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ABSTRACT We have used a lamellar phase made of a nonionic surfactant, dodecane and water, as a model membrane to
investigate its interactions with macromolecular inclusions bringing together two membranes, i.e., acting as macromolecular
snaps. In systems devoid of inclusions, the interlamellar distance depends on the total volume fraction of membranes F. We
show that, in presence of a transmembrane protein, or of several de novo designed peptides of different length and
composition, the lamellar phase undergoes a binding transition. Under such conditions, the interlamellar distance is no longer
proportional to F21, but rather to the surface concentration of snaps within the membrane. It also appears that, in the
presence of the hydrophobic segment of peptide snaps, the length of the inclusions must be at least equal to the hydrophobic
length of the membrane to be active. Experimental results have been precisely fitted to a model of thermally stabilized
membranes, decorated with snaps. However, in the presence of inclusions, the parameter describing the interactions
between membranes, has to take into account the length of the inclusion to preserve good predictive capabilities.

INTRODUCTION

A lamellar phaseLa is a stack of membranes made of
amphiphilic molecules separated by a solvent. The interac-
tions of dilute lamellar phases with macromolecules have
been documented in the last few years. These macromole-
cules can be located in different loci of a membrane whether
confined within bilayers or adsorbed on their surface, they
can modify significantly inter- or intramembrane interac-
tions. Such interactions have been discussed theoretically
(Daoud and de Gennes, 1977; Brooks and Cates, 1993) and
confirmed experimentally (Bouglet and Ligoure, 1999).
However, most of these models have been applied to poly-
mers displaying a Gaussian-like structure in bulk.

In the present work, we have been interested in more
organized inclusions and their interactions with lamellar
phases. Indeed, peptides and proteins have known se-
quences, they display a well-defined periodic structure such
asa-helices, and they are monodisperse. Furthermore, they
constitute a biologically relevant experimental material. A
number of theoretical papers have attempted to describe the
behavior of such inclusions, in particular, the intricate in-
teractions of proteins and lipids in membranes or in com-
plex fluids, considered as membrane-mimetic systems (re-
viewed by Abney and Owicki, 1985; Marcelja, 1999). In the
literature, the size of the inclusions is, in general, of the
same order of magnitude as the bilayer itself. We have

investigated a different experimental situation, where the
size of the inserted protein is larger than that of the studied
bilayer. Although specific interrelations between the in-
tramembrane domains of proteins and peptides with the
surrounding lipids have been extensively documented, the
details of peptide chain interaction with the bilayer require
additional insights. They are crucial for the understanding of
the membrane architecture and for the stability of the active
conformation of membrane proteins that control a wide
array of vital functions.

Less studied nonionic surfactant systems constitute ap-
propriate, although simplified, models of biological signif-
icance, by avoiding long-range electrostatic interactions oc-
curring with ionic surfactants, often responsible of protein
destabilization (Honig and Nicholls, 1995). Moreover poly-
ethylene glycol alkyl ether ternary systems offer a rich
phase behavior, where the lamellar phases are dominated by
Helfrich repulsion forces. In the present work, we have
selected ternary systems that display La phases in a tem-
perature range, compatible with stable native protein con-
formation (Merdas et al., 1996, 1998). As shown in Fig. 1,
the lamellar phase is composed of a water layer interposed
between two surfactant monolayers (reverse membrane),
separated by the swelling oil. Under well-defined condi-
tions, we have observed the spontaneous insertion of hy-
drophobic peptides, leading to a two-phase transition: an
upper oil phase and an inclusion-containing La phase. These
inclusions can act as molecular snaps (Fig. 1) that bring
together two surfactant monolayers, inducing a correspond-
ing decrease of the Bragg distance. By doing so, one could
say that such inclusions create a normal water-swollen
membrane.

To shed light on the snap insertion mechanism, we have
systematically investigated a series of synthetic membrane-
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interacting, hydrophobic peptides of variable length and
various composition. We have compared the results that
those obtained with a transmembrane protein, previously
studied by us (Nicot et al., 1996): the Folch-Pi myelin
proteolipid, involved in demyelinating diseases (Greer et
al., 1996). By the interplay between the hydrophobic nature
of peptide sequences and their length, it is possible to
identify and to optimize the threshold conditions for bilayer
crossing and snap-like effect.

