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Regulation of Protein Mobility in Cell Membranes:
A Dynamic Corral Model

David M. Leitner, Frank L. H. Brown, and Kent R. Wilson
UCSD Department of Chemistry and Biochemistry, La Jolla, California 92093-0339 USA

ABSTRACT We analyze a two-state stochastic corral model for regulation of protein diffusion in a cell membrane. This
model could mimic control of protein transport in the membrane by the cytoskeleton. The dynamic corral acts as a gate which
when open permits an otherwise trapped protein to escape to a neighboring corral in the cytoskeletal network. We solve for
the escape rate over a wide range of parameters of the model, and compare these results with Monte Carlo simulations. Upon
introducing measured values of the model parameters for Band 3 in erythrocyte membranes, we are able to estimate the value
for one unknown parameter, the average rate at which the corral closes. The ratio of calculated closing rate to measured
opening rate is roughly 100:1, consistent with a gating mechanism whereby protein mobility is regulated by dissociation and
reassociation of segments of the cytoskeletal network.

INTRODUCTION

Proteins spanning cell membranes mediate transport of mdranes. The dense cytoskeletal network in erythrocytes has
terials and information between the cell and its environHong been recognized to hinder and mediate transport of
ment. Early models of the plasma membrane, notably thenembrane proteins (Cherry, 1979; Schindler et al., 1980;
fluid mosaic model (Singer and Nicolson, 1972), postulatedSheetz et al., 1980; Koppel et al., 1981; Sheetz, 1983). This
that proteins, homogeneously distributed within the memwview is strongly supported by experiments on the diffusion
brane, move by free diffusion in a lipid bilayer, a view in of Band 3 in both normal erythrocytes and erythrocytes that
harmony with theories of chemoreception (Berg and Purare deficient in spectrin, the building block for the cytoskel-
cell, 1977) that optimally arrange receptors evenly or ranetal network. Corbett et al. (1994) studied rotational and
domly around the membrane. The picture that protein Motranslational diffusion of Band 3 in normal erythrocytes,
tion is mediated merely by the homogeneous environmendng in erythrocytes with genetic disorders that leave the
of the lipid bilayer comprising the membrane has, howevererythrocyte with a much sparser skeletal network. Rota-
been challenged for some time by evidence that transmenjiong diffusion of Band 3 was found to be indistinguishable
brane proteins also interact with heterogeneously distributeg}, ot classes of cells. Translational diffusion, about two
membrane lipids and proteins, as well as with proteins in the jers of magnitude smaller than predicted by the fluid
cytoplasm of the cell. It also appears that such interaction;nos‘,;‘iC model in normal cells, was observed to be about an
may be closely connected to function (Axelrod, 1983; MC- ey of magnitude faster in spectrin-deficient cells than in

Clpskey and Poo, 1983, P_et_ers, 1988, Z_hang et_ al., 199qiormal cells. The cytoskeleton affects the motion of mem-
Winckler et al., 1999). Revision of the fluid mosaic model brane proteins in broadly two ways. Membrane proteins

IS cgrrently gnderway (Jacopson et_ al., 1995) as expenm_e%ay bind to the cytoskeleton, remaining essentially immo-
tal information about the interactions regulating protein, . . o .
. . ile during the period in which they are tethered. For
transport becomes available and theories are developed {0 .
interpret measurements example,~ ¥s of Band 3 binds to the cytoskeletal network
P ) . via ankyrin at any one time. Unbound transmembrane pro-
Though numerous interactions regulate membrane prot- : till affected by th twork ing o b
tein transport (Edidin, 1990), the cytoskeleton just below €ins are St anected by e nEwork, appearing fo be
the membrane appears to play a central role in controllin emporarily corralled due to steric mteracﬂons with seg-
mobility in a variety of cells, such as epithelial, nerve, and ents of the cytoskeletgl netv_vork (Fig. 1). Such cor_ralled,
red blood cells (Fleming, 1987: Saxton, 1990b; Saxton an&’Ut unbound, proteins fj|_ffuse in the mem_brane, a_Ibelt much
Jacobson, 1997: Winckler et al., 1999). The best-studief°'® Slowly than envisioned by the fluid mosaic model.
membrane protein for which cytoskeletal control of motion Sheetz (1983) presented a matrix model for the transport of

has been well characterized is Band 3 in erythrocyte memProteins in erythrocyte membranes, which has since been
elaborated on by Tsuji et al. (1986, 1988). The “skeleton

fence model,” as it is currently called, has been shown
experimentally to characterize the control of protein trans-
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Extracellular region case, the protein diffuses inside the corral until it hits the

barrier, at which point it has a fixed probability to escape.
Saxton simulated protein dynamics in the corral and deter-
mined the mean first passage time out of the corral for a
variety of corral sizes, shapes, and escape probabilities. An
expression for first mean passage times due to Deutch
. > (1980) for escape over a circular static barrier closely fits
=6nm  100-500 nm results of the simulations. A second model studied by Sax-
Intracellular region ton (1989; 1990a,b) describes hopping among corrals of the
“skeleton fence.” In one realization, the skeleton fence is

