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Rapid Kinetic Analysis of Multichannel Records by a Simultaneous Fit to
All Dwell-Time Histograms

Laszlé Csanady
Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, 1230 York Avenue, Box 297, New York, New York 10021, USA

ABSTRACT A method is presented for rapidly extracting single-channel transition rate constants from patch-clamp
recordings containing signals from several channels. The procedure is based on a simultaneous fit of the observed dwell-time
distributions for all conductance levels, using a maximum likelihood approach. This algorithm allows estimation of single-
channel rate constants in cases where more advanced methods may be impractical because of their extremely long
computational time. A correction is included for the limited time resolution of the recording system, according to theory
developed by Roux and Sauvé (Biophys. J. 48:149-158, 1985), by accounting for the impact of undetected transitions on the
dwell-time distributions, and by introducing an improved practical implementation of a fixed dead time for the case of more
than one channel. This feature allows application of the method to noisy data, after filtering. A computer program imple-
menting the method is tested successfully on a variety of simulated multichannel current traces.

INTRODUCTION

Gating of single ionic channels can be modeled by transi- As shown by Blunck et al. (1998), if the gating scheme is
tions among a finite number of conducting and nonconductalready known or assumed, data from patches containing
ing states, connected in some specified pattern. At anynultiple channels can be analyzed by a simultaneous fit of
moment, a single channel will be in one of these states, anthe dwell-time histograms for all the conductance levels.
can undergo transitions into adjacent ones in a stochastithese authors used a least-squares fit to the observed set of
fashion. Such a system is conveniently described by &istograms and showed that, in many cases, reasonable
continuous-time Markov process (Colquhoun and Hawkesestimates of the parameters can be obtained after only short
1977, 1981). Patch-clamp recording allows measurement girocessing times. Unfortunately, the scatter of the estimates
the conductance of individual ion channels. Because moraas considerable, and the approach failed for noisy data
than one state of a channel may be characterized by thehenever the signal-to-noise ratio (SNR) was too low for
same conductance, such states can be grouped into classesirect event detection.
transitions within which remain undetected. The observable This paper presents an approach similar to the one intro-
signal is modeled by an aggregated Markov process. Thduced by Blunck et al. (1998), but with improvements that
challenge for the experimenter is to identify the modelresult in broader applicability and enhanced reliability.
underlying the observed sequence of transitions, and t&irst, instead of least-squares fitting, which produces biased
estimate the rate constants. estimates depending on whether the fits are made to linear,
The classic approach to kinetic analysis of single-channesemi-log or log—log histograms, a simultaneous maximum
data consists of constructing dwell-time histograms for thdikelihood fit is made to the set of dwell-time histograms
open and closed times of a single channel, and then fittingbtained from all conductance levels. Second, an effective
them with exponential functions (Colquhoun and Sigworth,correction for missed events is included, based on theory
1995). This approach is widely used because of its simplicdeveloped by Roux and Sauy#985) for a single channel,
ity and relatively small computational demand. together with a practical implementation of a fixed dead
In many cases, however, it may be impractical to restrictime for multichannel records. This feature permits use of a
analysis to single-channel records. If the channels of interesange of filter settings, and hence, effective analysis of
tend to cluster, for example, most patches may contaimoisy data with fairly low SNR. Good results were obtained
multiple channels. Also, if the open probability is low, long even with relatively small numbers of events (typically
records are required to amass enough events from a singteindreds, for all but extreme ratios of rate constants).
channel. In some cases, it might be hard to maintain steady- A drawback of one-dimensional histogram fitting is that
state conditions for a sufficiently long time to collect the information contained in cross correlations between
enough events from a single channel. neighboring events is ignored. As a result, the number of
extractable parameters is limited, and the method cannot
distinguish between alternative connectivities. More pow-
) o ) o erful methods exploit these cross correlations. Maximum
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likelihood is then maximized with respect to the rate con-the number of individual channels in thik single-channel
stants. However, the computational task involved is considstate. The entries of the macroscopic state vector sux to
erable, even if the likelihood is computed over dwell timesThe number of macroscopic states is equaltdy( %), the
only, and increases dramatically with the number of states imumber of ways in whicN can be divided intm parts. The

the model. Processing time and required memory space algmansition rate from stateNg, ..., N;, ..., N;, ..., N,) to
increase with the length of the record. Alternatively, corre-state N, ..., N, — 1, ... N, +1,...N,) is given by
lations are explored by two dimensional dwell-time histo-

grams for pairs of adjacent events (Magleby and Song, N -y, (1)

1992; Rothberg et al., 1997). The above maximum likeli-

hood approaches can be applied directly to multiple changherer; is the transition rate constant of a single channel
nels by treating the system as a single large Markov schemgom statei to j. Macroscopic states are numbered such that
(Horn and Lange, 1983; Qin et al., 1996). However, evennose belonging to the same conductance level are clustered,
for simple single-channel models, the size of the compoungjowing partitioning of the transition matri® into subma-
scheme grows rapidly with channel number, making thosgyices relevant to each conductance level.
computations extremely slow for more than 3 channels, | the channels are distinguishable, the system can be
especially for_Iong recor_d;. described by a (usually much bigger) state spacenbf

As for all histogram fitting methods, the approach pre-gimensions (see Qin et al., 1996). The concepts of this paper
sented here assumes that the gating scheme is specifiedgb presented fdx identical and independent channels, but

the outset, because correlations remain unused. Howevelyould be equally applicable to the more general case.
for a given model, the reliability of the fit is ensured by the

wealth of information exploited by considering the set of all

dwell-time distributions. Attractively, computational time

and required memory space do not depend on the length ®@well-time distributions of the various
the data while the quality of the fit improves with more conductance levels

event_s.bl licati ds with . h Given a Markov system described by the mat@xdistri-
Suitable applications are records with many active chang, g of the dwell times in any subset of the states can be

nc;ls obeying f::\jwly sm:jple, b.Ut no?an?I,.gatn;g SChemes'calculated (Colguhoun and Hawkes, 1981). To calculate the
where more advanced routines, like fitting the event sey, o ime distribution of a conductance leviel a subset

quence, become impractical. In reality, most ion channel;k} is defined as the set of all macroscopic states in which

have very complex gating schemes (e.g., Weiss an T ;
. K channels are openk] as the set of all other macroscopic
Magleby, 1989; Vandenberg and Bezanilla, 1991; Hoshi eLiates. The survivor functions, defined as gy®) = P(no

al., 1994; Zagotta et al., 1994a,b; Schoppa and Slgwortl]eaving from {} before timet| entered &} at time 0), are
1998a,b,c). Frequently, however, gating schemes can b ven by

simplified by pooling certain states while still retaining
many essential features.
The general theory underlying the approach is developed

first, then the method is extensively tested under a variety of . _ - -
conditions. where Q,, is the submatrix ofQ describing transitions

within {k}, 1, is the summation vector matchind}n

dimensions.p,(0)" (matching &} in dimensions) is the
GENERAL THEORY initial row vector of probabilities of enteringk} via any

one of its component (macroscopic) states, given by

sury (t) = py(0)e1,, 2

A many-channel system as a single

Markov system Pr(*) Qi

O = o P <Kk
It is well known that a patch with multiple channels can be Pe(0) Pr(%2) " Qicxc L

treated as a single Markov system (e.g., Horn and Lange,

1983; Qin et al., 1996). One state of this large systenwhere submatriQg, describes transitions fromkf to { k},

