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ABSTRACT A method is presented for rapidly extracting single-channel transition rate constants from patch-clamp
recordings containing signals from several channels. The procedure is based on a simultaneous fit of the observed dwell-time
distributions for all conductance levels, using a maximum likelihood approach. This algorithm allows estimation of single-
channel rate constants in cases where more advanced methods may be impractical because of their extremely long
computational time. A correction is included for the limited time resolution of the recording system, according to theory
developed by Roux and Sauvé (Biophys. J. 48:149–158, 1985), by accounting for the impact of undetected transitions on the
dwell-time distributions, and by introducing an improved practical implementation of a fixed dead time for the case of more
than one channel. This feature allows application of the method to noisy data, after filtering. A computer program imple-
menting the method is tested successfully on a variety of simulated multichannel current traces.

INTRODUCTION

Gating of single ionic channels can be modeled by transi-
tions among a finite number of conducting and nonconduct-
ing states, connected in some specified pattern. At any
moment, a single channel will be in one of these states, and
can undergo transitions into adjacent ones in a stochastic
fashion. Such a system is conveniently described by a
continuous-time Markov process (Colquhoun and Hawkes,
1977, 1981). Patch-clamp recording allows measurement of
the conductance of individual ion channels. Because more
than one state of a channel may be characterized by the
same conductance, such states can be grouped into classes,
transitions within which remain undetected. The observable
signal is modeled by an aggregated Markov process. The
challenge for the experimenter is to identify the model
underlying the observed sequence of transitions, and to
estimate the rate constants.

The classic approach to kinetic analysis of single-channel
data consists of constructing dwell-time histograms for the
open and closed times of a single channel, and then fitting
them with exponential functions (Colquhoun and Sigworth,
1995). This approach is widely used because of its simplic-
ity and relatively small computational demand.

In many cases, however, it may be impractical to restrict
analysis to single-channel records. If the channels of interest
tend to cluster, for example, most patches may contain
multiple channels. Also, if the open probability is low, long
records are required to amass enough events from a single
channel. In some cases, it might be hard to maintain steady-
state conditions for a sufficiently long time to collect
enough events from a single channel.

As shown by Blunck et al. (1998), if the gating scheme is
already known or assumed, data from patches containing
multiple channels can be analyzed by a simultaneous fit of
the dwell-time histograms for all the conductance levels.
These authors used a least-squares fit to the observed set of
histograms and showed that, in many cases, reasonable
estimates of the parameters can be obtained after only short
processing times. Unfortunately, the scatter of the estimates
was considerable, and the approach failed for noisy data
whenever the signal-to-noise ratio (SNR) was too low for
correct event detection.

This paper presents an approach similar to the one intro-
duced by Blunck et al. (1998), but with improvements that
result in broader applicability and enhanced reliability.
First, instead of least-squares fitting, which produces biased
estimates depending on whether the fits are made to linear,
semi-log or log–log histograms, a simultaneous maximum
likelihood fit is made to the set of dwell-time histograms
obtained from all conductance levels. Second, an effective
correction for missed events is included, based on theory
developed by Roux and Sauve´ (1985) for a single channel,
together with a practical implementation of a fixed dead
time for multichannel records. This feature permits use of a
range of filter settings, and hence, effective analysis of
noisy data with fairly low SNR. Good results were obtained
even with relatively small numbers of events (typically
hundreds, for all but extreme ratios of rate constants).

A drawback of one-dimensional histogram fitting is that
the information contained in cross correlations between
neighboring events is ignored. As a result, the number of
extractable parameters is limited, and the method cannot
distinguish between alternative connectivities. More pow-
erful methods exploit these cross correlations. Maximum
likelihood fitting of the whole time series, first introduced
by Horn and Lange (1983), is based on calculating the
likelihood of an observed sequence of sample points (Horn
and Lange, 1983) or dwell times (e.g., Qin et al., 1996,
1997), given a kinetic model and a set of rate constants. The
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likelihood is then maximized with respect to the rate con-
stants. However, the computational task involved is consid-
erable, even if the likelihood is computed over dwell times
only, and increases dramatically with the number of states in
the model. Processing time and required memory space also
increase with the length of the record. Alternatively, corre-
lations are explored by two dimensional dwell-time histo-
grams for pairs of adjacent events (Magleby and Song,
1992; Rothberg et al., 1997). The above maximum likeli-
hood approaches can be applied directly to multiple chan-
nels by treating the system as a single large Markov scheme
(Horn and Lange, 1983; Qin et al., 1996). However, even
for simple single-channel models, the size of the compound
scheme grows rapidly with channel number, making those
computations extremely slow for more than 3 channels,
especially for long records.

As for all histogram fitting methods, the approach pre-
sented here assumes that the gating scheme is specified at
the outset, because correlations remain unused. However,
for a given model, the reliability of the fit is ensured by the
wealth of information exploited by considering the set of all
dwell-time distributions. Attractively, computational time
and required memory space do not depend on the length of
the data while the quality of the fit improves with more
events.

Suitable applications are records with many active chan-
nels obeying fairly simple, but nontrivial, gating schemes,
where more advanced routines, like fitting the event se-
quence, become impractical. In reality, most ion channels
have very complex gating schemes (e.g., Weiss and
Magleby, 1989; Vandenberg and Bezanilla, 1991; Hoshi et
al., 1994; Zagotta et al., 1994a,b; Schoppa and Sigworth,
1998a,b,c). Frequently, however, gating schemes can be
simplified by pooling certain states while still retaining
many essential features.

The general theory underlying the approach is developed
first, then the method is extensively tested under a variety of
conditions.

GENERAL THEORY

A many-channel system as a single
Markov system

It is well known that a patch with multiple channels can be
treated as a single Markov system (e.g., Horn and Lange,
1983; Qin et al., 1996). One state of this large system
(macroscopic state) is a particular pattern of partitioning the
individual channels among the single-channel states (micro-
scopic states).

A simple important case, solved by Horn and Lange
(1983), is whenN channels are assumed to be identical and
independent. If there aren microscopic states for a single
channel, a macroscopic state of the system is represented by
a vector ofn entries, theith component of which specifies

the number of individual channels in theith single-channel
state. The entries of the macroscopic state vector sum toN.
The number of macroscopic states is equal to (N

n1N21), the
number of ways in whichN can be divided inton parts. The
transition rate from state (N1, . . . , Ni, . . . , Nj, . . . , Nn) to
state (N1, . . . , Ni 2 1, . . . ,Nj 1 1, . . . Nn) is given by

Ni z r ij , (1)

wherer ij is the transition rate constant of a single channel
from statei to j. Macroscopic states are numbered such that
those belonging to the same conductance level are clustered,
allowing partitioning of the transition matrixQ into subma-
trices relevant to each conductance level.