We have used the Helfrich approach to characterize the
various physical parameters of the lamellar phase without
inclusion (unbound state) and to analyze our data. Their
comparison with those obtained in presence of inclusions
(bound state) has allowed us to provide a theoretical expla-
nation of the observed mechanism in possible relation with
similar biological processes.

MATERIALS AND METHODS

Chemicals and ternary system

Tetraethylene glycol monododecyl ether (NIKKOL BL-4SY), denoted
C12E4, was obtained from Nikko Chemicals Co. Ltd. (Tokyo, Japan).
Tetraethylene glycol monodecyl ether, denoted C10E4, was from Sigma (St.
Louis, MO, USA). Anhydrous dodecane was purchased from Aldrich
Chemical Co. (Milwaukee, WI, USA) and isooctane Pro analysi grade,
from Merck (Darmstadt, Germany). Water was of MILLIQ type (Millipore
S.A., Molsheim, France).

The C12E4–water–dodecane system displays at low water content, a
wide and stable La reverse phase, at room temperature (Kunieda et al.,
1991; Merdas et al., 1996). The reverse lamellar phase (Fig. 1) has been
investigated at two different values of water thickness, defined as water-
to-surfactant volume ratiosw 5 0.58 and 0.98, and at various membrane
volume fractionF. In contrast, the C10E4–dodecane–water system displays
a very narrow lamellar phase. The smallest possibleF was found to be
F 5 0.29 withw 5 0.45.

Molecular inclusions

Myelin proteolipid

The proteolipid was purified from bovine brain as described elsewhere
(Vacher et al., 1989). In the present work, a slight modification was carried
out as follows: after the first isooctane precipitation, the proteolipid, spun
at 1000 rpm, was suspended in an excess of hexane large enough to remove
the remaining traces of isooctane. It was spun at 3500 rpm at 4°C for 10
min and dissolved in a mixture of chloroform-methanol 2/1 (volume/
volume). We have shown previously (Vacher et al., 1989) that, under the
above experimental conditions, about 10 lipid molecules remain tightly
bound to one protein molecule. Furthermore, thiol groups are preserved, as
well as thioester linkages between thiol groups and six covalently bound
fatty acid molecules, found crucial for preservation of the native confor-
mation. In addition to the presence of fatty acids, the amino acid compo-
sition makes this protein one of the most hydrophobic found in the
literature (Weimbs and Stoffel, 1992). Its four transmembranea-helices
are composed of 27–29 amino acids and correspond to an average length
of 42 Å per hydrophobic helix.

Synthetic Peptides

We have investigated the behavior of a series of hydrophobic peptides of
various length of knowna-helical structure (Davis et al., 1983; Liu and
Deber, 1997). Two of them were made less hydrophobic by the intro-
duction of alanine residues into their sequence. The peptides Lys-Lys-
(Ala)3-Leu-(Ala)4-Leu-(Ala)2-Trp-(Ala)2-Leu-(Ala)3-(Lys)4-Amide, denoted
(Ala-Leu 18), and Lys-Lys-Gly-(Leu)8-Lys-Lys-Ala-Amide, denoted
(Leu)8, were obtained from Neosystems (Strasbourg, France). The peptides
Ac-Lys-Lys-Gly-(Ile-Ala)4-Lys-Lys-Ala-Amide denoted (Ile-Ala)4, Ac-
Lys-Lys-Gly-(Leu)12-Lys-Lys-Ala-Amide denoted (Leu)12, and Lys-Lys-
Gly-(Leu)16-Lys-Lys-Ala-Amide denoted (Leu)16 were synthesized ac-
cording to Sereda et al. (1993). By assuming that all the residues in an
a-helical conformation have an amino acid residue translation of 1.5 Å per
residue (Cantor and Schimmel, 1980), the length of the peptides is 27, 12,
12, 18, and 24 Å, respectively.

Sample preparation

The sample preparation is the same for the proteolipid and the various
peptides. The macromolecule and the surfactant both in chloroform-meth-
anol solution, are mixed in appropriate ratios, evaporated to dryness under
a stream of nitrogen, and further dried under vacuum over phosphorous
pentoxide for three hours. The solubilization of the macromolecule is
carried out at 32°C, in C12E4 by adding a weighed amount of dodecane and
water to the dessicated mixtures. Few minutes of sonication at that tem-
perature are sufficient to obtain an isotropic, optically clear, reverse mi-
cellar solution, ready for a spectroscopic measurement of protein concen-
tration. The transition to the lamellar phase is obtained by lowering the
temperature under 29°C. After 7 days of equilibrium at 20–22°C, the
volume of dodecane expelled from the La phase reaches its maximum, and
a new lamellar phase is ready for measurements.

