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ABSTRACT A theory of molecular motors is presented that explains how the energy released in single chemical reactions
can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well
described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction
coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from
the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic
description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied
forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and
give general expressions for motor velocity versus load force for any member of each class. We show that in some cases
simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to
determine the step at which movement occurs.

INTRODUCTION

Molecular motors are single protein molecules that converity of distance, force, and velocity as direct experimental

chemical energy, usually in the form of adenosine triphos-observables is beginning to provide a body of basic facts on
phate (ATP) into mechanical forces and motion. Most or-which well-founded theories of molecular motor function

ganisms have many different motors that are specialized fo¢an be built. Recent theoretical efforts have produced both
particular purposes such as cell division, cell crawling,detailed models for specific motor molecules (Derenyi and
maintaining cell shape, movements of internal organellesYicsek, 1996, 1998; Guajardo and Sosa, 1997; Elston et al.,
etc. A large number of biological motors and motorlike 1998; Julicher and Bruinsma, 1998; Wang et al., 1998a),

proteins have been discovered and characterized in rece@fd investigations of the basic physics of mechanochemical

years. (Spudich, 1994), and there is considerable variatiofyStems (Magnasco, 1993, 1994; Millonas and Dyckman,
in design and behavior among them, ranging from thel994; Millonas, 1995; Astumian and Bier, 1994; Astumian,

two-headed “hand-over-hand” motion of the kinesins and-997; Julicher etal., 1997). A common theme is that motor
the “rowing” motion of the myosins, to the crawling of proteins may generate forces and vectorial motion by rec-

DNA and RNA polymerases, to the proton-powered rotarytifying thermal fluctuations. In such “fluctuation ratchet”
motions of bacterial flagellar motors andFg ATP syn- models, chemical energy does not produce force directly.

thases. Despite this diversity, several lines of evidencgather’ the motor diffuses along its track (or some other

suggest that many such “mechanochemical” proteins WhicﬁOSition coordinate) by random walk, and the chemical
99 y P ’ reaction merely biases the walk so that steps in the forward

use chemical energy to carry out mechanical PTOCESSER; action are more probable than backward steps.
share fu_ndamental unde_rlymg features that can be under- We begin by outlining the general principles by which the
stood with the_ same k_)a5|c concepts and the_orles. theory of stochastic process is applied to molecular motors.
Together with the discovery of new motorlike systems, arpe motor molecule is thought of as a small machine
growing _body of experlmen_tal results has been aC_CumUIatéperating in a thermal bath, subjected to large fluctuations
ing, particularly from experiments carried out on single o, oo htormation and chemical state. These microscopic
feiw 1rg13t3(?rFmoIec;JI(als gggi_i?.d Stheletzl,gégg?é SVQbO?aleﬁuctuations all but disappear in the long-term and large-
av, , ~iner et al,, ; inetal, » oppin et al, ,, her ensemble averages involved in bulk experiments,

1996, 1997; Higuchi et al,, 1997; Hua et al., 1997; Mehta ut are direct observables in experiments involving few or

al., 1997; Schnitzer and Block, 1997; Vugmeyster et al"single molecules. This physical picture of the motor as a

1998). The variables most naturally and accurately meag icroscopic fluctuating machine corresponds to a random

sured in such single-molecule experiments are force, dis- s ;
9 P walk or diffusion process on the potential energy surface of

n nd time. Th re also the variabl f gr PP )
ﬁngt?é)r?aldsiéniﬁcancisfiramilgcstﬁatr riotgrsa.ﬂzl'ﬁse gvagillaet?i:-e tﬂe system. The diffusion fluxe_s that res_ult from this rand_om
walk yield both rates of chemical reaction and mechanical
velocities for the motor.
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tion between the microscopic view in which protein confor- ples below we will assume that the most important motions
mational changes, external forces, and thermal fluctuations asf the molecule can be described with just a few parameters,
explicitly accounted for, and the macroscopic and phenomewhich will be called system variables. As will be seen
nological view of chemical kinetics. As examples of the the-pelow, the system variables describe motions that are not at
ory, we investigate four simple classes of molecular motorsequilibrium on the time scale of the experimental observa-

and explore the generic behavior within each class. tions. They are usually large, concerted protein movements
such as the opening of a binding cleft, a change of molecular

MOLECULAR MOTORS AS shape, binding or unbinding of a motor domain to a polymer

STOCHASTIC MACHINES track, or a movement of the protein along the track. They

. . may also be smaller movements that are important to chem-
A molecular motor is an enzyme (or in some cases 3ca| reactions, such as the stretching and breaking of chem-
complex between an enzyme and a track such as actin g3 ponds. Some variables may, like normal coordinates,
DNA) that generates force and motion. The ensemble avgescribe more than one simultaneous motion.
erage behavior of a motor can be described phenomenolog- proteins contain many degrees of freedom, so the system
ically by standard chemical kinetics if rates of reaction areyariaples do not describe most of the possible motions of the
related to the rates of physical motion, and if rate constantrotein. As long as the “extra” motions are rapid, so that
vary with external force in a known way. Thus, on the they are approximately at equilibrium on the time scale of
macroscopic scale a molecular motor is seemingly simplenhe experiment, their effects can be accounted for as part of
and well-behaved. However, if it were possible to follow in the background of equilibrium fluctuations that are always
atomic detail the actual events that take place in a singlgresent. The extra degrees of freedom in both the protein
motor protein, a very different view would emerge. On theand the surrounding solvent will therefore be referred to as
microscopic scale the motor protein is more naturally de-hath variables. The bath variables do not appear explicitly in
scribed as a small mechanical device driven through a cycliany of the equations or results of the stochastic theory. Their
series of conformational states by a combination of rapiceffects on the system variables are accounted for indirectly,
chemical events (such as binding of small “fuel” molecules,as fluctuating stochastic forces or as contributors to poten-
bond-breaking processes, and unbinding processes), atidls of mean force and to frictional forces.
incessant, rapid thermal fluctuations. In many cases thermal Following Magnasco (1994) and Astumian and Bier
fluctuations are an essential component of the moleculaf1994) we divide the system variables into two classes,
mechanism of the motor/enzyme. For example, the abilitcorresponding to orthogonal axes in the conformational
of proteins to catalyze chemical reactions depends on thegpace of the motor. Because a molecular motor must have a
mally induced crossing of potential energy barriers, and théource of chemical energy, at least one of the system vari-
ability of molecular motors to generate forces may dependibles must be a measure of progress of the chemical reac-
on thermally driven diffusion from one site on a filament tion, and will be called the chemical variable. All others will
(such as actin, DNA, or a microtubule) to the next. Morebe called mechgnical variqbles. If thg chemical reacti_on
importantly, it is at the level of such microscopic fluctua- ¢@nnot be described by a single coordinate, more chemical
tions that the connection between “chemical” quantities,Va”ableS can be added without fundamentally changing the

such as free energies of reaction and kinetic rate constant{1€0ry- For motors powered by energy sources other than a
and “mechanical” quantities such as forces and velocities, i§"émical reaction (for example, a proton gradient), the

most naturally made. It is the purpose of this paper tochemical variables can be redefined appropriately. The op-

outline the connection between these two views, in part gratve prqurtt))/ IS th"# pr_ongeSE along alt(r:]hr.etmmal ax_|st '3
justify and give a microscopic interpretation to the macro-2ccompanied by a cheémical change (with its associate

scopic, phenomenological view, and in part to show how thechange in thermodynamic free energy), but does not involve
net movement of the motor as a whole.

