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ABSTRACT Purified wild-type sensory rhodopsin II from Natronobacterium pharaonis (pSRII-WT) and its histidine-tagged
analog (pSRII-His) were studied by laser-induced optoacoustic spectroscopy (LIOAS) and flash photolysis with optical
detection. The samples were either dissolved in detergent or reconstituted into polar lipids from purple membrane (PML). The
quantum yield for the formation of the long-lived state M400 was determined as FM 5 0.5 6 0.06 for both proteins. The
structural volume change accompanying the production of K510 as determined with LIOAS was DVR,1 # 10 ml for both
proteins, assuming FK $ FM, indicating that the His tag does not influence this early step of the photocycle. The medium has
no influence on DVR,1, which is the largest so far measured for a retinal protein in this time range (,10 ns). This confirms the
occurrence of conformational movements in pSRII for this step, as previously suggested by Fourier transform infrared
spectroscopy. On the contrary, the decay of K510 is an expansion in the detergent-dissolved sample and a contraction in PML.
Assuming an efficiency of 1.0, DVR,2 5 23 ml/mol for pSRII-WT and 24.6 ml/mol for pSRII-His were calculated in PML,
indicative of a small structural difference between the two proteins. The energy content of K510 is also affected by the tag.
It is EK 5 (88 6 13) for pSRII-WT and (134 6 11) kJ/mol for pSRII-His. A slight difference in the activation parameters for K510

decay confirms an influence of the C-terminal His on this step. At variance with DVR,1, the opposite sign of DVR,2 in detergent
and PML suggests the occurrence of solvation effects on the decay of K510, which are probably due to a different interaction
of the active site with the two dissolving media.

INTRODUCTION

Photosensors that have a chromophore undergoing acis-
trans isomerization upon light absorption consist of retinal
proteins such as the sensory rhodopsins in halobacteria
(Hoff et al., 1997; Siebert, 1990; Spudich et al., 1995);
open-chain tetrapyrrole-containing proteins, e.g., phyto-
chromes in higher plants, in cyanobacteria, in some algae,
and in ferns and mosses (Quail, 1997); and the xanthopsins,
which contain the 4-hydroxycinnamoyl anion, such as the
photoactive yellow protein (PYP) found in the eubacterium
Ectothiorhodospira halophila(Kort et al., 1996; Rubinstenn
et al., 1998; Meyer et al., 1987).

In all photoreceptors (certainly also in the photosensors)
the nature of the chromophore-protein interaction is
strongly linked to its particular function. Such interactions
are responsible for the properties of these complex systems,
which are in general fundamentally different from those of
the separate chromophore and apoprotein entities. The fact
that the same chromophore configuration linked to a slightly
different apoprotein acts as an energy converter in bacterio-
rhodopsin (BR) and as a light sensor in sensory rhodopsins
I and II underscores the specificity of those interactions
(Oesterhelt, 1998).

In all photosensors with isomerizable chromophores,
photoisomerization triggers a cascade of reactions involving
conformational changes (in addition to the double-bond
isomerization) in the chromophore and in the protein, the
nature of which depends on the specific chromophore-
protein interactions. Already upon formation of the early
photoproducts, appearing in less than a few nanoseconds,
the conformational changes result in structural volume
changes (DVR) that can be readily observed by means of
temperature-dependent measurements with laser-induced
optoacoustic spectroscopy (LIOAS) (Braslavsky and Hei-
bel, 1992; Gensch et al., 1999; Schulenberg and Braslavsky,
1997).

In the photocycle of retinal proteins, retinal photoisomer-
ization leads to the formation of an early red-shifted inter-
mediate (called K in BR), on the subnanosecond time scale
(Oesterhelt, 1998). By means of LIOAS it was possible to
measure expansions associated with the production of the
early intermediate, namely S610 in transducer-free sensory
rhodopsin I (Losi et al., 1999) and bathorhodopsin in bovine
rhodopsin (Rho) (Gensch et al., 1998), for which theDVR

values are15.5 and15 ml/mol, respectively. For the for-
mation of K in BR, Zhang and Mauzerall (1996) reported an
expansion of 1.5 ml/mol, whereas Schulenberg et al. (1994)
observed a contraction of 11 ml/mol. The former appears to
be a better value, for the reasons reported in the discussion.

The molecular origin of the structural volume changes
accompanying the formation of the early intermediates in
retinal proteins is still a matter of debate. Although the
major conformational changes are expected to occur in the
longer time ranges (ms to s) (Oesterhelt, 1998), data from
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low-temperature, Fourier transform infrared spectroscopy
(FTIR) indicate that at the stage of the red-shifted interme-
diate, some conformational changes occur in the protein
skeleton. These changes are very small in BR (Siebert and
Mäntele, 1983) and are slightly more pronounced in Rho
(Siebert, 1995). These conclusions cannot be directly ex-
tended to all sensory rhodopsins, inasmuch as S610 (the
K-like intermediate) cannot be trapped at any temperature
(Ariki et al., 1987) to obtain similar information for sensory
rhodopsin I (SRI). On the contrary, sensory rhodopsin II
from Natronobacterium pharaonis(pSRII, pharaonissen-
sory rhodopsin II) displays more favorable properties in
view of the fact that FTIR data indicate that upon formation
of K510 considerable conformational movements may take
place (Engelhard et al., 1996). Furthermore, the photocycle
of the protein is now well characterized (Chizov et al.,
1998), and the stability of the photoreceptor toward low salt
concentrations (Scharf et al., 1992) and high temperatures
offers the possibility to vary the thermoelastic parameters of
the solutions over a wide range, thus increasing the accuracy
of the LIOAS measurements.

