder, then¥z(A,(t)? = Dt and¥x(A,()? = D;t, whereD, and

OP(d) ' dp

—o0

D, are the rotational diffusion coefficients for the motion about the helix _ . EXP[—U/kBT} “t 1 NAt
axis and perpendicular to it, respectively. However, both the internal =Q Pf exp{—U/kBT} de p dP Q
collective and uniform motional modes contribute to the displacements, —o

and therefore, with internal rotational motion about ther helix axis
defined byd and rotation perpendicular iIefined byn and6, the angular ke T

displacements for a probe at tite base pair are given by = TQA_th. (A4a)
Yo(Ay(1)? = Dt + {{mi(t) — n;(0)]?), The lowest eigenvaluey, = 0, corresponds to the uniform motion, which
is treated separately. Therefore, to study only the internal motiors0
3/2<Ay(t)2> =D,t+ {6,) — 6,0, (A1) is removed fromA ~* and the associated column vector is removed féam
The resulting matribxQA Q' is also called the pseudoinversefo{Math-

Yo(A,(t)?) = Dit + ([di(t) — Hi(0)]). Works, 1996).

A similar treatment has been developed for bending. There are two
We assume that there is a single bending and a single twisting forcédependent directions assumed to have the same bending force constant,
constant between base pairs, and that each is independent of base pairdue to the mean local cylindrical symmetry. Therefore, the mean squared
sequence. The mean squared amplitudes of displacement for both twistingmplitudes in both directions are the same. The total bending potential
(A,(H?), and bending{A,(t)?, are calculated from equilibrium statistical energy isU = ¥2k7'An + ¥2x6'A6. Because there are only (notN + 1)
mechanics. The potential energy that confines the oscillators is harmonic iRending angular coordinate,and 6 are vectors of lengtN, andA is an
the angular displacement (Schurr, 1976; Wu et al., 1987). The twist energ)l X N matrix (Wu et al., 1987). By an argument similar to that given
of a single oscillator i&) = Y2dad, wherea is the twisting force constant. ~ above,
For a single oscillator, the total mean squared amplitude of the displace-

o e o L ke T

ment from the origin is given by the equilibrium distribution, (n()ni(0)) = e QAQ, (Adb)
t _ whereA is an N — 1) X (N — 1) matrix. The uniform mode of motion,

<¢(Oo)d) (OO» - d’P(d))d) dd) for which the eigenvalue is zero, has been removed ffomnd fromQ.

- The time constants for the relaxation of the internal modes—needed

later—can be obtained. The diffusion equation for twisting is most easily

* exp{— U/kBT} represented by the Langevin equation, which is similar to, and leads to the

= qbz do same type of solutions as, the Smolochowski diffusion equation (Robinson

Y f EXp{_U/kBT} d¢ et al., 1980). We review the results for a single bead, then extend consid-

eration to that oN + 1 coupled beads. The quantity we seek is the mean
square oscillation amplitude as a function of time. For a single particle in

- 5 exp{—ad’/ 2k T} ddb = ke T A2 a restoring potentiall) = ¥2¢a¢, the Langevin equation is a modified
¢ \JZWkBT/a ¢ = 7' ( ) form of Newton’s law:J$ + v, = F(¢) + R(t), wherey, represents drag

—

proportional to the friction factory, and angular velocityp; J is the
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rotational inertiafF(¢) = —dU/d$p = —ad¢ is the torque arising from the y direction: n; =~ sin(n;) = (y;., — Y;)/h, or, in vector notation,
potentialU; andR(t) is the torque from the Brownian fluctuations of the

solvent. When the confining potential is large compared to the inertial - 1 N

term, i.e.,F(¢) > J, then the Langevin equation is approximateyp + n= hT) 5-y.

ad = R().