microscopic view can be used to make detailed predictions : : .
regarding molecular motor mechanisms. Qf_the mechanical variables, at least one mu_st give t_he
position of the motor. For motors such as myosin, kinesin,
and RNA polymerase, the position variable is the location of
System and bath variables the motor protein along its track (microtubule, actin fila-
ment, or DNA double helix, respectively). For rotary mo-
On the microscopic scale a motor molecule (and its track, itors, such as the bacterial flagellar motor or thEFATP
any) is a small machine that can change conformation. Alkynthase, the position variable is the rotational angle. As
conformations can be described by a set of conformationalith the chemical variable, extra position variables can be
variablesx,, X,, X3, etc., which should rigorously include all added as needed to describe systems that are more complex.
the degrees of freedom (atom positions, bond angles, borithe distinguishing characteristic in this case is that motion
distances, etc.) of the molecule or molecules that make uplong a position variable can be unbounded; that is, the
the motor; but such a detailed description is obviouslymotor can move as far as it likes. For the purposes of this
neither practical nor desirable in most cases. In the exanpaper we will designatg, as the chemical variable and
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as the position variable. Thex, .. ., x, are mechanical whereU(X;, X5, - . ., X0 Y1, Yar - - - » Yim) IS the full potential
variables that describe internal motions within the motorfor all degrees of freedom in the system, including protein,
protein. By definition, motion along these “internal” vari- solvent, and other solution variables. Both entropic and
ables is bounded. enthalpic contributions to the free energy are included in
the potential of mean force, so both entropic and mechan-
ical forces are accounted for. Because the potential of
mean force is an equilibrium quantity, all bath variables

. ] ) ) (which do not appear i) are implicitly assumed to be
The system variables define amdimensional state space gt equilibrium.

State space of a motor molecule and the
potential of mean force

for the motor,x,, . .., x,. Each point in the state space  gor the simplest case, where the motor is described by
represents a_unique conformatipn of the motor moleculegny two system variables, the potential of mean foNee, ,
Associated with each conformation, x,, . .., X, is a free ) "gefines a two-dimensional potential energy surface on
energy V(x;, X, . . ., %), called the potential of mean force \yhich the molecular motor moves (see Fig. 1). Along a line
(McQuarrie, 1976). It has the property that its derivativesparallel tox,, the chemical variable, this surface will look
with respect ta, . . ., X, are the (time or ensemble) aver- |ike a typical reaction free energy diagram, with local min-
age forces(F;), along those variables: ima representing stable species separated by free energy
Ny .. %) barriers 'that determine the proba_bility of transitions among
(F) = _(a) , all system variables the minima, and hence determine the rates of chemical
X XX reactions. After each chemical turnover the enzyme must

(1) return to its initial state, and the free energy must have

The potential of mean force can in principle be calculatedi€créased by a fixed amount (closely related to the macro-

(in the canonical ensemble) by integrating the BoltzmanrpCOPIC free energy for the chemical reaction). Therefore, the
factor, expE-U(Xy, Xor - - 1% Y1 Yar - - - »Ye)IKT], OVer the free energy _surface is periodic in the chemical variable
bath variablesy,, Y, . . . ,ym, holding the system variables except for a linear term that accounts for thg free energy of
constant: reaction. Along a line parallel t®,, the position variable,

the surface gives the local free energy changes associated
with movement of the motor along its track. Inasmuch as the
—kTInUJ track is periodic, the potential must also be periodic, and in
the absence of external forces the overall free energy change
in one full step along the trackl, is zero. For example, for
J r<—U(X1, Xar o+ s X Y1 Yor + - - .ym)) ] kinesin/tubulin,x, would be the position of kinesin along a
-[ex dy,dy- - dyp,

V(X ... X)) =

microtubule, and the free energy surface alapgay have
a periodic series of minima representing the stable binding
(2)  sites for kinesin on the microtubule. Altogether, the poten-

KT

position (nm)

o
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Reaction Coordinate —» e fnses) Reaction Coordinate —»

Free Energy —s
Free Energy —»

FIGURE 1 (@) Hypothetical potential energy surface (potential of mean force) for a simple motor with two system variables. The surface is periodic, with
four unit cells shown. The trajectory in the lower right shows the path of a hypothetical system point executing a random walk on thé} @ifacsated

run of position versus time data, calculated using the Langevin equations (Egs. (4)) for a two-dimensional system with the potential $Yrfé&Cp in (
Kinetic scheme overlaid on the potential energy surfaceAin The fine lines show the boundaries of the regions corresponding to each macroscopic
intermediate species. Each macroscopic species is identified with a minimum of the potential, and transitions between species are assasiated with |
energy pathways between minima.

Biophysical Journal 78(2) 541-556



544 Keller and Bustamante

tial must satisfy (Magnasco, 1994) opposing the motion of the motor. These external forces
may depend on time but are assumed not to depend on the
V(X + AXp, Xo, .. ) = V(Xq, Xp, .. ) + AV system variables.
V(X %o +d, .. ) = V(Xg, X . . ), The classical inertial forcesp%;, have been neglected in
Eqg. 4, which means that all motions are overdamped, and
whereAV is a constantpx, is the period along,, anddis  there are no oscillations or other “reactive” effects. This is
the period along, (i.e., the step size for the motor). a good approximation for the relatively slow time scale of
In a molecular motor the mechanical and chemical variimuch of the experimental data on molecular motors. Only
ables must be coupled in some way so that progress alongery fast motions (vibrations of parts of the motor mole-
the chemical reaction leads to movement. The nature of thisules with frequencies of a megahertz or higher) show
coupling is contained in the contours ¥x,, X5, . . ., X,) significant inertial behavior in proteins, and these are aver-
(see below). Therefore, all the important features of a moaged out on the slow time scale of the experimental mea-
lecular motor are determined by the potential of mean forcesurements (from 0.1 ms to seconds or minutes). The damp-
and the choice of/(x,, X,, . . . , X,) defines the mechanism ing terms,y;x, are simple frictions, and do not allow for any
and properties of the motor (see below). “memory” (forces caused by reaction of the bath at a later
time due to motions irx at an earlier time) on the experi-
mental time scale. The effects of the bath variables appear
Stochastic equations of motion for a motor in three ways in Eq. 4: in the damping terms on the left-hand
; ; e - L side, y;%; in the stochastic forces on the right hand-side,
So far there is nothing specifically microscopic in our SF,. OF . etc.; and in the potential of mean force, The

description of a molecular motor. The chemical and me- : i
chanical operation of the motor is described by a potenti tochastic forces are defined tq h_ave zero mean (any force
hat does not average to zero is included in the “external”

energy functionV, qnd the m_ovem_ents of the_motor are forcesF,, F, etc):
movements of a point on ardimensional potential energy
surface. On the macroscopic scale this motion would be (8F,(t)) =0, alli (5)
governed by classical equations of motion, which would

predict smooth trajectories through the molecule’s confordn addition, the fact that the damping terms are written as
mation space. On the microscopic scale, however, the insimple frictions requires that the stochastic forces have
teraction of the system with the bath variables, representing-function time correlation (Mori, 1965; Kubo et al., 1995):
the solvent and all degrees of freedom not explicitly ac-