In the C10E4 ternary system, the myelin proteolipid can be solubilized
in the reverse micellar phase above 34°C. However, after lowering the
temperature, the phase diagram of the system becomes different from that
of C12E4: a two-phase system is then observed between the micellar and
lamellar phases (20–22°C), leading to the precipitation of the proteolipid.
In contrast, under similar conditions, the hydrophobic peptides remain
soluble.

Small angle x-ray Scattering

The La phase is transferred in Mark-Ro¨hrchen capillaries of 1.5 mm
diameter and sealed. The x-ray generator was a copper rotating anode

FIGURE 1 Diagram of a molecular snap embedded in a reverse lamellar
phase. The hydrophobic length of the snap isdp and the length of its
hydrophobic part in contact with oil isdp. The periodicitydB of the
lamellar phase is the sum of the mean distance between membranes,d, and
the bilayer thicknessd.
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machine operating at 40 kV and 25 mA. The x-ray apparent source had
dimensions 0.13 0.1 mm. A vertical mirror acts as a total reflector for the
lKa 5 1.54 Å wavelength, eliminates shorter wavelengths of the beam, and
directs the x-rays on the positive proportional counter. A nickel filter
attenuates the Kb wavelength. The dimensions of the beam on the counter
were 3 mm vertically and 0.3 mm horizontally. The counter had a window
of 3 mm height, a 50 mm useful length and a 200mm spatial resolution.
The distance between the sample and the counter was 802 mm. The
measurements were carried out at 20–22°C. Small angle x-ray scattering
(SAXS) data were analyzed using the general equation for the scattered
intensity derived by Nallet et al. (1993).

THEORETICAL BACKGROUND

SAXS

This type of experiments yields essential information con-
cerning the structure and elastic constants of the studied
phase. The repetition Bragg distancedB in a lamellar phase
is obtained from peak positionq0,

dB 5
2p

q0
.

In the peak vicinity, the signal varies asuq 2 q0u 5 I12h

where the Caille´ (1972) exponenth is defined as

h 5
pkBT

2dB
2 ÎKB#

, (1)

whereB# describes interlamellar interactions andK is related
to k, the bending constant of a single membrane, by the
relationK 5 k/dB.

Both elastic parameters can be deduced by fitting the
x-ray spectra (Roux and Safinya, 1988; Lei et al., 1995;
Nallet et al., 1993). In this work, we have selected the
approach of Nallet et al. (1993), which allows the calcula-
tion of h, dB, and the thickness of the polar part of the
membrane. We have added 16 Å to the polar part (water and
headgroup) of the membrane, representing the length of two
C12E4 surfactant tails (Klose et al., 1995) to obtain the total
membrane thicknessd (Fig. 1). This approach leads to the
dRX values in Tables 1 and 3.

Dilution law

For an undeformed flat membrane, its surface coincides
with thex–y plane. Then a simple geometrical model shows
that the variation ofdB with F the membrane volume
fraction in the sample, is connected tod by

dB 5
d

F
.

For a flexible membrane, its true areaS does not coincide
with its projection on thex–y base,SB. The dilution law

must then be written as

dB 5
d

F

S

SB
.

For a rigid membraneSB 5 S and for a flexible membrane
(Helfrich, 1985),

S

SB
5 1 1

kBT

2pk
lnSj\

aD ,

wherea is the surfactant molecular dimension (Golubovic
and Lubensky, 1989), and

j\ 5 Î32

3p Î k

kBT
~dB 2 d!

is related to the largest wavelength of the fluctuating mem-
brane. The dilution law becomes then (Roux et al., 1992)

dB 5
d

F
~a 2 b ln F!, (2)

where

a 5 1 1
kBT

4pk
lnSÎ 32k

3pkBT

d

aD
and

b 5
kBT

4pk
.

The fit of Eq. 2 allows the estimation ofk.