In this work we report the LIOAS determination of the
structural volume changes and the energy level of the K510

intermediate in transducer-free pSRII, dissolved in deter-
gent and reconstituted into polar purple membrane lipids
(PMLs). Furthermore, we used flash photolysis for the
estimation of the quantum yield for K510 production in the
pSRII photocycle.

SRII is one of the four known retinylidene proteins in
Archaebacteria (reviewed in Oesterhelt, 1998). It absorbs
blue-green light in the energy peak of the solar spectrum
and mediates a photophobic response; its chromophore is
all-trans retinal (Imamoto et al., 1992) bound to a lysine
residue through a protonated Schiff base. In vivo, SRII
forms a complex with a transducer protein (HtrII, also an
intrinsic membrane protein). The complex modulates a
phosphotransfer cascade, eventually leading to the flagellar
motor response (reviewed in Hoff et al., 1997). The puri-
fied, transducer-free pSRII absorbs with a maximum at 497
nm, and the photocycle proceeds through the following
chromophore states (subscripts denote the maximum absor-
bance): K510, L495, M400, N485, and O535 (Chizov et al.,
1998) named in analogy to the states in the photocycle of
BR (reviewed in Lanyi and Varo, 1995). In sensory rho-
dopsins the presence of the transducer protein is known to
alter the kinetics and the efficiency of the latest stages in the
photocycle (Olson and Spudich, 1993; Sasaki and Spudich,
1998).

In M400 the chromophore is in a 13-cisconformation, and
the Schiff base is deprotonated (Imamoto et al., 1992). The
formation of M400 is probably accompanied by the proto-
nation of Asp75 (Engelhard et al., 1996), as suggested by the
fact that mutation of the corresponding Asp in the photore-
ceptor ofHalobacterium salinarum(hSRII) into asparagine
prevents the formation of M400 (Spudich et al., 1997).

The M400 species accumulates in the long microsecond
time scale and decays to the parent state in;500 ms,

through a complex kinetic scheme (Chizov et al., 1998).
Taking into account that the time window of LIOAS does
not exceed the microsecond range, we now present data
only for the early steps in the photoreceptor photocycle.

For the work reported here, pSRII was purified in a
one-step procedure. The holoprotein was obtained after
heterologous expression of photoactive protein inEsche-
richia coli (with an additional His-tagging at the C-terminus
for purification purposes) and in the presence of all-trans
retinal (Hohenfeld et al., 1999). To analyze the influence of
these additional amino acids on the chromophore-protein
interactions, the photochemical behavior of pSRII wild type
(pSRII-WT) obtained upon expression inHalobacterium
salinarumwas compared with that of the His-tagged protein
pSRII-His.

MATERIALS AND METHODS

Protein purification

The purification of pSRII-WT followed essentially the procedure described
by Chizov et al. (1998), except thatn-dodecyl-b-D-maltoside (DM) was
used instead ofn-octyl-b-D-glycoside. In the final chromatographic step
the purified protein was concentrated on DEAE-Sepharose and eluted in
low-DM buffer (0.025%) with 25 mM sodium phosphate (pH 8) and 500
mM NaCl, yielding a final pSRII-WT concentration of 4–5 mg/ml.

The overexpression and isolation of the pSRII-His fusion protein inE.
coli was analogous to that described by Hohenfeld et al. (1999). The
fraction eluting the Ni-NTA (nickel-nitrilo triacetic acid matrix; Qiagen,
Hilden, Germany) column containing pSRII-His was adjusted to 70 mM
NaCl and 25 mM sodium phosphate buffer (pH 8) (0.15% DM). Under
these conditions pSRII-His does not bind on coupled CM-DEAE-columns.
After NaCl removal, the pSRII-His solution was concentrated as described
above.

The purity of the protein samples was judged by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis as well as by the ratio between
the absorption at 280 nm and 500 nm. Our value of#1.3 indicates a purity
of $95%.

Reconstitution into purple membrane polar lipids

PMLs were isolated according to the protocols of Kates (Kates et al.,
1982). After fast injection of 1 ml lipid solution (50 mg/ml CHCl3/MeOH,
65/35 v/v) into 50 ml 25 mM sodium phosphate (pH 8), the resulting
suspension was homogenized in an ultrasonic bath and subsequently ly-
ophilized to remove the organic solvents. Rehydration with an equal
volume of water gives a slightly turbid and stable suspension.

For reconstitution, usually 1 ml of protein stock solution was mixed
with the PML suspension to get a 1:20 or a 1:100 molar ratio. After gentle
shaking for 30 min at room temperature the mixture was diluted by adding
4 volumes of 500 mM NaCl and 25 mM sodium phosphate (pH 8). DM was
removed by incubating with a twofold excess of detergent adsorber gel
(Boehringer-Mannheim) overnight at 7°C, following the methods of
Rigaud et al. (1997) and Holloway (1973). The resulting membrane ag-
gregates were filtered from the adsorber, sedimented at 80,0003 g,
washed, and homogenized in 25 mM sodium phosphate buffer (pH 8),
using a Branson Sonifier Microtip (20% output). The remaining aggregates
were removed by sedimentation in a desktop centrifuge (8000 rpm) to
reduce light scattering.

Chemicals

Bromocresol green and Evans blue, used as the calorimetric references,
were from Sigma Chemical Co. (St. Louis, MO). 5,10,15,20-Tetrakis-(4-
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sulfonatophenyl)-porphin (TSPP), used as an actinometric reference, was
from Porphyrin Products (Logan, UT). DM was from Calbiochem-Nova-
biochem (La Jolla, CA).