(3)

counted for in the system variables, is important. At a given (BFi()oFi(t + 7)) = 2vkTd(7)
temperatureT, each of the bath variables has energy of the o (6)
order ofKT. For a microscopic motor this energy is signif- (OFi(hFi(t + 7)) =0, i #]

icant compared to the features of the potential energy sur-

face, and is usually much larger than the kinetic energyThe S-function in Egs. 6 means that a force fluctuation at

associated with the system variables. The bath variableté?oent ;ﬁ?}?ﬂﬁlﬁﬁg;ﬂﬁgg?;ﬁd _\II_VAt: \‘2;3?%; t[cr)]ré:ef;:légtl;-t
may therefore have large effects on the motion of the systen‘%l '

variables, but it is assumed that these effects are random Isn%:/o%ns?silerrrf \I/\S/;i tflfaenrgosri]c?;lesiuizgis;inw?:is;ﬁ btziog(':t-lrjg'ls
a sense to be defined below. phy

This physical picture is well described by a system Offorces are much faster than the tim_e between experimental
classical Langevin equations (Kubo et al., 1995: Ch‘,in__observatlons, S0 the apparent force is the sum of many small
drasekhar, 1943), impulses. Notice also that Eqs. 6 do not depend on the

absolute time, but only on the time difference, Thus, as
) d would be expected for a bath at equilibrium, the statistical
VX = 9%, + Fu(t) + 0F4(t) properties of the bath forces depend only on time intervals

and not on the absolute value of time. Finally, the bath

) oV forces acting on different variablésandj are uncorrelated
(4) Further insight into the nature of the stochastic forces is

provided by the spectral density of fluctuations, which is
just the Fourier transform of the correlation function:

o= — Y )+oF
Yrkn = — &n + n(t)+ n(t)

(|8Fi(w)) = f (8F(D8F(t + m)e“'dt
wherey,, v, - . ., 7y, are damping constantst-,, 6F,, . . ., — 7)
oF, are random bath forces, akd(t), F,(t), etc. are exter-
nal forces which may include, for example, a load force = 2yKT
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According to the right-hand side of Eq. 7, the intensity of forces acting on the random walker. The sign of the external
fluctuations ford-function correlated forces is independent force, F;(t), is chosen so that a positive force gives rise to a
of frequency, and hence is often called white noise. positive contribution to the currentl,. In the molecular
Both of the approximations above—neglect of inertial motor field it is conventional to express measured quantities
forces ands-function correlation of the stochastic forces— in terms of load force, which is effectively the negative of
can be relaxed if necessary (Mori, 1965); but doing soF,; as written in Egs. 9 and 10. We adhere to general usage
greatly complicates both the mathematics and the interpréor the sign of the force in the present section, but will
tation of the results. In the absence of any experimentadwitch to the molecular motor convention in the next and
evidence that these complications are needed, we adopt tRghsequent sections, where the application is more specifi-
simpler theory. cally to molecular motors.
Substituting Egs. 9 and 10 into Eq. 8 yields the Smolu-
The Smoluchowski equation chowski equation:

Equations 4—6 correspond to a system moving on a poten-

tial energy surfaceV(x;, X, . .., X,), Subjected to white (LW + E<_ k;l’&/;/ + 18(f_w)) =0 (11)
noise of intensity kT at all frequencies. The presence of at T\ w9k i 0% '

random forces causes the trajectory of the system point,

[X(1), %(1), . .., X,(t)] to be random as well. Individual | the one-dimensional case this reduces to

trajectories therefore have little significance by themselves.
The important quantities are those that describe the statistics ow KToaw 19
of many trajectories, and the proper solution to the Langevin [(
equation (Eq. 4) is a probability distribution of trajectories.

The approximations made in the previous section—the , L o
fact that the bath forces lose all correlation after an infini- | "€ Smoluchowski equation is a second-order partial dif-
tesimal time, and the neglect of inertial forces so that thd€rential equation that can be solved fx;, X, . . ., Xy )
equations of motion (Eq. 4) are first-order in time—mean@t any timet, given a known distributiorwy,, at the initial
that the system loses all memory of previous positions afteime t,. Oncew is known,J can be found from Eq. 9.
each step. The motion of,(t), x,(t), etc. is therefore a
Markov walk or diffusion process (Kubo et al., 1995),
described by a probability density(X;, X,, . . ., X; t), for

oV

Physical interpretation of the stochastic theory

observing the walker at locatiox,, X, . . ., X, at timet, for molecular motors
given that it had distributiom,(X;, X,, . . . ,X,) at the initial
time, t,. Because probability is conserved,must obey a Equations 8-12 govern all the behavior of a molecular
continuity equation: motor, including its chemical kinetics, the average force and
velocity generated by the motor, and the fluctuations about
oW ow 2 aJ these mean values. The functioufx,, X,, . . . , X, t) is the
ot +V-d= ot + “ 9x: =0 (8) probability that the motor will be found in the conformation
"t given byx,, X,, . . ., X, at timet, and contains all informa-
whereV = (3/dx,, dl9%,, . . ., 9ldx.) is ann-dimensional  tion on both the average motion of the molecular motor, and
gradient, andJ = (J;, J,, ..., J,) is the n-component ©On its statistical fluctuations.
probability current density. For an-dimensional biased ~ Consider the hypothetical potential energy surface for a
diffusion process the current density is: molecular motorV(x;, X;), shown in Fig. 1A._ The motor
has only two degrees of freedom (one chemical variable and
KTow f; one mechanical variable), so the free energy surface is also
P = —m + ;W (9)  two-dimensional. According to the stochastic theory, the

operation of a single motor during a single cycle is a random
wheref, is the force acting along thiégh dimension of the walk on this surface. The surface shown in FigAlis
state space due both to the potential and external forces, bperiodic along the chemical axis (except for a uniform tilt)
not the stochastic force: and along the position axis, as is required for periodic
chemical turnovers and periodic movement. For clarity, we
have constructed a case where the distances between fea-
tures along the chemical axis are similar to those along the
mechanical axis, but the scales may be very different in real
The first term in Eq. 9 is a diffusion current with diffusion motors. For example, the movements involved in chemical
constanD; = kT/y;, in accordance with the Einstein relation bond breaking are usually on the angstrom scale, while
betweenD andy. The second term is a drift current due to motor stepping movements can be several nanometers.

