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Laboratoire de Biophysique Moléculaire et Cellulaire (URA CNRS 520), DBMS, C.E.A.-Grenoble, Grenoble, France

ABSTRACT Coexpression of the bwt and awt subunits of the bovine rod channel restores two characteristics of the native
channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test
whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place
of aspartate D604 in the b subunit as previously suggested (Varnum et al., 1995, Neuron. 15:619–625), we compared currents
from wild-type (awt and awt/bwt) and from mutated channels (aD604N, aD604N/bwt, and awt/bN1201D). The results show
that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the
b subunit. The D604N mutation in the a subunit and, to a lesser extent, coexpression of the bwt subunit with the awt subunit
reduce the open probability for cGMP compared to that of the awt channel. Interpretation of the data with the MWC allosteric
model (model of Monod, Wyman, Changeux; Monod et al., 1965, J. Mol. Biol. 12:88–118) suggests that the D604N mutation
in the a subunits and coassembly of a and b subunits alter the free energy of gating by cAMP more than that of cAMP binding.

INTRODUCTION

The cGMP-gated channels of retinal rods are responsible for
light-induced hyperpolarization of the photoreceptor cell:
hydrolysis of cGMP upon activation of the light-sensitive
cascade of phototransduction leads to closure of the chan-
nels and reduction of the cationic current that enters the cell
in the dark. Cyclic nucleotide-gated (CNG) channels are
directly activated by binding of cyclic nucleotide to a site
situated in the cytoplasmic C-terminal region. This site was
identified by its high sequence homology with other known
cyclic-nucleotide binding proteins: the CRP protein of
Escherichia coliand regulatory subunits of the cGMP- and
cAMP-activated protein kinases (Kaupp et al., 1989; Shabb
and Corbin, 1992). Within this site, a residue, situated near
the end of theaC helix of the binding site in the roda
subunit (D604), was shown to play an important role in
nucleotide specificity: substitution of the charged aspartate
residue by uncharged glutamine or asparagine in the rod
channel modifies the agonist specificity, and substitution by
the non polar methionine residue inverts the specificity,
which becomes cAMP. cIMP . cGMP (Varnum et al.,
1995). Both the rod and olfactory native channels are hete-
rooligomeric proteins, composed of at least two types of
subunits:a (CNG1) andb (CNG4) for the rod channel
(Chen et al., 1993; Ko¨rschen et al., 1995; Biel et al., 1996),
and subunit 1 (CNG2), subunit 2 (CNG5), and a recently
discovered CNG4.3 subunit related to the rodb subunit for
the olfactory channel (Liman and Buck, 1994; Bradley et
al., 1994; Sautter et al., 1998). For the olfactory channel,
coexpression of subunit 2 (Liman and Buck, 1994; Bradley
et al., 1994) or of CNG4.3 with subunit 1 was found to
increase the sensitivity to cAMP, whereas coexpression of

the three subunits almost restores native sensitivity (Sautter
et al., 1998). Fodor and Zagotta (1996), Gordon et al.
(1996), and Shammat and Gordon (1999) also report an
increased ratio of cAMP-induced to cGMP-induced currents
when the human rodb subunit is coexpressed with the
bovine rod a subunit. In the rodb subunit, as in the
olfactory subunit 2 and in CNG4.3, the residue correspond-
ing to the acid residue D604 in the roda subunit (or E581
in the olfactory subunit 1) is an uncharged residue (M in the
rat olfactory subunit 2, N in CNG4.3 and in the rodb
subunit). Fodor and Zagotta (1996) proposed that theb
subunit may be responsible for the increased sensitivity of
the native rod channel compared to the expresseda subunit
and suggested that the uncharged residue at the position
equivalent to D604 (N1201) might explain this effect.

Another characteristic of native rod channels is potenti-
ation of cGMP-induced currents by low concentrations of
cAMP (Furman and Tanaka, 1989; Ildefonse et al., 1992); a
communication concerning the study of this phenomenon
on expressed heteromeric channels has been published (Scott
and Tanaka, 1998), but it is not known whether it could be
related to a higher sensitivity of theb subunits to cAMP.

We report here a comparative study of the sensitivity to
cGMP and cAMP and of cAMP potentiation of cGMP-
induced currents of expressed channels consisting of bovine
a subunits or of coexpressed bovinea andb subunits. The
role of the residue in position 604 in thea subunit and in the
corresponding position in theb subunit (1201) is studied by
comparing currents from wild-type channels (awt andawt/
bwt) and from mutated channels (aD604N, aD604N/bwt,
andawt/bN1201D).

MATERIALS AND METHODS

Channel expression

The bovinea subunit cDNA (Kaupp et al., 1989) was a gift of Prof. U. B.
Kaupp. Theb subunit cDNA was amplified by polymerase chain reaction
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from bovine retinal cDNA, using oligonucleotide primers chosen according
to the published sequence (Ko¨rschen et al., 1995). Retinal mRNA was
prepared from fresh retinas with the Dynabeads mRNA DIRECT kit
(DYNAL), and cDNA was synthesized using the First-strand cDNA syn-
thesis kit (Amersham Pharmacia Biotech). The N-terminal domain, which
was shown to have no effect on the sensitivity to nucleotides (Ko¨rschen et
al., 1995), was deleted up to G571, and a methionine residue was intro-
duced before V572 for translation initiation. A Kozak consensus sequence
was engineered upstream of the ATG codon, and the truncated cDNA was
inserted in the high expression vector pGemHe downstream of the untrans-
lated sequence of theXenopusb-globin gene (Liman et al., 1992). The
cDNA sequence of ourb subunit from the codon corresponding to V572 is
100% identical to that of CNG4c (Biel et al., 1996), leading to several
modifications compared to the sequence published by Ko¨rschen et al.
(1995): S/A substitution at position 1283, R/A at position 1289, D/E at
position 1336, and insertion of A between D1336 and A1337 (all amino
acid numbers refer to the sequence of Ko¨rschen et al.). Mutations (aD604N
andbN1201D) were created by replacing the GAT (aspartate 604) codon
with AAT (asparagine) in thea cDNA, and the AAC (asparagine 1201)
codon with GAC (aspartate) in theb cDNA. Mutated sequences were
verified by sequencing.

Capped mRNAs were synthesized in vitro from linearized plasmids in
the presence of RNA cap structure analogs (New England Biolabs) and
injected intoXenopusoocytes (25 ng/oocyte for macroscopic currents or
0.25 ng/oocyte for single channels). For coexpression ofa andb subunits,
b mRNA anda mRNA were mixed and injected into the oocyte. To reduce
the probability of forming homomerica channels, theb:a mRNA ratio was
2 for all experiments (except for single-channel analysis, where it was 3).
Different ratios were not tested. Oocytes were incubated for 4–10 days in
Barth’s medium before measurements. As previously reported (Chen et al.,
1993; Körschen et al., 1995), the wild-typeb subunit did not form func-
tional channels when expressed alone.