If the channels are distinguishable, the system can be
described by a (usually much bigger) state space ofnN

dimensions (see Qin et al., 1996). The concepts of this paper
are presented forN identical and independent channels, but
should be equally applicable to the more general case.

Dwell-time distributions of the various
conductance levels

Given a Markov system described by the matrixQ, distri-
butions of the dwell times in any subset of the states can be
calculated (Colquhoun and Hawkes, 1981). To calculate the
dwell-time distribution of a conductance levelk, a subset
{ k} is defined as the set of all macroscopic states in which
k channels are open, {k#} as the set of all other macroscopic
states. The survivor functions, defined as surv{k} (t) 5 P(no
leaving from {k} before time tu entered {k} at time 0), are
given by

surv{k} ~t! 5 pk~0!TeQkkt1k, (2)

where Qkk is the submatrix ofQ describing transitions
within { k}, 1k is the summation vector matching {k} in
dimensions.pk(0)T (matching {k} in dimensions) is the
initial row vector of probabilities of entering {k} via any
one of its component (macroscopic) states, given by

pk~0!T 5
pk#(`)TQk# k

pk#~`!TQk# k 1k
, (3)

where submatrixQk#k describes transitions from {k#} to { k},
pk(`)T and pk#(`)T are row vectors of steady-state occu-
pancy probabilities for macroscopic states in {k} and {k#}
respectively. (pT in general denotes the row vector corre-
sponding to the column vectorp.) For binned maximum
likelihood fitting (see Sigworth and Sine, 1987) it is con-
venient to use the survivor function, because the probability
of a dwell time falling into a binti # dwell time , ti11 is
given by surv(ti) 2 surv(ti11).
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Simultaneous maximum likelihood fitting of a set
of histograms

Binned maximum likelihood fitting (Sigworth and Sine,
1987) consists of a search for the set of kinetic parameters
that maximizes the likelihood that a series of dwell times in
one particular conductance level yields the experimentally
observed dwell-time histogram. Here, this approach is ex-
tended to the set of dwell-time histograms constructed for
all the conductance levels, which can be thought of as one
generalized histogram, each bin of which represents a range
of dwell times for a certain conductance level. Figure 1
illustrates this concept, showing the generalized dwell-time
histogram for a simulated current trace (described in more
detail later, in Fig. 7A), from 3 channels. The fit (solid
black lines) was found by the method described in this
paper.

The likelihood function for an events list is defined as the
likelihood of obtaining the observed generalized histogram
(Fig. 1) given a model and a set of rate constants. The
likelihood estimate is based on the calculation of the prob-
ability that an observed event belongs to levelk and falls
into the ith bin of the levelk dwell-time histogram:

P~k, i! 5 P~event is levelk andtk,i # dwell time , tk,i11).

This is easily obtained using conditional probabilities,

P~k, i! 5 pctlvl~k! z pki, (4)

where pctlvl(k) specifies what fraction of all observed
events is expected to be at levelk,

pctlvl~k! 5 P~observed event is levelk!

5
pk#~`!TQk#k1kOj50
N pj#~`!TQj#j1j

, (5)

and pki is the fraction of all observed levelk events pre-
dicted to fall into theith bin,

pki 5 P~tk,i # dwell time, tk,i11uevent is levelk!

5 surv{k} ~tk,i! 2 surv{k} ~tk,i11!. (6)

If the level k histogram containsrk bins andnk,i is the
occupancy of theith bin, the likelihood function can be
calculated as

L~Q! 5 P
k50

N P
i51

rk

P~k, i!nk, i 5 P
k50

N P
i51

rk

@pctlvl~k! z pk,i#
nk, i, (7)

whereQ represents the model and the set of rate constants.
Both pctlvl(k) and pk,i are functions ofQ. In practice, the
logarithm of the likelihood is used, given by

LL~Q! 5 O
k50

N O
i51

rk

nk,i z ln pk,i 1 O
k50

N

nk z ln pctlvl~k!, (8)

where nk is the total number of events in the levelk
histogram:nk 5 (i51

rk nk,i.
Sometimes it is useful to exclude some events from

binning by specifying lower and upper bin limitstk,min and
tk,max for each conductance levelk (see Sigworth and Sine,
1987). This will alter the scaling factors for the different
levels, which can be compensated for by defining quantities
analogous to those in Eqs. 4, 5, and 6, conditional on being
binned. Following the derivation in Appendix A, the cor-
rected log likelihood function then becomes

LL9~Q! 5 O
k50

N O
i51

rk

nk,i z ln pk,i1O
k50

N

nk z ln pctlvl~k!

2 nt z lnFO
k50

N

pctlvl~k! z Pk,binnedG , (9)

where

Pk,binned5 P~event is binneduevent is levelk!

5 surv{k} ~tk,min! 2 surv{k} ~tk,max!, (10)

and

nt 5 O
k50

N

nk is the total number of binned events.

Compared to the original expression forLL(Q) in Eq. 8, the
introduction of binning limits results in only one additional
term, even though the binning limits may be different for
each level. pctlvl(k), pk,i, andPk,binneddepend on the set of
parametersQ through Eqs. 5, 6, and 10, respectively.

FIGURE 1 Set of dwell-time histograms (and fit,solid black lines) for
all conductance levels of a simulated current record from 3 channels
obeying the C–O–B scheme (see text for details). Rate constants (in s21)
used for simulation:rCO 5 10, rOC 5 20, rOB 5 40, andrBO 5 1000.
Estimates from fit:rCO 5 10, rOC 5 20, rOB 5 38, andrBO 5 918. Dead
time: 0.1 ms (see text).
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The approach presented in this section discards the infor-
mation contained in the correlations between neighboring
events. This is the penalty accepted for the much smaller
computational task of having to deal with only a number of
terms equal to the total number of all histogram bins (a few
tens typically, independent of the length of the events list)
for the calculation of the likelihood, compared to the total
number of events (some thousands typically, proportional to
the length of record) involved in fitting the whole dwell-
time series (see Qin et al., 1996, 1997). Even so, a lot of
information is still exploited. Ifnc andno are the numbers of
closed and open states, respectively, of a single channel,
then the dwell-time distribution of levelk for a record with
N channels contains

Sno 1 k 2 1
k D z Snc 1 N 2 k 2 1

N 2 k D
exponential components. The time constants and relative
amplitudes of each component, summed for all levels, plus,
for N . 1, the relative scaling factor for each level provide
a total number of

F2 z O
k50

N Sno 1 k 2 1
k D z Snc 1 N 2 k 2 1

N 2 k DG 2 1

constraints used for restraining the fit. For a linear three-
state scheme with two closed states and one open state, there
are four rate constants to be found. The number of param-
eters required to describe all dwell-time histograms are 4 for
a single-channel record, 11 for a record with 2 channels, and
55 for a record with 6 channels. All of these parameters are
functions of the four single-channel rate constants, provid-
ing strong constraints for accurate fitting. This does not nec-
essarily mean that models that are unidentifiable from single-
channel histogram fitting will become solvable from
multichannel fitting. For instance, the simple loop model of
CCO cannot be solved by single-channel histogram fitting,
because the likelihood surface has no unique maximum, and it
is easy to show that this property is inherited to the likelihood
of the set of histograms of a multichannel patch as well.