_ oV
fi=— ax + Fi(t) (10)
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Four unit cells are shown, each of which contains threeaConnection to chemical kinetics: first-order
potential energy minima (labeled A, B, and C in the unit cellrate constants
in the upper right). Each minimum can be reached from the

neighboring minima by low-energy “passes” between themFrom the discussion above it is clear that the detailed,

Together these passes define a low-energy path through t[Igéecha!flical view that comes n.aturally.from the stochastic
conformational space of the motor. The low-energy path, intheory IS clqsely relatgd to the simpler view that.comes from
turn, defines the most probable sequence of conformation hemlca! ""’TE“CS- Fig. 1C shows t.he .potent|al energy
changes as the motor goes through one mechanochemicsclffrf""cfa n F'g.' 1A ov_e_rla|d .W'th a kln_etl_c schem_e. Each
cycle. During a cycle the diffusing system point will tend to potential W?" IS |dent|f|ed' with a k'metl_c |ntermed|ate, and
stay near the minima of the deep wells, but will occasionall he populationp, of each intermediate is the integral of the

make transitions between wells through the passes. Hen obability Qensitw(xl, X;) over the zone surrounding the
the wells correspond to the stable states that would be founﬁrézipggﬁg;ge\’\?g"mug ;{ Z,ﬁ’gg gp’s(:% ;(;i)r?ég’j’xf/,ei%n-rgf the
In kinetics experiments, and the low-energy passes betwees ochastic picture. In place of a cogntinuous diffusion pro-
the wells define the reaction coordinates for transitions P - plac : P
between kinetic intermediates. cess, we now have transitions among discrete states A—C. In

. . . . __place of the continuous probability density(x,, x,), we
The entire sur_face has a uniform t_llt alon_g the chemlcalnOW have a set of discrete populations, ps, pe: and in
axis. The drop in energy in one unit cell is the constan

. . . tpIace of the continuous current densidjx,, X,), we have
energy,AV, in Eq. 3. The tilt represents the thermodynammdiScrete currents (rates of reactiaip),/dt, dp/dt, dpJ/dt

driving force for the chemical reaction, and biases therpe potential energy surface thus determines the kinetic
diffusion process toward the products of the chemical reacmechanism for the motor. Conversely, knowledge of the
tion and away from reactants. At a given instant of time thexinetic mechanism gives information about the main fea-
system point may step in any direction, but over many stepsures of the potential.
the system will, on average, drift in the direction of the tilt. It is therefore possible to use a mixture of stochastic theory
The long trough in the center of Fig. A is the crucial  and kinetic information (from experiments) to build a detailed
region where chemistry is coupled to mechanical motion. Asnodel for any molecular motor. In particular, the stochastic
long as the low-energy path is parallel to the chemical variabléormalism can be used to calculate the rate constants for each
(as it is for transitions between the three closely spaced welldjinetic transition. The calculated rate constants depend on the
no net change in position takes place. Experimentally, théhape of the potential energy surface and on externally applied
motor would be seen to fluctuate about a fixed location on it§orces. Thus, the stochastic theory makes it possible to find rate
track while purely chemical processes take place; but in th&onstants as functions of external forée,
trough region the tilt of the potential in the chemical direction Consider a single first-order chemical process, say, be-

drives movement along the mechanical direction, and chemicé‘mﬁzr spfetlilies fcaq?] ;p])ecrlesiAn tgrc:\l:/ghr;thg trzggz 'tT] the
energy is transduced into mechanical motion. € ot Fg. ' € region betwee a ¢

Fig. 1B is a run of simulated single molecule data (motorpotential energy surface is shaped like a mountain pass (i.e.,

I : . . a saddle point), with negative curvature along the minimum
position versus time) for a motor with the potential surfaceenergy path and positive curvature in the orthogonal direc-
in Fig. 1A. The simulation was carried out by numerically iy “The boundary between A and C is defined to go

integrating the Langevin equations (Eq. 4) for the chemica{hrough the saddle point at the top of the pass.dla¢ the

and position variables, andx,, with V given by the surface  gjstance along the minimum energy path between C and A,
in Fig. 1A, zero external forces;(t), and a stochastic force, and lett be a variable perpendicular st all points. If the
oF;(1), given by Egs. 5 and 6. Only the intrinsic fluctuations transitions between C and A are slow compared to the
of the system itself are shown; no attempt has been made diffusion time within the well, the system point will wander
add the instrumental noise present in experimental dataip and down the walls of the pass as it approaches the
While the motor goes through the purely chemical part of itssaddle point. It is then reasonable to make the approxima-
cycle, its position fluctuates rapidly, but the average veloction that the system is at equilibrium with respect to move-
ity is zero. As the system enters the trough region a rapidnents along (perpendicular to the minimum energy path),
stepping motion is observed with a large positive velocity.@2nd the nonequilibrium dynamics are accounted for by
A second, smaller step occurs as the system falls from thBlovements along alone. The potential of mean force can
left-hand well (labeled A in Fig. T) to the lower well (C the_n be redefined in the neighborhood of the pass by aver-
in Fig. 1 C). After these steps the average position againaglng overt:

becomes constant and the average velocity drops to zero.

Though this is a purely hypothetical example, the qualita- o VKT — fews")’”dt

tive behavior—rapid steps separated by relatively long ’

pauses—is similar to that observed in real motors (for

examples see Coppin et al., 1996, 1997; Hua et al., 199%vhere V(s, t) is the potential of mean force for the full
Schnitzer and Block, 1997). two-dimensional surface, and(s) is the new, one-dimen-
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sional potential of mean force for movements only alsng function of p, andpg:
The variables now plays the role of a one-dimensional
reaction coordinate that involves concerted changes in both
the chemical state of the motor and the physical position of
the motor. Thus, for local transitions along the path from C (16)
to A, the problem has been reduced from two dimensions to Pg = — ‘]l g + Naw(0)

one. As long as equilibrium is rapid along V/(s) still ° kT =8 R

(implicitly) accounts for the effects of two dimensions.
Effectively, t has been included in the bath variables.

Jy
Pa=— ﬁEA + Naw(0)

where

The kinetic rate constants for a one-dimensional, first-order ¢ L
transition between any two species, N, = j g VE-VOFIKTgg N = J e (VO-VO+FIkTyg
ke 0 14
A s B, (17)
k¢ €

L

— —(V(9)+F9/KT — —(V(s)+F9)/KT
can readily be found from the Smoluchowski equation (see = | e o(gds Xa = j e Voo(9)ds
above). Consider a steady-state process for which all quan- ¢
tities, including the currents and probability densities, aregnd
constant in time. Les = 0 at the leading edge of the region
corresponding to As = ¢ at the boundary between the A s
and B regions, and = L at the far edge of region B. For a o(s) = fe(V(S/HFs)/deS'- (18)
one-dimensional system at steady state, the current density,
J, must be constant ig, so from Eq. 9 we have