Instrumentation

Absorption spectra were recorded with a Shimadzu UV-2102PC spectro-
photometer.

Flash photolysis measurements were performed with the equipment
already described by Ruddat et al. (1997). The sample concentration was
around 5mM, amounting to an absorbance of around 0.2 at 500 nm.
Excitation at this wavelength was achieved by pumping the frequency-
tripled pulse of a Nd:YAG laser (Spectron Laser System SL 456G, 6 ns
pulse duration, 355 nm) into a Beta Barium Borate Optical Parametric
Oscillator (OPO-C-355, bandwidth 420–515 nm; Laser Technik Vertriebs
GmbH). The pulse was shaped to a circular spot of 2.5 cm diameter. A
100-W continuous-wave tungsten halogen lamp for detection in the milli-
second-to-second range and a 150-W pulsed xenon arc for microsecond
detection delivered the analyzing light. Transient absorption measurements
were performed under magic angle conditions to avoid artifacts caused by
rotational diffusion (Losi et al., 1999). A dual-beam detection arrangement
compensated for fluctations in the analyzing beam intensity. Photomulti-
plier tubes (Hamamatsu R3896) served as detectors in the observation and
reference pathways. The voltages were recorded with a transient digital
oscilloscope (Tektronix TDS 520a) and transferred to a VAX station and a
personal IBM computer for data analysis.

During the LIOAS experiments, excitation at 500 nm was achieved by
means of a Lambda Physik-EMG101 MSC excimer laser (XeCl), pumping
a FL2000 dye laser with Coumarin 307 dye (25-ns pulses, at 500 nm) or by
employing the Nd:YAG/OPO system described above. Reference and
sample absorbances were matched within 5% at the excitation wavelength.
The beam was shaped by a slit (0.53 6 mm), which determines an acoustic
transit time in aqueous solution of;300 ns, allowing time resolution down
to ;30 ns by the use of deconvolution techniques (Rudzki et al., 1985).
The pulse fluence was varied with a neutral density filter and measured
with a pyroelectric energy meter (RJP735 head connected to a RJ7620
meter from Laser Precision Corp.). The acoustic wave was detected by a
Pb-Zr-Ti ceramic piezoelectric transducer (PZT) (4 mm; Vernitron), am-
plified 100 times (Comlinear E103), digitized by a digital oscilloscope
(Tektronik TDS 684A, operating at 500 megasample/s), and stored in a
VAX station 3100 and a personal computer for further treatment of the
data. Normally, 100 signals were averaged for both the sample and the
reference. Given the slow photocycle of the proteins, the pulse frequency
was kept very low (around 0.3 Hz). Care was taken to perform the
experiments in the linear regime of amplitude versus laser fluence, which
was up to 30mJ per pulse. The incident total energy per pulse actually
employed was between 10 and 15mJ per pulse, which corresponds to
fluences between 330 and 500mJ/cm2.

The values of the ratio of thermoelastic parameters (cpr/b) at the
various temperatures were determined by comparing the LIOAS signal
amplitude for the calorimetric reference in the buffer used and in neat
water. In aqueous solutions the adiabatic compressibility is almost identical
to the isothermal compressibility (Borsarelli and Braslavsky, 1997). Evans
blue and bromocresol green were used as calorimetric reference com-
pounds in neat water and in the buffer solutions, respectively. The con-
centration of DM was matched between the sample and reference prepa-
rations. For the PML-reconstituted proteins, the polar lipids (prepared as
described above) where added to reference solutions to have the same
scattering as in the sample preparations; possible small differences in the
PML concentration (always in themM range) between sample and refer-
ence are not supposed to alter the thermoelastic parameters of the buffer
employed.

Treatment of LIOAS data

The time evolution of the pressure wave was assumed to be a sum of
single-exponential functions. This function has proved to fit the decays of

all other photoreceptors studied by LIOAS to date (Schulenberg and
Braslavsky, 1997). The deconvolution analysis yielded the fractional am-
plitudes (wi) and the lifetimes (ti) of the transients (Sound Analysis 3000,
Quantum Northwest, Spokane, WA). The time window was between 10 ns
and 5ms; decays faster than 10 ns were integrated by the piezoelectric
transducer, while decays longer than 5ms were not sensed.

The amplitudes (wi) recovered from deconvolution are related to the
fluence-normalized heat released (qi) and structural volume changes (DVr,i)
by (Rudzki-Small et al., 1992; Rudzki et al., 1985)

wi 5
qi

El
1

DVr,i

El

cpr

b
(1)

whereEl is the molar excitation energy,b 5 (V/T)p 1/V is the volume
expansion coefficient,cp is the heat capacity at constant pressure, andr is
the mass density of the solvent. Thus (cpr/b) is the ratio of thermoelastic
parameters of the solvent.DVr,i 5 FiDVR,i, whereFi is the quantum yield
of the ith process andDVR,i is the structural volume change per mole of
phototransformed species. The variation in (cpr/b) was achieved by vary-
ing the temperature, according to the several temperatures (ST) method, as
previously described (van Brederode et al., 1995).

The fraction of absorbed energy released as heat in theith step,athi 5
qi/El, is then recovered from the intercept andDVr,i from the slope ofwi

versus (cpr/b) plots, provided that both parameters remain constant over
the temperature range employed. Control measurements were also per-
formed using the two temperatures (TT) method, where the sample is
measured at the temperature for whichb 5 0 (Tb50) and at a slightly
higher temperatureTb.0, close enough toTb50 to assume the thermal
compressibility to be unchanged. The reference solution was measured at
the sameTb.0. athi andDVr,i were calculated by taking into account the
value of (cpr/b) at this temperature (Malkin et al., 1994).