(macroscopic state) is a particular pattern of partitioning thep ()" and pg()" are row vectors of steady-state occu-

individual channels among the single-channel states (micrapancy probabilities for macroscopic states k} and {k}

scopic states). respectively. ¢ in general denotes the row vector corre-
A simple important case, solved by Horn and Langesponding to the column vectg.) For binned maximum

(1983), is wherN channels are assumed to be identical andikelihood fitting (see Sigworth and Sine, 1987) it is con-

independent. If there ane microscopic states for a single venient to use the survivor function, because the probability

channel, a macroscopic state of the system is represented by a dwell time falling into a birt; = dwell time < t;, is

a vector ofn entries, thath component of which specifies given by surv()) — survg;_,).

®3)
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Simultaneous maximum likelihood fitting of a set and p; is the fraction of all observed levéd events pre-
of histograms dicted to fall into theith bin,

Binned maximum likelihood fitting (Sigworth and Sine,
1987) consists of a search for the set of kinetic parameters
that maximizes the likelihood that a series of dwell times in = SUrv (t) — survy (ti-). (6)
one particular conductance level yields the experimentall)i]c he level K hi . bi dn. is th
observed dwell-time histogram. Here, this approach is ex- the leve |stpgram conta'msl.( NS andn; 1S the
tended to the set of dwell-time histograms constructed fopccupancy of thath bin, the likelihood function can be
all the conductance levels, which can be thought of as Ongalculated as

generalized histogram, each bin of which represents a range N ne
of dwell times for a certain conductance level. Figure 1 _ N ST
illustrates this concept, showing the generalized dwell-timeL(®) B kl:lo El Pl i)™ = k:Ho El [petivito - piiI™, (7)
histogram for a simulated current trace (described in more

detall later, in Fig. 7A), from 3 channels. The fitsplid  where® represents the model and the set of rate constants.
black lineg was found by the method described in this Both pctivik) andp, ; are functions of®. In practice, the

P = P(t; = dwell time < t;,;|event is levek)

N g

paper. logarithm of the likelihood is used, given by
The likelihood function for an events list is defined as the

likelihood of obtaining the observed generalized histogram N N

(Fig. 1) given a model and a set of rate constants. TheL(®) = > > n.-Inp, + > n-In pctivi(k), (8)

likelihood estimate is based on the calculation of the prob- k=0i=1 k=0

ability that an observed event belongs to lekednd falls . .

into theith bin of the levelk dwell-time histogram: vv_here N is the }otal number of events in the levkl

histogram:n, = X<, ny ;.

P(k, i) = P(event is levek andt, ; < dwell time <ty ;,1). Sometimes it is useful to exclude some events from

This is easily obtained using conditional probabilities, tt,)( Iy:rlnfgrbgascaeggzljnl?clg\g:é Z@il?spepeers?éagzlﬁn;a asr:ge'
P(k, i) = pctivi(K) - py, (4) 1987). This will alter the scaling factors for the different

levels, which can be compensated for by defining quantities
analogous to those in Egs. 4, 5, and 6, conditional on being
binned. Following the derivation in Appendix A, the cor-

where pctlvlk) specifies what fraction of all observed
events is expected to be at level

pctivi(k) = P(observed event is levé) rected log likelihood function then becomes
Pi(%) Qe N N
=SV (oo ®) LL'(®) = Nei* N peit > N In petivi(k
Lo P () Q51 (©) 2‘8 2‘1 K, Px, kz) k* In petivi(k)
N
i —n+Inf X petivi(K) + Py pinned| - 9)
k=0

where
P bimea= P(event is binnefvent is levek)

= SUMN (t min) — SUNgg (t max) (10)

Number of events

and

N

n.= > n. is the total number of binned events.
k=0

FIGURE 1 Set of dwell-time histograms (and fplid black line§ for Compared to the original expression fdr(®) in Eq. 8, the

all conductance levels of a simulated current record from 3 channelﬁmroduction of binning limits results in only one additional
obeying the C—O-B scheme (see text for details). Rate constantsijin s

used for simulationreg = 10, fe = 20, rop = 40, andrag = 1000. term, even though the binning limits may be different for
Estimates from fitr oo = 10, e = 20, fo = 38, andrg,, = 918. Dead  €ach level. pctivK), p;, andPy ,i,neqdepend on the set of
time: 0.1 ms (see text). parameter® through Eqgs. 5, 6, and 10, respectively.
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The approach presented in this section discards the infodead time, and by concatenating to the preceding sojourn
mation contained in the correlations between neighboringiny dwell time shorter thaty (see Qin et al., 1996).
events. This is the penalty accepted for the much smaller Following Roux and Sauiv€l985), given a fixedy, the
computational task of having to deal with only a number ofsurvivor function for the observed dwell-time distribution of
terms equal to the total number of all histogram bins (a fewa conductance leved is defined by
tens typically, independent of the length of the events list) s
for the calculation of the likelihood, compared to the total SUNVig (L to)
number of events (some thousands typically, proportional to
the length of record) involved in fitting the whole dwell-
time series (See an et a.l., 1996, 1997) Even SO, a lot Ofenterec{k} at time 0 after an observable Stay{r(}) (11)
information is still exploited. Ifh, andn, are the numbers of
closed and open states, respectively, of a single channéxhere “observable” means longer thgp With the addi-
then the dwell-time distribution of levéd for a record with ~ tional assumption that the total duration of missed event(s)