0
Solving forJ yields

3 (kT Ng ) B (kT Na ) 19
=y NaSs — Nes P Ty NS — NS, P (19

whereF is an external load force along the local reactionComparing this to the form expected for a first-order reac-
coordinate,s. The form of Eq 13 assumes that the mOtOftion at Steady state] = kpr — krpB, gives the desired

molecule is rigid enough so that force components alongxpressions for the forward and reverse rate constants as
directions other thars have no significant effect on the fynctions of load force:
kinetics. The sign oF has been chosen opposite to the usual

kTdw 1/dV
( F)W (13)

v ds de+

convention for force (and also opposite to the convention k(F) = k;l' Ng

used in Egs. 4-12), but is in keeping with the usual defi- v Na2g — Ng2a'

nition of force in the molecular motor field, where a positive (20)
(load) force opposes the movement of the motor, and hence K(F) = H Na

contributes negatively td. v Na2g — Ng3a

Solving forw(s) we obtain _ ) .
Fig. 2 b gives examples of how(F) andk.(F) vary with

s 3 force for a simple piecewise-linear potential that has two
W(s) = —e (VEHFIKT J gVE)+FIKT Yy v e/ OKTyy(0) wells separated by a barrier. The potential is of the type
KT shown in Fig. 2a, but with symmetric wells4s; = As, =
(14) As=25nmL =2¢ =10 nm,AV, = 0, AVF = V(L) =
12.5 kJd/mol). When the applied force is large and negative,
Now we require that the integral @#(s) over the A region the forward rate constant is approximately linear in force:
equal the population of the (biochemical) statepy, and ~ k « (F. — F)/y, wherey is the damping constant arf is
the integral over the B region equal the population of stated constant offset force. Likewise, at large positive forces the

0

B, ps: reverse rate constant is approximately linear. This limit
arises when the drift velocity alone dominates the transition
¢ L rate, and both the potential energy barrier and back diffusion
j w(s)ds= pa, f w(s)ds= pg (15)  are unimportant.
0 ¢ When the applied force is positive, the forward rate

constantk:(F), appears approximately exponential, consis-
Taking the integral of Eq. 14 over regions A and B yields atent with the Arrhenius formk « exp[(AG* — FAs)/kT],
set of two linear equations that can be solved Joas a  whereAG? is an activation free energy aris is a charac-
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FIGURE 2 @) Piecewise linear potential energy function with two wells separated by a potential energy barrier. The potential is defined by eight
parametersAV(0), AV, AV,, AV(L), As;, As, €, andL) as shown in the figurebj Forward and reverse rate constants and reaction free energy as functions

of load force. The curves were calculated from a potential of the type shova) imith AV(0) = AV, = AV(L) = 0, AV = 12.5 kd/mol As = As, =
2.5nm,x = 5nm,L = 10 nm. The forward (reverse) rate constant is linear at large negative (positive) loads. The free energy is proportional to the natural
log of the ratio of the forward and reverse rate constants. In the case shown the free energy is linear even in regions where one or both of thégate constan

is nonexponential.

teristic length. Similarly, the reverse rate constant appearand binding of a fuel molecule occur on the same step:
approximately exponential at negative forces. Because it is

simple and familiar, the Arrhenius form is commonly used M+ Tkjf) MT h hemical bindi
in molecular motor theories (Wang et al., 1998a, b). The k;) mechanochemical binding

activation free energyAG*, is usually interpreted as a
barrier height andis is interpreted as a step size for the whereM is the motor moleculeT is the fuel molecule, and
motor. However, log plots of many calculations like the onek,(F) and k_,(F) are force-dependent rate constants. The
in Fig. 2b show that the rate constants are not exponentiajact that the rate constants depend on force implies that the
in force. In particular, a fit of the rate constants to anbinding step involves net motion. Part of the binding energy
exponential function yields different values AG* andAs s therefore converted into mechanical work.
from one range of forces to another. The Arrhenius form is Every binding process must involve at least two parts: a
thus useful as a generic fitting function over a limited rangepurely second-order process in which two molecules come
of forces, but the values okG* and As should be inter- into loose contact by diffusion alone, and a first-order
preted with caution. process in which the two molecules undergo conformational
For a potential with two wells separated by a barrier, axchanges that result in a more strongly bound state. We
in Fig. 2 a, the rate constants are most sensitive to theherefore divide the single step above into an equivalent
distances from the well bottoms to the barrier tdys(and  two-step process:
As), the size of each wellf(andL — ¢), the barrier height

(or activation energyAV), and the energy difference be- ko o
tween wells AV,). Once these parameters are specified, the M+T . M'T e MT

detailed shape of the potential has relatively little effect.
whereM'T is a short-lived, loosely bound intermediate. The

rate constants for the first stelg, andk_p, are assumed to
Second-order rate constants be large gompgred ty andk-y, S0 MT is approx.i mately

at equilibrium with the free specidd andT. Assuming that
The results above apply only for first-order processes, buthe diffusion process is not affected by external force (i.e.,
many models for molecular motors and molecular machineghat external force acts on the protein but not on the fuel
will include second-order steps that are affected by externaholecule directly), onlyk; and k’_, are force-dependent.
force. For example, consider a motor for which movementTherefore 1'T) = (kp/k_p)(M)(T) and the effective rate
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constants for mechanochemical bindikg.andk_,, are approximately correct, but the values&¥, andx no longer
have the same simple physical interpretation. In other cases
ky(F) = ﬁ Ki(F) = Kok,(F) AG2,, is not linear in force and Eq. 23 must be used. Fig. 2
-D b shows the calculated free energy of reaction for the same

potential that was used to calculate the rate constants (a
and (21) , . . .
symmetric two-wells-with-barrier potential). The free en-
k_4(F) =K 4(F), ergy is linear in force as expected from Eq. 24. Nonlinear
free energies are easily obtained by varying well shape,
whereK, is the equilibrium constant for the diffusive part however, especially if the wells are made unequal in size or
of the process. Thus the effective second-order rate corshape. It is worth noting also that a linear free energy
stant, k;, is approximately proportional to the calculated function does not imply an exponential form for the indi-
first-order rate constank;. vidual rate constants, though this has often been assumed.
For example, in Fig.  AG?,, is linear even at very high
and very low forces, where the rate constants are strongly
nonexponential.
The results above also yield an expression for the standard
free energy of reaction for

Force and the free energy of reaction

Stalling force
kr

AsB The stalling force for the motoF,, is the value of for
ki which the motor velocity (and hence the currehtis zero.
as a function of force. At equilibrium the net probability Consider a reversible motor with only one force-dependent
current,J, must be zero, and step. ThenF, is the force needed to make the current

through this step zero, which is the same as the force needed

Ps _ ﬁ _ Ko — o AGLPAT to make the free energy change zero. For cases where the
Pa ko free energy is linear in force,
(22)
Ng f% g VOTFIKTgg AG,, = AVp + FgaX + KT In(pg/pa) = 0,
Ny Joe VOHKids which implies
which yields AV, le De ,
[k e VO +FIRTYg Fsar = = ~ x ™" Pa (25)
AGL (F) = —kTIn(_) 23
. Joe VHFkIds @3) Thus the stalling force depends on both the driving free

energy of the reactiom\V,, and on the concentrations of

reactants and productp, and pg, as would be expected.