From simple energy balance considerations, “the prompt heat” release
(ath1) for all processes with lifetimetpr , 10 ns is expressed by

q1

El
5 ath1 5 12FK

EK

El
(2)

whereFK andEK are the quantum yield of formation of K510and its energy
level, respectively. Fluorescence can be neglected, because no emission
was determined in the temperature range and in the solvents employed.
Equation 2 implies that K510 is formed within 10 ns and decays on a longer
time scale. The amplitude and lifetime associated with the decay of K510

(w2, t2) are recovered by means of the deconvolution algorithm described
above, provided thatt2 falls within the pressure integration window.

Therefore, given the known kinetics of the pSRII photocycle, we obtain
the following information through the application of Eqs. 1 and 2: 1)ath1

and DVr,1, from which DVR,1 and EK are derived, provided thatFK is
known, and 2)ath2, DVr,2, andt2 for the decay of K510. The dependence of
t2 on temperature should, furthermore, afford the activation parameters of
K510 decay.

RESULTS

Quantum yield of the photocycle

The significant spectral overlap among the first intermedi-
ates of the pSRII photocycle (Chizov et al., 1998) strongly
impairs the direct determination ofFK by optical methods.
The bleaching of the parent state in the ms range, corre-
sponding to the formation of M400, is instead readily de-
tected, and it remains for several ms. The determination of
FM is thus easier, but it may result in an underestimation of
FK, i.e.,FK $ FM, because a temperature-dependent equi-
librium between M400 and L495 may occur (Chizov et al.,
1998).
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The comparative method in flash photolysis was applied
(Bensasson et al., 1978), using TSPP as an actinometer,
according to the procedure described by van Brederode et
al. (1995). Fig. 1 shows the fluence (Ea) dependence of the
triplet-triplet absorption of TSPP at 460 nm and the bleach-
ing of the pSRII parent state in the ms region.FM was
calculated with

FM 5 FTSPP

~DA510/Ea!pSRII

~DA460/Ea!TSPP

«460,TSPP

«510,pSRII
(3)

where FTSPP 5 0.6 (Davila and Harriman, 1990),e460,

TSPP5 47,000 M21 cm21 (van Brederode et al., 1995); the
value ofe510, pSRII5 33000 M21 cm21 was derived from
the absorption spectrum of pSRII ande498 5 40000 M21

cm21 (Chizov et al., 1998). The results obtained from two
sets of experiments in detergent solutions at room temper-
ature wereFM 5 0.516 0.06 andFM 5 0.466 0.06 for
pSRII-WT and pSRII-His, respectively. No significant
changes were observed with changes in the temperature
between 5°C and 50°C, indicating that the possible thermal
equilibrium between M400 and L495 either has a small in-
fluence onFM or induces variations within the experimental
error .

Comparative measurements between the PML reconsti-
tuted and the DM-dissolved proteins performed at the low-
est and highest energies reported in Fig. 1 showed that there
are no differences inFM between the two preparations. This
was also confirmed by the LIOAS experiments (see below).

LIOAS of pSRII: the formation and decay of K510

Measurements were performed on four different sample
preparations, as indicated in Table 1, i.e., detergent-solubi-
lized samples at low (10 or 50 mM) and 150 mM NaCl
concentration and proteins reconstituted in PML with 20:1
and 100:1 lipid-to-protein ratios. The PML preparations did
not contain NaCl unless otherwise stated. All measurements
were performed in 25 mM sodium phosphate buffer at pH 8.
A typical room-temperature LIOAS signal is shown in Fig.
2, together with the fitting and residual functions recovered
from the deconvolution procedure.

The occurrence of an expansion in the subnanosecond
region is evident from the positive slope of the plots ofw1

versus (cpr/b) (Fig. 3). A deviation from linearity occurred
in detergent at low NaCl concentration, atT . 32°C, for
both pSRII-WT and pSRII-His. Inasmuch as no significant
variation was detected in the absorption spectrum, this ef-
fect should be attributed to a temperature-induced mecha-
nistic change above 32°C, i.e., a higher nonradiative con-
version rate. Therefore, points at the highest temperature
were excluded from the linear analysis (limited to detergent
at low NaCl concentration).

Regarding the appearance of the first intermediate K510

the results were relatively similar for the two proteins (Ta-
ble 1) as well as for the proteins in the various media
employed, confirming the identity of quantum yields in the
different preparations, as determined by flash photolysis. By
applying the relationshipDVr,i 5 FiDVR,i, a volume change
of ;10 ml/mol is obtained for the process pSRII3 K510.

This value ofDVR,1 must be considered as an upper limit,
becauseFM # FK (vide supra). The results obtained with
the TT and ST methods are in general similar, and only the
latter are reported in the LIOAS tables, unless otherwise
indicated.

The value ofath1 is only slightly, but systematically,
lower for pSRII-His. The difference between the two pro-
teins is, on average, 7%, i.e., slightly larger than the exper-
imental error (5%). The difference between the detergent
and the PML preparations is, instead,;4.5% for pSRII-WT
and 0.5% for pSRII-His. This difference was therefore not
taken as significant, and the energy content of K510 was
calculated by averaging the value ofath1 for all preparations
and separately for the two proteins. Taking into account the
formation quantum yieldsFM 5 0.516 0.06 (pSRII-WT)
andFM 5 0.466 0.06 (pSRII-His), and employing Eq. 2,
we obtained for the energy content of K510an average value
of (88 6 13) kJ/mol for pSRII-WT and (1346 11) kJ/mol
for pSRII-His.