Correction for missed events

Limited bandwidth of the patch-clamp recording system is
the price paid for filtering to achieve an acceptable SNR. As
a result of the filter delay, short events remain undetected,
distorting the distribution of observed dwell times. A gen-
eral theory for the treatment of the missed event problem
was developed by Roux and Sauve´ (1985), who assumed an
absolute dead time (td): all events shorter thantd remain
undetected; all events longer thantd are detected. Because
of noise, such a fixedtd cannot be calculated simply from
the response characteristics of the filter, but it can be im-
posed retrospectively, by choosingtd larger than the filter

dead time, and by concatenating to the preceding sojourn
any dwell time shorter thantd (see Qin et al., 1996).

Following Roux and Sauve´ (1985), given a fixedtd, the
survivor function for the observed dwell-time distribution of
a conductance levelk is defined by

surv{k}
R&S~t, td)

5 P(no observable leaving from$k% before timetu

entered$k% at time 0 after an observable stay in$k#%! (11)

where “observable” means longer thantd. With the addi-
tional assumption that the total duration of missed event(s)
within an observed event is negligible, the authors were able
to write down the pdf, which, when integrated fromt to `,
yields the survivor function. In the present notation,

surv{k}
R&S~t, td! 5 @initial R&S]k

TeQ̂kkt1k, (12)

where

[initial R&S]k
T5

pk~`!TQkk#e
Qk#k# td~2Qk#k#

21!Qk#k

pk~`!TQkk#e
Qk#k#td~2Qk#k#

21!Qk#k1k
, (12a)

Q̂kk 5 Qkk 2 Qkk#~I k# 2 eQ k#k#t d!Qk#k#
21Qk#k . (12b)

As noted by Qin et al. (1996), Eq. 11 does not take into
account that no leaving can occur at all between time 0 and
td after entering {k}, because that would produce a short {k}
event, which would be concatenated to the preceding event.
The fact that a {k} event is detected means that its initial
section (between time 0 andtd) is free of transitions. To
account for this, an additional condition has to be introduced
into the definition of the survivor function.

The correct definition of the survivor function will now
be

surv{k} (t, td)

5 P~no observable leaving from$k% before timetu
entered$k% at time 0 after an observable stay in$k#%
and stayed in$k% until time td).

(13)

Using this definition, and following the steps described in
Appendix B, the correct form of the survivor function can
be written as

surv$k%~t, td! 5 H1
@initial #k

TeQ̂kk~t2td!1k

for t , td

for t $ td ,
(14)

where

[initial ]k
T5

pk~`!TQkk#e
Qk#k#td~2Qk#k#

21!Qk#ke
Qkktd

pk(`)TQkk#e
Qk#k#td(2Qk#k#

21)Qk#ke
Qkktd1k

, (14a)

Q̂kk5Qkk2Qkk#(I k#2eQk#k#td)Qk#k#
21Qk#k (as in Eq. 12b). (14b)
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Thus, the additional condition results in a corrected initial
vector and a translation of the survivor function along the
time axis. The survivor function now takes on the value of
1 at timet 5 td, as expected. This correction is equivalent to
the adjustment made by Qin et al. (1996); but merging the
correction into the initial vector rather than the main oper-
ator seems more natural in the present application, and is
required for the proper scaling of the survivor functions.

The relative scaling factor for each conductance level,
required for simultaneous fitting, can be calculated by anal-
ogy to Eq. 5,

pctlvl~k, td! 5
pk~`!TQkk#e

Qk#k#td(2Qk#k#
21)Qk#ke

Qkktd1k

Oj50
N @pj(`)TQjj#e

Qj# j#td(2Qj# j#
21)Qj# je

Q jj td1j]
.

(15)

For td 5 0, Eqs. 14 and 15 reduce to Eqs. 2 and 5,
respectively.

Implementation of a fixed dead time

Some thought needs to be given to how the fixed dead time
is implemented in practice. Qin et al. (1996) suggested
imposing a fixed dead time (preferably longer than the filter
dead time) retrospectively by concatenating each event
shorter than the chosentd to the preceding sojourn. As
pointed out by the authors, if a channel undergoes many
short transitions in a row (buzz mode) the fixed dead time
cannot be enforced in the above way. However, even in the
absence of a buzz mode, when many channels are present,
other types of event sequences will appear for which the
above method violates the definition in Eq. 13. These cases
can be dealt with in the way discussed below, even though
buzz mode events will still remain unidealizable.

For instance, as illustrated in Fig. 2A (left), a leaving
from {k} to { k#} much longer thantd would be ignored that
way, if it consisted of a series of dwells—each shorter than
td—at different conductance levels in {k#}, before returning
to {k}. This is contrary to Eq. 13, and would result in
concatenation of the two bracketing {k} events plus the
intervening sojourn in {k#} into one long {k} event, leading
to underestimation of the rates. A different, but smaller,
problem is that, according to Eq. 13 a {k} event should be
considered terminated once there is a leaving into {k#}
longer thantd. However, as illustrated in Fig. 2A (right), if
the new sojourn in {k#} begins with an event shorter thantd
in a particular conductance level of {k#} (or a series of such
events) that event (series) would be concatenated to the end
of the last {k} event. Note that both of these problems arise
only if there are more than two conductance levels.

To circumvent these problems, the following strategy
was used (see flow chart in Fig. 2B) for imposing a fixed
td in a manner that more closely follows the assumptions of
Eq. 13. (Because, in this study, half-amplitude threshold
crossing was used for idealization of raw current traces, the

algorithm could be applied on line, yielding an events list
with the required properties. For other methods of idealiza-
tion, this can be done retrospectively.) Scanning along the
record, events are written to the output events list until a
short (#td) event is reached. Incoming short events are
temporarily stored in a buffer, until the next long (.td)
event is reached or the conductance returns to the level of
the last long event. At this point, there are three options.

If the new (long) event belongs to a different conductance
level than the last long event, the contents of the buffer are
discarded, and a flag is written to the events list stating the
total length of discarded time, followed by the new long
event.