Equation 25 predicts an infinite stalling force whpg is

Suppose that the potentidl(s), has two wells separated ZeGro. Ihfégﬂefti-rtrne (:)a(/:[t) t)hﬁstgeggggfgci?ﬁ:fyevfhnggy’
i i xn rxn B/ FA)s

by & barrier (Fig. 2), and let the wells be deep enough so pg is zero. Physically, both the infinite stalling force and the

thate V9T s significant only in the neighborhood of the "B > .
9 y 9 nfinite free energy arise from the fact that the motor cannot

well bottoms. Suppose also that the well bottoms are Ot;)e reversed if the product concentration is zero. If the motor
nearly identical shape, so that they differ only by a constan proguctc )
cannot step backward it will eventually step forward under

offset, . :
the influence of thermal fluctuations, no matter how large
V(S)|near bottom of well 1= V(S)|near bottom of well 2+ AVo, the opposing force. For the same reason, any motor that has

] ] an irreversible step in an unbranched mechanism will have
whereAV, is the constant energy difference from well 1 10 g formally infinite stalling force (and infinite free energy of

well 2._Then the integrands in Eq. 23 are approximatelyreaction). (See, for example, the plots in Fig.a3,0. An
d-functions centered on the well bottoms, and the fregpfinite stalling force is clearly artificial: in any real system
energy reduces to the walker will either walk backward by some slow kinetic
AGY, = AV, + Fx, (24) path (at suffici_ently long times), or the motor itself will
deform (at sufficiently large forces). However, Eq. 25 sug-
where x is the distance between the bottoms of the twogests that the stalling force measured experimentally may
wells. Thus the free energy is linear Fh as would be not be easily compared quantitatively to a stalling force
intuitively expected. Calculations using Eq. 23 show that ifpredicted theoretically. It also makes clear that the proper-
the wells are shallow or differ in shape, Eq. 24 is often stillties of a microscopic molecular motor subject to thermal

If we takeAG,,,, = AGY,,, + KT In(pg/p,), thenAGS, (F) is
the free energy of reaction at load foréaunder conditions
where species A and species B have equal populations.
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FIGURE 3 @) Calculated force-velocity curves for the simplified mechanochemical binding mechanism at several ATP concerktyatidi30 s %,

d = 5 nm, andk, andk_, calculated from the potential in Fig.2with AV(0) = —12.5,AV = 12.5 kJ/mol, AV, = 12.5 kd/mol AV(L) = 12.5 kJ/mol,
As = 2.5 nm,As, = 25 nm,£ = 5nm,L = 10 nm,y = 4 X 108 kg/s, T = 300 K. TheK_, factor fork, was 1.07x 10~° uM . (b) Calculated
force-velocity curves for the simplified mechanochemical release mechanisnkwithl mM~* s7%, k_, = 50 s %, andk, calculated using the same
potential and parameters as i).((c) Calculated force-velocity curves for the simplified mechanochemical trigger mechanisnk,witil mM~—* s™%,
k_, =50s? k, = 100 s°%, andk, calculated using the same potential and parameters 4s.in (

fluctuations can be very different from those of a similar kinetics experiments. For transitions that do not involve net
motor with macroscopic dimensions. movement and hence do not depend on external force, the
experimentally measured values of the rate constants can be
used to describe motor dynamics directly; but for mechano-
EXAMPLE APPLICATIONS OF THE STOCHASTIC- chemical transitions, it is necessary to calculate how rate
KINETIC THEORY constants depend on force (e.g., using Egs. 17, 18, and 20),
The minimum experimental information needed and one-dimensional potentials along the local reaction
to build a model coordinates,s, must be known (or estimated). Thus, the
minimum information necessary to model the properties of
Using the results of the previous section it is possible toa molecular motor is 1) the kinetic mechanism (with the
calculate the dynamical behavior of any molecular motorcorresponding rate constants) as determined by macroscopic
from knowledge of its potential energy surface. However kinetics, and 2) the identity of the mechanochemical steps
the potential energy surfaces of proteins are generally nabgether with some estimate of the one-dimensional poten-
known, and the best information available is usually atial energy curves for these steps.
kinetic mechanism (i.e., a network of transitions between Here we explore the general behavior to be expected from
discrete species, as in Fig.c) derived from macroscopic molecular motors. We do this by investigating four simple

Biophysical Journal 78(2) 541-556



Mechanochemistry of Molecular Motors 551

yet general models that can be mapped onto a wide class bfydrolysis cycle (binding, reaction, or release), so move-
molecular motor mechanisms. The focus is on the steadyment is directly coupled to the chemical reaction. In the
state motor velocityy, as a function of external load force, fourth case, the mechanochemical trigger mechanism, the
F (the “force-velocity” curve), which is perhaps the most hydrolysis cycle is independent of movement: external load
characteristic single-molecule measurement. does not affect the kinetic parameters of the catalytic part of
cycle and substrate concentration does not affect the intrin-
sic velocity of the movement part of the cycle. The chemical
A minimal family of motor models energy is “stored” in the form of a strained state of the

All kinetic mechanisms that describe a molecular motor Protein,M,, and movement is then driven or “triggered” by
like all mechanisms that describe any enzyme, must p&elease of.the strain. '_I'he couphng between the.mechanlcal
cyclic. That is, if the mechanism begins with a step in whichand che.m|cal events is thus indirect: the chemical and th.e
a given state of the motor appears as a reactant, the Sarﬁgachamcal steps of the motor are arranged sequenually in
state of the motor must also appear as a product in somiéme, and a new set of catalytic steps cannot start if the
later step, and vice versa. The motor must bind fuel molePrevious cycle has not been completed.

cules, so its mechanism must contain at least one second-All four mechanisms are tightly coupled in the sense that
order step, and it must move and generate force, so at leadtSingle ATP hydrolysis must lead to a single movement
one step must depend on external force. Virtually all pro-Step, and vice versa. However, any of these models can be
posed motor mechanisms also contain steps that are purefjade loosely coupled by adding branches that allow the
chemical and are not affected by force. To simplify mattersMovement step to be bypassed between hydrolysis cycles
we consider only mechanisms with one force-dependerimany-to-one coupling), or allow the hydrolysis cycle to be
step, one fuel-binding step, and one product release stepyPassed between movements (one-to-many coupling).
Finally, the simplest kinetic mechanisms are unbranched, so

that each intermediate state of the motor is connected
exactly two others in a (linear) kinetic mechanism. Thes
restrictions define a limited class of models, shown scheThe steady-state velocity per motor molecute,is the
matically below: distance traveled in the movement stépmultiplied by the

net flux through the movement step,ove v = dJpnove FOI
example, in the mechanochemical binding model (case 1
above), for which movement occurs on the first step, the

9. . .
eP(lnetlcs and velocity

Mechanochemical binding model

ka(F) ke ks ke velocity isv = d(k;M; — k_;M,), whereM,; andM, are the
Mi+T 2 M;2M;=2M,+D=2M,; steady-state concentrations (or populations) of the corre-
B ke e s sponding states of the motor. Equivalent expressions apply
Mechanochemical reaction model for the other three classes. The steady-state concentrations
K ko) ks ks M1, M,, M3, andM,, are found by solving the appropriate
M,+T=2M, 2 Myg=2M,+D=2M; kinetic equations. For any of the models above these are:
k1 keaoP) k-3 k-4

Mechanochemical release model My = —(k 4 + kT)M; + k1M, + kM, = 0

k1 k2 ka(F) ks M2 = leMl - (k—l + kZ)MZ + k_2M3 =0
Mi+T=2M,2M; 2 M,+D=2M, (26)
ko Koz k-sP) kea M3 = k2M2 - (k_z + kg)Mg + k_3DM4 = O

Mechanochemical trigger model _
M4 = k,4M1 + k3M3 - (k,3D + k4)M4 = O

k1 k2 ks ka(F)
Mi+T=2M,=2M;2M,+D =2 M . . .
Lo e e o with conservation conditiodM; + M, + My + M, = 1.