The w2 versus (cpr/b) plots indicate a further expansion
in the detergent-dissolved samples for the K510 decay. The
linearity is, however, less sharp than for the subnanosecond
step (see Fig. 4), and the errors derived from the average of
two independent experiments (Table 2) are much larger.

For the PML samples (lipid-to-protein ratio 20:1), the
situation changed drastically. A contraction characterized
the K510decay (Fig. 4). To rule out the possibility of protein

FIGURE 1 Determination ofFM by means of the comparative method in
flash photolysis. Energy dependence of the amplitude of (M) the T-T
absorption of TSPP monitored at 460 nm immediately after the laser pulse
and of the bleaching of (E) detergent-dissolved pSRII-WT and (F])
pSRII-His, both monitored at 510 nm between 3 and 13 ms after the laser
pulse.T 5 20°C.A500 5 0.2, 25 mM sodium phosphate buffer, pH 8. The
pSRII solutions also contained 0.025% DM, 50 mM NaCl for pSRII-WT
and 10 mM NaCl for pSRII-His.Inset: Time evolution of the signals for
TSPP and pSRII-WT.
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clusters inducing this effect, samples at a 100:1 lipid-to-
protein ratio were also tested. The measurements afforded
results similar to those of the 20:1 preparations (Table 2).
The possible influence of NaCl was also ruled out because
measurements of the PML preparations with 150 mM NaCl
showed no difference with the samples devoid of salt (data
not shown). For PML, the data obtained with the ST method
were considerably different from those derived with the TT
approach. The values ofath2 were too large (ath1 1 ath2 $
1, in brackets in Table 2) in the former case. This may be

related to the detection of the third decay (L3 M) at the
highest temperatures employed. A three-exponential analy-
sis, however, did not improve the results. The problems are
probably mainly due to a large scattering of these prepara-
tions and to the bad resolution of LIOAS in thems region,
given that the subsequent decay, L4953 M400, should have
a lifetime of somems at the highest temperatures employed
(37–52°C) (Chizov et al., 1998). For the PML preparations
the TT method affordsath1 1 ath2 ' 1 (Table 2).

FIGURE 2 LIOAS waveform of (——) DM-dissolved pSRII-His and of
(zzzzz) bromocresol green, recorded at 20°C. The reconvoluted curve is
nearly perfectly superimposed on the sample waveform. The residual
distribution and the results of deconvolution are also shown. Note that the
sample signal is larger than the reference, because of the positiveDVr,1

contribution.

FIGURE 3 Amplitude of the fast component (w1) with lifetime t1 , 10
ns, after deconvolution of LIOAS waveforms, versus (cpr/b) for (F)
DM-dissolved pSRII-His (10 mM NaCl) and (‚) pSRII-His reconstituted
in PML at a lipid-to-protein ratio of 20:1. Note the deviation from linearity
at the highest temperatures (lowest values ofcpr/b) for the DM prepara-
tion. The error bars arise from the deconvolution of four waveforms at each
temperature.

TABLE 1 LIOAS-derived parameters for the formation of K510 in potassium phosphate buffer, 25 mM, pH 8, lexc 5 500 nm

ath,1 (t1 , 10 ns) DVr,1 (ml/mol) DVR, 1 (ml/mol) r*

pSRII-WT 0.826 0.04 5.16 1 106 2 0.991
(DM, 50 mM NaCl)

pSRII-WT 0.856 0.05 4.96 0.4 9.66 0.8 0.991
(DM, 150 mM NaCl)

pSRII-WT 0.796 0.05 4.86 0.2 9.46 0.4 0.993
(PML, 20:1)

pSRII-WT 0.796 0.04 4.46 0.2 8.66 0.4 0.993
(PML, 100:1)

pSRII-His 0.776 0.04 4.76 0.4 10.26 0.9 0.998
(DM, 10 mM NaCl)

pSRII-His 0.726 0.04 4.66 0.3 106 0.6 0.990
(DM, 150 mM NaCl)

pSRII-His 0.736 0.05 4.86 0.2 10.26 0.4 0.993
(PML, 20:1)

pSRII-His 0.756 0.04 4.36 0.2 9.36 0.4 0.994
(PML, 100:1)

The temperature range 6–54°C afforded a variation in (cpr/b) between;8 and;70 kJ/mL. The concentration of DM was 0.025% in the low [NaCl]
samples and 0.05% in the 150 mM NaCl preparations. For the PML samples the lipid-to-protein ratio is indicated.
* r, Variance of the linear regression with Eq. 1. Errors come from two sets of experiments in each case.
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The activation parameters derived from the linear fitting
of the plots of ln(1/t2) versus 1/T (Table 3 and Fig. 5) are
similar for the detergent-dissolved samples at 150 mM NaCl
concentration and for the PML preparations. The activation
energyEa is around 40 kJ/mol, while the preexponential
factor A is between 1 and 93 1012 s21. This supports the
concept that, despite the opposite sign ofDVr,2, this decay

corresponds to the same step in the photocycle, namely the
decay K5103 L495. Transient absorption experiments have
in fact provided evidence that the intermediates formed in
DM and in PML are spectroscopically and kinetically sim-
ilar. Only for the proteins in DM at low salt concentration
both activation parameters seem to decrease.