FIGURE 1 Ultraschematic illustration of a mobile transmembrane pro-Static and a percolation network is required for diffusion
tein as viewed from under the membrane. The cytoskeleton immediatelpver the membrane. Since the fraction of the erythrocyte
below the membrane hinders and regulates transport, confining the prote'@ytoskemton that is dissociated is far smaller than what

temporarily to a corral, thg typical size of which is indicated in the flg_ure. would be required for percolation, Saxton Suggested that
One hypothesis for proteins to move from one corral to a neighbor is for,

segments of the cytoskeletal network to dissociate and reassociate. Warge-scale diffusion could occur only if the skeleton fence
model this two-state process and predict the average time for proteins to/€re dynamic; for example, if segments of the cytoskeleton
escape from a corral. The thickness of the corral can affect the rate ofould dissociate and reassociate. In a dynamic model, there
escape. A t'hic.kness of 6 nm, representative for the cytoskeleton of erythg o longer any percolation threshold (Druger et al., 1985;
rocytes, is indicated. Harrison and Zwanzig, 1985), and it is always possible for
an object to diffuse globally. The dynamic corral model we
investigate here predicts the hopping rate of a protein from
1981; Jacobson et al., 1982); single particle tracking (SPTpne corral to its neighbor in the cytoskeletal network.
(Qian et al., 1991; Saxton and Jacobson, 1997); and exper- In this article we study a dynamic model for protein
iments with laser tweezers (Edidin et al., 1991; Kusumi etmotion in which the corral is described as a stochastic gate.
al., 1998). SPT, which monitors the motion of individual or This picture is related to models of chemical reactions in
small numbers of proteins at video rates or in some caseshich escape occurs over an energy barrier that changes in
faster (Tomishige et al., 1998), provides particularly de-time (Zwanzig, 1990). Dynamical gating models have been
tailed information about the nature of protein transport inapplied for some time to the study of ligand-protein binding
the membrane (Simson et al., 1995; Saxton and Jacobsokinetics (McCammon and Northrup, 1981; Northrup et al.,
1997). SPT has helped to pin down the sizes of the cytoskelt982; Szabo et al., 1982; Zwanzig, 1992; Wang and
etal regions that temporarily compartmentalize proteinsWolynes, 1993; Eizenberg and Klafter, 1995), in which the
revealing distinct time and spatial domains for diffusion of binding rate is governed by the accessibility of the binding
mobile proteins. At short times and over regions of ordersite, lying inside the protein, to a ligand that has to pass
0.01-0.1um?, diffusion appears as theoretically expectedthrough pockets in the exterior of the protein that are reg-
for a protein in a lipid bilayer. Over longer times and ulated by variation of the protein’s conformation. For a
distances, diffusion of mobile proteins is often observed tgrotein to escape from a corral, where the cytoskeleton
be one or more orders of magnitude slower (Kusumi et al.sterically interacts with the cytoplasmic region of the trans-
1993; Saxton and Jacobson, 1997). Laser tweezers haweembrane protein, the gate can open when a segment of the
been used to move small numbers of proteins up to andpectrin network corralling the protein dissociates, as illus-
beyond the boundaries of corrals (Edidin et al., 1991; To4rated in Fig. 1. Alternatively, a protein can escape from a
mishige, 1997; Kusumi et al., 1998), providing further de-corral if the distance between the membrane and cytoskel-
tailed information about the range of corral sizes and of theeton is sufficiently large so that the cytoplasmic portion of
extent of corral control over the transport of transmembranghe protein can pass between them. This can occur through
proteins. The cytoskeleton itself has been manipulated witfluctuations in the distance between the membrane and
laser tweezers (Tomishige et al., 1998), dragging mobileorral, which can provide a gap large enough for the protein
proteins with it, which has lent further support to the cy-to escape, or through conformational changes in the cyto-
toskeleton fence model. plasmic portion of the protein. Large-scale simulations of
On the theoretical side, the mobility of membrane pro-the cytoskeletal network by Boal (1994) and Boal and Boey
teins has been extensively simulated by Saxton (1987; 19891995) have revealed that the barrier-free path for a mem-
1990a,b; 1993; 1995; 1997). While considering a range obrane protein can be regulated by fluctuations in the shape
traps and obstacles for proteins in membranes, Saxtoof the cytoskeleton. Recent laser tweezer experiments by
(1995) has also addressed escape of proteins from corralfomishige and Kusumi (1999), in which the network itself
The specific corral model studied by Saxton is akin towas manipulated, have been interpreted to imply spectrin
standard models of chemical reactions, whereby a particleetramer dissociation/reassociation in the gating process.
escapes over an energy barrier that is fixed in time. In thisThe dynamic model that we adopt and discuss in this article
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has two metastable states, one open and one closed, withlt is often of interest to know that the protein is some-
random transitions between them, so it is most appropriatevhere inside the corral at a given time. The survival prob-
for the possible case in which opening and closing of theability, P(t), is the probability that a protein starting in the
gate corresponds to dissociation and reassociation of specerral remains there at time While calculation ofP(t) is

trin tetramers. This model bears some resemblance to twaenerally complicated, we can simplify it significantly by
state stochastic models for ion channels (Colquhoun andhaking certain statistical assumptions, detailed below. We
Hawkes, 1995), with the additional feature here that proteircan describé(t) with these assumptions by closely follow-
transport in the skeleton fence involves the interplay being calculations by Zwanzig (1992) and Eizenberg and
tween diffusion within the corral and the dynamics of the Klafter (1995) for ligand-protein binding kinetics involving
skeleton fence. Results we obtain from our two-state dypassage through a fluctuating gate.

namic model, together with available experimental data for Suppose that the concentration of protei@s,within a
Band 3 in erythrocyte membranes, are consistent with @orral decays as

picture in which Band 3 transport is regulated by dissocia-

tion/reassociation of the cytoskeleton fence, though we can- dC/dt = —K(x)C, 1

not rule out other mechanisms. wherex; is a state of the corrak, = open, orx, = closed.