) ) Solving these equations yields
whereM is the motor moleculeT is ATP (or another fuel

molecule),D is ADP + P, (or another set of products), and aT—bD

ki(F) indicates a force-dependent step. v d(eT+ fTD+ gD + h)
This is the simplest group of motor models capable of

describing a wide range of real motor behavior. Each modelvhered is the step size for the motdf,is ATP concentra-

has four states in its mechanochemical cycle and four trartion, D is product (ADP and f concentration, and

sitions between these states. The models differ only in the

step that involves movement, and hence in which rate con- a = kikokoky

stants depend on force. In the first three cases movement

(and force generation) coincides with some part of the ATP b=k 1k k 5k 4

(27)
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e = ky(ksk, + k_5k, + kok, + koks) (28)  Simplified mechanochemical binding model
ka(F) k3

f=kik s(k 2 + ko) M+T = MT—>M+D
k-1(F)

= K_g(k_ok_y + Kk_y + k_1k_4 + k_;k_
9 alkaks 2 e k=) Simplified mechanochemical release model

h = koksk, + Koksk_4 + K_1Kgky ke ka(F)
M+T=2MT—M+D
+ k,1k3k74 + k,lk,2k4 + k,1k72k74 k-1

Simplified mechanochemical trigger model
Equations 27 and 28 hold for all four models. The only

difference is that for the first moddd, andk_, depend on M + Té MTi M* + D kiF)M
force, while for the second mod&l, and k_, depend on ko1
force, etc. The first model is a simplified version of the mechanochem-

_In_the Iimi_t of small product.concentratiqrﬁ)(z Q)' Step  jcal binding model above. It derives from the mechano-
3_|s |(rev_erS|bIe, and the velocity follows Michaelis-Menten -pamical binding model by settirlg = k_, — %, andk, =
kinetics in all cases: k_, — . This effectively makes speciéd, and M, into

TIK,, one combined sp_ecieMT,_ and also ma_keM4 andM, into
v d<VmaX1+T/K) (29) acombined species). With these choices Eqgs. 30 reduce
M t0 Viax = kg, and Ky, = (k3 + k_g)/k;. Similarly, the
simplified mechanochemical release model and the simpli-

with V., andK,, given b
ma M 9 Y fied mechanochemical trigger model can be derived from

a koksk, the mechanochemical release model and the mechanochem-
Vinax = e kaky + K ok, + Kok, + koks ical trigger model.
(30) Because the release step is irreversible in all three mod-
Koksk, + Koksk 4 + K_1kgk, els, all three obey Michaelis-Menten kinetics. However, for
h  + kokek 4 + koK ok, + Kok ok, the simplified mechanochemical trigger mechanism it is
Kw=7¢a= Ky(KsKy + K oKg + KoKy + Koks) possible to define a velocity for the catalytic part of the
mechanism (i.e., the first two steps) alone:
TIKS
Classes of motor models _ at M
Ucat = d<vrcnax1 + T/K(Iillat) (31)

Many complex mechanisms can be reduced to one of the
four cases above by combining several steps into a singlavith V2 = k; and K = (k_, + kg)/k;. These “purely

effective step, and redefining the rate constants appropricatalytic” Michaelis-Menten parameters are independent of
ately. For example, a model in which two steps follow theforce, consistent with the separation of chemistry and me-
hydrolysis cycle, chanics in the mechanochemical trigger model. In terms of

" " " & KeP Ueq the velocity of the simplified mechanochemical trigger

M,+T=2M,>M;—M,+D — M;—M, model is given by
a 11
is equivalent to the mechanochemical trigger model (case 4 —=—+ (32)
above) with 1k, = 1/}, + 1/kg(F). Similarly, many simpler v Teat  Umov

models can be generated from one of the four cases byherey,,,, = k,d. Equation 32 is just a statement that for
reducing the number of steps, or by making some stepge simplified mechanochemical trigger model, with its
irreversible. This amounts to setting the appropriate ratendependent catalytic and movement processes, the total
constants to zero or infinity in the mechanisms and formulagime required to complete a cyclé/v, is the sum of the

above (Egs. 27-30). Thus each mechanism representstignes for catalysisg/v.,, and for movementi/s,o,.
large class of motor models rather than a single model. We

believe that most real molecular motors fall into one of
these four classes, or into a loosely coupled variant of thenfalculations

To calculate the force-dependent rate constants in the three
models above, a piecewise-linear, two-wells-with-barrier
potential was used (Fig. 2: barrier heightAV = 12.5

As examples of the models above, consider three simplieJ/mol (~5 kT at 300 K), reaction free energyv, = 12.5
special cases: kJ/mol, and well separation, = 5 nm). For the simplified

Calculated models
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mechanochemical binding mechanism, the valu&kgfin 4.

the second-order rate constakg,=
thatk, = 1 uM 1

Kpki, was chosen so
s 1 at zero force (Ma and Taylor, 1997).

Equations 20 were then used to calculate the force-depen-
dent rate constants, and Eqgs. 29 and 30 were used to
calculate the velocity. The results for all three models are

shown in Fig. 3,a—c, for several ATP concentrations.
Several features are noteworthy:

1. In all cases the velocity decreases monotonically with
increasing load, but in many of the curves the velocity is

almost independent of load force over a wide range. This
is also a common feature in experimentally measured

force-velocity curves (Wang et al., 1998b; Coppin et al.,

1997), and results whenever the rate-limiting step for the
motor is not force-dependent. The forward rate constant
for any force-dependent step always decreases with in-

creasing load, but this has no effect on the velocity

unless the rate constant is similar to or smaller than the
rate constant of the slowest force-independent step. In

the examples shown, the velocity begins to drop at
negative load for some curves, but it is possible (by
lowering the potential barrierAV, or increasing the
driving free energyAV,) to make the constant region