DISCUSSION

The available quantum yields and LIOAS parameters re-
lated to the early step in the photocycle of retinal proteins

FIGURE 5 Arrhenius plot ln(1/t2) versus 1/T for pSRII-WT and pSRII-
His, detergent-dissolved, at 50 mM and 10 mM NaCl, respectively.t2 is as
derived from the deconvolution of LIOAS waveforms. Straight lines are
the linear fittings according to the Arrhenius equation (see Table 3 for
results);T range5 11–56°C;t2 range5 3 ms to 470 ns for pSRII-WT and
3 ms to 640 ns for pSRII-His. Experimental conditions are as in Table 1.

TABLE 2 LIOAS-derived parameters for the decay of K510,
as recovered by the deconvolution procedure

ath2 DVr,2 (ml/mol) r*

pSRII-WT 0.096 0.04 5.66 0.7 0.908
(DM, 50 mM NaCl)

pSRII-WT 0.026 0.02 8.86 0.5 0.994
(DM, 150 mM NaCl)

pSRII-WT 0.26 0.05 22 6 0.6
(PML, 20:1) (0.386 0.15) (25.56 2) (0.865)

pSRII-WT 0.256 0.05 21 6 0.3
(PML, 100:1) (0.396 0.04) (21.76 0.3) (0.991)

pSRII-His 0.106 0.04 3.16 0.5 0.903
(DM, 10 mM NaCl)

pSRII-His 0.046 0.04 6.46 2.2 0.891
(DM, 150 mM NaCl)

pSRII-His 0.186 0.05 22.86 0.7
(PML, 20:1) (0.276 0.05) (23 6 0.2) (0.986)

pSRII-His 0.256 0.05 21.56 0.7
(PML, 100:1) (0.376 0.05) (22.36 0.2) (0.981)

Conditions are as in Table 1. For the PML preparations the results from the
ST method are reported in brackets. For the TT experiments,Tb50 5 3.5°C
for PML 20:1 and 3.2°C for PML.Tb.0 5 7°C.
* r, Variance of the linear regression with Eq. 1. Errors come from two sets
of experiments in each case.

FIGURE 4 Amplitudesw2 of the slower component with lifetime 10
ns , t2 , 5 ms, detected by deconvolution of LIOAS waveforms versus
(cpr/b), corresponding to the decay of K510. F, DM-dissolved pSRII-His
(10 mM NaCl);‚, pSRII-His in PML, lipid-to-protein ratio 20:1. The error
bars arise from the deconvolution of four waveforms at each temperature.

TABLE 3 Activation energy (Ea) and preexponential factor
(A) for the decay of K510, from the linear fitting of the 1n(1/t2)
versus 1/T plots

A (s21)
3 10212 Ea (kJ/mol) r*

pSRII-WT 0.2 316 1 0.998
(DM, 50 mM NaCl)

pSRII-WT 9 406 2 0.995
(DM, 150 mM NaCl)

pSRII-WT 8.1 406 2 0.981
(PML, 20:1)

pSRII-His 0.022 266 1 0.995
(DM, 10 mM NaCl)

pSRII-His 7.3 406 5 0.991
(DM, 150 mM NaCl)

pSRII-His 1.2 356 2 0.982
(PML, 20:1)

t2 is the lifetime associated with thew2 amplitudes in LIOAS deconvolu-
tion.
* r, Variance of the linear regression. Errors come from two sets of
experiments in each case.
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are collected in Table 4, whereFPI (photoisomerization
quantum yield) is the quantum yield of formation of the
early red-shifted intermediate. So far sensory rhodopsins
have been studied by LIOAS only as transducer-free pro-
teins, and no LIOAS data have been reported for halorho-
dopsin.

Quantum yields

The values ofFPI ranges between 0.4 (SRI) (Losi et al.,
1999) and 0.67 (rhodopsin) (Dartnall, 1972). The direct
determination ofFPI 5 FK by means of the comparative
method in flash photolysis is in general difficult because of
the spectral overlapping of this transient with the parent
state. The method employed in this paper for pSRII, namely
the bleaching of the parent state in an appropriate time
region, has already been successfully applied to BR (Tittor
and Oesterhelt, 1990) and rhodopsin (Dartnall, 1972), but it
implies that all the steps after the photoisomerization occur
with unit efficiency. This was not the case for transducer-
free SRI, for which the formation of S610 was employed as
a parameter (Losi et al., 1999) and may lead to an under-
estimation ofFK in the case of pSRII (Chizov et al., 1998).
In any case, the similarity of the quantum yields as reported
above (Fig. 1) indicates that the His tag does not interfere
with the efficiency of the photoisomerization step.

Volume changes

For all of the retinal proteins so far investigated by means of
LIOAS, the formation of the red-shifted intermediate is
accompanied by a structural volume change. For BR two
different values,11.5 and211 ml/mol, have been reported
by Zhang and Mauzerall (1996) and by Schulenberg et al.
(1994), respectively. In the latter case, a relatively high
photon fluence and the need for a high concentration of the
calorimetric reference are most probably the reasons for an
erroneous result. Since then we have utilized as calorimetric
references organic dyes with larger absorption coefficients
in the visible than the inorganic salts (Losi et al., 1999).
However, other effects complicate the measurements with
BR, such as the possible existence of more than one tran-
sient in the ns toms time range (unpublished data).