Patch-clamp recording of excised
inside-out patches

The solution in the pipette and in the perfusion medium was 100 mM KCl,
10 mM EGTA/KOH, 10 mM HEPES/KOH (pH 7.2). The cytoplasmic face
of the patch was superfused by solutions containing variable nucleotide
concentrations, using a RSC100 rapid solution changer (Bio-Logic, Claix,
France). Currents induced by voltage steps (500 ms,680 mV) were
recorded with a RK-400 patch amplifier (Bio-Logic), low-pass filtered at
300 Hz, and digitized at 1 kHz (macroscopic currents, each record aver-
aged three times), or at 10 kHz and digitized at 33 kHz (single channels),
using pCLAMP 6.0 (Axon Instruments). For macroscopic currents, the
series resistance was compensated for (resulting value, 1 MV). Dose-
response curves were obtained by plotting the current at180 mV as a
function of nucleotide concentration after subtraction of the leak current.

Probability of channel opening

P0max(cGMP)(open probability at saturation of cGMP) was estimated by two
methods:

1. From the ratio of currents at saturation of cGMP in the absence and
in the presence of Ni21 (1 mM). Micromolar concentrations of cytoplasmic
Ni21 were previously shown to potentiate cGMP-induced currents (Ildefonse
et al., 1992; Gordon and Zagotta, 1995), and theImax(cGMP)/Imax(cGMP1 Ni)

ratio was shown to be very close to theP0max(cGMP)value obtained from
single-channel measurements for homomerica (wild type and mutated)
channels (Sunderman and Zagotta, 1999). The cGMP-induced currents
were measured several times (before and after addition of Ni21) until
stabilization; the effect of Ni21 was at maximum after 4–5 min. For these
experiments, high-grade KCl or NaCl (containing less than 0.025 ppm
transition metals; Merck) was used, and the HEPES concentration was

reduced to 5 mM. No EGTA or EDTA was added to the perfusion medium;
the solution in the pipette contained 200mM EDTA and 500mM niflumic
acid.

2. From single-channel records analysis: Amplitude histograms were
computed from single-channel records at180 mV (record duration: 16–38
s for awt, 10–50 s forawt/bwt, 18–77 s foraD604N), using Bio-Patch
software (Bio-Logic). Records were sampled at 33 kHz and numerically
filtered (Hanning window) at 4 and 1 kHz. The histograms were fitted with
two or three Gaussian curves.

Curve fitting

Fits of dose-response curves were calculated with Microcal Origin soft-
ware. The error on the value of the parameters calculated by the program
is error(i) 5 =(C(i)(i)zx2), whereC(i)(i) is the covariance matrix forn
parameters (i 5 1, n).

Hill equation

I/Imax 5 1/(1 1 (EC50/X)nH), where EC50 is the ligand concentration that
gives the half-maximum effect,nH is the Hill number, andX is the ligand
concentration.

Monod-Wyman-Changeux model

Assuming that the rod channel is a tetramer (Liu et al., 1996), the propor-
tion of channels in the R (open) state is given byR# 5 (1 1 X/KR)4/((1 1
X/KR)4 1 L (1 1 cX/KR)4), in which X is the ligand concentration,L 5
[T]/[R], T corresponds to the closed state, andc 5 KR/KT (dissociation
constants of the ligand for the R and T states). Predictions of this model
are, briefly, as follows:

1. The EC50 depends onKR, c, andL.
2. R# max depends onc andL.
3. L is independent of the ligand but is a characteristic of the protein; it

can therefore depend on the subunit composition of the channel (a alone or
a 1 b) and can be modified by a mutation. ModifyingL is expected to shift
the dose-response curves for different ligands (for example, cGMP and
cAMP) and to modify the value ofR# at saturation of the different ligands
(R# max) in the same direction.

4. The parameterc, on the other hand, depends on both the protein
(therefore on the subunit composition and on the presence of mutations)
and the ligand; for a given value ofL, R# max only depends on the value of
c for this ligand (increasingc reducesR# max).

5. Spontaneous openings are determined byL, whereas ligand-induced
openings are determined byL* (c)n.

Statistics

The significance of the difference between two populations of data was
analyzed by independentt-tests using Origin software.

Chemicals

L-cis-Diltiazem was a gift of Synthelabo Recherche (Bagneux, France).

RESULTS

Coexpression of the bwt subunit with the awt
subunit increases the sensitivity to cAMP;
role of residues D604 in a subunit and
N1201 in b subunit

Plots of currents at saturating cGMP and cAMP concentra-
tions obtained from the same patch in one experiment with
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homomericawt channels and in one experiment with het-
eromeric channels expressed in oocytes coinjected with the
awt and bwt subunit mRNAs are shown in Fig. 1A. The
presence of theb subunit clearly increases the current at
saturating cAMP concentration compared to the current at
saturating cGMP concentration. The effect is observed in-
dependently of the voltage but is more evident at positive
voltage because of the larger amplitude of cAMP-induced
currents. To test whether the increased sensitivity conferred
by coexpression of theb subunit is due to the uncharged
residue N1201, as suggested by the results of Varnum et al.
(1995) and Fodor and Zagotta (1996), we constructed a
mutateda subunit in which D604 is replaced by the neutral
asparagine residue present in theb subunit at the corre-
sponding place (aD604N) and the symmetric mutatedb
subunit N1201D.

Mean Imax(cAMP)/Imax(cGMP) ratios at180 mV and280
mV from several experiments with different channel com-
positions are plotted in Fig. 1B, and values are listed in
Table 1. Coexpression of thebwt subunit with theawt
subunit increases theImax(cAMP)/Imax(cGMP)ratio, although to
a lesser extent than does the D604N mutation in thea
subunit, which is as expected if the effect is due to the
uncharged N1201 or N604 residues. However, upon coex-
pression of the mutatedbN1201D subunit with theawt
subunit, theImax(cAMP)/Imax(cGMP)ratio remains intermediate

between those of theawt and awt/bwt channels, and
coexpression ofbwt with aD604N further increases the
Imax(cAMP)/Imax(cGMP)ratio compared toaD604N channels.
These effects are more clearly observed at positive voltage.

Dose-response curves at180 mV for each channel com-
position are shown in Fig. 2. The values of EC50 andnH for
cGMP and cAMP indicated in Table 1 are the parameters of
the fits to the Hill equation of all of the data (normalized to
the current at saturation of nucleotide) from all experiments.
Inversely to the variation of theImax(cAMP)/Imax(cGMP)ratio,
the EC50 for cAMP varies in the orderawt . awt/
bN121D . awt/bwt . aD604N . aD604N/bwt. The
errors calculated by the program suggest that the EC50 for
cAMP of the five channel types are significantly different,
although this assumption should be made with caution be-
cause of the large variations between experiments. The
larger effect is observed upon coexpression ofbwt with
aD604N, compared to all other channel types. The popula-
tion of EC50 obtained from the fit of each experiment for
aD604N/bwt channels is also significantly different from
that of all other channel types, includingaD604N (p ,
1022); therefore, coassembly of thebwt subunit with
aD604N seems to further reduce the EC50 for cAMP com-
pared toaD604N channels, suggesting that the effect is not
only due to the charge of residues N1201 or N604.