If the new event belongs to the same conductance level as
the last long event, and the total time stored in the buffer is

FIGURE 2 Application of a fixed dead time. (A) Two examples of raw
event sequences where conventional concatenation of brief events (top) is
inappropriate:left, a leaving from level 3 longer thantd is incorrectly
ignored because it is composed of only sub-dead-time components;right,
a level 3 event is prolonged by incorporation of a series of brief sojourns
(staircase), although the latter are part of a long dwell in {3#}. For com-
parison, idealized event sequences generated by the algorithm described in
the text and in (B) are shown below. (B) Flow chart of the algorithm used
to avoid inappropriate concatenations.
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shorter thantd, the contents of the buffer and the bracketing
events are concatenated into a single event of conductance
level given by the bracketing events and of duration given
by the sum of the three sources.

If the new event belongs to the same conductance level as
the last long event, but the total time stored in the buffer
exceedstd, the last long event is written to the events list. If
the new event is short, it is added to the buffer, otherwise
the buffer is discarded, a flag is written to the events list,
and the new event is considered separately.

The flow chart in Fig. 2B summarizes the strategy
described above. Fig. 2A provides a visual comparison of
the resulting idealized event sequences obtained in the con-
ventional way or correctly, according to the above algorithm.

As a result, the only concatenated events are of the type
{ k} 3 { k#} 3 { k}, where the total time spent in {k#} is
shorter thantd, as required by Eq. 13. The first sojourn in
every detected event still has to be longer thantd (see Eq.
13), otherwise it would be discarded from the buffer. The
flags can be thought of as dividing the record into small
sections—considered separately—within which the fixed
dead time can be imposed consistently, whereas the regions
where this is impossible are discarded. The final histograms
can be viewed as the sums of the histograms for the good
sections. This approach improved the results of subsequent
histogram fitting substantially, especially in cases where,
because of frequent rapid gating events and many channels,
sequences of the type shown in Fig. 2A occurred often (see
Fig. 6).

Program cycle

To implement the procedures just described, a computer
program (see Fig. 3) was written in C language. The inputs
for this analysis program are 1) the model gating scheme, 2)
an events list with sub-dead-time events suppressed, 3) the
value of td, 4) the number of channels, and 5) an initial

guess at the single-channel rate constants. Figure 3 illus-
trates the program cycle in the form of a flow chart.

First, the program scans through the events list and con-
structs the dwell-time histograms, with logarithmic time
axes (Sigworth and Sine, 1987), for each conductance level.
Unlesstd 5 0, the lower binning limit istd for all levels (i.e.,
no short events are excluded from binning). Bin density is 6
per e-fold. The maximum number of bins is 60 for each
level, which usually accomodates all events. If the range of
dwell durations exceedse10 (2 z 104), some long events may
remain unbinned, in which case the correction explained in
Eqs. 9 and 10 is implemented. Event binning is the only step
whose processing time depends on the actual length of the
events list. Because this step represents only about one
percent of the computational time, the latter is largely in-
dependent of the length of the record, in contrast to routines
that fit the event sequence (see Horn and Lange, 1983; Qin
et al., 1996, 1997).

Next, the program enters a loop of iterations aimed to
maximize the likelihood of the set of histograms. The loop
starts with the construction of the transition rate matrixQ
for the model macrosystem, as given by Eq. 1. The survivor
functions of the conductance levels are calculated according
to Eq. 14, with scaling factors given by Eq. 15. Finally, the
log likelihood function is calculated according to Eq. 9. The
likelihood is maximized with respect to the rate constants
using the simplex algorithm (Caceci and Cacheris, 1984),
chosen because of its simple programming code and proven
robustness.

The key step is evaluation of the survivor function, of the
form pTeQt1. The row vectorpTeQt is calculated as a power-
series, truncated when a term drops below a predefined
error,

pTeQt 5 pT 1 pTQt 1 ~pTQt!S t

2
QD

1F~pTQt!S t

2
QDGS t

3
QD 1 · · ·

Each term is obtained from the previous one as a vector-
matrix product, involvingnQ

2 add-multiply operations,nQ

being the dimension ofQ. Thus, processing time is propor-
tional to the square of the number of macroscopic states.

RESULTS AND DISCUSSION

The analysis program was tested on a range of simulated
multichannel current traces to establish how the efficiency
depends on the gating model, relative sizes of the rate
constants, channel number, dead time, noise, and length of
the record. For reasonable schemes, i.e., if all microscopic
states were visited at some non-negligible frequency by the
individual channels, the iterations converged, starting from
a broad range of initial values.FIGURE 3 Flow chart illustrating the program cycle of the fitting software.
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The C1–O–C2 model was chosen to test the efficiency of
the routine given a variety of parameter combinations. Be-
cause this is the scheme used to describe open-channel
block, the following nomenclature will be adopted:

C-|0
rCO

rOC

O-|0
rOB

rBO

B.

This single-channel scheme has one conducting state O
(open), and two nonconducting states C (closed) and B
(blocked). Because of the symmetry of the scheme (ex-
changingrOC with rOB and rCO with rBO yields a scheme
indistinguishable from the original one), the likelihood sur-
face is also symmetrical, with two peaks mirroring each
other. Depending on the seed parameters, the program ends
up at one of the two peaks.

Simulation of multichannel currents and noise

Channel currents were constructed using the macroscopic
Markov scheme described earlier and a simulator similar to
that described by Blunck et al. (1998). Channel current
traces were overlaid by noise synthesized with specified
Gaussian amplitude distribution and Lorentzian power spec-
trum, to mimic the signal that arises after low-pass filtering
broad-bandwidth noise, whose initial power spectrum is flat
in the pass-range of the filter. Variances2 and corner
frequencyfc,n were adjustable. A typical setting forfc,n was
5 kHz, a bandwidth at which patch-clamp data are com-
monly acquired. To test the validity of the dead-time correc-
tion, noisy data traces were Gaussian-filtered at a corner fre-
quencyfc,G, chosen to achieve a SNR sufficient for idealization
by half-amplitude threshold crossing (see Fig. 7A).

Distribution of the parameter estimates

To establish the nature of the scatter of the estimates, 100
simulations were carried out using the C–O–B scheme, with
a fixed set of parameters (ins21, rCO 5 50,rOC 5 10,rOB 5
50, rBO 5 1000;N 5 3, 900 events), but different random
seed values. Figure 4 shows the fit results for all parameters,
normalized to the simulated values and collected into bins
of width 0.05. The histograms were fitted reasonably well
by Gaussian functions (solid linesin Fig. 4). In subsequent
sections, results will be depicted as the mean of the esti-
mates normalized to the simulated values, with error bars
representing the normalized standard deviations.