In the following .sectlon we present the dynamic corral Because the state of the system is changing in time, the rate
model and theoretical methods used to solve for the escapy

rate of proteins from the corral. We then briefly describe a%nstamK 's time-dependent and given by

Monte Carlo procedure to simulate protein motion in a K(x,) = k, (2a)
dynamic corral, which we use to compare with theoretical
results. Finally, we present and discuss results for the K(x,) = 0, (2b)

model, and compare these results with experimental mea-

surements for the mobile fraction of Band 3 in erythrocytesVhere we define a rate constaki,for decay of the protein
population from an open corral. We calculdtein the

Appendix. Justification for a simple open-state rate equation
THEORY will be provided with results of numerical simulations in the
{following sections. Transitions between the open and closed

We consider a dynamic, two-state model for a membran diob hastic. If th h b
protein confined to a corral in which we picture the corral 51S_St""teS are assumed to be stochastic. If the gate happens to be

a fluctuating gate. In one state the corral is closed and’ statex? (%), the'pmbalbllllty that it will remamdthere at
proteins are trapped, while in the other it is open and'Mme t after opening (closing) iSA; exp(-tWe)dt (W,

proteins diffusing within it can escape. Transitions betweer?Xp(_two)dt)’ whereW, andW, are the rates to close and

these two states are taken to occur randomly. The tim&PeN: respectlv.ely. . . .
during which the gate is closed or open is exponentially Upon averaging Eq. 1 over all stochastic trajectories, we

distributed with, respectively, mean; * and W; %, where can express the probability of finding a protein inside the
] ’ o c

W, andW, are, respectively, the mean closing and opening',Orral asP() = ',Dc(t) + Po(t)', WhergPC andP, are, respec-
rates of the gate. The shape and size of the corral and t a/ely, the survival probabilities in the closed and open
diffusion coefficient,D, for the protein’s motion within the states. Then

corral comprise the other parameters of the model. The P.(1)
latter is just the diffusion coefficient for a protein within the dP/dt = —L P(t); Pt) = <Pc(t))'
lipid bilayer, and has been estimated theoretically by Saff- ?
man and Delbirck (1975) to be of the order I8 cn?s X where

The diffusion coefficient due to the lipid bilayer is, in the

context of the skeleton fence model, sometimes referred to L = ( Wo W, ) 4)
asD, .o (Kusumi et al., 1998), the coefficient for diffusion W, We+k /)0

within the “microscopic” corral region of the membrane, in
contrast tdD,,..ro the coefficient for diffusion over lengths
of order 1um or longer in the membrane. The corral size, P(t) = c,e *' + c_e*, (5)
D, andD,,,,..chave been measured by SPT, FRAP, and with

the aid of laser tweezers for various proteins and cellsvhere

(Saxton and Jacobson, 1997). A suggestive valugfgnas

@)

The solution to Egs. 3 and 4 is

also been reported for erythrocytes (Tomishige, 1997; Tom- } E _ Wo

o . o ) (W, + W, + k

ishige and Kusumi, 1999). We will discuss possible ranges 212 2 W+ W, 6
for W, andW, below based on conclusions from our model, =3 W, + W, + K2 — 4kW, (6a)
combined with measured values for the corral dimensions

and protein diffusion. c.=1-c,, (6b)
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W, + W, + k 4KW, is the distance between lattice points &itds a time step.
M = 2(1 + \/1 - (\N+W+k)2) (6c)  As parameters for our model we have choBen 60 nm for
¢ ¢ a square corral anB = 5- 10" ° cn? s %, both represen-

We see, given that we can justify an open-state rateative values for Band 3 in erythrocyte membranes (Tom-
equation with rate constait that the survival probability ishige et al., 1998). We take the lattice spacing for the
for proteins in a corral decays biexponentially; at longersquare grid on which proteins diffuse in our simulations to
times Eq. 5 reduces essentially to single-exponential decaype 2 nm, so that 60 lattice points lie within the length of a
For the range of parameters typically representative fosquare corral. We chose this grid size since somewhat
cells, W, > W,. Then, after only a very brief transient denser grids with smaller lattice spacings did not affect our
period, decay is simply exponential with. ~ 1 and rate results significantly. So that the areas within the square and
w=p_. circular corrals are the same, we taRg. . = RV4/x for