FIGURE 1 Comparison of cGMP- and cAMP-induced currents for different channel compositions. (A) Examples of current recordings at saturating
cGMP (0.5 mM) and cAMP (20 mM) concentrations from oocytes injected withawt or awt 1 bwt mRNAs. The voltage step protocol is shown above.
When accumulation/depletion was observed, the value for the current was taken as the average between the initial value and the value at 500 ms; this
approximation gives values close to those obtained with the correction proposed by Zimmerman et al. (1988). (B) Mean ratios of the current at saturation
of cAMP and cGMP for different channel compositions. Saturating concentrations were 20 mM for cAMP and 0.5 mM (awt, awt 1 bwt, awt 1 bN1201)
or 5 mM (aD604N,aD604N1 bwt) for cGMP. For each patch, cAMP- and cGMP-induced currents were measured several times, as closely as possible,
with control measurement of the leak current before and after. Mean values ofImax(cAMP)/Imax(cGMP)(6 SE) at180 mV and280 mV are listed in Table
1. Imax(cGMP)was between 1098 pA and 4953 pA (mean value6 SE:2733 pA6 378 pA) at1 80 mV and between 2474 and 5127 (mean value 4009 pA6
371 pA) at280 mV for awt; between 1188 pA and 3969 pA (mean value6 SE: 2505 pA6 242 pA) at180 mV and between 1440 pA and 4778 pA
(mean value6 SE: 2968 pA6 373 pA) at280 mV for awt 1 bwt; between 660 pA and 3500 pA (mean value6 SE: 2425 pA6 300 pA) at180 mV
and between 2032 pA and 4749 pA (mean value6 SE: 3102 pA6 277 pA) at280 mV forawt 1 bN1201D; between 455 pA and 3653 pA (mean value6
SE: 1733 pA6 272 pA) at1 80 mV and between 132 pA and 2200 pA (mean value6 SE: 938 pA6 168 pA) at280 mV for aD604N; between 431
pA and 2623 pA (mean value6 SE: 1353 pA6 184 pA) at1 80 mV and between 124 pA and 2200 pA (mean value6 SE: 713 pA6 131 pA) at - 80
mV for aD604N 1 bwt.
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Note also that whereas a 15-fold increase of EC50 for
cGMP is observed foraD604N channels compared toawt
channels, only a limited (if significant) increase is observed
whenbwt is coexpressed withawt.

Estimates for the open probability of homomeric
(awt, aD604N) and heteromeric
(awt/bwt) channels

The P0max(cGMP) of awt, awt/bwt, and aD604N channels
was estimated by two different methods (see Materials and
Methods): from theImax(cGMP)/Imax(cGMP1Ni ratio (Gordon
and Zagotta, 1995; Varnum et al., 1995; Varnum and
Zagotta, 1996; Sunderman and Zagotta, 1999) and from
single-channel recordings (Fig. 3). Values obtained with the
two methods are indicated in Table 2. They are similar for
awt andawt/bwt channels, but the agreement is less satis-
fying for aD604N channels (see below). Nevertheless,
whatever the method used,P0max(cGMP) decreases in
the orderP0max(cGMP) (awt) . P0max(cGMP) (awt/bwt) .
P0max(cGMP) (aD604N). P0max(cAMP) can be deduced from
the value ofP0max(cGMP)and theImax(cAMP)/Imax(cGMP)ratio
(Table 1) and varies in the inverse orderP0max(cAMP)

(awt) , P0max(cAMP) (awt/bwt) , P0max(cAMP) (aD604N).
Whenawt andbwt mRNAs were coinjected, the nature

of the expressed single channel was checked by the addition
of 50 mM L-cis-diltiazem (Fig. 3,a and b); for 12 of 13
records, diltiazem reducedP0 to almost 0, whereas it was
only reduced by less than 20% for the other, as well as for
patches from oocytes injected witha mRNA only (9–18%,
four patches). This suggests that the population of channels
is mainly composed of heteromeric channels when the two
mRNAs are coinjected, consistent with the results of Sham-
mat and Gordon (1999), who suggest that channel assembly
may be biased toward the inclusion ofb subunits. In our
experiments, the unitary current was similar for all single
awt/bwt channel records (1.386 0.05 pA at180 mV, nine

patches), suggesting that the population of heteromeric
channels is also homogeneous, in contrast to the results of
Torre et al. (1997), who describe three distinct heteromeric
channel types. The unitary current is also similar to that of
awt channels (1.356 0.04 pA, four patches) andaD604N
channels (1.376 0.07 pA, nine patches). The low value
compared to published data can be related to the fact that the
channel conductance is smaller when the permeating cation
is K1 than when it is Na1 (Nizzari et al., 1993;GNa/GK 5
1.24 at1140 mV).

As theP0max(cGMP)for aD604N channels measured with
the Ni21 method (0.356 0.04, Table 2) was considerably
higher than that measured by Sunderman and Zagotta
(1999) (0.08 with the same method), we asked whether this
could be related to the nature of the permeating ion (which
is K1 instead of Na1 in our experiments); when K1 was
replaced by Na1, P0max(cGMP)was indeed reduced to 0.206
0.03 (eight patches), still remaining higher, however, than
the value reported by Sunderman and Zagotta (1999). In our
experiments, the onset of the cGMP-induced current is
slow, reaching a steady state in 1–2 min, and single-channel
records ofaD604N channels reveal a heterogeneity in the
channel activity that was not previously reported. The
P0max(cGMP)value obtained from single-channel analysis for
aD604N channels varies with time for a given patch, usu-
ally starting with a low value (0.086 0.03, six different
patches) within the first minute in the presence of cGMP,
and then increasing to higher values (0.416 0.09, eight
patches), as in the example shown in Fig. 3c.The maximum
P0max(cGMP)value obtained was also variable for different
patches (between 0.15 and 0.83, eight patches). For three of
these patches, long records (4–6 min) were analyzed, show-
ing that after reaching a higher value, the activity did not
clearly stabilize, but varied with periods of tens of seconds
at any level between the two extreme values, and with long
closed periods of several seconds or tens of seconds. The
mean value indicated in Table 2 (0.256 0.04) includes all

TABLE 1 Imax(cAMP)/Imax(cGMP) ratios and Hill parameters of cGMP and cAMP dose-response curves for different
subunit compositions

mRNA injected

Imax(cAMP)/Imax(cGMP) cGMP cAMP

180 mV 280 mV EC50 (mM) nH EC50 (mM) nH

awt 0.0366 0.005 (15) 0.0166 0.002 (8) 29.96 0.8 (8) 2.26 0.2 (8) 20776 172 (8) 1.326 0.12 (8)
awt 1 bwt 0.1536 0.016 (11) 0.0396 0.004 (10) 356 0.6 (11) 26 0.1 (11) 16076 31 (9) 1.456 0.04 (9)
awt 1 bN1201D 0.106 0.01 (12) 0.0266 0.003 (12) 29.86 0.4 (11) 2.26 0.1 (11) 18586 33 (11) 1.556 0.04 (11)
aD604N 0.606 0.02 (15) 0.56 0.02 (19) 4686 21 (7) 1.66 0.1 (7) 15276 75 (8) 1.46 0.1 (8)
aD604N 1 bwt 0.686 0.02 (15) 0.546 0.02 (19) 3456 7 (7) 1.56 0.1 (7) 9236 25 (6) 1.66 0.1 (6)