= P(no observable leaving frofk} before timet|

N channels contains within an observed event is negligible, the authors were able
to write down the pdf, which, when integrated frdrto o,
<no +k— 1) ) (nc +N—-k- 1) yields the survivor function. In the present notation,
k N—k .
sunjyS(t, ty) = [initial "] e®«1,, (12)

exponential components. The time constants and relative

amplitudes of each component, summed for all levels, pluswhere

for N > 1, the relative scaling factor for each level provide

a total number of [initial R&S)T =

PL(2) Q€% — Q) Qe
pk(OO)TQ € (— QERl)QRklk ’

Yo+ k—1| [ne+N-k-1 . o
[2° > (n +k ) (n +N —k )] -1 Qu = Que — Qullg — erktd)Q@ Qi (12b)
k=0

As noted by Qin et al. (1996), Eq. 11 does not take into
constraints used for restraining the fit. For a linear three-account that no leaving can occur at all between time 0 and
state scheme with two closed states and one open state, thegafter entering K}, because that would produce a shakj {
are four rate constants to be found. The number of paramevent, which would be concatenated to the preceding event.
eters required to describe all dwell-time histograms are 4 forhe fact that a K} event is detected means that its initial
asingle-channel record, 11 for a record with 2 channels, andection (between time 0 artg) is free of transitions. To
55 for a record with 6 channels. All of these parameters areccount for this, an additional condition has to be introduced
functions of the four single-channel rate constants, providinto the definition of the survivor function.
ing strong constraints for accurate fitting. This does not nec- The correct definition of the survivor function will now
essarily mean that models that are unidentifiable from singlebe
channel histogram fitting will become solvable from
multichannel fitting. For instance, the simple loop model of SUN (. t)

CCO cannot be solved by single-channel histogram fitting,
because the likelihood surface has no unique maximum, and it
is easy to show that this property is inherited to the likelihood
of the set of histograms of a multichannel patch as well.

(12a)

= P(no observable leaving frofk} before timet|

enteredk} at time 0 after an observable stay{k}
and stayed ifk} until timetg).

(13)

. . Using this definition, and following the steps described in
Correction for missed events Appendix B, the correct form of the survivor function can
Limited bandwidth of the patch-clamp recording system isbe written as
the price paid for filtering to achieve an acceptable SNR. As 1 for t<t
a result of the filter delay, short events remain undetected, ., (t,t) = ) d (14)
distorting the distribution of observed dwell times. A gen-~ " " |[initial JJe®«-91, for t=tq,
eral theory for the treatment of the missed event problem
was developed by Roux and Sau®85), who assumed an Where
absolute dead timety): all events shorter thaty remain TO, - et — O LY., g
undetected; all events longer thgnare detected. Because [injtial 7= P(*) Q€™ (— Qg )Quu® (14a)

of noise, such a fixed, cannot be calculated simply from P(%) T Quic€(— Qi) Qi€ 1y’
the response characteristics of the filter, but it can be im-. e )
posed retrospectively, by choositglarger than the filter Qu=Qu— Quillki—€*“)Q Qi (as in Eq. 12b).  (14b)
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Thus, the additional condition results in a corrected initial A t,

vector and a translation of the survivor function along the ., enTionaLLY n

time axis. The survivor function now takes on the value of  wposep J_,—'_—L—\_L j‘r,_—l_l—\_

1 at timet = t, as expected. This correction is equivalentto  DEAD TIME t L

the adjustment made by Qin et al. (1996); but merging the " 3

correction into the initial vector rather than the main oper- 1 ik

ator seems more natural in the present application, and is

required for the proper scaling of the survivor functions. CORRECTLY - o
The relative scaling factor for each conductance level, MPOSED J'—,I j_‘_L _|—’_,_'

required for simultaneous fitting, can be calculated by anal- DEAD TIME -

ogy to Eq. 5,

RAW
CURRENT

FLAG FLAG

pk(OO)TQkReQRth( _ Qikl) Qkkerktd 1,
pctivik, ty) = <y A o — TR START
o [Py(%0)" Q€™ ™(— Q5)Qy€¥1¥1]

(15) read new event > t; N
new and —_
Forty = 0, Egs. 14 and 15 reduce to Egs. 2 and 5, jeyent| \lbuffer empty?

respectively. Y / \N

new level £ last level\ /new level # last level
or or
buffer-time > t,? buffer-time > t,?

Implementation of a fixed dead time

Some thought needs to be given to how the fixed dead time
is implemented in practice. Qin et al. (1996) suggested Y/ N* b/ \:{
imposing a fixed dead time (preferably longer than the filter e

. . . ~ write ~ write last event | | ~ concatenate add
dead time) retrospectively by concatenating each event lastevent ||~ write fiag, buffer and new event

shorter than the chosefy to the preceding sojourn. As 12&?#52* discard buffer || new eventto || to buffer

pointed out by the authors, if a channel undergoes many st event | |~ new event last event
short transitions in a row (buzz mode) the fixed dead time becomes ~ empty buffer
last event

cannot be enforced in the above way. However, even in the
absence of a buzz mode, when many channels are present,
other types of event sequences will appear for which the . , .
. L . FIGURE 2 Application of a fixed dead timeA| Two examples of raw
above method _\/lo!ates the def!mtlon in Eq. 13. These Cas€&ent sequences where conventional concatenation of brief evepjtss(
can be dealt with in the way discussed below, even thoughappropriate:left, a leaving from level 3 longer that, is incorrectly
buzz mode events will still remain unidealizable. ignored because it is composed of only sub-dead-time componagits;
For instance, as illustrated in Fig. 2R (lef), a leaving @ level 3 event is prolonged by incorporation of a series of brief sojourns
from {K} to { Kt much longer thart, would be ignored that (Staircase), although the latter are part of a long dwell i for com-
S . . arison, idealized event sequences generated by the algorithm described in
way, if IF consisted of a series of dw_e_lls—each short(_ar tha he text and inB) are shown below.B) Flow chart of the algorithm used
ty—at different conductance levels ikK before returning o avoid inappropriate concatenations.
to {k}. This is contrary to Eqg. 13, and would result in
concatenation of the two bracketing}{events plus the
intervening sojourn in K} into one long {k} event, leading  algorithm could be applied on line, yielding an events list
to underestimation of the rates. A different, but smaller,with the required properties. For other methods of idealiza-
problem is that, according to Eq. 13 &}{event should be tion, this can be done retrospectively.) Scanning along the
considered terminated once there is a leaving inkp { record, events are written to the output events list until a
longer thart,. However, as illustrated in Fig. & (right), if short &ty) event is reached. Incoming short events are
the new sojourn in K} begins with an event shorter thap  temporarily stored in a buffer, until the next long-t)
in a particular conductance level of}{(or a series of such event is reached or the conductance returns to the level of
events) that event (series) would be concatenated to the etlde last long event. At this point, there are three options.
of the last &} event. Note that both of these problems arise If the new (long) event belongs to a different conductance
only if there are more than two conductance levels. level than the last long event, the contents of the buffer are
To circumvent these problems, the following strategydiscarded, and a flag is written to the events list stating the
was used (see flow chart in Fig.B) for imposing a fixed total length of discarded time, followed by the new long
ty in @ manner that more closely follows the assumptions okvent.
Eq. 13. (Because, in this study, half-amplitude threshold If the new event belongs to the same conductance level as
crossing was used for idealization of raw current traces, théhe last long event, and the total time stored in the buffer is
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shorter thar, the contents of the buffer and the bracketingguess at the single-channel rate constants. Figure 3 illus-
events are concatenated into a single event of conductantetes the program cycle in the form of a flow chart.