The DVR associated with the K-like appearance ranges,
therefore, from a very small expansion in BR, correspond-
ing to 2.5 Å3 per molecule, to a much larger value in pSRII
(corresponding to 16.5 Å3 per molecule). This is likely to be
related to local rearrangements of the amino acid residues in
the retinal pocket. Electrostrictive effects are not thought to
contribute extensively because there is no charge release
during these steps and the variation in the dipole moment of
the bare chromophore upon isomerization was calculated to
be very small (Locknar and Peteanu, 1998). Interestingly,
FTIR spectroscopy of K510 from pSRII trapped at low
temperature has shown strong bands in the amide I region
(Engelhard et al., 1996). This is in contrast to the case of
BR, for which the corresponding amide I changes in K are
much smaller (Siebert and Ma¨ntele, 1983). The results
reported here confirm that these spectral changes are indeed
related to conformational movements in the protein skele-
ton, already at the stage of K510.

The relative constant value ofDVR,1 for pSRII upon
changes in the microenvironment strongly supports the idea
that it reflects an intrinsic conformational change, with little
involvement of solvation effects. Smaller values ofDVR,1 in
the other retinal proteins may thus reflect smaller confor-
mational movements at this level. The identity between the
DVR,1 values for pSRII-WT and the pSRII-His indicates
again (as in the case of theFM values) that the histidine tag,
added for purification purposes, does not interfere with the
production of K510.

The sign and magnitude ofDVR,1 should be correlated
with the entropy changes accompanying this step. The pos-
itive sign of DVR,1 for all retinal proteins, including rho-
dopsin, qualitatively indicates thatDSR,1 . 0, regardless of
the direction of retinal isomerization. This implies that the
formation of the red-shifted intermediate induces a weak-
ening of the interactions between the chromophore and the
adjacent molecules (i.e., hydrogen bonds with water or
adjacent lateral groups of amino acids) and/or protein move-
ments that result in a protein conformation that is more
flexible than the parent state. For the calculation ofDSR,K

with DVR,1 we cannot assume as valid the Maxwell equation
(DSR 5 b/kT) that regards the solvent as a continuum
(Morais and Zimmt, 1995). Taking into account that the
retinal cavity is polar and hydrogen or ionic bonds are

TABLE 4 Retinal proteins: FPI, DVR, and energy levels (EI) of the early, red-shifted intermediate in retinal proteins

FPI DVR (ml/mol) E*I (kJ/mol) EI/E00 (%)

SRI3 S610
# 0.40 15.5 142 76 Losi et al. (1999)

pSRII-WT3 K510
#§ 0.50 110 88 40 This work

pSRII-His3 K510
#§ 0.46 110 134 60 This work

BR3 K¶ 0.65 11.5 55 28 Zhang and Mauzerall (1996)
Rho3 Batho\ 0.67 15 207 93 Gensch et al. (1998)

*Obtained upon dividing the reported total stored energy (36 kJ/mol) byFPI.
#DM dissolved.
§PML reconstituted.
¶Purple membrane fragments.
\Washed membranes.
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established between the chromophore and adjacent residues,
we tentatively employed the relationship proved to be valid
in aqueous solutions for electron transfer reactions,
TDSR,i 5 XDVR,i, where X 5 13 kJ/ml (Borsarelli and
Braslavsky, 1999). In these systems the change in the order
of the medium (strongly hydrogen bound to the dissolved
chromophore) determined the relationshipTDSR,i 5 XDVR,i.
With this relationship andDVR,1 5 10 ml/mol for pSRII, the
entropic term for the production of K510 is T DSR,K 5 130
kJ/mol andDSR,K 5 440 J/(mol K) at room temperature.

Energy storage

In retinal proteins, the fraction of energy released as heat
upon formation of the early red-shifted (K-like) intermedi-
ate is quite large (Table 4). Upon subtracting the vibrational
relaxation from the excited Frank-Condon state toE0-0

(derived from the crossing of the normalized absorption and
fluorescence spectra), the fraction of energy released
promptly from E0-0 as the respective first intermediate is
produced, amounts to 60% in SRI and to 70% in pSRII and
BR from the respective excitation wavelength (excitation at
580, 500, and 532 nm, respectively, corresponding to 206,
240, and 225 kJ/mol). The energy jump from theE0-0 level
to K-like intermediates (fourth column in Table 4) seems to
be linearly correlated withFPI; i.e., this step seems to be
largely enthalpically driven. This correlation holds only for
these strictly related systems, containing the same chro-
mophore and undergoing similar photophysics.

TheE0-0 value for pSRII is not known. We have assumed
that it lies between 10 and 20 kJ/mol below the energy of
the transition corresponding to the absorption maximum, in
analogy to the other retinal proteins (Losi et al., 1999;
Guzzo and Pool, 1968; Birge and Zhang, 1990).E0-0 should
thus be between 220 and 230 kJ/mol. Taking the values for
the energy content of the K510 intermediate asEK 5 (88 6
13) kJ/mol for pSRII-WT andEK 5 (1346 11) kJ/mol for
pSRII-His, energy steps are calculated to be;40% and
;60%, respectively. We note that the errors of the energy
levels are quite large, making the difference between the
two values relatively small.

With the entropic termTDSR,K calculated above, and
bearing in mind that strong assumptions have been made
regarding the validity of this calculation, values ofDGR,K '
240 kJ/mol andDGR,K ' 0 are calculated for the formation
of K510 from ground-state pSRII-WT and pSRII-His, re-
spectively. Clearly, for pSRII-WT, the entropy change more
than compensates for the enthalpy change in K510 with
respect to the parent state. This means that, provided our
calculation of TDSR,K is valid, K510 formation from the
pSRII-WT ground state is thermodynamically spontaneous
but kinetically controlled by the high activation barrier of
the isomerization.