Binding transition in a lamellar phase
including snaps

Lyotropic lamellar phases can be found in bound or un-
bound states (Leibler and Lipowsky, 1987; Sens et al.,
1997). The transition between the two states can be driven,
for instance, by van der Waals interactions. Below a critical
value of these interactions, the lamellar phase is unbound
and the intermembrane distance is fixed by the global con-
centration of membranes. If van der Waals interactions are
above the critical value, a bound lamellar phase is observed,
and the intermembrane spacing is fixed by the balance
between the van der Waals interactions and the Helfrich
repulsion between membranes. In the present work, we have
observed a transition to the bound state induced by molec-
ular snaps. When snaps are added to a lamellar oil-swollen
phase, we observe that, after a lag period, an upper oil phase
forms on the top of the snap-containing La phase.

In the following section, we describe the classic Helfrich
theory, which we will further extend to take into account the
presence of snaps in the membrane.
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Periodicity of an unbound lamellar phase

We first consider a stack of membranes of zero thickness
and of surfaceS, at a distanced from each other. In Monge’s
representation, the reference plane of a membrane is taken
parallel to the planexy. In the unbinding form (van der
Waals interactions cannot overcome the repulsion), the ther-
mal fluctuations around such plane are described by the
displacement vectoru(rW) along thezaxis. Two characteristic
lengths are associated with these fluctuations (Gompper and
Schick, 1994):

• j' measures the mean fluctuation amplitude along thez
axis. This parameter is equal to the mean amplitude of
displacementj' 5 =^u2(rW)&.

• j\ is related to the largest wavelength of the fluctuating
membrane.

The energy of this lamellar phase can be written

E 5 EFK2 S­2u~rW!

­x2 1
­2u~rW!

­y2 D2

1
B#

2S­u~rW!

­z D2G d3rW. (3)

A Fourier transform of the displacement,

u~rW! 5
1

~2p!3 E uqe
iqWzrWd3q,

and the use of the equipartition theorem for each energy
mode leads to the following expression of the mean qua-
dratic value ofuq,

^uuqu2& 5
V

~2p!3K

kBT

q'
4 1 ~1/l2!q\

2, (4)

where l 5 =K/B# is the smectic penetration length (de
Gennes, 1974), andV is the volume of the lamellar phase.

The periodicity of the lamellar phase, characterized by
the repetition distance,d, is reflected in the reciprocal space
by a wave vectorq\, which has the value ofq0 5 2p/d.
Because q\ 5 0 everywhere except forq\ 5 q0, the Parseval
theorem gives after integration onq\:

j'
2 5 E ^uq

2& dqW 5
1

2pk E
p/ÎS

p/a kBT

q'
4 1

1

l2 S2p

d D2 q' dq'. (5)

Integration of Eq. 5 leads to

j'
2 5

kBT

4p3k

p

2
ldFarctanSS1aD

2p

2
ldD 2 arctanS1Sp

2
ldDG .

(6)

A natural lengthj\ appears in the arctangent to obtain a
dimensionless term. It differs from the value found by de

Gennes (1974) by=p/2,

j\ 5 Îp

2
ld. (7)

Taking into account (Helfrich and Servuss, 1984)

j' <
d

Î6
, (8)

Eq. 6 becomes

d2 5
3kBT

2p3k
j\

2FarctanSj\
2

a2D 2 arctanSj\
2

SDG . (9)

The terms between brackets take into account the contribu-
tion of surrounding membranes, and constitute a correction
of the equation established by Nicot et al. (1996). If we
consider a membrane of finite thicknessd and periodicity
dB, the distance between two neighboring membranes will
be d 5 dB 2 d. Now, we will consider the presence of an
inclusion.

Periodicity of a bound lamellar phase

For a low surface concentration of snaps,C, the average
distance between two inclusions,,, does not impose any
cut-off on the fluctuating membrane wavelength. The ex-
pression ofd (Eq. 9) remains valid, and it is expected thatd
anddB also remain independent ofC. In contrast, whenC
increases, then, becomes the pertinent length as soon as it
becomes smaller or equal to the largest wavelength of the
fluctuating membrane. As a consequence, the presence of
molecular snaps will prevent transversal fluctuations of
wavelengths larger than, and Eq. 9 is still valid, but with
j\ 5 ,. If we suppose that each inclusion resides in the
center of a square of length,, then a simple geometrical
consideration allows us to link, to the surface concentra-
tion of snaps,C.