In calculating the survival probabilityR(t), we assumed our Monte Carlo simulations using circular corrals. Given a
that when the corral is open we can describe the open-sta@&nm lattice spacing and our chosen value Bgrwe have
survival probability,P,(t), by dP/dt = —kP,. The open- that each time stegt, corresponds to 210 © s.
state rate constark, is derived in the Appendix for a square ~ We introduce a given number of proteins into the corral
corral, and its variation with the parameters of the modelinitially, and follow their survival inside the corral over the
and its influence onu are discussed in the following sec- simulation. Given a closing rat®y,, and opening ratej\V,,
tions. Our calculation ok is simplified greatly upon intro- the fraction of time the corral is open over the length of the
ducing the convenient and, as we shall see, reasonab&mulation isf, = WJ/(W, + W,). Randomly choosing a
assumption that, between opening events, the corral isorral to be initially open with probabilitf, or closed with
closed sulfficiently long for proteins inside it to equilibrate. probabilityf, = 1 — f,, the probability that the corral will
When the corral reopens, a protein can then be found witlthange its state at a given time stepdisw, and &t W,
equal probability anywhere inside the corral. Given a cir-respectively. We take botht W, and 8t W, to be much
cular corral of radiuR, or a square corral of half-lengfR smaller than 1, which can in general always be satisfied with
the characteristic diffusion time within the corraly, = a sufficiently small lattice spacing, as it is for our particular
R?/D, is the time for a protein to move anywhere within the grid selection.
corral, and can be used as an estimate for the reequilibration If the corral happens to be closed when a protein attempts
time. We will justify this reequilibration approximation to escape, the protein is reflected back to the lattice point
below with reference to available experimental data for thefrom which it attempted to leave. If the corral is open, the
diffusion of membrane proteins. protein is allowed to escape and continues to diffuse, walk-

In summary, two approximations have gone into ouring randomly to nearest-neighbor sites at each time step.
calculation of u: 1) we have assumed that the survival The protein can return to the corral as long as the gate is still
probability when the gate is open can be described using epen, but is removed from the simulation if it lies outside
single rate constank, when in fact the proteins are diffus- the corral and the gate is closed. We find that removing
ing out of the open corral; and 2) we have assumed that thproteins from the simulation after the corral closes has little
gate is closed long enough for the proteins inside the corraffect on the escape rate if the corral is closed at least as
to lie anywhere within it with equal probability at the time long as the characteristic diffusion timms,.
it reopens. The second assumption can be justified for
sufficiently smallW,. The first can also be justified W, *
is so small thaP(t) changes little until the corral closes. It RESULTS AND DISCUSSION
is important to check the validity of both approximations in
our calculation for the escape rate, and we do this b
simulating protein escape from a stochastic two-state corraln Fig. 2 we plot the radial concentration profilg(r, t), i.e.,
the concentration of proteins a distanmceom the center of
a dynamic circular corral at timé We have calculated
C(r, t) to illustrate that the distribution of proteins remains
As a check on the theoretical predictions for our two-stateessentially flat within the corral for a range of relevant
dynamic corral model, we have computed escape rates froqparameters. Proteins are taken initially from a flat distribu-
a corral directly by Monte Carlo simulations. We computetion within the corral, and we then computé(r,t) at
the rate of escape from either a circular or square corradliscrete grid points inside and outside the corral, where
superimposed on a square lattice, on which the protei€(r, t) is propagated by the diffusion equation in each of the
moves randomly from one site to a nearest-neighbor at eadiwo states (Zwanzig, 1990). We have chosen a corral radius
time step. The radius of the circular corral or half-width of of R = 60 nm,D = 5-10 % cn? s %, andW, = 10 s %;
the square is given by the parame®eFor two-dimensional these parameter values are representative for Band 3 in
diffusion modeled by our simulations? = 4D &t, wheres  erythrocytes. An absorbing boundary is placed at 120

)Protein distribution in a corral

Numerical calculations
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FIGURE 2 Radial concentration profiles are plotted at various times for three different values of the closing rate. We havd ehdseh0 ° cn?

s 1, R =60 nm, and\, = 10 s %, representative values for Band 3 in erythrocyte membranes. The proteins are initially equidistributed within the corral.
We have placed an absorbing boundary at 120 nm, far enough away to have little effect on escape from the circular epthed.darfal remains open

and concentration profiles for normal diffusion are observedb)rafd €), whereW, = W, andW, = 1000\, respectively, a flat distribution of proteins

is observed at all but very short times.

nm, far beyond the gate but nevertheless apparent in theidth, R, of the square corral are-5.0° cn? s * and 60
radial profiles plotted in the figure. In Fig. @ the gate nm, respectively. Various opening and closing rates are
opens att = 0, and remains open for the length of the indicated in Fig. 3. The results are plotted ad(it) versus
calculation. Here we see simple and unobstructed diffusiotime, together with the theoretical predictions of Egs. 5 and
(apart from artifacts due to the absorbing boundariR at 6. We observe that, regardless of corral shape and over the
120 nm). For the results plotted in Fig.l2andc, we have range of parameters plotted, escape of proteins from a
usedW, = W, and W, = 100W,, respectively. The latter dynamic corral is well-described by single-exponential de-
closing rate is of the order of what it might actually be in cay to within fluctuations in the numerical results. Only at
erythrocytes, as discussed below. For the slower closingery short times and wheW, is not very different from,

rate, shown in Fig. &, we observe that the concentration of
proteins near the edge of the corral is briefly lower than it is
in the center; after this transient period the distribution
within the corral is flat. When the gate closes more rapidly,
as in Fig. 2c, the distribution appears flat at all times
plotted, lending credibility to our assumption that proteins
within the corral are equidistributed. Deviations at very
short times will be seen to have a negligible effect on our
calculation of the escape rate from a corral.