level given by the bracketing events and of duration given First, the program scans through the events list and con-
by the sum of the three sources. structs the dwell-time histograms, with logarithmic time

If the new event belongs to the same conductance level aaxes (Sigworth and Sine, 1987), for each conductance level.
the last long event, but the total time stored in the bufferUnlessty = 0, the lower binning limit ig, for all levels (i.e.,
exceedd,, the last long event is written to the events list. If no short events are excluded from binning). Bin density is 6
the new event is short, it is added to the buffer, otherwisgper e-fold. The maximum number of bins is 60 for each
the buffer is discarded, a flag is written to the events list,level, which usually accomodates all events. If the range of
and the new event is considered separately. dwell durations exceed=s? (2 - 10%), some long events may

The flow chart in Fig. 2B summarizes the strategy remain unbinned, in which case the correction explained in
described above. Fig. & provides a visual comparison of Egs. 9 and 10 is implemented. Event binning is the only step
the resulting idealized event sequences obtained in the comhose processing time depends on the actual length of the
ventional way or correctly, according to the above algorithm.events list. Because this step represents only about one

As a result, the only concatenated events are of the typpercent of the computational time, the latter is largely in-
{K — {k} — {k}, where the total time spent ink} is dependent of the length of the record, in contrast to routines
shorter tharty, as required by Eq. 13. The first sojourn in that fit the event sequence (see Horn and Lange, 1983; Qin
every detected event still has to be longer thatsee Eq. et al., 1996, 1997).

13), otherwise it would be discarded from the buffer. The Next, the program enters a loop of iterations aimed to
flags can be thought of as dividing the record into smallmaximize the likelihood of the set of histograms. The loop
sections—considered separately—within which the fixedstarts with the construction of the transition rate ma@ix
dead time can be imposed consistently, whereas the regiomar the model macrosystem, as given by Eq. 1. The survivor
where this is impossible are discarded. The final histogramfunctions of the conductance levels are calculated according
can be viewed as the sums of the histograms for the gootb Eq. 14, with scaling factors given by Eq. 15. Finally, the
sections. This approach improved the results of subsequettyg likelihood function is calculated according to Eq. 9. The
histogram fitting substantially, especially in cases wherelikelihood is maximized with respect to the rate constants
because of frequent rapid gating events and many channelssing the simplex algorithm (Caceci and Cacheris, 1984),
sequences of the type shown in FigA®ccurred often (see chosen because of its simple programming code and proven
Fig. 6). robustness.

The key step is evaluation of the survivor function, of the
form p"e21. The row vectop'e?is calculated as a power-
series, truncated when a term drops below a predefined
To implement the procedures just described, a computegrror,
program (see Fig. 3) was written in C language. The inputs .
for this analysis program are 1) the model gating scheme, 2) TAQt _ AT T T -
an events list with sub-dead-time events suppressed, 3) the pe PP+ (P Qt)<2 Q)
value ofty, 4) the number of channels, and 5) an initial

Program cycle

t t
+ T _ — + ...
w3930
START STOP . . .
I Each term is obtained from the previous one as a vector-
INPUT initial guess v mgtrix prod_uct, ir_]volvingné add-multipl_y operat_ionan
, , J, being the dimension d). Thus, processing time is propor-
vents fist || Kinetic sot of ehange In tional to the square of the number of macroscopic states.
scheme, rate rates <
l N, t, constants tolerance?
RESULTS AND DISCUSSION
dwsjlt_g:ne Sredicied set ot The analysis program was tested on a range of simulated
histograms dwell-time Simplex: multichannel current traces to establish how the efficiency
distributions change rate depends on the gating model, relative sizes of the rate
constants . .
| I constants, channel number, dead time, noise, and length of
v f‘ the record. For reasonable schemes, i.e., if all microscopic
I LL (set of histograms | parameterSﬂ states were visited at some non-negligible frequency by the

individual channels, the iterations converged, starting from
FIGURE 3 Flow chart illustrating the program cycle of the fitting software. & broad range of initial values.
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The C—0-C, model was chosen to test the efficiency of 25 b ey
the routine given a variety of parameter combinations. Be- ,, | = 0267 M roe wl i L
cause this is the scheme used to describe open-chann 0=0.0764 o=0.0876
block, the following nomenclature will be adopted: 15 15
, 10 10
l'co los Q
C=0=—B. § 5 5
froc Tgo 0 n 0
8 o 1 0 1

This single-channel scheme has one conducting state (°
(open), and two nonconducting states C (closed) and E° 25 = 25

m = 1.0015 = 09773 e
(blocked). Because of the symmetry of the scheme (ex-8 it S fos 20 X 60
changingr o With rog andreg with rgg yields a scheme 5 |77 7 - geaIe.
indistinguishable from the original one), the likelihood sur-
face is also symmetrical, with two peaks mirroring each 10 10
other. Depending on the seed parameters, the program en: g 5
up at one of the two peaks. " . |

0 1 0 1

. . . . Estimate / true value
Simulation of multichannel currents and noise

Channel currents were constructed using the macroscopI: G‘URE 4 H_istograms describing the scatter of the estimates. 100 sim-
. . - .. ulations with different random seed values (900 events each) were made

Markov scheme described earlier and a simulator similar tqy 3 channels obeying the C-O-B schemg, = 50, foe = 10, rog = 50,

that described by Blunck et al. (1998). Channel current, = 1000 (in s %). Dead time was 0.4 ms. Parameter estimates, normal-

traces were overlaid by noise synthesized with specifiedked to the respective true values, were collected into bins of width 0.05.