Sensitivity to relative values of rate constants,
channel number, and dead time

Next, fitting efficiency was tested on the C–O–B model
with various combinations of rate constants. The difficulty
of the fit was found to depend on two factors: the difference

in the mean dwell times of B and C, and the relative
frequencies of entering C or B, respectively. These factors
are expressed as ratios of rate constants: the ratio of the
mean dwell times in C and B isrBO/rCO, the mean number
of blocked (B) events between two closures (C events) is
rOB/rOC. In more general terms, fitting is easy if all micro-
scopic states are visited at some non-negligible frequency,
and dwell times of microscopic states in the same conduc-
tance class are sufficiently distinct—criteria that already
arise for single-channel histogram fitting.

Ratio rBO/rCO was varied from 100 to 4, and the fitting
procedure performed well over the entire range, even when
the difference between mean blocked and closed times was
as small as four-fold. As an example, after simulating 2500
events with 4 channels, with input parameters (ins21)
rCO 5 50, rOC 5 10, rBO 5 50, andrBO 5 200, followed by
idealization with a dead time of 1 ms, the fitting yielded
estimatesrCO 5 60, rOC 5 13, rOB 5 39, andrBO 5 185,
respectively.

Next, ratiorOB/rOC was varied in a total of 1800 exper-
iments. WhilerBO/rCO was set to either 100 or 20,rOB/rOC

values of 0.1, 0.2, 1, 5, and 10 were tested. Each combina-
tion of rate constants was tried with one to six channels, and
dead times of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 times the mean
blocked time. (Because, forN channels, the fastest macro-
scopic rate constant isN z rBO, a dead time of 0.5/rBO is
three times longer than the mean dwell time of the shortest
lived state, whenN 5 6.) Each of these 360 parameter

FIGURE 4 Histograms describing the scatter of the estimates. 100 sim-
ulations with different random seed values (900 events each) were made
for 3 channels obeying the C–O–B scheme,rCO 5 50, rOC 5 10,rOB 5 50,
rBO 5 1000 (in s21). Dead time was 0.4 ms. Parameter estimates, normal-
ized to the respective true values, were collected into bins of width 0.05.
Distributions of the estimates were fitted by Gaussian functions (solid
lines) of the formA z exp[2(x 2 m)2/2s2].
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combinations was simulated five times, starting with differ-
ent random seed numbers. For a single channel, 600 to 2200
transitions were simulated, traces with multiple channels
were simulated for the same length of time as the corre-
sponding single-channel ones.

Figure 5 is a summary of 300 experiments. Results were
similar for all channel numbers ranging from 1 to 6, those
for 2 (Panel A) and 5 channels (Panel B) are shown. With
rBO/rCO 5 20, rOB/rOC was varied (x axis) between 0.1 and

10, with td ranging (y axis) from 0 to 0.5 times the mean
blocked time (1/rBO). Means and standard deviations of the
fit results for the individual rate constants are shown (zaxis)
normalized to their simulated values. A symbol at height 1
means accurate estimation, values higher or lower than 1
represent over- and underestimates, respectively. The solu-
tion surfaces tend to be close to 1; i.e., good estimates were
obtained over a broad range of input parameters.

For rOB/rOC small, transitions between O and B are rare,
and many of these are lost iftd is long compared to the mean
blocked time (i.e.,rBO z td is comparable to 1). Under these
conditions the likelihood surface is relatively insensitive to
rOB and rBO, the estimates of which become uncertain,
whereasrCO and rOC are still estimated precisely. This is
verified in Fig. 5, where the error bars ofrOB and rBO

increase forrOB/rOC , 0.2. WhenrOB/rOC is large, transi-
tions between states O and B of the individual channels are
prevalent. Whereas estimation ofrOB andrBO becomes easy
even for longtd, the error onrCO and rOC increases (but
remains around 20% even forrOB/rOC 5 10). Overall errors
become smaller with larger numbers of fitted events (see
later).

To demonstrate the impact of the implementation oftd on
subsequent fitting, the same simulated current traces were
idealized by concatenating brief events either in the con-
ventional or the improved way (cf. Fig. 2). Figure 6 shows
parameter estimates for 6 channels, after correct (depicted
as in Fig. 5), or conventional idealization (cyan symbols,
error bars omitted for clarity). In cases where rapid blocked

FIGURE 5 Performance with different rate constants. The means of the
parameter estimates from five simulations, normalized to the true values,
are plotted againstrOB/rOC andtd z rBO. Error bars are normalized standard
deviations. A symbol at height 1 means accurate estimation. Error bars of
rOB andrBO are large whenrOB/rOC is small, whereas those ofrCO andrOC

increase somewhat for largerOB/rOC. (A) N 5 2. (B) N 5 5; in three cases,
marked with x, estimation of rOB and rBO was impossible: for those
combinations, symbols and error bars represent only four simulations.

FIGURE 6 Comparison of fit results for 6 channels after conventional
(cyan symbols) or correct (depicted as in Fig. 5.) implementation of a fixed
td. For rOB/rOC $ 5 andtd z rBO $ 0.3, conventional idealization resulted
in considerable underestimation of the rate constants.
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events were frequent (rOB/rOC high), especially with longer
td, rate constants were seriously underestimated after con-
ventional concatenation, whereas accurate estimates were
obtained after improved idealization. This effect is expected
to be less significant for methods that also exploit informa-
tion from adjacent interval correlations (e.g., Horn and
Lange, 1983; Qin et al., 1996). Also, the types of events
described in Fig. 2 only arise for three or more conductance
levels, and their impact was found to become significant only
with 5–6 channels and many rapid transitions (see Fig. 6).

The correction for missed events as given in Eq. 14 is
approximate, it assumes that the total duration of missed
events is short compared to the observed event (Roux and
Sauvé, 1985). This assumption becomes less accurate for
more channels, especially if all rate constants are fast. As an
example, for the C–O–B scheme, 1000 events simulated
with 1 channel and rate constants (ins21) rCO 5 50, rOC 5
100,rOB 5 200, andrBO 5 1000, were well fitted withtd 5
1 ms (rBO z td 5 1), yielding estimates ofrCO 5 44, rOC 5
91, rOB 5 163, andrBO 5 838, although more than 50% of
the events were omitted. For the same scheme with 6
channels and 6000 events, the estimates were good with
td 5 0.5 ms (rCO 5 57,rOC 5 118,rOB 5 150,rBO 5 1208),
but started to deviate attd 5 1 ms (rCO 5 46, rOC 5 98,
rOB 5 83, andrBO 5 855). When three of the rates were
slowed down, butrBO left unchanged, the fit worked well
even for 6 channels andtd 5 1 ms, although 60% of the
events was lost, yielding, for simulated parametersrCO 5
10, rOC 5 20, rOB 5 100, andrBO 5 1000, estimates of
rCO 5 10, rOC 5 19, rOB 5 83, andrBO 5 834.