, 5 ÎS

N
5

1

ÎC
, (10)

whereN is the number of snaps.
The concentrationC is linked to the molar ratioR of

snap-to-surfactant by the relationC 5 R/a2 wherea2 rep-
resents the molecular area occupied by a surfactant mole-
cule. For C12E4, the value ofa2 5 42 Å2 (Klose et al.,
1995).

Taking into account Eqs. 9 and 10 for membranes of
thicknessd, the Bragg distance can be written as (G. Gomp-
per, personal communication)

dB 5 d 1 A~k, T!C20.5ÎarctanS 1

a2CD 2 arctanS 1

SCD ,

(11)

860 Taulier et al.

Biophysical Journal 78(2) 857–865



with

A~k, T! 5 Î3kBT

2p3k
.

Equation 11 shows thatdB is a decreasing function ofC and
tends tod, the thickness of the bilayer, when the concen-
tration of inclusions increases. For high concentrations,dB

varies asC20.5 and is equivalent to the model proposed by
Nicot et al. (1996). WhenC tends to zero, the corrective
term under the root becomes preponderant, rounds up the
function, and leads to a plateau for very lowC values. Its
origin can be easily understood becausej\ should be taken
as the characteristic length, as far as, is lower thanj\. In
principle, the fitting of Eq. 11 can yield the values ofd, of
the membrane rigidityk, that of the membrane surfaceS,
and that of the surfactant molecular areaa2. In fact, we have
fixed the values ofd, determined experimentally by SAXS,
and the molecular average areaa2. The fitting of experi-
mental points by Eq. 11 allows us to calculatek.

The Caillé exponent h(dB, d)

We have modified the classical Helfrich theory of fluctuat-
ing membranes, only by stating that a cut-off to the longest
wavelength of membrane fluctuations depends on snap con-
centration (Eq. 11). We remain, therefore, in the Helfrich
regime; indeed Helfrich (1978) has shown that, for purely
steric interactions,

B# 5
9p2~kBT!2

64k

dB

~dB 2 d!4 . (12)

ReplacingB# in Eq. 1 by the above expression andK by
k/dB, we obtain (Roux and Safinya, 1988)

h 5
4

3S1 2
d

dB
D2

. (13)

The fit of the SAXS spectra yields the values ofh anddB,
while the linear fit of Eq. 13 leads tod. It could then be
expected that Eq. 13 remains valid in the presence of
inclusions-snaps, as well as for bare membranes.

RESULTS AND DISCUSSION

Unbound state

In the La phase of the ternary system C12E4–dodecane–
water, the membrane of thicknessd is composed of a water
layer interposed between two surfactant monolayers, as
depicted in Fig. 1. A characteristic SAXS spectrum of such
a system is represented in Fig. 2, in both the unbound and
the bound state. The broadness of the spectra originates
from nonionic surfactant membranes, stabilized by the sole
steric interactions. The small angle excess scattering can
also be attributed to the characteristics of the system (Oda

and Litster, 1997). We have calculated from these spectra
the values ofh, dB, andd, according to Nallet et al. (1993).

In Fig. 3, we have represented the dilution law in the
unbound state, whereF z dB has been plotted as a function
of ln(F) at two water-to-surfactant volume ratiosw, for
surfactants C12E4 and C10E4. The fit of Eq. 2 to experimen-
tal points, for C12E4, leads tok 5 1.56 0.2kBT (1.66 0.2
kBT), andd 5 46 Å (61 Å), respectively, forw 5 0.58 (w 5
0.98) whereask 5 0.76 0.2kBT, andd 5 40 Å for C10E4.
The values of the bending constant of a single membranek,
are in good agreement with those given by Sicoli et al.,
1993. The membrane rigidity does not seem to vary with its
thickness, although this is not always the case, as shown by
Freyssingeas et al. (1996). Note thatd values using Eq. 2 are
slightly lower that those deduced from SAXS experiments
(Table 1). We have checked that this small discrepancy does
not significantly affect the fittedk values.

In Fig. 4, we have plottedh, the Cailléexponent, versus
dB

21. The continuous lines are fits to Eq. 13 for the two
values of membrane thicknessd. In Table 1, we compare the
values ofd returned from the fit of SAXS spectra from
dilution experiments and from Eq. 13. It appears, therefore,

FIGURE 2 Typical SAXS spectra of lamellar phases at membrane vol-
ume fractionF 5 0.28. Bare membrane (E) and membranes decorated
with snaps at increasing concentrations of peptide Leu12: 1, C 5 1.1025;
F, C 5 2.5 1025.