(@]

In P(t) ..

)
N

Escape rate from a corral

We turn now to the decay of the survival probability of a

protein in a two-state dynamic corral. We begin by looking . . . “ay
first at results from Monte Carlo simulations of protein '30 0.04 0.08 0.12 0.16 0.20
diffusion in and escape from a corral. We have run the t (s)

simulations on a square lattice using both a square and

circular corral for comparison. For each simulation weFIGURE 3 Results from Monte Carlo simulations forR(t) are plotted.
begin with 10 proteins placed randomly inside the corral Broken curves are results from simulations with circular corrals, while
and monitor their survival inside the corral over the |engthsolid curves are results for square corrals. Gray curves are the theoretical

of the simulation. as described above. In Fig. 3 we Iotresults of Egs. 5 and 6. The half-width of the square corr& is 60 nm
imuiaton, I ve. 9. we p andD = 5-10"° cm? s~ L. The areas of the square and circular corrals are
results forP(t), where we have averaged the results OVelihe same. From top to bottory, (s %) andW, (s %) are, respectively: 5,

10,000 runs. The diffusion coefficienD), and the half- 5120; 5, 640; 10, 1280; 10, 160; 20, 320; 20, 40.
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is biexponential decay apparent. Escape from both squairvival probability can be approximated by an exponential.

and circular corrals is seen to be well-described by a theoryn this casek = 2IWJ/R ~ VDWJ/R. Comparing with Eq.

for squares. That corral shape should have little effect on th®, we see that the length of the transition regiorl is

escape rate is consistent with Saxton’s (1995) results foiv DW; 1 in the limit of fastW.. The open-state rate con-

escape from a static corral, for which computed mean firsstant,k, is simply the product of the rate to close and the

passage times for escape from corrals with a wide variety ofelative size of the transition region to the size of the corral;

shapes were found to be nearly shape-independent. k increases with increasing closing rates, since it takes
The results plotted in Fig. 3 indicate that the survivallonger for proteins in a larger transition region to diffuse out

probability decays exponentially, as we already expecteaf the corral.

from Egs. 5 and 6 which, after a very brief time, describe the The escape rate, given by Eq. 8, takes on two limiting

escape of proteins from a dynamic corral as forms that depend on the relative sizeskoW,, andW,,.
_ When the rates of closing and opening are both much faster
P(t) ~ exp(—ub), @) than the rate of escape from an open corral,
where W
=Ko W, WSS K 10
W Wt k( \/ AW, © =R W, + W) (10)
# 2 (Wo + W, + K2/’ which is just the probability that the gate is open times the

which is u_ defined by Eq. 6c. A protein's escape rate rate of leaving an open corral. Since the average closing rate

clearly depends on the rates at which the corral opens anld much greater thakin this Ii'mit, Kappearing in Eq. 101s
closes\W, andW,, respectively, and on the open-state rated/Ven by Eq. 9. If the corral is typically closed longer than

constank, which contains the influence of the other param-1t IS OPen.
eters of our model, i.e., the corral size and the diffusion W, D2
coefficient,D. n= W’ Wc > \N0 > k. (11)

Our calculation ofk is presented in the Appendix. We
have assumed there that the corral is closed sufficiently longhe escape rate is then simply the rate to open times the
between opening events for the proteins inside it to equilifraction of proteins in the transition region of the corral. In
brate, so that each time the corral opens a protein can ke limit wherek is much larger than both the rate to open
found anywhere within the corral with equal probability, asand close,
illustrated by the profiles plotted in Fig. 2. With an
equiprobable initial protein distribution, we calculate the p=Wo, We, Wo <<k, (12)
fraction of proteins remaining within the corral during the g4 that the rate at which the gate opens is rate-limiting. In
period,t, in which it is open. The open-state rate constantyne sjow-gating limit, Eq. 12, the escape rate is independent
k in Eq. 8 is an average over all open periods, so we averagg the size of the corral. Since for our assumptions to hold
k(t) over an exponential distribution df The resulting \y_is typically greater tharl,, the crossover from the
average open-state rate constant: k(W), then depends  |imjting regimes of Egs. 10 and 12 can be seen from Eq. 8
on W, corral size, and. _ to occur wherek ~ W,. To estimate the location of this
The open-state rate constarfor a square corral, derived  crossover, we note thdt ~ W, when W, ~ DR 2. The

in the Appendix, is given by Eq. A3 in terms of one crossover from slow to fast gating thus occurs whafe ~

numerical integral, which we compute to obtginin gen-  g2/p — . the diffusion time, corresponding to an open

eral. In the important limiting case where the gate closegering sufficiently long for the transition region to encom-

rapidly, i.e.,W. >> DR 2, whereR is the half-width of the pass the whole corral.

square corral, our expression fosimplifies to To assess the validity of the assumptions that underly our
k = WYDV2R1, W, > DR 2. (9) predict?on for the escape rate of membrane proteins from

dynamic corrals, we have compared the escape jate,

Eq. 9 fork can be easily understood in terms of the shortgiven by Eq. 8 with results of Monte Carlo simulations. We

time, W %, during which proteins can leave the corral whenhave chosen two corral shapes for our simulations: a square

the gate is open. Then essentially only proteins within acorral, for which our expression fdt is derived, and a

lengthl ~ V/DW; * of the edge of the corral will escape, a circular corral whose area is the same as the square’s. We

part of the corral that we refer to as the “transition region.”plot the results of our simulations in Fig. 4 together wjith