553

As the ATP concentration decreases, the velocity de-
creases at all forces. For the mechanochemical binding
model the force dependent rate const&pt,is second-
order, so at high positive load, where the curves closely
follow k,T, the concentration essentially multiplies the
curve without changing the maximum velocity that is
achieved at large negative load. For the mechanochem-
ical release model the (second-order) binding step be-
comes rate-limiting at large negative force, where the
(force-dependent) release step is large. Thus, the maxi-
mum velocity is roughly proportional t®, and achieves
very large values at high ATP concentration. The mech-
anochemical trigger model depends on concentration
only through the catalytic velocity,.,, At large negative
load, where the mechanical velocity,,,, = k,d, is
large, the time required for the movement step is negli-
gible, and the observed velocity becomes identical to the
catalytic velocity,v = vg,d. The limiting velocity at
large negative load therefore varies with concentration
according to Michaelis-Menten kinetics witk,, and
Vmax from the catalytic part.

extend to positive forces, nearly up to the apparen{Classifying motors from experimental data

stalling force.
2. In Fig. 3, a and c, the velocity is roughly linear at
intermediate loads (e.g., 3—4 pN for the 1Q00 curve

The general expressions above are quite complex, but some
aspects of their behavior can be understood qualitatively in
a simple way. This understanding can, in turn, be used to

of Fig. 3a) and then decays exponentially at very high help determine which (if any) of the models above are
loads (near apparent stall). This asymptotic drop to zergonsistent with experimental force-velocity data for partic-
is a consequence of the irreversible second step in thgiar motors. First, according to the results above, all four
simplified mechanisms, which does not allow the motormodels obey Michaelis-Menten kinetics when the product
to be pushed backward (and hence does not allow negoncentrationp, is zero. For a Michaelis-Menten motor, a

ative velocity), even under infinite load. As mentioned pjot of inverse velocity versus inverse ATP concentration is
above, any irreversible motor has a formally infinite g straight line:

stalling force. All real motors must be reversible (at least
slowly), and the stalling force must therefore be finite,
but the true stalling force may be difficult to measure
experimentally. For example, the apparent stalling force
(where the velocity becomes “very small”) of the mech-
anochemical binding motor in Fig.8seems to be finite

) 1dV,,
and to depend on ATP concentration, but the theoretlca\t Iues ofV._ andK,, also depend on force in general, and

hence so do the slope and intercept. In special cases, how-

stalling force is infinite, independent of concentration.
3. An example of a (weakly) reversible motor is shown in
Fig. 3 b, the simplified mechanochemical release model.

As written above, the mechanochemical release model is
not reversible because it has no back-reaction at step FagLg 1

that is, the reverse rate constakit,, is zero. However,

v d

1 1/ 1 33
Vi T (33)

- . K 1)
Vmax

The slope of the line i%,,/(dV,,.) and the intercept is

o). Because the rate constants depend on force, the

Behavior of inverse plots for
1 2 3

k_, is a force-dependent rate constant in this model, andli + T=M, > My— M, +D 5 M,

-1

in the actual calculations it becomes significant at high
load, resulting in small negative velocities. For revers-

Movement Step

Intercept

U(dV,a)  SlopeKy/(dVya) K

ible models the crossover from positive to negative ve-

locity unambiguously defines the stalling force. By ad- Step 1 (binding) Force-Independent Force-Dependent Force-Dependent

justing the values of the rate constants or the parametef&ep 2

Force-Dependent Force-Dependent Force-Dependent

of the potentlal energy function, it is pOSS|bIe to make Step 3 (release) Force-Dependent Force-Independent Force-Dependent
Ste

models that are easily and fully reversible.

ep 4 Force-Dependent

Force-Independent Force-Dependent
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FIGURE 4 @) Calculated inverse velocity versus inverse ATP concentration at several forces, for the case where the ATP binding step depends on
external force. The force-dependent rate constgrasdk_, were calculated from the potential in Figa2with the same parameters as for the calculations

in Fig. 3a, andK, = 1.0 uM . The rate constants for the force-independent steps kyerek, = k, = 1.0 s'%. (b) Inverse velocity versus inverse ATP
concentration for the case where step 2 depends on force. The force-dependent rate dgretaits, were calculated as ira). For this potential the

reverse rate constark, ,, is small at these load forces. The rate constants for the force-independent steps w&@@ uM *s *, k_; = ky = k, = 1.0

s~ (o) Inverse velocity versus inverse ATP concentration for the case where step 3 or 4 depends on force. The force-dependent ratg aodgtants

(or k, andk_,) were calculated as ira). The rate constants for the force-independent steps kjere0.2 uM 2 s, k_, = k, = kg s = 1.0S

ever, either slope or intercept may be independent of forceK,,, andKy,/V ., reduce to

For example, suppose that solution kinetic measurements a Kook,

for a particular motor are consistent with a mechanism with Vi = — =

a reversible binding step and three irreversible steps: & kake + ko + kol
h Kokak, + K q1ksk,

k1 k2 ka ka Ky=—-= 34
M+ T=M,— My—M,+ D —M, M e Kalkaky + KoKy + Koks) (34)
k-1

Ku h k+k,

Because this mechanism is based on solution kinetics, the Vinax @ kike

step where movement takes place is not known. BecausghusV,,,, is independent ok, andk_;, and Ky,/V,, . iS
steps 2—4 are irreversible, , = k_5 =k _, = 0, andV independent ok;, k_5, k,, andk_,. Therefore, if step 1 (the
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binding step) involves movement, and if the mechanismDesigned motors?
deduced from solution kinetics is correct, it will be found
that the motor obeys Michaelis-Menten kinetics, and that i
plots of 1k vs. 11T the intercept is independent of force, but

rom the theory above it is clear that any enzyme for which
catalysis involves a (large) conformational change can act

the slope varies. However, if movement occurs on steps 3 o?ts a ;Tr]]OtOI‘. Yv_he_ngvir mo;ementhaccoz]pamef 2 chemical
4 the slope will be independent of force, but the interceptS €p, the protein Is inherently mechanochemical. For exam-
will vary. Finally, if the movement occurs on step 2, both ple, hexokinase is a soluble enzyme from the glycolysis

slope and intercept will vary with force. Thus three of the pathway that ordinarily has no mechanical function. But

four possible positions for the movement step can be dis\fvhen it binds glucose and ATP, a large cleft closes and two

domains move relative to each other by up to 8 A (Voet and

tinguished from the qua!ltatlve behavior of the inverse pIOtS\/oet, 1995). Because of this large movement, hexokinase
alone. Table 1 summarizes these results, and Fig. 4 shows

an example of ¥/vs. 17T plots for the three distinguishable couples chemical energy to forces and motion. Therefore, if

o . . . hexokinase molecule (or perhaps a long chain of mole-
cases. A similar analysis can be carried out with any modef (orp P 9

that belongs to one of the four classes above. Once thCeUIeS) were linked between two points, it would generate

movement step has been determined, a well-founded modgefnsmn and net contraction during its catalytic cycle. In such

for how the corresponding rate constants depend on forcan experiment the kinetic and thermodynamic properties of
hexokinase would be affected by an external load in the

can be constructed using the theory in the first section. X
Force-velocity curves may then be calculated from Eqs. 27-3§2M€ Way as a true molecular motor. Mechanochemical

and directly compared to experimental force-velocity curves.th€ory and single-molecule mechanical measurements can
therefore be used to understand the function and mecha-

nisms of a wide variety of enzymes.
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