FIGURE 3 Deviation from the ideal dilution law in C12E4 La phase, for
two different water-to-surfactant volume ratios:F, w 5 0.58, andŒ, w 5
0.98, and in C10E4 La phase}, w 5 0.45. From the linear fit to Eq. 2, one
gets the membrane thicknessd (Table 1) and rigidityk.
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that all the results obtained in the unbound state are in very
good agreement with the Helfrich theory.

Bound state

In contrast to the unbound state, where we find a relation
betweendB andF, in the bound state,dB does not depend
anymore onF, but on C, the surface concentration of
myelin protein, as represented in Fig. 5. The continuous line
represents the fit to Eq. 11, and the experimental points
carried out at several values ofF, gather, as expected, on
the same universal curve. From the fit, we obtaink 5 2.86
0.4kBT for both values of membrane thicknessd, instead of
' 1.5kBT 6 0.2 for bare membranes. The values ofk have
been obtained by two complementary approaches. For the
unbound state, it was determined by a classical method, i.e.,
the correction of the dilution law (see Eq. 2), whereas, for
the bound state, the value ofk was deduced from Eq. 11.
Because the relation betweenj' andd (Eq. 8) remains still
a matter of discussion, the difference between the two
values ofk may not be too significant.

It should be noted that Eq. 11 describes the variation of
dB with concentration of inclusion-snaps, but not with their
geometry. Indeed, when the length of the hydrophobic part
of the inclusiondp (Table 2) exceeds the length of the
aliphatic part of the bilayer, it is expected according to Fig.
1 that, with the increase ofC, dB will tend to d 1 dp, where
dp represents the length of the inclusion remaining in con-
tact with oil. This is indeed observed in Fig. 5, wheredp 5

dp 2 16 5 26 Å. For a membrane thickness of 51 Å, the
asymptote of the curvedB versusC, reaches a value ofd 1
dp 5 77 Å, in good agreement with the value ofdp. As a
consequence, Eq. 11, which extrapolates tod for high values
of C, does not apply anymore for very high values of
inclusion concentration. In brief, Eq. 11 is valid forC #
5.1025, this value being close to the solubility limit of the
myelin proteolipid in the system.

To obtain further information about the inclusion-snap
mechanism, we have explored the behavior of a series of
synthetic peptides, designed to form spontaneously stable
a-helices in the hydrophobic domain of bilayers, with a
perpendicular orientation to the plane of the membrane
(Huschilt et al., 1989; Zhang et al., 1995; Deber and Li,
1995). In Fig. 6, we observe that, for peptides (Leu)16 and
(Leu)12, the Bragg distancedB, decreases as a function ofC,
the snap concentration, in a manner identical to that ob-
tained in Fig. 5 for the four-a-helix bundle of the myelin
proteolipid. In contrast, for the analog but shorter peptide
(Leu)8, dB remains unchanged whatever the peptide concen-
tration. The less hydrophobic peptides: (Ala-Leu 18) and
(Ile-Ala)4, do not affect the Bragg distance, although the

TABLE 1 Unbound state: membrane thickness determined
from SAXS (dRX), from a fit to Eq. 2 (ddil) and from a fit to
Eq. 13 (dh) for different water-to-surfactant ratios,
w, and surfactants

Surfactant w
dRX

(Å)
ddil

(Å)
dh

(Å)

C12E4 0.58 536 2 466 1 516 2
C12E4 0.98 646 4 616 1 616 4
C10E4 0.45 496 2 406 1 466 4

FIGURE 4 Variation of=h vs. 1/dB. From the linear fit to Eq. 13, the
membrane thickness is obtained (Table 1). Symbols are the same as in Fig. 3.

FIGURE 5 Variation ofdB vs. the myelin proteolipid concentration,C,
the surface concentration of snaps, at two different values of membrane
thickness and at differentF values:�, d 5 64 Å andF 5 0.20;Œ, F 5
0.26;F, d 5 51 Å and forF 5 0.27;■, 0.12,}, and 0.19, respectively.
The curves are fits to Eq. 11.