The Imax(cAMP)/Imax(cGMP)ratios (from Fig. 1) measured forawt andawt 1 bwt are significantly different withp , 5 3 1028 (180 mV) andp , 0.001
(280 mV); those forawt andawt 1 bN1201 withp , 5 3 1028 (180 mV) andp , 0.01 (280 mV); and those forawt 1 bwt andawt 1 bN1201 with
p , 5 3 1028 (180 mV) andp , 0.01 (280 mV). ForaD604N andaD604N 1 bwt, the Imax(cAMP)/Imax(cGMP)ratios are significantly different at180
mV with p , 0.01, but the difference is less significant at280 mV (p 5 0.08). EC50 andnH were obtained from the fit to the Hill equation (shown in
Fig. 2) of all data points from several experiments (normalized to the current at saturating cGMP or cAMP concentrations). The errors in the values of the
parameters are calculated with Origin software when fitting with all points (see Materials and Methods). The means of the values of EC50 obtained from
fitting individual experiments are close to the values indicated in the table. SEM are between 1.3 and 3 times larger than the error in fitting all of thepoints.
The number of experiments (i.e., for dose-response curves, the number of data points for each nucleotide concentration) is indicated in parentheses.
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of the 29 records (18–77 s, total length 1302 s) from the
eight patches. The number of channels in the patch was
measured at the end of the experiment (Fig. 3c) by the
addition of N-ethylmaleimide (2 mM) (Serre et al., 1995;
Gordon et al., 1997), which increasesP0max(cGMP)to almost
1; only single-channel records were retained.P0max(cGMP)in
the presence of NEM was estimated to be 0.926 0.03 from
single-channel analysis. This allows a third independent
determination ofP0max(cGMP)from the ratio of macroscopic
currents in the absence and in the presence of NEM: a value
of 0.396 0.02 (seven patches) was obtained forImax(cGMP)/
Imax(cGMP1NEM), corresponding to aP0max(cGMP) of 0.36,
close to the estimate obtained from Ni21 potentiation. Thus,
although there is a large variation between the different

estimates (which is probably due to the fact that the estimate
from single-channel analysis includes the low initial values,
whereas estimates from macroscopic currents are obtained
after stabilization of the currents), theP0max(cGMP) of
aD604N channels is higher than reported by Sunderman
and Zagotta (1999), whatever the method used.

In conclusion, coexpression of thebwt subunit with the
awt subunit reduces the gating efficacy of cGMP and in-
creases that of cAMP. Similar though larger effects are
produced by the D604N mutation in thea subunit.

Potentiation of cGMP-induced currents
by low concentration of cAMP for homomeric
(awt) and heteromeric (awt/bwt and
awt/bN1201D) channels

It was previously reported that in the native channel, low
concentrations of cAMP, which alone induce a very low
current, are able to potentiate cGMP-induced currents (Fur-
man and Tanaka, 1989; Ildefonse et al., 1992). The effect is
best observed for cGMP concentrations below EC50. This
effect was interpreted as an indication that the dissociation
constant for cAMP is much lower than the EC50 measured
from dose-response curves, which also depends on the ca-
pacity of the cAMP-bound channel to open. The question
arises whether this phenomenon is also observed with ex-
presseda channels. The fact that theb subunit increases the
sensitivity to cAMP suggests that the potentiation by cAMP
could be due to binding of cAMP with higher affinity to the
b subunit than to thea subunit, which perhaps is due, at
least in part, to N1201.

We have studied the potentiation of cGMP-induced cur-
rents by a low concentration of cAMP for three different
channel compositions:awt, awt/bwt, and awt/bN201D.
Dose-response curves were measured on the same patch in
the presence or absence of 100mM cAMP (which alone
produces a very low current; see legend to Table 3). As an
increase in apparent affinity for the nucleotide has been
reported to spontaneously occur with time (Gordon et al.,
1992; Molokanova et al., 1997), the current was measured
three times for each cGMP concentration: first without
cAMP, then with cAMP, and again without cAMP, to check
the reversibility of the change. The curve obtained in the
presence of cAMP and the average curve in the absence of
cAMP were fitted to the Hill equation; the variations in
EC50 (DEC50) and nH (DnH) were calculated for each ex-
periment. The mean values ofDEC50 and DnH from all
experiments are listed in Table 3.

Fig. 4 shows mean data points from all experiments,
normalized to the current at saturating cGMP concentration
for each dose-response curve; the fits to the Hill equation
shown on the graph were calculated with all data points.
DEC50 and DnH for each channel composition are very
similar to those obtained from the mean parameters of
individual fits (Table 3).

FIGURE 2 Dose-response curves for cGMP- and cAMP-induced cur-
rents from oocytes injected with mRNAs forawt (a), awt 1 bwt (b),
awt 1 bN1201D (c), aD604N (d), andaD604N1 bwt (e). F, cGMP;E,
cAMP. Several dose-response curves for cGMP and cAMP were measured
for each channel composition (different patch for each experiment). For
each experiment, currents were normalized to the current at saturating
cGMP or cAMP concentration (calculated from the fit of the raw data to
the Hill equation). Hill fits shown on the graphs were obtained using all
of the normalized data points from all experiments for each channel
composition. The cAMP dose-response curves were then multiplied by the
Imax(cAMP)/Imax(cGMP)ratios from Table 1. For clarity, only the mean of all
data points for each nucleotide concentration (6 SE) is shown. Parameters
that give the best fits and the number of experiments for each channel
composition are listed in Table 1. Hill fits of cGMP and cAMP dose-
response curves forawt channels (a) are shown for comparison (zzzzz) in b,
c, d, ande.
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Table 3 and Fig. 4 show that potentiation by cAMP is not
observed for homomericawt channels. The presence of
cAMP may even slightly inhibit the cGMP-induced current:
for each of the eight experiments, the EC50 of the dose-

response curve for cGMP in the presence of 100mM cAMP
was slightly increased compared to that in the absence of
cAMP. Potentiation by cAMP (reduction of EC50 for
cGMP), however, is observed for the two heterooligomeric

FIGURE 3 Single-channel records of expressed
awt/bwt (a), awt (b), and aD604N (c) channels.
Single-channel recording and analysis were per-
formed as described in Materials and Methods. The
records were filtered at 1 kHz for the figure. Am-
plitude histograms corresponding to the full records
filtered at 4 kHz (zzzzz) or 1 kHz (——) are shown.
Histograms at 4 kHz were used to calculateP0max.
Values ofP0max for the examples shown are 0.88
and#0.01 (awt/bwt in the absence or presence of
50 mM L-cis-diltiazem); 0.98 and 0.86 (awt in the
absence or presence of 50mM L-cis-diltiazem); and
0.06 and 0.27 (aD604N after 20 s and 3 min in the
presence of cGMP). ForaD604N, NEM (2 mM)
was added to the bath at the end of the experiment
to check the number of channels in the patch (a
single channel in the example shown).

TABLE 2 Estimates of the open probability for different subunit compositions

mRNA injected

P0max(cGMP) *P0max(cAMP)

Imax(cGMP)/Imax(cGMP1Ni) Single channel Imax(cAMP)/Imax(cGMP1Ni)

Single
channel

awt 0.976 0.01 (8) 0.966 0.01 (8) 0.0356 0.01 0.0346 0.01
awt 1 bwt 0.886 0.01 (15) 0.856 0.03 (9) 0.136 0.02 0.136 0.02
aD604N 0.356 0.04 (17) 0.256 0.04 (8) 0.216 0.04 0.156 0.03

P0max(cGMP)was estimated by Ni21 potentiation and single-channel analysis, as described in Materials and Methods. The number of experiments is indicated
in parentheses. Mean values are given6 SE.
*P0max(cAMP) was calculated from the values ofP0max(cGMP)and theImax(cAMP)/Imax(cGMP)ratios given in Table 1; the error inP0max(cAMP) is the sum of
relative errors inP0max(cGMP)and Imax(cAMP)/Imax(cGMp), multiplied by the value ofP0max(cAMP).
From independentt-tests of two populations,Imax(cGMP)/Imax(cGMP1Ni) for awt and awt 1 bwt channels are significantly different withp , 1026.
P0max(cGMP)for awt andawt 1 bwt from single-channel analysis are significantly different withp , 0.003.
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channels, but the effect is clearly more pronounced forbwt
than forbN1201D.