Gaussian amp“tude distribution and Lorentzian power Sped?istributions of the estimates Wege fitted by Gaussian functicmid

trum, to mimic the signal that arises after low-pass filtering'™e9 °f the formA - expl—(x — m)%2c7].

broad-bandwidth noise, whose initial power spectrum is flat

in the pass-range of the filter. Variana€ and corner in the mean dwell times of B and C, and the relative

frequencyfc,, were adjustable. A typical setting ey, was frequencies of entering C or B, respectively. These factors

5 kHz, a bandwidth at which patch-clamp data are COM-re expressed as ratios of rate constants: the ratio of the

monly acquired. To test the validity of the dead-time correc- . . i
. : o mean dwell times in C and B is;0/r o, the mean number
tion, noisy data traces were Gaussian-filtered at a corner fre-

quencyf, s, chosen to achieve a SNR sufficient for idealization of blocked (B) events between two closures (C events) is

by half-amplitude threshold crossing (see Figh)7 rOB/rQC. In more ge_nc_eral terms, fitting is easy if all micro-
scopic states are visited at some non-negligible frequency,

and dwell times of microscopic states in the same conduc-
Distribution of the parameter estimates tance class are sufficiently distinct—criteria that already

_ ) arise for single-channel histogram fitting.
To establish the nature of the scatter of the estimates, 100 Ratio r,/r . was varied from 100 to 4, and the fitting

simulations were carried out using the C-O—B scheme, withyrocedure performed well over the entire range, even when
a fixed set of parameters (1%, rco = 50,Toc = 10,fog = the difference between mean blocked and closed times was
50, rgo = 1000;N = 3, 900 events), but different random 55 small as four-fold. As an example, after simulating 2500
seed values. Figure 4 shows the fit results for all parametergyents with 4 channels, with input parameters ¢in!)
normalized to the simulated values and collected into bin$CO =50,roc = 10,rg = 50, andrg = 200, followed by

of width 0.05. The histograms were fitted reasonably welljjealization with a dead time of 1 ms, the fitting yielded

by Gaussian functionssélid linesin Fig. 4). In subsequent estimates .o = 60, oc = 13,rog = 39, andrgg = 185,
sections, results will be depicted as the mean of the estiggpectively.

mates normalized to the simulated values, with error bars Next, ratior,g/roc Was varied in a total of 1800 exper-

representing the normalized standard deviations. iments. Whilergo/r oo Was set to either 100 or 20g/f o
values of 0.1, 0.2, 1, 5, and 10 were tested. Each combina-
tion of rate constants was tried with one to six channels, and
dead times of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 times the mean
blocked time. (Because, fod channels, the fastest macro-
Next, fitting efficiency was tested on the C—O-B model scopic rate constant i - rgo, a dead time of 0.54, is

with various combinations of rate constants. The difficulty three times longer than the mean dwell time of the shortest
of the fit was found to depend on two factors: the differencelived state, wherN = 6.) Each of these 360 parameter

Sensitivity to relative values of rate constants,
channel number, and dead time
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combinations was simulated five times, starting with differ- 10, with t4 ranging § axis) from 0 to 0.5 times the mean
ent random seed numbers. For a single channel, 600 to 22@Jocked time (17zo). Means and standard deviations of the
transitions were simulated, traces with multiple channeldit results for the individual rate constants are showax(s)
were simulated for the same length of time as the correnormalized to their simulated values. A symbol at height 1

sponding single-channel ones.

means accurate estimation, values higher or lower than 1

Figure 5 is a summary of 300 experiments. Results wereepresent over- and underestimates, respectively. The solu-
similar for all channel numbers ranging from 1 to 6, thosetion surfaces tend to be close to 1; i.e., good estimates were

for 2 (Panel A and 5 channelsRanel B are shown. With
reo/fco = 20, rog/foc Was varied X axis) between 0.1 and
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obtained over a broad range of input parameters.

For rog/roc sSmall, transitions between O and B are rare,
and many of these are losttjfis long compared to the mean
blocked time (i.e.rgo * ty is comparable to 1). Under these
conditions the likelihood surface is relatively insensitive to
rog and rgo, the estimates of which become uncertain,
whereasr-o androc are still estimated precisely. This is
verified in Fig. 5, where the error bars ofg and rgg
increase forrgg/roc < 0.2. Whenrgg/roc is large, transi-
tions between states O and B of the individual channels are
prevalent. Whereas estimationrgfg andrgo becomes easy
even for longty, the error onr.g andrgoc increases (but
remains around 20% even fogg/r o = 10). Overall errors
become smaller with larger numbers of fitted events (see
later).

To demonstrate the impact of the implementatiotyan
subsequent fitting, the same simulated current traces were
idealized by concatenating brief events either in the con-
ventional or the improved way (cf. Fig. 2). Figure 6 shows
parameter estimates for 6 channels, after correct (depicted
as in Fig. 5), or conventional idealization (cyan symbols,
error bars omitted for clarity). In cases where rapid blocked
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FIGURE 5 Performance with different rate constants. The means of th(%j "’ S_ ‘3\(;-0 = -o_‘__' e, % %
parameter estimates from five simulations, normalized to the true values % Q, e 7 ¢
t; 'eo

are plotted against,g/roc andty * rgo. Error bars are normalized standard
deviations. A symbol at height 1 means accurate estimation. Error bars of

rog @ndrgg are large whemgg/roc is small, whereas those of andr ¢ FIGURE 6 Comparison of fit results for 6 channels after conventional
increase somewhat for larggg/roc. (A) N = 2. (B) N = 5; in three cases, (cyan symbolsor correct (depicted as in Fig. 5.) implementation of a fixed
marked withx, estimation ofrog and rgo was impossible: for those ty. Forrgg/foc = 5 andty - rgo = 0.3, conventional idealization resulted
combinations, symbols and error bars represent only four simulations. in considerable underestimation of the rate constants.
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events were frequent{g/r oc high), especially with longer with t; = 0.5k54. (Longer dead times also worked as long
ty, rate constants were seriously underestimated after comsr.o androc were not very fast.) This imposes a lower
ventional concatenation, whereas accurate estimates weliait to the corner frequency used for filtering. For a Gauss-
obtained after improved idealization. This effect is expectedan filter, with corner frequency, ¢, ty =~ 0.18f, . Hence,
to be less significant for methods that also exploit informa-the constrainf. ; = 0.36- rg is obtained. Second, reliable
tion from adjacent interval correlations (e.g., Horn andidealization by half-amplitude threshold crossing requires a
Lange, 1983; Qin et al., 1996). Also, the types of eventsSNR = 8. In the common case where the corner frequency
described in Fig. 2 only arise for three or more conductancef the noise i ,) is much greater thafy ., the relationship
levels, and their impact was found to become significant onlybetween the SNRs before (SNRind after (SNR) filtering
with 5—-6 channels and many rapid transitions (see Fig. 6). is given by