If all proteins within the transition region of lengtifrom  calculated using Eq. 8. The opening ratéds, used in the

the edge of the corral escape when the gate closes, a fractisimulations are 5, 10, and 20'% the closing ratesy\,,

1 — 2I/R of proteins that were in the corral when it openedrange from 1 to 19s™*. The diffusion coefficientD, and

still remain, where we ignore contributions of ordérIf  the half-width,R, of the square corral are-8.0"° cn? s~ *

Wt is small, P,(W. %) ~ P.,(0)(1 — 2I/R), so that the and 60 nm, respectively. The opening rates we have chosen
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indicate, corral size and dynamics strongly affect escape and
thus Dpacr0 We can estimat®,,,,.,oin terms of the corral
size and protein escape rate calculated abovB,as,, ~
(R’u(R)), where the brackets denote an average over the
membrane. For example, the mediBp,,.,, measured in
SPT experiments on Band 3 in erythrocyte membranes is
6.6+ 10 ' cn? s (Tomishige et al., 1997), from which,
together with the mediaR of 55 nm, an average escape rate
2.2 s* can be deduced. [Tomishige et al. (1997, 1998)
report a hopping rate of 2.8 $ based on these values for
Dhacro@NdR, but assuming elliptical corrals.]

—_—

0 5 4 6 The extent to whictD,,,,., IS regulated by the dynamic

cytoskeleton fence depends on the average corral opening
and closing rated)V, andW,, respectively, as well &3 and
R. We can understand the range of effects these parameters

FIGURE 4 Average escape rafe, of a protein from a dynamic corral. : P .
Curves are results from calculations using Egs. 8 and A3. Results fromhfa'Ve OMDyacr0 DY trning to the limiting expressions fas,

simulations using square and circular corrals are plotted as squares aven by Egs. 10_1_2' When the gat_mg rat(_as are slow,
circles, respectivelyD andR are the same as those used in Fig. 3. Values Dmacro = (R W, In this slow-gating limitD ,,...is related
of W, andW., are indicated in the figure. only to the rate at which the corral opens and its size. If both

W, and W, are sufficiently fastu is given by Eq. 11 and

Dimacro = (R W.DYAW_ 2 In this fast-gating regime,
for our simulations are also plausible values for the openind®macroiS €xpressed as the product of the opening fatg,
rates of the “skeleton fence” that temporarily compartmenandR2 times the fraction of proteins lying in the transition
talizes membrane proteins (see below). For these choices tfgion of the corral, averaged over the corrals of the cy-
D, R, andW,, the values of/, over which we plot results toskeleton fence. In this limiD,,,..increases linearly with
in Fig. 4 span a range in which the escape rate is almodR Thus, when gating is fast, corral size has a more modest
completely controlled by the rate of opening, ie.~ W,  effect onD,,.cthan when gating is slow. This is due to the
for smallW,;, to the largew, regime whereu is given by Eq.  fact that for given fast opening and closing rates, the frac-
11. Each of these regimes is indicated in the figure. Thdion of proteins escaping from the corral decreases with
crossover from one regime to the other occurs whiire-  increasingR, since the relative size of the transition region
D/R?, which for the choselR andD is W, ~ 100 s'*. We  to corral area varies a& *. We shall see below that the
observe in Fig. 4 that the crossover indeed lies around thiaster-gating limit, wherd,, ., increases linearly witfg,
value. To obtain good statistics, the simulations were rurmore nearly describes Band 3 in erythrocytes than does the
with 10 proteins initially inside the corral and an ensembleslow-gating limit.
of 10* corrals. As in Fig. 3, single-exponential decay was
observed at all but very short times. The results plotted i
Fig. 4 were obtained by a linear fit to the computedP(t),
where the short-time contribution was excluded. Reason©ur calculations of the escape rate of a membrane protein
able agreement between theory and results of the numerickbm a dynamic corral have thus far neglected the finite
simulations using both square and circular corrals is seewidth of both the cytoskeleton that corrals the protein and
over the complete range of parameters plotted in Fig. 4. the cytoplasmic region of the membrane protein that inter-

Using a two-state dynamic corral model, we predict theacts with the corral. As a result of the finite thicknesses of

average escape rate, in terms of the dynamic properties the corral and trapped protein, each a few nanometers, there
and size of a single corral of the membrane. In SPT oiis a minimum distancer, that the protein must traverse
FRAP experiments information is provided about the diffu-when the gate is open before it actually escapes. This
sion coefficient,D,, ..o for mobile proteins over larger distance would be about half the sum of the thicknesses of
regions of the membrane of the cell. Valuesipy,,have the protein and barrier. For example, the diameter of the
been typically observed to be one or more orders of magspectrin cytoskeleton in erythrocytes-% nm (Boal and
nitude smaller thaiD, where the latter has been measuredBoey, 1995), as indicated in Fig. 1, while the diameter of the
by SPT over length scales smaller than and on the order afytoplasmic region of Band 3 is-2-3 nm (Tomishige,
the corral size (Saxton and Jacobson, 1997; Kusumi et al1997), so thatr ~ 4 nm. Band 3 must therefore move
1998). The membrane consists of a meshwork of corrals dfaterally at least 4 nm to escape from an open corral before
varying size, shape, and gating dynamics. While corrathe gate closes.
shape seems to have only a small influence on the escapeThe minimum protein traversal distanag,due to finite
rate, as our simulations using square and circular corralthicknesses influences the open-state rate consdtait/e