Performance of the fit procedure on noisy data

The advantage of a correction for missed events is applica-
bility to noisy data. If the SNR (i.e., the ratio of the single-
channel current amplitude to the standard deviation of the
noise) is small, idealization by any method is difficult. If the
SNR is smaller than;5, idealization by half-amplitude
threshold crossing is impossible, because too many false
events will appear. Using a routine similar to the one
described here, but without missed-event correction, Blunck
et al. (1998) reported a failure of their procedure on noisy
data, attributed to their event-detection algorithm. This
problem can be circumvented by filtering the raw data to
increase the SNR, and subsequently correcting for the loss
of brief events due to the filter dead time.

To explore the theoretical limits of this type of missed-
event correction, the following facts need to be considered.
(The numerical values below are derived for Lorentzian
noise, a Gaussian filter, and for the C–O–B scheme, but the
same reasoning applies with only minor variations to other
types of noise, filters, and schemes.) First,td cannot be very
long compared to the shortest lived state in the kinetic
scheme. For the C–O–B scheme, the analysis worked well
with all parameter combinations tested, for up to 6 channels,

with td # 0.5/rBO. (Longer dead times also worked as long
as rCO and rOC were not very fast.) This imposes a lower
limit to the corner frequency used for filtering. For a Gauss-
ian filter, with corner frequencyfc,G, td ' 0.18/fc,G. Hence,
the constraintfc,G * 0.36 z rBO is obtained. Second, reliable
idealization by half-amplitude threshold crossing requires a
SNR* 8. In the common case where the corner frequency
of the noise (fc,n) is much greater thanfc,G, the relationship
between the SNRs before (SNRn) and after (SNRG) filtering
is given by

SNRG
2 5 SNRn

2 z ~p z ln 2!1/2 z fc,n/fc,G. (16)

Combining this result with the above inequalities yields

SNRn
2 z fc,n * 82 z 0.36z ~p z ln 2!21/2 z rBO < 16 z rBO. (17)

This is an approximate guideline for the quality of the raw
data, required for efficient use of this approach. As an
example, ifrBO 5 1000 s21 (i.e., the mean blocked time is
1 ms), raw data acquired at an initial bandwidth of 5 kHz
will have to satisfy SNRn * 1.8. In contrast, SNRn at 5 kHz
can be as low as 1 if the mean blocked time is longer than
3 ms. (For other schemes,rBO is replaced by the fastest rate
constant, and, for different noise characteristics and filters,
the numerical values will be somewhat modified.)

To test the missed-event correction algorithm on more
realistic records than the noise-free simulations used for
Figs. 4, 5, and 6, the fit procedure was tested on noisy
current traces. The testing was structured as illustrated in
Fig. 7 A. Channel currents were simulated and overlaid by
noise. SNRs as low as 3, 2 and 1 were tested, in which cases
idealization by threshold crossing was impossible. Noisy
traces were Gaussian-filtered digitally to increase the SNR
to 8–10. Filtered traces were idealized by half-amplitude
threshold crossing combined with the imposition of a fixed
td, about twice the dead time of the filter, to minimize
uncertainties caused by noise (see representative noisy, fil-
tered, and idealized traces in Fig. 7A). Finally, events lists
were fitted to yield estimates of the rate constants.

The program performed well on noisy data after filtering.
Figure 7B provides a summary of one such series of 150
experiments structured like the one shown in Fig. 7A. With
a fixed ratio ofrBO/rCO 5 20, rOB/rOC was varied between
0.1 and 10 (x axis), with channel numbers ranging from 1 to
6 (y axis). Each parameter combination was simulated 5
times. Initial noise was characterized by SNRn 5 2 and
fc,n 5 5.0 z rBO. Noisy traces were filtered atfc,G 5 1.0 z rBO,
and idealized withtd 5 0.4/rBO. A sampling rate of 20 times
fc,G was used. From Fig. 7B, the performance of the
analysis under these conditions is comparable to that seen
for noise-free simulations (cf. Fig. 5), confirming the appli-
cability of the approach in realistic situations.

It is of interest to visualize the impact of missed-event
correction. The same set of noisy traces described in the
previous paragraph were also filtered atfc,G 5 0.45 z rBO,
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FIGURE 7 Testing of the fit procedure on noisy current traces. Simu-
lated noise was added to channel currents. Noisy traces were Gaussian-
filtered digitally. Filtered traces were idealized by half amplitude threshold
crossing. Events lists were fitted to extract rate constants. (A) Structure of
the testing procedure. In the example shown, using the sametd, idealized
currents obtained from noise-free channel currents and noisy traces after
filtering were 98.6% identical. Small triangles mark the sites of flags (see
text). (B) Summary of 150 tests of the type shown inA. The means of the
parameter estimates from five simulations, normalized, are plotted against
rOB/rOC and channel number. Error bars are SD. Simulation parameters:
C–O–B scheme,rBO/rCO 5 20, SNRn 5 2, fc,n 5 5.0 z rBO. Filter: fc,G 5
1.0 z rBO. Idealization:td 5 0.4/rBO. Cyan symbols are estimates obtained
without missed-event correction. Without correctionrCO andrOC are fairly
well estimated forN 5 1, but less so for higher numbers of channels.
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resulting in a filter dead time of 0.4/rBO, equal totd above.
These traces were then idealized by simple half-amplitude
threshold crossing, without imposing any artificial dead
time. The events lists were then analyzed without missed-
event correction, i.e., Eqs. 2 and 5 were used in the program
cycle instead of Eqs. 14 and 15. The resulting estimates for
the rate constants are plotted in Fig. 7B in cyan. (Error bars
are omitted for clarity.) Roux and Sauve´ (1985) showed
that, for a single channel with a C–O–B scheme, as long as
td is short compared to the mean duration of sojourns in C,
the estimates ofrCO and rOC remain undistorted, even if
most blocked events are filtered out. This is verified in Fig.
7 B, where, for 1 channel, lack of missed-event correction
results in underestimation ofrOB and rBO only. However,
with many channels, lack of correction results in underes-
timation ofrCO andrOC as well. This is because, even ifrCO

and rOC are slow compared to the dead time, transitions
between C and O are lost when there are several channels,
if mirroring transitions of two different channels occur close
to each other in time.