The correction for missed events as given in Eq. 14 is
approximate, it assumes that the total duration of missed SNR; = SNR; - (7 In 22+ f; /f. . (16)
events is short compared to the observed event (Roux a . . . . . .
Sauve 1985). This assumption becomes less accurate fgtgomblnlng this result with the above inequalities yields
more channels, especially if all rate constants are fa_st. As ABNR? - fon=82-0.36 (71N 2) 2 rgo~ 16-1g0.  (17)
example, for the C—O-B scheme, 1000 events simulated

with 1 channel and rate constants i) rco = 50,foc =  This is an approximate guideline for the quality of the raw
100,rog = 200, and g, = 1000, were well fitted withy = data, required for efficient use of this approach. As an
1ms fgo " tg = 1), yielding estimates afc = 44,roc =  example, ifrgg = 1000 S * (i.e., the mean blocked time is

91,rog = 163, andrg, = 838, although more than 50% of 1 ms), raw data acquired at an initial bandwidth of 5 kHz
the events were omitted. For the same scheme with Gill have to satisfy SNR= 1.8. In contrast, SNRat 5 kHz
channels and 6000 events, the estimates were good widan be as low as 1 if the mean blocked time is longer than
ty=0.5ms (co=57,roc = 118,rog = 150,rg5 = 1208), 3 ms. (For other schemes,, is replaced by the fastest rate
but started to deviate @ = 1 ms .o = 46,roc = 98,  constant, and, for different noise characteristics and filters,
rog = 83, andrgo = 855). When three of the rates were the numerical values will be somewhat modified.)
slowed down, butgg left unchanged, the fit worked well  To test the missed-event correction algorithm on more
even for 6 channels angy = 1 ms, although 60% of the realistic records than the noise-free simulations used for
events was lost, yielding, for simulated parametgys = Figs. 4, 5, and 6, the fit procedure was tested on noisy
10, roc = 20, rog = 100, andrg, = 1000, estimates of current traces. The testing was structured as illustrated in
rco = 10,roc = 19,105 = 83, andrg, = 834. Fig. 7 A. Channel currents were simulated and overlaid by
noise. SNRs as low as 3, 2 and 1 were tested, in which cases
idealization by threshold crossing was impossible. Noisy
traces were Gaussian-filtered digitally to increase the SNR
The advantage of a correction for missed events is applicado 8-10. Filtered traces were idealized by half-amplitude
bility to noisy data. If the SNR (i.e., the ratio of the single- threshold crossing combined with the imposition of a fixed
channel current amplitude to the standard deviation of thé,, about twice the dead time of the filter, to minimize
noise) is small, idealization by any method is difficult. If the uncertainties caused by noise (see representative noisy, fil-
SNR is smaller than~5, idealization by half-amplitude tered, and idealized traces in FigAJ. Finally, events lists
threshold crossing is impossible, because too many falseere fitted to yield estimates of the rate constants.
events will appear. Using a routine similar to the one The program performed well on noisy data after filtering.
described here, but without missed-event correction, BlunclEigure 7B provides a summary of one such series of 150
et al. (1998) reported a failure of their procedure on noisyexperiments structured like the one shown in Fig. With
data, attributed to their event-detection algorithm. Thisa fixed ratio ofrgo/rco = 20, rog/foc Was varied between
problem can be circumvented by filtering the raw data to0.1 and 10X axis), with channel numbers ranging from 1 to
increase the SNR, and subsequently correcting for the o8 (y axis). Each parameter combination was simulated 5
of brief events due to the filter dead time. times. Initial noise was characterized by SNR 2 and

To explore the theoretical limits of this type of missed-f. , = 5.0- rgo. Noisy traces were filtered §t 5 = 1.0 rg,
event correction, the following facts need to be consideredand idealized with, = 0.4k zo. A sampling rate of 20 times
(The numerical values below are derived for Lorentzianf, ; was used. From Fig. B, the performance of the
noise, a Gaussian filter, and for the C—O—B scheme, but thanalysis under these conditions is comparable to that seen
same reasoning applies with only minor variations to otherfor noise-free simulations (cf. Fig. 5), confirming the appli-
types of noise, filters, and schemes.) Fitgtannot be very cability of the approach in realistic situations.
long compared to the shortest lived state in the kinetic It is of interest to visualize the impact of missed-event
scheme. For the C-O-B scheme, the analysis worked wedlorrection. The same set of noisy traces described in the
with all parameter combinations tested, for up to 6 channelsprevious paragraph were also filteredfag = 0.45- rgq,

Performance of the fit procedure on noisy data
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FIGURE 7 Testing of the fit procedure on noisy current traces. Simu-
lated noise was added to channel currents. Noisy traces were Gaussian-
filtered digitally. Filtered traces were idealized by half amplitude threshold
crossing. Events lists were fitted to extract rate constaA)sS{ructure of

the testing procedure. In the example shown, using the sgridealized
currents obtained from noise-free channel currents and noisy traces after
filtering were 98.6% identical. Small triangles mark the sites of flags (see
text). B) Summary of 150 tests of the type shownAnThe means of the
parameter estimates from five simulations, normalized, are plotted against
roe/Toc and channel number. Error bars are SD. Simulation parameters:
C-0O-B schemergo/rco = 20, SNR, = 2,f. , = 5.0 rgo. Filter: f, ¢ =