TABLE 2 Characteristics of hydrophobic peptide models

Snap

Length of
Hydrophobic

a-Helices:
dp (Å)

Hydrophobicity
Scale*

Snapping
Effect

Myelin proteolipid 42 N.D. Yes
(Ala-Leu 18) 27 0.703 No
(Leu)16 24 0.779 Yes
(Leu)12 18 0.763 Yes
(Leu)8 12 0.738 No
(Ile-Ala)4 12 0.728 No

*Calculated from the mean fractional area loss according to Lesser et al.
(1987)
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length of (Ala-Leu 18) seems sufficient to span the bilayer.
These results are summarized in Table 2: it appears that the
complete crossing of the bilayer requires not only a suffi-
cient peptide length, but also includes a hydrophobicity
threshold (Liu and Deber, 1997), as illustrated by peptide
(Ala-Leu 18). In contrast to zwitterionic lipidic membranes,
where Liu and Deber, (1997) have observed a transmem-
brane insertion of (Ala-Leu 18), the latter peptide does not
seem to span a nonionic bilayer by a spontaneous hydro-
phobic mechanism. This is confirmed by the use of a
hydrophobicity scale based on the mean fractional area loss
by residue (Lesser et al., 1987). From Table 2, it is obvious
that, for any value under about 0.750, a peptide cannot
function as an active snap.

As for the unbound La phase, we have plotted the Caille´
exponent=h versusdB

21, after incorporation of molecular
snaps. Remember that, in contrast to the unbound lamellar
phase, the variation ofdB does not originate anymore from
F, but fromC, the concentration of the snaps. As illustrated
in Fig. 7, the relation is linear, indicating that Eq. 13 is still

valid under these conditions. However, in presence of mo-
lecular snaps, the picture is completely different: the results,
summarized in Table 3, reveal thatd does not correspond
anymore to the thickness of the membrane. For example, if
we consider the two membranes of thickness 51 Å and 64 Å,
after insertion of the myelin proteolipid, the value ofdh

obtained from the fit of Eq. 13, is 41 Å. If, now, we consider
the behavior of peptide snaps of various lengths, the values
of dh are close todp. They correspond to the length of their
hydrophobic sequences, and remain independent of the
membrane thicknessd. It appears, therefore, that, under
such conditions, interlamellar interactions cannot be de-
scribed anymore in terms of sole steric interactions: we have
to take into consideration the effect of macromolecular
inclusions.

On the phenomenological level of description, the ex-
pression ofB# in Eq. 12, remains valid for results involving
molecular snaps. It is worthwhile to note that, whereas, for
an unbound lamellar phase stabilized by Helfrich interac-
tions, d represents the membrane thickness, for the bound
lamellar phase we observe thatd ' dp, i.e., the length of the
a-helical hydrophobic part of the protein or peptide snap.
Therefore, it is, not surprizing that its contribution appears
in the expression ofB# , describing the interactions between
membranes. In Fig. 8, we represent experimentalB# values
deduced from Eq. 1 for three types of snaps, using the value
of k obtained by fitting Eq. 11 and the valueh obtained by
fitting the x-ray spectra. The solid line in Fig. 8 represents
the variation ofB# with dB given by Eq. 12, whered is the
membrane thickness andk ' 2 kBT. The dashed curves
have been obtained using Eq. 12, but replacingd by dp, the
length of the hydrophobic snaps.

For a given value ofdB, we observe that the presence of
snaps decreases the values ofB# and that the variation is
more important for shorter snaps. This result can be under-
stood by reference to Fig. 9, where three different situations
are represented for the same average distance between the
membranes.B# is related through Eq. 12 todB for the bare
membrane (Fig. 9A). In the presence of longer snaps (Fig.
9B), the space available for membrane fluctuation is locally
increased, leading to the local decrease of interactions be-
tween the membranes, and, at the same time, ofB# . This

FIGURE 6 Universal behavior ofdB vs. C. All the points gather on the
same curve. C12E4 La phase:F, myelin proteolipid;■, Leu16; and },
Leu12. C10E4 La phase:{, Leu12.

FIGURE 7 Variation of=h vs. 1/dB. C12E4 La phase:d 5 64 Å: Œ,
myelin proteolipid.d 5 51 Å: F, myelin proteolipid;■, Leu16; and},
Leu12. C10E4 La phase:{, Leu12 andd 5 46 Å. The lines are fits to Eq.
13 (Table 3).