Dependence of the scatter of the estimates on
the length of the record

It is useful to establish, for a given scheme, how long a
record is required for reliable fitting. The C–O–B model
was chosen with fixed parametersrCO 5 50, rOC 5 10,
rOB 5 2, rBO 5 1000,td 5 0.2/rBO, N 5 4, and simulations
were done with event numbers ranging from 40 to 5000.
Each simulation was repeated 10 times with different ran-
dom seed values. Means and standard deviations of the
normalized parameter estimates are plotted against total
event number in Fig. 8A. As expected from the ratio
rOB/rOC 5 0.2, the errors of the estimates ofrOB and rBO

exceed those ofrCO and rOC. For all rate constants, how-
ever, the scatter becomes smaller with increasing numbers
of events. Figure 8B shows the sizes of the error bars from
Fig. 8 A plotted against the number of events. The depen-
dence of the errors ofrOB andrBO on total event number is
shifted to the right compared to the errors ofrCO and rOC.
From the total number of events, the expected number of
individual transitions along any of the four pathways is
easily calculated. These numbers are plotted in red as an
alternative abscissa in Fig. 8B. The shift of rOB and rBO

compared torCO andrOC is less dramatic from the perspec-
tive of this new abscissa. The standard deviations ofrCO and
rOC decrease to;20% with ;200 corresponding transi-
tions, and a similar number of respective transitions brings
the errors ofrOB and rBO also down below 30%.

Dependence of the processing time on channel
number and length of record

To illustrate the speed of the fitting, the processing time was
measured on events lists of various lengths and different

numbers of channels. The processing time depends on many
parameters, including kinetic scheme, rate constants, and
initial parameter guesses. In the following experiments, the
C–O–B scheme was used withrCO 5 50, rOC 5 10, rOB 5
50, rBO 5 1000. Seed parameters were chosen based on a
quick estimate of the cycle-time, obtained by counting the
number of transitions per unit time. Fitting was performed
on a Pentium 266 MHz machine.

FIGURE 8 Dependence of the scatter of the estimates on the length of
the record. Channel currents of different lengths were simulated with the
same fixed set of parameters (C–O–B scheme,rCO 5 50, rOC 5 10, rOB 5
2, rBO 5 1000, N 5 4), idealized withtd 5 0.2/rBO, and fitted. (A)
Normalized parameter estimates plotted against total event number. Sym-
bols and error bars are means and SD from 10 simulations. Because
rOB/rOC 5 0.2, errors ofrOB andrBO are larger than those ofrCO andrOC

for any given number of total events. All errors decrease with larger
numbers of events. (B) Lengths of the error bars fromA plotted against
total event number. Alternative abscissa (red) describes expected numbers
of transitions along represented pathways. Error sizes for various rate
constants are more uniform with respect to the alternative abscissa:;200
corresponding transitions keep the errors below 20% forrCO andrOC, and
below 30% forrOB and rBO.
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Results are summarized in Fig. 9. Channel number was
varied from 1 to 6, with event numbers of 3300, 10,000, or
30,000. Red bars represent the mean of three measurements.
As expected, the processing time (note logarithmic ordi-
nate) increases with channel number (as the square of the
number of macroscopic states), but remains independent of
the length of the data. Typical processing times were;1 s
for 1 channel,;6 s for 4 channels, and;33 s for 6
channels.

As a comparison, the same events lists were analyzed
with MIL, part of the QuB single-channel analysis package,
which maximizes the likelihood of the joint probability
density for the whole dwell time series (Qin et al. 1996,
1997). Results are shown as blue bars in Fig. 9. Large
differences in processing time are apparent forN 5 4 and 5,
where MIL typically converged after;500 s and;5000 s,
respectively, compared to;6 s and;14 s for the present
histogram method. With 6 channels, MIL failed to initialize,
but the extrapolated processing time is;50,000 s (14 hours,
cyan bars in Fig. 9) as opposed to;30 s with the method
given here. The resulting estimates were essentially identi-
cal for the two approaches.

Applicability to different gating schemes

Two three-state schemes are encountered frequently in ion-
channel physiology. In previous sections, the C–O–B

scheme (open-channel block model) was tested extensively.
A second common scheme is C1–C2–O, referred to as the
ligand-gated channel. Both schemes result in a bursting
gating pattern for a single channel, where openings occur in
clusters interrupted by short (flickery) closures, and flanked
by long interburst closures.

In single-channel records, burst analysis can be applied,
where closings shorter than some cutofftc are ignored.
Various criteria exist for choosingtc (Jackson et al., 1983;
Magleby and Pallota, 1983; Colquhoun and Sakmann,
1985), all of which give satisfactory results if the flickery
closures are short compared to the interburst time, and the
relative frequencies of the two types of closure are not very
different. This is equivalent to filtering, which, as shown by
Roux and Sauve´ (1985), will not distort subsequent estima-
tion of the slow transitions if the latter are slow compared to
the filter. This approach becomes problematic, however,
when many channels are present, because short events can
arise from mirroring transitions of two different channels
occurring close to each other in time. As shown earlier in
this paper, even short dead times can seriously distort the
estimation of slow rate constants in multichannel patches,
unless appropriate care is taken (see, e.g., Fig. 7B, cyan
symbols).

In records with multiple channels, if the open probability
of a single channel is very low, such that the average
number of open channels at any given time is small, Jackson
(1985) showed that the rate constants can be estimated from
the distribution of closed times (all channels closed) and
open times (one channel open, no superimposed openings).
If the activity of the channels is high, however, such events
become rare, limiting the applicability of that approach.

The method described in this paper was also tried on the
C1–C2–O model, with channel numbers ranging from 1 to 6,
and, as with the C–O–B scheme, was found to perform well,
regardless of the open probability (0.01# Po # 0.99) of the
channels. Table 1 summarizes the results of a more limited
range of fitting experiments for the C1–C2–O scheme. Es-
sentially identical results were obtained, although after
much longer processing times (as in Fig. 9), with the more
sophisticated program MIL (Qin et al. 1996, 1997).

CONCLUSION

A procedure has been developed for quickly and reliably
extracting rate constants of channel gating from patch re-
cordings containing multiple channels. The algorithm is
based on a simultaneous maximum likelihood fit to the
dwell-time histograms for the various conductance levels. It
does not exploit correlations between adjacent events, but
results in a greatly reduced computational task and, hence,
processing time. This feature makes it attractive for the
analysis of multichannel patches in cases where the gating
scheme itself is already known and relatively simple. Of
course, patches with multiple channels, and analyses using

FIGURE 9 Comparison of processing times for simultaneous histogram
fitting (red bars) and complete time series fitting (MIL,blue bars). Bars
are means of three measurements. Processing time for simultaneous his-
togram fitting increases proportionally with the square of the number of
macroscopic states, but is independent of the length of the record. Typical
processing times were 1, 2, 3, 6, 14, and 33 s forN 5 1, 2, 3, 4, 5, and 6,
respectively. For comparison, MIL produced identical estimates after pro-
cessing times of 3, 6, 50, 500, and 5000 s forN 5 1, 2, 3, 4, and 5,
respectively, and 10,000 events. Extrapolated processing time forN 5 6
(cyan bars) is ;50,000 s (14 hours) with MIL.
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this algorithm, are not the tools of choice for solving com-
plicated schemes, nor for distinguishing between gating
models. For those purposes, single-channel records are de-
sirable, along with correlation analysis using event se-
quence fitting or two-dimensional histograms.