1.0- rgo. Idealization:ty = 0.4kgo. Cyan symbols are estimates obtained
without missed-event correction. Without correctigy, andr o are fairly

well estimated foN = 1, but less so for higher numbers of channels.
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resulting in a filter dead time of 0.4, equal tot, above. A
These traces were then idealized by simple half-amplitude
threshold crossing, without imposing any artificial dead 8y foc| 82 1] oo
time. The events lists were then analyzed without missed < =0T
event correction, i.e., Egs. 2 and 5 were used in the prograr 2 = Jr.t--*-t o
cycle instead of Egs. 14 and 15. The resulting estimates fo 1 H‘H‘H*‘H-‘—H-H s 1 T‘*** S-t-te
the rate constants are plotted in Fig8 h cyan. (Error bars A, T
are omitted for clarity.) Roux and Sauy&985) showed :,-°0 ol 0
that, for a single channel with a C—O-B scheme, as long a = 40 160 640 2560 T T 40 160 640 2560
ty is short compared to the mean duration of sojourns in C. Total number of events Total number of events
the estimates of .o and roc remain undistorted, even if o3
most blocked events are filtered out. This is verified in Fig. 8, fog| & so
7 B, where, for 1 channel, lack of missed-event correction X 32
results in underestimation af,5 andrgo only. However, b f: / .‘* l . H*
with many channels, lack of correction results in underes- ¥ 1 4 ! i LEES
timation ofr.o andr o as well. This is because, everr i, s S0
and roc are slow compared to the dead time, transitions ¥ 0 <
between C and O are lost when there are several channel 40 160 640 2560 40 160 640 2560
if mirroring transitions of two different channels occur close Total number of events Total number of events
to each other in time.

B
Dependence of the scatter of the estimates on gg-g /x"-,\ 5 é}:i A fosi
the length of the record _gojs 3 ~ r""' ; 1% & :
It is useful to establish, for a given scheme, how long aﬁgi \ % 1808 , "H
record is required for reliable fitting. The C—O—-B model $0.3 X 306
was chosen with fixed parameters, = 50, loc = 10,  Eo2 "\-’\«E\‘ Eg'g
fos = 2, Isg = 1000,t, = 0.2k 5o, N = 4, and simulations g 200
were done with event numbers ranging from 40 to 5000. 40 160 640 2560 40 160 640 2560
Each simulation was repeated 10 times with different ran- Total number of events
dom seed values. Means and standard deviations of th — - -
normalized parameter estimates are plotted against tot: 17 67 267 1067 3 13 53 213
event number in Fig. 8A. As expected from the ratio Expected number of transitions along represented path

roslfoc = 0.2, the errors of the estimates Qg andrgg

exceed those of-o andrgoe. For all rate constants, how- FIGURE 8 Dependence of the scatter of the estimates on the length of
ever, the scatter becomes smaller with increasing numbefge rec_ord. Channel currents of different lengths were simulated with the
of events. Figure 8 shows the sizes of the error bars from Z?T;f'iedlggt()?;\lpzagyet%t;”i—eg_ﬁitshct:afgélzzf:(’)’rognz #t)t[erga g)

Fig. 8 A plotted against the number of events. The depenyomalized parameter estimates plotted against total event number. Sym-
dence of the errors af,g andrgg on total event number is  bols and error bars are means and SD from 10 simulations. Because
shifted to the right compared to the errorsrgfy androe.  fos/foc = 0.2, errors off oz andrgg are larger than those ofo androc
From the total number of events, the expected number (jpr any given number of total events. All errors decrease With' larger
individual transitons along any of the four pathways is 1'% ° @e71s# Lenals of e eror bare o poted soent
easily calculated. These numbers are plotted in red as & transitions along represented pathways. Error sizes for various rate
alternative abscissa in Fig. B. The shift ofrog andrgg  constants are more uniform with respect to the alternative abseiG0
compared to o androc is less dramatic from the perspec- corresponding transitions keep the errors below 20% dgrandr ¢, and

tive of this new abscissa. The standard deviations.gfand ~ Pelow 30% forrog andrg.

roc decrease to~20% with ~200 corresponding transi-

tions, and a similar number of respective transitions bringsiumbers of channels. The processing time depends on many
the errors ofrog andrgg also down below 30%. parameters, including kinetic scheme, rate constants, and
initial parameter guesses. In the following experiments, the
C-0O-B scheme was used withy = 50,roc = 10,rgg =

50, rgo = 1000. Seed parameters were chosen based on a
quick estimate of the cycle-time, obtained by counting the
To illustrate the speed of the fitting, the processing time wasiwumber of transitions per unit time. Fitting was performed
measured on events lists of various lengths and differentn a Pentium 266 MHz machine.

Dependence of the processing time on channel
number and length of record
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Results are summarized in Fig. 9. Channel number wascheme (open-channel block model) was tested extensively.
varied from 1 to 6, with event numbers of 3300, 10,000, orA second common scheme iS<C,—O, referred to as the
30,000. Red bars represent the mean of three measuremerigand-gated channel. Both schemes result in a bursting
As expected, the processing time (note logarithmic ordi-gating pattern for a single channel, where openings occur in
nate) increases with channel number (as the square of th@usters interrupted by short (flickery) closures, and flanked
number of macroscopic states), but remains independent &y long interburst closures.

the length of the data. Typical processing times wefes In single-channel records, burst analysis can be applied,
for 1 channel,~6 s for 4 channels, and-33 s for 6 where closings shorter than some cutgffare ignored.
channels. Various criteria exist for choosing (Jackson et al., 1983;

As a comparison, the same events lists were analyzelagleby and Pallota, 1983; Colquhoun and Sakmann,
with MIL, part of the QuB single-channel analysis package,1985), all of which give satisfactory results if the flickery
which maximizes the likelihood of the joint probability closures are short compared to the interburst time, and the
density for the whole dwell time series (Qin et al. 1996, relative frequencies of the two types of closure are not very
1997). Results are shown as blue bars in Fig. 9. Largelifferent. This is equivalent to filtering, which, as shown by
differences in processing time are apparentNer 4 and 5, Roux and Sauvé1985), will not distort subsequent estima-
where MIL typically converged after500 s and~5000 s, tion of the slow transitions if the latter are slow compared to
respectively, compared te 6 s and~14 s for the present the filter. This approach becomes problematic, however,
histogram method. With 6 channels, MIL failed to initialize, when many channels are present, because short events can
but the extrapolated processing time-50,000 s (14 hours, arise from mirroring transitions of two different channels
cyan bars in Fig. 9) as opposed +80 s with the method occurring close to each other in time. As shown earlier in
given here. The resulting estimates were essentially identithis paper, even short dead times can seriously distort the
cal for the two approaches. estimation of slow rate constants in multichannel patches,
unless appropriate care is taken (see, e.g., Fig, @yan
symbol3.