log oW, (s'1)

r]=inite size of proteins
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can easily understand this influence for the case where thare fast, the escape rate, given by Eq. 11y is W,DY%
closing rate is fast, anklis given by Eq. 9 whem = 0. The  RWY2 Upon measurings, R, andD, and since the maxi-
transition region, whose= 0 length isl = %\/D\/\@Ifrom mumW, ~ 10* s, an effective lower limit oW, can be
the edge of the corral wheW, is fast, shrinks td — r ~ determined. For example, for erythrocytasR, andD have
ZVDW,* — r, which clearly limits how largeW, can be  been reported to be 2.8 55 nm, and 5.310 °cn?s™?,
before proteins are trapped. For example, for Band 3 imespectively (Tomishige, 1997; Tomishige et al., 1998). The
erythrocyte membranes, whares 4 nmandD ~ 5-10°°  maximum opening rate, given the experimentally measured
cn? s~ %, W, should be no greater than10* s~ *. Faster rates, would beW, ~ 30 s *. When, however, the gate
closing rates, within the framework of our dynamic corral opens slowlyu = W,. Since for erythrocyteg, ~ 2-3 s %,
model, would essentially permanently confine Band 3 in-the average corral opening rat®s,, would range between
side the corral. ~3 and 30 s*. Thus the observed thickness and widths of
In the Appendix we modify our expression féer to  the corrals and protein®, and the observed escape rate,
account for finiter. In terms of this modifiek, we plot the  together with results from our model, limit the range of
escape ratey, in Fig. 5 where we observe that, as expectedyalues ofW, to only about an order of magnitude. We note
w drops precipitously when the closing rald,, is suffi-  that the diffusion time within the corrak, = RP/D, is
ciently large. This rapid drop reflects the expfW./4D) ~0.007 s, and much less than the smallest valua/pt in
probability of a protein diffusing the required minimum this range. Thus our assumption of reequilibration of pro-
distancer during the very short time the gate is open. Fig.teins prior to opening appears fully justified.
5 indicates thatV, cannot, as anticipated above, be faster In addition to measurind, R, and w for Band 3 in
than~10* s™* for erythrocytes. Since the size of the tran- erythrocytes, Tomishige (1997) also reports measurements

sition region depends only dp, r, andW,, a limit of W, ~ of a corral opening rate of~14.3 s This result was
10* s~* should be quite typical for cells if the cytoskeleton deduced by dragging a gold bead attached to Band 3 with
is regulating the lateral motion of membrane proteins. laser tweezers at various rates to determine the barrier free

SPT and laser tweezer experiments have to date providgehth (BFP), by which it could be determined if the bead was
most directly values foR, D, andu, the latter obtained by dragged a distance of one or more corrals. A dragging rate
observing the diffusion of mobile proteins over the cell of ~14 s * per corral apparently dramatically increased the
membrane, as discussed above. Results for our model amFP. Still, for a given dragging rate a distribution of BFPs
the measured values Bf D, andu can help us pin dowk,  would be expected (Edidin et al., 1991). In the absence of
andW,. The effective limit on\W, which we have calculated BFP distributions we can at best take the reported opening
also imposes an effective range of possible opening ratesate to be suggestive. Nevertheless, it is reassuring that this
W,. When both the opening and closing rates of the corrabpening rate lies within the range consistent with the mea-
sured values foR, D, andu. TakingW, ~ 14 s™*, we can
estimateW, from Fig. 5, where we find\, ~ 2 - 10®s™*.

We note thatV, ~ 4.5- 10° s~ if we neglect the effect of
finite thickness in our calculations.