DISCUSSION

Comparison between the functional properties of
homomeric awt channels, heteromeric channels
from coexpressed awt and bwt subunits, and
native channels

While this work was in progress, Shammat and Gordon
(1999) published a study of the coexpression of the wild-
type bovine roda subunit and human rodb subunit, in
which they compare theImax(cAMP)/Imax(cGMP)ratio for the
two channel types. Our results with coexpressed wild-type
bovine a and b subunits are totally consistent with their
results: the value of theImax(cAMP)/Imax(cGMP) ratio (15%,
Fig. 1, compared to 13% in Shammat and Gordon, 1999) is
significantly higher than for homomerica channels and
comparable to that previously obtained from native chan-
nels (Tanaka et al., 1989; Gavazzo et al., 1996; Picco et al.,
1996). Although Scott and Tanaka (1998) report that coex-
pression of theb subunit with thea subunit does not restore
the native Imax(cAMP)/Imax(cGMP) ratio, it should be noted
that, as shown in Fig. 1, the effect may be unnoticed if

currents are measured at negative voltage, because of the
very low amplitude of the currents.

Similar EC50 values for cGMP for homomerica and
heteromerica/b channels were previously reported by Chen
et al. (1993) (60–80mM at 160 mV, human rod), Ko¨rshen
et al. (1995) (40mM at 180 mV, bovine rod), Scott and
Tanaka (1998) (80mM), and Shammat and Gordon (1999)
(77 6 31 mM and 636 30 mM at 1100 mV), although
there is some variation in the value itself. Altenhofen et al.
(1991) report a value for expressed bovinea subunits (326
13 mM at 180 mV) that is closer to our value.

The value of the open probability obtained forawt chan-
nels (P0max(cGMP)5 0.97 from Ni21 potentiation, or 0.96
from single-channel analysis; Table 2) is consistent with
previous reports:P0max 5 0.9 from noise analysis (Gould-
ing et al., 1994); 0.78 from single-channel measurements
(Bucossi et al., 1997); 0.966 0.01 from the ratio of
Imax(cGMP)in the presence or absence of Ni21; or 0.95 from
single-channel recordings (Sunderman and Zagotta, 1999).
No report concerning the open probability of expressed
heteromerica/b channels is as yet available. Torre et al.
(1997) published a single-channel study of coexpressed
bovinea andb subunits, where they describe three channel
types with different properties, but they do not give any
estimate ofP0max. Our estimates ofP0max(cGMP)for awt/bwt
channels from single-channel analysis (0.856 0.03, 180
mV) and Ni21 potentiation (0.886 0.01, 180 mV) are
higher than previous measurements on native rods; from a
single-channel kinetic analysis Taylor and Baylor (1995)
obtained values ofP0max 5 0.56 (150 mV) and 0.30 (250
mV), consistent with the report of Matthews and Watanabe
(1988) (0.306 0.05 at271 mV). These works, however,
were both performed on amphibian rods, with Na1 as the
permeating cation. Our results suggest that Ni21 potentia-
tion is a reliable method for estimating the open probability
of heteromerica/b channels, as previously demonstrated
for homomeric a channels by Sunderman and Zagotta
(1999).

Becausea subunits alone can form functional channels
andb subunits alone cannot, a mixed population of homo-
meric a and mixed heteromerica/b channels (a2b2 and
a3b) could be expected whena and b subunits are coex-
pressed (as well as for native channels). (With ab:a mRNA
ratio 5 2 (3), assuming that the two messengers are trans-
lated with the same efficiency, that the stabilities of the two
proteins are equivalent, and that channels with three or four
b subunits are not functional, the probabilities of forming
homomeric a, heteromerica3b, and heteromerica2b2

would be, respectively, 3 (1.5)%, 24 (18)%, and 73 (80)%.)
In this case, the values measured from macroscopic currents
for Imax(cAMP)/Imax(cGMP) and P0max(cGMP) would be inter-
mediate between those fora/b channels and those fora
channels. The results of Shammat and Gordon (1999), how-
ever, suggest that whena and b mRNAs are coinjected,
even at a 1:1 ratio, only heteromerica2b2 channels are

TABLE 3 Difference between Hill parameters of cGMP dose-
response curves measured in the absence and in the
presence of 100 mM cAMP

mRNA injected DEC50 (mM) DnH

awt 11.16 0.5 (8) 20.146 0.04 (8)
awt 1 bwt 210.86 0.2 (11) 20.346 0.1 (10)
awt 1 bN1201D 23.16 0.3 (9) 20.186 0.03 (9)

Complete dose-response curves for cGMP were measured on the same
patch in the presence or absence of 100mM cAMP; for each cGMP
concentration, the current was first measured in the absence of cAMP, then
in the presence of cAMP, and again in the absence of cAMP. The differ-
ences between the values of EC50 (DEC50 5 EC50(cGMP) 2
EC50(cGMP1cAMP)) andnH (DnH 5 nH(cGMP)2 nH(cGMP1cAMP)) obtained by
fitting the data in the presence or absence of cAMP to the Hill equation
were calculated for each patch (the two points measured in the absence of
cAMP were averaged for the fit). The mean values indicated in the table are
the means of the differences obtained for each patch,6 SE. The number of
experiments is indicated in parentheses. From independentt-tests of the
two populations of EC50 (obtained from the fits of each experiment in the
presence and in the absence of cAMP), the data in the presence or absence
of cAMP for awt channels are not significantly different, although for each
individual experiment, the EC50 in the presence of cAMP was reproducibly
higher than that in the absence of cAMP. Data forawt/bwt channels in the
presence and absence of cAMP are significantly different withp 5 4 3
1024, and data forawt/bN1201D channels are significantly different with
p 5 0.03. The ratio of the current induced by 100mM cAMP in the absence
of cGMP toImax(cGMP)was 0.0036 0.001 forawt (eight experiments) and
awt 1 bwt (12 experiments) and 0.0046 0.001 forawt 1 bN1201D (nine
experiments). Fig. 4 shows the fit of all data points from all experiments in
the presence or absence of cAMP (normalized to the current at saturating
cGMP concentration) together with the mean value (6 SE) of all of the
data points at each cGMP concentration.
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formed. Our single-channel records of patches from oocytes
coinjected witha and b mRNA in the presence ofL-cis-
diltiazem suggest that, for ana:b mRNA ratio of 3, only a
few homomerica channels may coexist with heteromeric
channels.