The fluctuating torqueR(t), (Forster, 1975; Schurr, 1976; Song et al., h, is the diameter of the effective sphere, or the distance between the
1990) has a mean of zer¢R(t)) = 0; and does not correlate with the centers of the contiguous beads, adds the N, X (N, + 1) finite
libration of the particle(¢(t")R(t)) = 0; and has mean squared statistical difference matrix, which, for the example bf, = 3, is
fluctuations so thatR(t)R(t)) = 2(kgT/y,) - 8(t — t'). Therefore, the

Langevin equation for the average valuesdofs simplified to y(¢) + -1 1 0 O
() = 0, andy,(d($(0)p(t))/dt) + ap(0)p(t)) = 0. The solutions to these S= 0O -1 1 0] (A10)
homogeneous differential equations are 0 0O -1 1
(p(1)) = (P(0))el The potential energy in thedirection for this multiple-bead bending case
may be written in terms of the displacement coordinates,
and (AS)
1 ~a 1k _ -
(Pp(0)p(1)) = <¢(O)2>e{—a¢/%}_ U17 = 2 KNAn = 2 h? yt6 AdY. (A11)

Because the distribution of angles is independent of time and is always athe force associated with the above potential is
equilibrium, it follows that{$(0)? = (H(1)? = ksT/a. We will need the
identity

(&1 — $O)((H) — $(0))")
and the associated Langevin equation that contains both the hydrodynamics

= 2{p(0)H(0)") — (p()P(0))}.  and the bending is

The Langevin equation for the coupled torsional oscillators looks very

Ey =~ K soasy A12
W= SAT (A

y . K .
iy Y tA ST —

similar to the above expressiofp + yd + aAd = R(t). Premultiplying WE ey + h2 HEASy = R (AL3)
by Q! and substitutingg = Q'¢ yields

H is the hydrodynamic or the Rotne—Prager-modified-Oseen tensor. The
Jﬁ + ‘YtI;J + aAfJ _ Qtli(t), where QtAQ = A (A6) matrix H5'AS is diagonalized by a similarity transformation,

Qy HE'ASQ, = Ay, (A14)

Again, each of the normal modes is statistically independent of the others.
Following the reasoning used for the single particle case in Eq. A5, the selfwhereQ, is the transformation matrix andi, is diagonal and contains the
and cross, correlations of the mean squared oscillation amplitudes for the,) + 1 eigenvalues. The two lowest eigenvalues of this matrix are zero,
internal twisting motions become and correspond to the translation and rotation (or shear) modes of motion,

respectively. These two modes are removed frdgnand Q, when con-

N kg T B sidering the internal dynamics, henag is (N, — 1) X (N, — 1) andQ
<d)(t)¢t(0)> = o QA 1(9)(p{_C‘At/’)’t})Qt (A7) is (N, + 1) X (N, — 1). By analogy with Ec;. A9, we okIJOtain ’

= - - - t
whereA is theN X N eigenvalue matrix oA\, andQ is the (N + 1) X N <(7l(t) - n(O))(n(t) - 77(0))>
eigenvector matrix, after the eigenvector and eigenvalue corresponding to

the uniform motion § = 0) has been removed. By inspection of Eq. A7,  _ 2 kB (BQb)Al(l o exp{— Kb Abt})(BQb)t (A15)
= b .

the relaxation time for thé&h internal mode is Tb hﬁ’Yb
Tawistyy = YA, (A8) The relaxation time for théth internal, normal mode (either in terms of
displacements or angles) is then
In analogy with the single bead case, the mean square correlation due to 2
twisting is T(bend) = Yoo/ KpAoi, (Al6)
VAN AN t where ), is thelth eigenvalue in the matrid,,.
<(¢(t) d)(O))(qb(t) cl)(O))) ( ) The proper choice of bead size,, has been determined (Song et al.,
kBT t 1990); the hydrodynamic interactions are only known for spherical beads,
=22 QA—l 1—exp —A ot Qt so a section of cylindrical DNA must be substituted by an equivalent
o Y ) sphere. It has been shown that the optimum bead size has radius 15.9 A or

h, = 31.8 A, which encompasses 9.3 base pairs at 3.4 A per base pair. This
From Eg. A9, it follows that the total mean squared amplitude is the sumbead size was chosen to ensure that the relaxation times for the effective
of the amplitudes of each of the normal modes, and each mode builds to itSNA model reproduce the translational and rotational dynamics for the
equilibrium value as time goes to infinity. When Eq. A9 is evaluated at theuniform modes of the rigid object (which is a right circular cylinder). The
infinite time limit, the same result as that for Eq. A4 is obtained. number of spheres is adjusted so that the total length of the DKM+