CONCLUDING REMARKS

A variety of experimental studies of protein motion in cell
membranes indicates that free diffusion of transmembrane
proteins is hindered by the cytoskeletal network directly
below the plasma membrane (Jacobson et al., 1995; Saxton
and Jacobson, 1997). A skeleton fence model, whereby
0 1 5 3 4 proteins are temporarily corralled to regions of order 0.01—
1og1ow (5'1) 0.1 um? before moving over to a neighboring region, has
¢ been proposed and supported by recent single particle track-
FIGURE 5 Effects of finite thickness of the corral and protein on the ing (SPT) and laser tweezer_ studies on numerous proteins
escape rate are shown. Lady\,) is plotted against log{,) for D = 5-  and cells (Sako and Kusumi, 1995; Saxton and Jacobson,
10~° cn? s~ and, from top to bottonR = 60, 140, 220, and 300 nm. The  1997; Kusumi et al., 1998). The current, if only tentative,
thick, black curves were calculated accounting for a half-thickness=of  picture confines proteins to cytoskeletal corrals until a con-
4 nm; the thin, gray curves were calculated for 0. E§timates for the formational change in the corral or protein structure, or
closing rate based on the measured escape rate, opening rate and corral size ... .
(Tomishige, 1997; Tomishige et al., 1998; Tomishige and Kusumi, 1999)pOSItIon of the membrane Wl_th _reSpeCt to the cytoskeleton,
are indicated with an O, accounting for finite thickness, and X, neglecting@!lows the protein to move within the network and over the
this effect. membrane. Motivated by this description, we have studied a
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simple dynamic corral model for the lateral diffusion of been proposed and analyzed in the context of ligand-protein
transmembrane proteins. binding kinetics (Zwanzig, 1992; Wang and Wolynes, 1993;
In the dynamic model examined here, the corral fluctu-Eizenberg and Klafter, 1995).
ates between two metastable states, one of which traps the Saxton (1995) has investigated protein escape from a
protein while the other allows it to escape. These statesorral that could be described as static. Protein escape in this
could be, for example, the associated spectrin tetramer omodel occurs with a certain probability every time the
the one hand, where the integrity of the cytoskeletal corraprotein enters a transition region at the edge of the corral. If
is maintained and the protein confined, and the dissociatethe escape probability from the transition region is much
dimer state on the other, in which the corral is open. Thidess than 1, as it would typically be for the lateral diffusion
mechanism has for some time been suggested to regulate thé proteins in cell membranes (Saxton, 1995), then the
lateral motion of proteins in cell membranes (Tsuji et al.,escape rate for proteins from static corrals can be described
1986, 1988; Tomishige, 1997; Tomishige and Kusumi,as the product of the escape probability from the transition
1999). For this model, we find that the rate of closingregion and the attempt frequency, i.e., the average rate of
controls the size of the region within the corral from which entering the transition region from the rest of the corral. The
proteins can escape, which we refer to as the transitiosize of the transition region would sensibly be about the
region, while the rate of opening controls the rate at whichthickness of the cytoskeletal segment that has to be over-
proteins escape once there. The overall escape rate is theame for the protein to escape; then what is left to determine
given by the product of the opening rate and the probabilitythe escape rate is the probability that a protein can push its
of lying within the transition region. Using measured valuesway through to the other side of the barrier.
for Dynacre R @andW, for Band 3 in erythrocytes, we have  There is only indirect evidence, such as effects of tem-
been able to calculatéd/.. perature on the barrier free path (Edidin et al., 1991), to
Anywhere from<1% (Sheetz, 1983) to-5% (Liu et al.,  support a dynamic cytoskeleton fence model over a static
1981; Palek and Lux, 1983) of spectrin is believed to be inone, such as that studied by Saxton (1995) for the regulation
the dissociated dimer state at any one time. Thus our estdf diffusion of membrane proteins. Deciding between a
mate thatW_:W, is ~140:1, so that just under 1% of corrals dynamic or static barrier for the cytoskeleton fence model
would be open at any one time, is consistent with therequires going beyond calculation of the average rate of
hypothesis that dissociation/reassociation of spectrin tetescape. To distinguish between these pictures, we need to
ramers is responsible for gating. This possibility could beconsider the fluctuations in the escape rate, which we ad-
explored further by SPT and laser tweezer experiments odress in a future study.
cells for which the spectrin content and fraction of spectrin
dimers is different from normal cells. In this case, W,,
andW, would presumably change; if the former two could APPENDIX
be measured, as they have been in normal erythrocytes, th%n . . iy o .
W. could be calculated and the rafib“W. checked for ur calculanon_of the survival probability of a protein in a dynamic corral,
c ) - o T le - Egs. 1-6, requires a rate constahtfor escape from an open corral. We
consistency. Since we observe in Fig. 5 that the thickness Ghiculate the open-state rate constant for a square corral assuming proteins
the cytoskeleton appears to affect the escape rate, modesthin the corral are equidistributed when the corral opens. We choose a

Changes in the size and dynamics of the Cytoskeletal negguare corral for convenience, since the number of proteins within it at a
work could have a sizable effect @y, given time is simply the product of the number within two one-dimensional
acro

. . . corrals. We thus first solve for the escape rate from the ends of an open
We must bear in mind, however, that the available body, " P

. one-dimensional corral, assuming proteins to be equidistributed inside it
Of eXperImenta| data by no means ruleS out alternatiVQ\/hen it opens. The corral spans a |ength frerRto R.

mechanisms for intercompartmental transport. SPT experi- We assume that the number of proteiMgt), inside a corral that has
ments on cleaved Band 3 (Tomishige et al., 1998), wheréemained open a periachas decayed exponentially,

the cytoplasmic portion of Band 3 is largely removed, reveal _

D hacrotO be about six times larger than for normal Band 3, N(® = N(O)e . (AL)
though .Sti” a.n order (?f magnitude smaller thiag;c,o. Thus Then averaging\(t) over the distribution of open times,
fluctuations in the distance between the cytoskeleton and

the membrane, or protein conformational changes, may be o

the operative gating mechanism, at least to some degree. An Po(W. 1) = Wcj dt @ krwat (A2)
interesting alternative dynamic corral model appropriate for o

this picture would describe the dynamic corral in terms of a

“gap” whose motion diffuses according to the thermal fluc-gives the rate constank, in terms of Po(W; %) = (N(W;*)/N(0)), the
tuations of the membrane, cytoskeleton, or protein. In thigpen-state survival probability at the closing tivg ™.

model, the corra_l would open when the gap between the (1— PWY)

membrane protein and cytoskeleton reaches a value large Kk = ¢ (A3)
enough for the protein to escape. A diffusive gate model has ¢ P(WY)
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