TABLE 3 Bound state: membrane thickness as determined
from SAXS (dRX) and from a fit to Eq. 13 (dh). Comparison with
the calculated hydrophobic length of different snaps (dp).
Obviously dh ' dp

Surfactant Molecular Snap
dRX

(Å)
dh

(Å)
dp

(Å)

C12E4

Myelin proteolipid 646 4 416 3 42
516 2 416 4 42

(Leu)16 526 1 226 3 24
(Leu)12 516 3 196 4 18

C10E4 (Leu)12 466 1 276 3 18
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situation is enhanced in Fig. 9C because the local distance
between the membranes is further increased when the length
of the snap is decreased.

Determinationab initio of the snap contribution in the
interaction term would be, in fact, the next logical step, but
its solution remains, up to now, very arduous in our hands.
Recently, several investigators have suggested models for
membrane inclusions, starting with an expression of the
Hamiltonian of the lamellar phase decorated with snaps
(Sens and Turner, 1997; Sens et al., 1997; Turner and Sens,
1999). However, they use the expression ofB# given by Eq.
12, and they are unable to fit correctly our experimental
data.

CONCLUSION

In summary, our experimental data are in excellent agree-
ment with a Helfrich-like theory of stacked membranes,
stabilized by thermal fluctuations. In Helfrich’s model of

sterical interactions, the interlamellar distancedB is a func-
tion of several parameters: the temperatureT, the rigidity
constant of a single membranek, the constant that describes
the interaction between membranesB# , and j\, which
is related to the largest fluctuation wavelength of the
membrane.

Molecular snaps induce a binding transition by bridging
adjacent membranes. We have postulated that the largest
fluctuation wavelength of the membrane is equal to the
lateral distance, between snaps. Since, is related to the
concentration of snaps in an La phase, our model allows us
to relate the interlamellar distancedB to the snap concen-
trationC. Taking this result into account, the fit to Eq. 11 is
excellent and all experimental points gather on a single
universal curved(C), as expected from the model.

SAXS experiments allow the determination of Caille´
parameterh. In La phases stabilized by thermal fluctua-
tions,h0.5 decreases linearly with a slope proportional to the
membrane thickness, whereasdB increases. When snaps are
present, we have verified that the linear relation is indeed
still valid. However, the slope then seems independent of
membrane thickness, but is instead proportional to the
length of the hydrophobic part of the snap. It seems reason-
able to state that when snaps are active, the interactions
between membranes, and thereforeB# , are modified. Be-
cause the slope ofh0.5 is due to the explicit expression ofB# ,
we have modified it in a heuristic manner to fit our exper-
imental data.

The interplay between the hydrophobic properties and the
length of the peptide sequence has allowed us to identify
and to optimize the size ofa-helices and their hydropho-
bicity scale, prerequisite for bilayer penetration and snap-
like effect (Table 2). In the absence of surfactant charges,
the studied phenomenon indicates the importance of hydro-
phobic driving forces in bilayer insertion of peptides and in
the conformational stability of transmembrane proteins
(Merdas et al., 1998). Such effects may be operative in the
protein scaffolding mechanism suggested for the proteolipid
function in native myelin (Edwards et al. 1989).

FIGURE 8 Variation ofB# vs. the lamellar period in C12E4 lamellar phase
decorated withF, myelin proteolipid,■, Leu16, and}, Leu12. Dashed
curves are obtained using Eq. 12 withd 5 dp, whereas the solid curve
corresponds to bare La whered is the membrane thickness. Note that, for
a fixed dB value, B# decreases when the hydrophobic length of the snap
decreases.

FIGURE 9 Diagram of the space
available for membrane fluctuation in
the vicinity of a snap bridging two
membranes, at an identicaldB value.
(A) Fluctuating bare membrane; dotted
lines represents roughly the amplitude
of the membrane fluctuation. When the
length of the snap decreases (B andC),
the space available for the upper and
lower membranes increases locally;
this leads to the decrease of interac-
tions between membranes.
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We are aware that many questions remain to be addressed
concerning biopolymers inserted in lamellar phases. For
example, what is the effect of physicochemical properties of
the inclusion, such as charge, volume, and hydrophobicity
on membrane flexibility? We expect that our results will
contribute to the elucidation of these questions and ulti-
mately provide a clearer understanding of a number of
membrane-vital mechanisms (rigidity, fusion, pore creation,
etc.). In addition, practical results may ensue from such
studies: for example, more efficient drug delivery systems
and/or new materials of therapeutic importance.
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