The flexural motions, whose mathematical forms are similar to those forl) = hy(N, + 1), is maintained, subject to the constraint thNgtmust be

twisting, differ because the hydrodynamic interactions between the beadsn integer. This model is valid for the normal modes in an average
are large for flexural motions and therefore makes the Langevin equatiosense—the modes represent thi (- 1) longest modes from a higher
more complicated. Song et al. (1990) have developed the problem for theesolution model using the base pair as the fundamental hydrodynamic
case ofN, + 1 effective spherical beads. The displacement coordinate forunit. The translational friction factory, = 3mnh,, which is needed to
each of the beads ig—the angle between theand thei + 1 bead inthe  obtain the relaxation times for the internal modes for a bead, is related to
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the rotational friction factory,, = mmhg, by 3y,, = y,h2. Regardless of the have zero eigenvalues; and this must be the case on physical grounds,

bead size, the true persistence length must be held unchanged, and so thecauseéJ, is an internal potential.

force constant must be scaled with the bead slze= «,h, (see Eq. 5). We follow the previous treatment (Song et al., 1990) with the following
The relaxation times of the internal modes scale according to the ratiovariation: Because the matrkt is symmetric, it can be diagonalized by a

of the diameters of the beads. et h/h be the scale factor ratio between real orthogonal transformation,

the two models. The eigenvalues, and hence the relaxation times of the

N, — 1 longest modes, can be calculated exactly from the model of Eq. THT = L. (A19)
A15, regardless of the scale or bead size. Numerical calculations (not ) NN iy 1 .
shown) demonstrate that, when the hydrodynamics are negleglén) = From this, one can defind’ = Tu''T', moreoverH™*is well defined

ANy for 3=1 = (N, + 1) where N + 1) = s- (N,, + 1). This relation becauseH is not singular (a property th&t does not share). It follows that

and Eq. A16 can be used together to show that the relaxation ti \ _ -

are invariant to the scale, When hydrodynamics are included, tﬁggsﬁé)aling HYDH"H™5Q, = H™QuA,. (A20)

identity in the above relation is nearly preserved. The terst ia replaced

by 3% A1 (N) = s>®\;,%(N,). The scaled bead model (Eq. A16) gives

the (N, — 1) longest relaxation times of the origind ¢+ 1) problem, for

any scale factors, consistent with the above constraints. DNA with+

1 base pairs should haw¢ — 1 internal modes. The mesoscopic model Ut(H”ZDHM)U = Ap. (A21)

(Schurr et al., 1992) gives thd, longest moded\, is approximately/ioN

because the mesoscopic bead size encompasses 9.3 bases in an effecie@isequently, the matrig,, is related toU by

bead and is therefore 938 3.4 = 31.8 Ain diameterr,e,q) based on a

3.4-A-diameter bead size admifs— 1 modes. Q, = HYU. (A22)
The correlation times may then be written in termshof 3.4 A, the

diameter of an effective bead. Using Eq. A16 and the scaling relations, the BY this prescription then, we generateQg, which has the following

BecauseH?DH2 is symmetric, it can be diagonalized by an orthogonal
transformationU, and must have the same eigenvalues as the original
problem,

relaxation times for the internal bending modes can be written as properties:
3mmhi h QDQ, = (HYU)'D(HU) = A,
7O = A (Np) 7 PagAp(N
bi(Nb) abApi(N) (A17) and (A23)
3’ QH(QyY' = (H¥2U) H((H2U) Y = 1.

where 7, = &%

kB This is a minor variation on the development of Schurr, but it is more
For this particular case®3® = 2.11.7, is proportional to the rotational straightforward in that all the eigenvaluestbfire positive and the r.h.s. of

N e . . .
correlation time of a sphere with diametemwhich is (4rn(h2)¥3ksT). 7 Eq. Al5is of the samef(ign as Eq. A9. Tiggis rela_ted to the one defined
is calculated to be 2.% 10~ 1°sec aff = 0°C. Eq. A7 is used to calculate  PY SChUIT.Qs by Qp - A7 = Q, for the nonzero eigenvalue vectors, and
Tena fOT all Ninternal normal modes, and guarantees thatjongest the flrst_ two vectors of), are identical to the first two vectors @, which
modes are identical to those of the original mesoscopic model. Computa{jave_elgenvalues Of, Z€ro.
tion of the internal relaxation times, when taking into account the scaling, Itis not at all obvious that Eq. A9 leads to exactly the same results as

is equivalent to multiplying alk,enq by 2.11 from a calculation which Eq. A4db in the |nf|r_1|te-t|me_ Ilmlt, because neither the set of elgg_nvalues
neglects the scaling nor the transformation matrix is the same as the analogous quantities of Eq.