In records with multiple channels, if the open probability
Two three-state schemes are encountered frequently in io®f a single channel is very low, such that the average
channel physiology. In previous sections, the C-O-Bnumber of open channels at any given time is small, Jackson

(1985) showed that the rate constants can be estimated from
the distribution of closed times (all channels closed) and

Applicability to different gating schemes

100000 - open times (one channel open, no superimposed openings).
If the activity of the channels is high, however, such events
10000 - become rare, limiting the applicability of that approach.
- The method described in this paper was also tried on the
% 1000 - C,—C,—O model, with channel numbers ranging from 1 to 6,
£ and, as with the C—O-B scheme, was found to perform well,
2 100 regardless of the open probability (0.81P, <= 0.99) of the
2 channels. Table 1 summarizes the results of a more limited
g 101 range of fitting experiments for the,EC,~O scheme. Es-
& i | sentially identical results were obtained, although after
much longer processing times (as in Fig. 9), with the more
65 sophisticated program MIL (Qin et al. 1996, 1997).
%’b
oy, 23 %, % CONCLUSION
9%% ——" ovents A procedure has been developed for quickly and reliably

extracting rate constants of channel gating from patch re-
, o , , cordings containing multiple channels. The algorithm is
FIGURE 9 Comparison of processing times for simultaneous hlstogranbased on a simultaneous maximum likelihood fit to the
fitting (red barg and complete time series fitting (Mllblue barg. Bars . ) .

are means of three measurements. Processing time for simultaneous h@Well-time histograms for the various conductance levels. It
togram fitting increases proportionally with the square of the number ofdoes not exploit correlations between adjacent events, but
macroscopic states, but is independent of the length of the record. Typicglesults in a greatly reduced computational task and, hence,
processing times were 1, 2, 3, 6, 14, and 33 Nor 1, 2,3, 4,5,and 6,  yrgcessing time. This feature makes it attractive for the
respectively. For comparison, MIL produced identical estimates after pro- . . . .
cessing times of 3, 6, 50, 500, and 5000 s For= 1, 2, 3, 4, and 5, analysis of multichannel patches in cases where the gating

respectively, and 10,000 events. Extrapolated processing tim for6 ~ SCheme itself is already known and relatively simple. Of
(cyan bar$ is ~50,000 s (14 hours) with MIL. course, patches with multiple channels, and analyses using

Biophysical Journal 78(2) 785-799
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TABLE 1 Parameter estimates for the C,~C,-O; scheme for such cases are summarized in Eq. 17, which provides
Mo Foy Fos s N 1 acceptable limits for the relationship between speed of
True value 50 300 200 100 2 02 channel gating and magnitude and bandwidth of noise.
Estimate 56+ 11 750+ 215 171+55 97+ 5
True value 50 500 500 100 2 02
Estimate  50=4  480= 103  437=67  97=4 APPENDIX A: LIKELIHOOD FUNCTION IN THE
True value 50 200 800 100 2 02 CASE OF BINNING LIMITS
Estimate 49+ 9 189+ 26 721+ 25 95+ 2
True value 50 800 200 100 4 02 Suppq;e that lower and upperh bin limis,;,, and t, . ar(.e‘ imposed. .
Estimate 47+3 616+ 14 166+ 17 99+ 2 Quantities analogous to those in Egs. 5, 6, and 4, conditional on being
binned, are defined as
True value 50 500 500 100 4 02
Estimate 50+ 8 446+90  420=* 30 95+ 3 vl (k p tis | K tis bi d Al
True value 50 200 800 100 4 0.2 pctiv ( ) N (even IS leve | eventis binne )' ( )
Estimate 48+ 4 179+ 16 701+ 94 94+ 5
, .
True value 50 800 200 100 6 02 Phi=Pl;=dwelltime<t.,|
Estimate 513  616+50 152+ 11 98+ 2 _ i
eventis levek and event is binned), (A2)
True value 50 500 500 100 6 0.2
Estimate 52t 6 480+ 99 439+ 43 96+ 2
Sl .
True value 50 200 800 100 6 o2 P(ki)=P(eventislevekand
Estimate 40t 5 138+ 26 644+ 66 94+ 1 . . .
t.; = dwell time <t,;,,| eventis binned). (A3)
True value 50 200 800 100 4 0.0
Estimate 52+ 7 244+29 894+ 60 100+ 4 ) ) )
Next, Py hinneq IS defined as the fraction of all observed ledekvents
True value 50 200 800 100 4 02 predicted to be binned given bin limitg, ., andty mae
Estimate 48+ 4 179+ 16 701+ 94 94+ 5 ' '
True value 50 200 800 100 4 04 Puoinea= P(event is binned event is levek)
Estimate 49+ 5 231+ 45 960+ 192 108% 10 '
Rates are s', t, is ms, errors are SDn(= 5). = SUNq (tk min) — SUNg (tk may- (A4)

It follows from the theory of probabilities that

this algorithm, are not the tools of choice for solving com-

plicated schemes, nor for distinguishing between gating ptivl’ (k) = ECtIVI(k) ._P"'b‘“”ed , (A5)
models. For those purposes, single-channel records are de- j=1 PCtVI() * P, pinneq
sirable, along with correlation analysis using event se-
quence fitting or two-dimensional histograms. and
The theory is illustrated foN identical and independent
channels, but can be applied straightforwardly to more , P
general cases. The algorithm is tested on two common Pei = Px binned (A6)

three-state schemes, C-O-B ang-C,—O, both of which

yield a burst-type gating pattern, but it is expected to workThe probability of an event falling into théh bin of the levek histogram,

on other simple (e.g., three-state) schemes as well. It can lvenditional on being binned, is given by

recommended for such schemes when 3 or more channels

contribute to the recorded current, because a considerable pctivi(k) « py.i

decrease in processing time is gained in comparison to moria (K 1) = petivi’(k) - ps = $w Sop - (A7)
: . ! . i=1 PCHIVI()) * P; pinnea

advanced routines (see Fig. 9 for a comparison with MIL,

the fitting routine in the QuB package), without loss of

accuracy. function becomes

Accurate parameter estimates are obtained from as little

as a few hundred events, if there are no large discrepancies N n

betyveen the frequencies of occurrence_of the smgle_—channel L'(®) = [T [T P'(k, i)™

gating steps. In contrast, the accuracy increases with longer

k=0i=1
recordings, without any cost in processing time or memory
space requirement. N ctivi(k) - o, M
A robust correction for missed events due to filtering =11 . petivi( ) Pr.i Y:)
allows the algorithm to be applied to noisy data. Limitations k=0i=1 L &i=1 PCtVI() - P pinneq
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Proceeding analogously to steps 7 and 8 in the main text, the likelihood
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while LL'(®), defined ad.L'(0®) = In(L'(0)), is given by
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