Our results agree with those of Scott and Tanaka (1998)
concerning the restoration of potentiation of cGMP-induced
currents by low concentrations of cAMP by coexpression of
theb subunit; the potentiation by cAMP of cGMP-induced
currents observed with coexpresseda and b subunits is
similar to that previously described for native channels
(Furman and Tanaka, 1989; Ildefonse et al., 1992). Because
evolution of the channel characteristics has been reported to
occur spontaneously with time (Gordon et al., 1992; Molo-
kanova et al., 1997), seemingly because of dephosphoryla-
tion of the channel, we have been very careful to check that
the effect of cAMP on the cGMP-induced currents is re-
versible. Moreover, it should be noted that in our potentia-
tion experiments, preliminary control measurements (leak
current, current induced by 100mM cAMP, current at
saturation of cGMP and cAMP) are performed before mea-
surements for dose-response curves and take several min-
utes (usually more than 5 min). The decrease in EC50 for a
channels expressed in oocytes described by Molokanova et
al. (1997) is a fast process, which becomes negligible;5
min after patch excision.

Role of the charge of residue 604 in the a subunit
and 1201 in the b subunit in the sensitivity to
cAMP, cAMP potentiation of cGMP-induced
currents, and gating efficacy of cGMP

We have studied the role of the charge of residue 604/1201
in three aspects of channel function: sensitivity to cAMP

(EC50 and Imax(cAMP)/Imax(cGMP) ratio), gating efficacy of
cGMP (P0max(cGMP)), and cAMP potentiation of cGMP-
induced currents.

The results show that, as previously reported (Varnum et
al., 1995), replacing D604 in thea subunit by the uncharged
residue N, which is present at the corresponding place in the
b subunit, increases theImax(cAMP)/Imax(cGMP)ratio. We also
show that coexpressing thebwt subunit with theawt sub-
unit produces qualitatively similar (but smaller) effects, as is
expected if the effect is due to the presence of an uncharged
residue in position 604/1201, because the heteromeric chan-
nel has both D and N in position 604/1201, instead of 4N
in aD604N. However, coexpressing thebwt subunit
with aD604N further increases the sensitivity to cAMP
(Imax(cAMP)/Imax(cGMP)ratio and EC50), and replacing N1201
by D in theb subunit does not restore the characteristics of
the a homooligomer:awt/bN1201D, which has 4 D in
positions 604/1201, is intermediate between wild-typeawt/
bwt (in which both D and N are present) anda channels
(which also have 4 D in position 604).

Similarly, althoughbN1201D is less efficient thanbwt,
significant potentiation by cAMP of cGMP-induced cur-
rents is observed when the mutatedb subunit is coexpressed
with the a subunit.

Another effect of the D604N mutation is to reduce the
channels’ open probability for cGMP compared toawt
channels (P0max(cGMP) 5 0.35 from Ni21 potentiation or
0.25 from single-channel analysis; Table 2). These values
are much higher than those reported by Sunderman and
Zagotta (1999) with the same methods; as noted in the
Results, the discrepancy could be due to the combined effect
of the nature of the permeating cation, and the slow re-
sponse ofaD604N channels to cGMP, the low values
(0.07–0.08) measured by Sunderman and Zagotta (1999)

FIGURE 4 cAMP-potentiation of cGMP-induced currents in oocytes injected with mRNAs forawt (a), awt 1 bwt (b), andawt 1 bN1201D (c). F,
In the absence of cAMP;‚, in the presence of 100mM cAMP. Currents induced by each cGMP concentration were measured first in the absence of cAMP,
then in the presence of 100mM cAMP, and again in the absence of cAMP (a: eight experiments;b: 11 experiments;c: nine experiments). The currents
induced by cGMP or by cGMP1 cAMP were normalized to the value at saturating cGMP concentration. No increase in the current at saturating cGMP
concentration was observed in the presence of added cAMP. The curves are the best fits of all of the normalized data to the Hill equation:a (awt): EC50 5
26.36 1 mM, nH 5 2 6 0.14 (without cAMP, ——), EC50 5 27.66 1 mM, nH 5 1.956 0.1 (with cAMP, – – –);b (awt/bwt): EC50 5 35 6 0.6 mM,
nH 5 2 6 0.1 (without cAMP, ——), EC50 5 24 6 0.7 mM, nH 5 1.656 0.1 (with cAMP, – – –);c (awt/bN1201D): EC50 5 29.96 0.4 mM, nH 5
2.156 0.06 (without cAMP, ——), EC50 5 26.86 0.4mM, nH 5 1.976 0.06 (with cAMP, – – –). For clarity, only the mean values of data points obtained
for each cGMP concentration from all experiments are indicated (6 SE). The data in the presence or absence of cAMP for each experiment were also fit
individually to the Hill equation (not shown); mean values of the variation in EC50 and in nH obtained for each experiment are listed in Table 3.
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being closer to the values that we usually obtain during the
first minute in the presence of cGMP (Fig. 3c). The
P0max(cGMP)value measured foraD604N channels by Var-
num et al. (1995) also seems higher than that reported by
Sunderman and Zagotta (1999) (see below). The reduction
of the gating efficacy of cGMP is also observed, although
less marked, with the coexpression of theawt and bwt
subunits (P0max(cGMP) 5 0.88 or 0.85, according to the
method used).

It can therefore be concluded that the charge of residue
604/1201 plays an important role in the sensitivity to
cAMP, the gating efficacy for cGMP, and cAMP potentia-
tion of cGMP-induced currents; however, other part(s) of
the proteins participate in these effects. In addition, only a
moderate (if significant) increase in the EC50 for cGMP is
observed whenawt and bwt are coexpressed, whereas a
15-fold increase is observed withaD604N channels, also
suggesting a role of other parts of the protein in the sensi-
tivity to cGMP. It can be proposed that other residues in the
binding site or in another domain (for example, in the
C-linker; Zong et al., 1998; Paoletti et al., 1999) are deter-
minants of the action of the nucleotide.

Interpretation of the data in terms of affinity and
gating efficacy of the ligand

The open probability at the saturating concentration of
nucleotide, i.e., when all of the binding sites are occupied
(P0max), is an indication of the gating efficacy of the nucle-
otide. Independently of the model, as long as unliganded (or
partially liganded) channel openings are negligible com-
pared to fully liganded channel openings, the constant for
the gating transition,

C(cNMP)4 l|:
Kop

O(cNMP)4

(closed) (open)

can be calculated from the experimental estimates ofP0max:

Kop 5 @open channels#/@closed channels#

5 P0max/~1 2 P0max!.

Using the estimates ofP0max from Table 2 for the three
channel types (awt, aD604N, andawt/bwt), we calculate
that the free energies of gating (DGop 5 2RT ln[Kop]) upon
coexpression of theb subunit with thea subunit are inter-
mediate between those forawt channels and those for
aD604N channels. The decrease in the free energy of gating
by cAMP for D604N channels compared toawt (Table 5) is
larger than (but less than twice) that forawt/bwt channels,
and the increase in the free energy of gating by cGMP for
aD604N channels compared to theawt channel is more
than twice that for the heteromeric channel compared to the

awt channel. If the effect on gating was only due to the
charge of residue 604/1201, and if thea and b subunits
assemble as anaabb oligomer, as proposed by Shammat
and Gordon (1999), a factor of 2 would be expected be-
tweenDDGop for aD604N andawt/bwt channels compared
to awt. Our results may indicate that improved gating by
cAMP upon coassembly of theb subunit is not due solely to
residue N1201 (consistent with the conclusions drawn from
the Imax(cAMP)/Imax(cGMP) ratios measured for heteromeric
awt/bN1201D andaD604N/bwt channels), and that re-
duced gating by cGMP ofa D604N involves residues other
than N604. Our results withaD604N channels are consis-
tent with those of Varnum et al. (1995), who calculated that
the free energy of gating for cAMP was reduced by;1.3
kcal/mol by mutations of D604 to neutral residues, whereas
that for cGMP was increased by 2 kcal/mol for D604N. This
indicates that theP0max(cGMP)measured by these authors for
aD604N channels in this work is closer to our estimate
(0.306 0.05) than to the estimate given by Sunderman and
Zagotta (1999) (0.07–0.08), which would produce a much
largerDDG.