We now develop how to calculate the transformation mafgi, The A4db. The mean square displacements are identical however, when the

equilibrium mean squared amplitudes of oscillation for the flexural motion,tr"’ms_form'_':ltlon matr_leb_ IS _swtably modified. One reqwremgnt of the
given in Eq. A15, relies on the matri@,: the similarity transformation solutions is that, at infinite time, the mean squared angular displacements

matrix defined by the Langevin equation containing both hydrodynamicVith respect to the end-to-end vector must be the same as given directly
and bending forces (Eq. A13M, as given by Song et al. (1990), is a from the matrixA, as shown in Egs. A3 and A4. Therefore, we require that

symmetric Toeplitz matrix (MathWorks, 1996) formed from the column

-1 t— A1
vectorC = (1 ¢, - - - ¢,)', where the elements are defined as 8QuAy (8Qu)" = A, (A24)
3 1 whereA~* implies the pseudo or generalized inverseAof(MathWorks,
Co=—1+ . 1996).
8m 6n7Y The eigenvector®,,, computed according to the above prescription, or

by using Eq. 79 of the previous development (Song et al., 1990), do not
Because of this formti is symmetric, and all of the eigenvaluestéfare  immediately satisfy this requirement, because the odd eigenvectors are
positive. The Langevin Eq. A13 can be separated into a set of normal modgixed with some of the rotation from the uniform rotational vector (the
equations by the similarity transformatio®, *H8'A8Q, = Ay, and in second eigenvector @,). Note that the third mode @@, is always even,
terms of the normal modeg,= Q,p. Each internal normal mode equation when the eigenvalued, are in ascending order. The rotational (shear
can be solved independently. Most modern eigenvalue packages (Matfinode) contamination in the odd modes@j is removed by rotating the
Works, 1996) will return a set of eigenvectors that will properly diagonal- displacements until the base pairs on either end of the rod are zero. All of
ize theHs'AS" matrix. However, to insure that the internal potentials remain the odd modes contained @, are the even numbered vectors. Specifi-
invariant to the transformation, cally, the even vectors @, (k= 4, 6, 8, ... N + 1), are modified for all
values of j, 1= j = N, + 1, and replaced by the following prescription:

leAt N 1KbAt ¢ ot ~ :I.KbAt -
U, =52 YO0ASY = 55 pQudAdQu = 5 5 pAp . (Qy)
2 2 2 @ = Qs — Qe ) (A25)
(A18) ' ' “ (Q)i2
The matrixQ, must perform a congruent transformation on the madrix This method of calculation provides us with a set of eigenvalues and

5'A8, as well as a similarity transformation of the matH®. We will show eigenvectors that are used to obtain the mean square oscillation amplitudes
by construction ofQ, that this is one of the properties @f,. The two (Eg. A15) and decay times for each of the modes (Eq. 7). The modification
uniform modes do not contribute to the total potentih) because they in Eq. A25 of the transformation matri®, is essential to ensure that the
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results obtained using Eq. A15 are identical to those of Egs. 3 and A4. Thdlailer, C., S. J. Danielson, and B. H. Robinson. 1985. Computer-

Q, so rotated, (Eq. A25), no longer diagonalizes 2 matrix, but it does controlled pulsed-EPR spectrometBev. Sci. Instrumb6:1917-1930.
give the same answers at infinite time as @eatrix, which diagonalized  Mailer, C., D. A. Haas, E. J. Hustedt, J. G. Gladden, and B. H. Robinson.
A, Egs. A3, and A4. Therefore, we use tfg matrix. 1991. Low-power electron paramagnetic resonance spin-echo spectros-

copy.J. Magn. Reson91:475-496.
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