On the other hand, the back thermal process K510 3
pSRII-WT, in addition to being kinetically impaired by an
activation barrier, is thermodynamically uphill, with a

DGK3pSRII 5 40 kJ/mol, and mainly entropically con-
trolled, which forces the system to the next intermediates.
The situation is slightly changed for pSRII-His, because of
the higher energy content of K510. DGR,K for this modified
protein makes the back-reaction K5103 pSRII-His thermo-
dynamically more favorable.

The validity of our calculations clearly depends on the
validity of the entropy estimation fromDVR. Notwithstand-
ing this assessment, the larger volume changes measured for
sensory rhodopsin I and, especially, for pSRII, are at least
qualitatively consistent with a larger entropy change in this
step, with respect to BR. This is most probably related to the
greater rigidity of the retinal cavity in the sensory rho-
dopsins in the ground state, as indicated by the selective
binding of all-transretinal in these proteins, with no thermal
equilibrium between the 13-cis and all-trans forms in the
dark (Hoff et al., 1997). The retinal photoisomerization may
thus induce a larger perturbation of the retinal cavity, with
disruption of a larger number of weak interactions and/or
larger modifications in the protein skeleton.

The decay of K510

The second amplitude (w2) and the lifetime (t2) recovered
by deconvolution in the ns toms time scale should be
associated with the decay of K510 into L495. The lifetimes at
room temperature correspond to those previously reported
(around 1ms) from flash photolysis (Chizov et al., 1998).
The activation parameters, however, are very different. In
particular, Chizov et al. reported values ofDH# 5 74 kJ/mol
andDS# 5 120 J mol21K21 for pSRII-WT reconstituted in
membranes (with a lipid-to-protein ratio similar to our 20:1
preparations). This corresponds toEa ' 72 kJ/mol andA '
1 3 1019 s21, at variance with the present results (Table 3).
The discrepancy may be due to the different time resolu-
tions of the two techniques. LIOAS is highly sensitive in the
hundreds of ns to the shortms time region, whereas in the
work of Chizov et al. (1998) the low time resolution in the
short ms region did not allow clear discrimination of this
time constant atT . 35°C. Furthermore, the absorption
changes associated with the K5103 L495 decay are very
small in flash photolysis, because of the strong spectral
overlap between the two species. Although in principle
LIOAS should give more reliable kinetic results for these
reasons, the ST method, which extends to higher tempera-
tures, also gives wrong results because of the overlapping
longer lifetimes at those higher temperatures.

The opposite sign ofDVr,2 for detergent-dissolved and
PML samples (Table 2) could be accounted for by a strong
influence of the dissolving medium during the decay K510

3 L495. The former sign is similar to the case of the
detergent-dissolved mutant D76N-SRI (DVr,2 ' 2 ml/mol),
while the latter is similar to the contraction accompanying
the K5103 L495 decay in membrane-embedded BR (Zhang
and Mauzerall, 1996) (DVR,2 5 22.2 ml/mol).

Assuming unitary efficiency, in the PML preparations
average values ofDVR,2 5 23 ml/mol and24.6 ml/mol for
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pSRII-WT and pSRII-His, respectively, are calculated for
K510decay, i.e., a slightly larger contraction than in BR. For
BR the contraction was attributed to the rearrangement of
water in the protein matrix (Zhang and Mauzerall, 1996),
and it was not observed for detergent-dissolved BR. The
structural differences between pSRII and K510 are not
known in such detail as to allow similar conclusions, and the
contraction observed is in any case larger than that for BR.
Taking into account that the total structural volume change
is the sum of an intrinsic and a solvent-determined volume
change, a different accessibility of the active site to the
solvent in pSRII-WT and in pSRII-His could induce major
differences in the solvent-determined portion of the volume
change and thus account for the difference in sign in the
total measured structural volume change. The intrinsic vol-
ume change is expected to be a contraction because in the L
state stronger hydrogen bonds and salt bridges are expected
(at least in BR; Oesterhelt, 1998), whereas medium effects
are expected to result in expansions in L, precisely because
stronger intrinsic interaction might weaken the interactions
with the solvent.

Accordingly, the pKa of the Schiff base counterion Asp75

was determined as 3.5 in DM and 5.6 in PML, suggesting
that the interaction of pSRII with the detergent exposes
other ionizable groups, in turn influencing the pKa of the
counterion complex (Chizov et al., 1998). In the mutated
protein pSRII-D75N, the pKa of the Schiff base is also
influenced in a complex way by the dissolving medium
(DM versus PML), indicating that the Schiff base itself or
residues influencing its pKa are surrounded by a different
microenvironment in the two media (Losi et al., manuscript
in preparation).

At variance with the lack of effect on the appearance of
K510, the histidine tag affects its decay. The values of (886
13) kJ/mol for pSRII-WT and (1346 11) kJ/mol for pSRII-
His, representing a storage of 37 and 56%, respectively, of
the excitation energy, show that the energy stored in K510 is
also somewhat different for the two proteins.

CONCLUSIONS

The photoisomerization of retinal in pSRII, which results in
the formation of K510, induces protein movements that are
restricted to the active site and thus are almost insensitive to
the solubilizing medium. This is a strong indication of the
inaccessibility of the retinal cavity to the solvent at this
early stage in the photocycle. The changes should involve
amino acid residues close to the retinal pocket as well as
modifications of hydrogen bonds and steric interactions
between the Schiff base and the adjacent residues. On the
contrary, the movements accompanying the decay of K510

are markedly influenced by the dissolving medium and are
slightly sensitive to the introduction of the C-terminal His-
tag. This suggests that at this stage the active site is more ex-
posed to the solvent and that the conformational movements
involve more peripheral portions of the protein skeleton.
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