The theory is illustrated forN identical and independent
channels, but can be applied straightforwardly to more
general cases. The algorithm is tested on two common
three-state schemes, C–O–B and C1–C2–O, both of which
yield a burst-type gating pattern, but it is expected to work
on other simple (e.g., three-state) schemes as well. It can be
recommended for such schemes when 3 or more channels
contribute to the recorded current, because a considerable
decrease in processing time is gained in comparison to more
advanced routines (see Fig. 9 for a comparison with MIL,
the fitting routine in the QuB package), without loss of
accuracy.

Accurate parameter estimates are obtained from as little
as a few hundred events, if there are no large discrepancies
between the frequencies of occurrence of the single-channel
gating steps. In contrast, the accuracy increases with longer
recordings, without any cost in processing time or memory
space requirement.

A robust correction for missed events due to filtering
allows the algorithm to be applied to noisy data. Limitations

for such cases are summarized in Eq. 17, which provides
acceptable limits for the relationship between speed of
channel gating and magnitude and bandwidth of noise.

APPENDIX A: LIKELIHOOD FUNCTION IN THE
CASE OF BINNING LIMITS

Suppose that lower and upper bin limitstk,min and tk,max are imposed.
Quantities analogous to those in Eqs. 5, 6, and 4, conditional on being
binned, are defined as

pctlvl9~k! 5 P~event is levelku event is binned), (A1)

p9ki 5 P~tk,i # dwell time, tk,i11u

event is levelk and event is binned), (A2)

P9~k, i! 5 P~event is levelk and

tk,i # dwell time , tk,i11u event is binned). (A3)

Next, Pk,binned is defined as the fraction of all observed levelk events
predicted to be binned given bin limitstk,min and tk,max,

Pk,binned5 P~event is binnedu event is levelk!

5 surv{k} ~tk,min! 2 surv{k} ~tk,max). (A4)

It follows from the theory of probabilities that

pctlvl9~k! 5
pctlvl~k! z Pk,binnedOj51
N pctlvl~j! z Pj,binned

, (A5)

and

p9ki 5
pki

Pk,binned
. (A6)

The probability of an event falling into theith bin of the levelk histogram,
conditional on being binned, is given by

P9~k, i! 5 pctlvl9~k! z p9ki 5
pctlvl~k! z pk,iOj51

N pctlvl~j! z Pj,binned
. (A7)

Proceeding analogously to steps 7 and 8 in the main text, the likelihood
function becomes

L9~Q! 5 P
k50

N P
i51

rk

P9~k, i!nk, i

5 P
k50

N P
i51

rk F pctlvl~k! z pk,iOj51
N pctlvl~j! z Pj,binned

Gnk, i

, (A8)

TABLE 1 Parameter estimates for the C1–C2–O3 scheme

r12 r21 r23 r32 N td

True value 50 800 200 100 2 0.2
Estimate 566 11 7506 215 1716 55 976 5

True value 50 500 500 100 2 0.2
Estimate 506 4 4806 103 4376 67 976 4

True value 50 200 800 100 2 0.2
Estimate 496 9 1896 26 7216 25 956 2

True value 50 800 200 100 4 0.2
Estimate 476 3 6166 14 1666 17 996 2

True value 50 500 500 100 4 0.2
Estimate 506 8 4466 90 4206 30 956 3

True value 50 200 800 100 4 0.2
Estimate 486 4 1796 16 7016 94 946 5

True value 50 800 200 100 6 0.2
Estimate 516 3 6166 50 1526 11 986 2

True value 50 500 500 100 6 0.2
Estimate 526 6 4806 99 4396 43 966 2

True value 50 200 800 100 6 0.2
Estimate 406 5 1386 26 6446 66 946 1

True value 50 200 800 100 4 0.0
Estimate 526 7 2446 29 8946 60 1006 4

True value 50 200 800 100 4 0.2
Estimate 486 4 1796 16 7016 94 946 5

True value 50 200 800 100 4 0.4
Estimate 496 5 2316 45 9606 192 1086 10

Rates are s21, td is ms, errors are SD (n 5 5).
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while LL9(Q), defined asLL9(Q) 5 ln(L9(Q)), is given by

LL9~Q! 5 O
k50

N O
i51

rk

nk,i z ln pk,i

1O
k50

N

nk z ln pctlvl~k!

2ntzlnFO
k50

N

pctlvl~k! z Pk,binnedG , (A9)

wherent 5 (k50
N nk is the total number of binned events.

APPENDIX B: INTRODUCING ADDITIONAL
CONSTRAINT OF FIRST DWELL > td

Because of the properties of a stationary Markov system (see e.g.,
Colquhoun and Hawkes, 1977), Eq. 13 can be rewritten in the form,

surv{k} ~t, td!

5P~no observable leaving from$k% before time

t 2 tdu entered$k% at time2td after an

observable stay in$k#% and stayed in$k% until time 0)
(B1)

The expression in Eq. B 1 has the formP(CuA andB) 5 P(C andA and
B)/P(A andB), whereC 5 no observable leaving from {k} before timet 2
td, A 5 entered {k} at time 2td after an observable stay in {k#}, B 5 stayed
in { k} between time2td and 0. Following the reasoning of Roux and Sauve´
(1985),

P~C andA andB!

5
pk~`!TQkk# eQk#k#td~2Qk#k#

21)Qk#keQkktd

pk~`!TQkk#1k#
eQ̂kk(t2td)1k, (B2)

P~A andB! 5
pk~`!TQkk#e

Qk#k#td~2Qk#k#
21!Qk#ke

Qkktd1k

pk~`!TQkk#1k#
, (B3)

from which the survivor function can be assembled:

surv{k} ~t, td! 5 H 1 for t , td
@initial] k

TeQ̂kk(t2td)1k for t $ td
, (B4)

where

Finitial] k
T 5

pk~`!TQkk#e
Qk#k#td~2Qk#k#

21!Qk#ke
Qkktd

pk~`!TQkk#e
Qk#k#td~2Qk#k#

21)Qk#ke
Qkktd1k

, (B4a)

Q̂kk 5 Qkk2Qkk#(I k#2eQk#k#td)Qk#k#
21Qk#k

(as in Eq. 12b). (B4b)
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