Using a simplified linear scheme with two binding sites,
Varnum et al. (1995) find that the free energy of initial
binding is not substantially altered by mutations at position
604. They conclude that interaction of the purine ring of the
nucleotide with D604 in theaC helix is important for the
conformational change leading to channel opening rather
than for initial binding. However, the value of the binding
constant depends on the model chosen to calculate it. Al-
though the linear model has proved useful in interpreting the
effects of mutations in thea subunit (Gordon and Zagotta,
1995; Varnum et al., 1995), a fundamental aspect of CNG
channel function is the existence of spontaneous openings in
the absence of ligand (Picones and Korenbrot, 1995; Goul-
ding et al., 1994; Tibbs et al., 1997; Ruiz and Karpen,
1997), which is not compatible with simple linear models of
activation, in which channels can only open after binding of
the ligand. Several allosteric models, including the Monod-
Wyman-Changeux (MWC) concerted model (Monod et al.,
1965; used by Goulding et al., 1994; Varnum and Zagotta,
1996; Tibbs et al., 1997; Paoletti et al., 1999), a coupled-
dimer model in which two independent dimers undergo a
concerted allosteric transition (Liu et al., 1998), and a com-
plete scheme including intermediate states (Ruiz and
Karpen, 1999) have been recently shown to be better
adapted for the description of CNG channel function. In the
case of heteromeric channels, the models should in fact be
modified to include different characteristics for the two
types of subunits, but this would increase the number of
parameters and increase the uncertainty in the fitting oper-
ation. We have therefore used the simple MWC model to fit
the results, as an approximation that should be closer to the
real mechanism of activation than the linear model used by
Varnum et al. (1995), to obtain the binding constants for the
nucleotide. Fitting the data with the coupled dimer model
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(Liu et al., 1998) gives qualitatively similar results (not
shown).

In the MWC and derived models, the protein can exist in
two states (T, corresponding to the closed state, and R,
corresponding to the open state of the channel); the T state
has a lower affinity than the R state for the ligand (c 5
KR/KT ,, 1, whereKR andKT are the dissociation constants
for the open and closed states). The transition between T
and R is disfavored in the absence of ligand (L 5
[T]/[R] .. 1) and is increasingly favored upon ligand
binding because of the higher affinity for the R state. The
MWC model for a tetramer is represented by the following
scheme (see also Materials and Methods):

TheR# function represents the proportion of channels in the
R (open) state, and its variation as a function of ligand
concentration simulates the variation of the open probabil-
ity. For clarity, we will use below the parameterc for cGMP
(c 5 KRG/KTG, whereKRG and KTG are the dissociation
constants of the open and closed states for cGMP) and the
parameterd for cAMP (d 5 KRA/KTA, whereKRA andKTA

are the dissociation constants of the open and closed states
for cAMP).

Comparison of data obtained withawt and data obtained
with awt/bwt or with aD604N, which show a lowerP0max

for cGMP and a higherImax(cAMP)/Imax(cGMP) for the awt/
bwt heterooligomer and foraD604N than forawt, suggests

that the difference is not due to a modification ofL, which
should produce similar modifications for the two ligands
(see Materials and Methods), but rather to modifications of
c and d, although it cannot be excluded thatL is also
modified, but that the modification due toL is masked by
larger modifications due toc andd. This was also proposed
by Varnum and Zagotta (1996) for mutations of D604 in the
a subunit from interpretation of their data with the MWC
model. We have therefore searched for values ofKRG andc
(cGMP), KRA and d (cAMP) that are consistent with the
data for a fixed value ofL (L 5 7999, calculated from the
value for spontaneous open probabilityPsp 5 1.25 31024

reported by Tibbs et al. (1997)). The experimental data that
were used in Fig. 2 for three channel types (awt, awt/bwt,
and aD604N), corrected for theP0max values indicated in
Table 2, were fitted to theR# function of the MWC model.
As in Fig. 2, fits were performed using all of the data points
from all experiments. Fig. 5 only shows the fits correspond-
ing to theP0max values obtained from single-channel anal-
ysis for the three channel types. Parameters that give the
best fit of the data for both estimates of theP0max(cGMP)are
indicated in Table 4.

Dose-response curves measured upon coexpression of
bwt with awt are fitted with reducedKRA and KTA, com-
pared to the values that fit dose-response curves ofawt, the
effect being more marked forKRA, which corresponds to a
decrease ind (increasing the gating efficacy of cAMP);
coexpression ofbwt with awt, which reduces the gating
efficacy of cGMP (Table 2), also results in increasingc and
consequently increased selectivity for cAMP versus cGMP.
The difference between parameters obtained for theawt/
bwt heteromeric channel and for theawt homomeric chan-
nel can be interpreted in two ways: 1) the parameters

FIGURE 5 Fits of dose-response curves according to the MWC model (Monod et al., 1965) forawt (a), awt/bwt (b), andaD604N (c) channels.F,
cGMP;E, cAMP. Normalized data points from all experiments used for the dose-response curves shown in Fig. 2 were fitted to theR# function of the MWC
model (see Materials and Methods), after the currents were corrected at saturating nucleotide concentrations for theP0max values from Table 2. The data
in the figure were corrected for theP0max(cGMP)estimated from single-channel analysis. For clarity, only the mean values of all data points obtained for
each ligand concentration are shown in the figure (6 SE). A fixed value ofL, calculated from the value of spontaneous channel openingsPsp5 1.2531024

measured by Tibbs et al. (1997), was used:L 5 1/Psp 2 1 5 7999. The free parameters wereKRG andc (cGMP),KRA andd (cAMP). Fits forawt channels
(from a) are indicated inb andc (– – –). Parameters that give the best fit are given in Table 4. Note that the slopes of the different dose-response curves
(reducednH for cAMP compared to cGMP forawt-containing channels, and reducednH for cGMP for aD604N compared toawt channels, Table 1) are
well simulated by the MWC model, in which an increase in the parameterc (which reflects the gating efficacy of the ligand) results in a reduction of the
Hill number (Rubin and Changeux, 1966).
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obtained for heteromeric channels are intermediate between
those for awt and those forbwt subunits, which differ
because of the distinct intrinsic properties of the two sub-
units; or 2) coexpression of theb subunit with thea subunit
modifies the behavior of thea subunit, as proposed by
Karpen and Brown (1996). According to the former hypoth-
esis, cAMP would have a better affinity and better gating
efficacy for b subunits than fora subunits, while cGMP
would have a similar affinity for the two subunits and a
reduced gating efficacy forb subunits. According to the
latter hypothesis, it is not possible to discriminate between
the properties of the two types of subunits, and thea/b
oligomer should be considered as a global entity. However,
if the channel is composed of ana dimer and ab dimer with
dimerization of the cyclic nucleotide binding sites, as pro-
posed by Shammat and Gordon (1999) and by Liu et al.
(1998), the existence of interactions betweena andb sub-
units at the level of the binding sites appears unlikely.

The effect of the D604N mutation in thea homomeric
channel compared to the wild-type channel, from Table 4, is
to reduce the affinity of both states for cGMP and to
increase the affinity (mainly of the open state) for cAMP,
which corresponds to an increase inc and a decrease ind.

Thus the D604N mutation mimics the effect of coexpression
of theb subunit on the selectivity for cAMP, supporting the
hypothesis thatb subunits have an increased affinity and
gating efficacy for cAMP compared toa subunits, even
though, as discussed above, the charge of residue 604/1201
cannot solely account for the different sensitivities of the
homo- and heterooligomers for cAMP. The effect of the
D604N mutation on the affinities of the two states for
cGMP, however, is much more dramatic than that of subunit
coassembly. Note that fitting the data obtained forawt,
awt/bwt, and aD604N channels for the two estimates of
P0max(cGMP) (from Table 2) leads to qualitatively similar
conclusions (Table 4); in particular, the values of the dis-
sociation constants are little modified, even foraD604N
channels for which the twoP0max estimates are the most
divergent.

The variations in the free energy of nucleotide binding
(open and closed states) for heteromericawt/bwt channels
or aD604N channels compared toawt channels, calculated
according to the MWC model from the values in Table 4,
are given in Table 5. For bothawt/bwt andaD604N chan-
nels compared toawt channels, the variation in free energy
of cAMP binding to the closed and open states is low

TABLE 4 MWC parameters of the fits of Fig. 5

mRNA injected P0max(cGMP)

cGMP cAMP

c KRG (mM) KTG (mM) d KRA (mM) KTA (mM)

awt 0.97 0.0526 0.002 1.896 0.08 366 3 0.2426 0.003 1496 18 6166 82
*0.96 0.0466 0.003 2.016 0.09 436 5 0.2386 0.003 1466 18 6136 83

awt 1 bwt 0.88 0.0616 0.001 1.936 0.03 326 1 0.1666 0.001 796 0.4 4776 3
*0.85 0.0656 0.001 1.896 0.04 296 1 0.1666 0.001 796 0.4 4776 3

aD604N 0.35 0.1196 0.002 206 1.6 1686 16 0.1466 0.001 636 4 4316 30
*0.25 0.1356 0.001 20.86 1.2 1546 10 0.1616 0.001 686 4.5 4226 30

L is calculated from the value of spontaneous channel openings,Psp 5 1.25 3 1024, measured by Tibbs et al. (1997) (L 5 7999). Taking a value for
spontaneous openings of 1025 (similar to that measured by Goulding et al. (1994) and by Ruiz and Karpen (1997), which gives a value ofL 5 105, does
not qualitatively change the results (not shown); the values of all parameters are decreased by a factor close to 2 compared to the values indicated in the
table. The errors in the values of the parameters are calculated with Origin software (see Materials and Methods). The values ofKTG andKTA listed in the
table were calculated from the values ofKRG andc, KTA andd, obtained from the fit of the data. Two fits are indicated for each channel type, corresponding
to the estimates for the open probability in the presence of cGMP (from Table 2). Only the fits corresponding to theP0 estimated from single-channel
analysis (indicated by *) are shown in Fig. 5.

TABLE 5 Variation of the free energy of gating and binding upon coassembly of awt and bwt subunits and upon mutating D604
in the a subunit by comparison with awt channels

Channel

DDG (kcal/mol) 5 DG(channel)2 DG(awt)

cGMP cAMP

DDGop DDGbind
R DDGbind

T DDGop DDGbind
R DDGbind

T

awt/bwt 10.96 0.5 06 0.1 20.16 0.1 20.856 0.1 20.356 0.1 20.16 0.1
aD604N 12.56 0.6 11.46 0.1 10.856 0.1 21.16 0.3 20.56 0.2 20.26 0.15

The free energy of gating isDGop 5 2RTln(Kop), whereKop 5 P0max/(1 2 P0max), and the free energy of nucleotide binding isDGbind 5 2RTln(Ka), where
Ka is the affinity (5 1/Kd) for the nucleotide (M21). DGbind

R corresponds to binding to the open state (R) andDGbind
T to the closed state (T). The variation

in free energy of gating (DDGop) or nucleotide binding (DDGbind
R andDDGbind

T ) upon coassembly of subunits or upon mutation of D604 compared toawt
channels is the difference between eachDG and the correspondingDG for awt. P0maxand dissociation constants (KRG, KTG, KRA, KTA) used for calculations
are the means of the two estimates given in Tables 2 and 4, and the error is taken as the difference between the mean and each value plus the largest SE.
T 5 22°C.
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compared to the variation in the free energy of gating by
cAMP (see above and Table 5), as noted by Varnum et al.
(1995) foraD604N channels with the linear model. On the
other hand, there is a marked difference betweenaD604N
andawt/bwt channels concerning the free energy of cGMP
binding: the shifts in the affinity for cGMP in theaD604N
compared to theawt channel are much larger than for
awt/bwt, and the correspondingDDG (DDGbind

R ' 11.4
kcal/mol,DDGbind

T ; 1 0.85 kcal/mol) are much larger than
those for the heteromericawt/bwt channel, which are close
to 0. This suggests that other residues of thea subunit,
either within the same subunit or from adjacent subunits,
increase the negative effect of the uncharged residue in
position 604 on cGMP binding (or that other residues in the
b subunit decrease this effect). (A smallerDDGbinding for
aD604N channels compared toawt channels was reported
by Varnum et al. (1995), using the linear model with two
binding sites to calculate the binding constants (; 10.5
kcal/mol). With the same model and with theP0max and
EC50 from Tables 1 and 2, a similar value (10.4 or 10.5
kcal/mol) is obtained foraD604N channels; forawt/bwt
channels, however, the variation in free energy of cGMP
binding compared toawt channels is negative (20.4 or
20.3 kcal/mol), also suggesting that the charge of residue
604/1201 is not determinant for the sensitivity to cGMP.)
Note, however, that these values are small compared to the
free energy of a hydrogen bond (;3.5 kcal/mol) or even an
ionic bond (;2 kcal/mol) .

CONCLUSIONS

Coexpression of theb subunit with thea subunit restores
both the sensitivity of native channels to cAMP (Imax(cAMP)/
Imax(cGMP)ratio) and potentiation of cGMP-induced current
by low concentrations of cAMP; it also reduces the gating
efficacy of cGMP. Results with mutated channels
(aD604N,aD604N/bwt, andawt/bN1021D) show that the
charges of the residues in position 604 of thea subunit and
in position 1201 of theb subunit play an important role in
nucleotide binding and gating efficacy, as well as cAMP
potentiation, but are not solely responsible for the differ-
ences between homomeric and heteromeric channels. With
the MWC model (Monod et al., 1965), the higher sensitivity
for cAMP in the presence ofb subunit can be simulated by
a better affinity of cAMP for theb subunit (or for thea/b
heterooligomer taken as global entity) than for thea subunit
alone, together with an increased selectivity for cAMP
versus cGMP (reduced gating efficacy of cGMP and in-
creased gating efficacy of cAMP). The data suggest that the
D604N mutation in thea subunit as well as coassembly of
a andb subunits mainly alter the free energy of gating by
cGMP and cAMP; the D604N mutation, but not subunit
coassembly, also increases the free energy of binding of
cGMP.
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