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Size-Distribution Analysis of Macromolecules by Sedimentation Velocity
Ultracentrifugation and Lamm Equation Modeling

Peter Schuck

Molecular Interactions Resource, Bioengineering and Physical Science Program, ORS, National Institutes of Health,
Bethesda, Maryland 20892 USA

ABSTRACT A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifu-
gation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the
sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation
for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a
continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by
variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the
macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coeffi-
cient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic
noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution
can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to
the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size
distributions, and by applications to experimental data of continuous and discrete protein mixtures.

INTRODUCTION

The characterization of the size distribution of polymers isapplied to an extremely large macromolecular size range by
one of the principal problems in the study of biological adjustment of the rotor speed. Third, analytical ultracentrif-
macromolecules and of synthetic polymers. Numerous techigation experiments generally provide a large quantity of
niques based on a variety of different principles have beenlata with relatively high precision, and a significant amount
developed for this task, ranging, for example, from high-of experience in this technique has been accumulated during
resolution mass spectrometry, dynamic light scattering, anthe last seven decades.

alytical ultracentrifugation, size-exclusion chromatography, Both sedimentation equilibrium and sedimentation veloc-
field-flow fractionation, to gel electrophoresis. Analytical ity methods have been used in the long history of the
ultracentrifugation is the oldest of these techniques and hagharacterization of the particle size distributions by analyt-
been surpassed by others with respect to precision andal ultracentrifugation (Baldwin and Williams, 1950;
rapidity. However, for several reasons, a considerable inBridgman, 1942; Fujita, 1962; Lechner and dhée, 1992;
terest in the use of ultracentrifugation for the characterizanpschtle, 1999: Scholte, 1968: Signer and Gross, 1934;
tion of size distributions still remains. First, it is attractive Stafford, 1992; Svedberg and Pedersen, 1940; van Holde
for its theoretical simplicity and firm basis on first princi- and weischet, 1978; Vinograd and Bruner, 1966). Sedimen-
ples. Hydrodynamic theory (and thermodynamics in seditation equilibrium analysis (Lechner and “ble, 1992;
mentation equilibrium) can be directly applied, and, for thegcnolte, 1968) seems intrinsically more problematic be-
separation of subpopulations of different size, no interactioayse of the difficulty involved in unraveling the sedimen-
with matrices, surfaces, or a bulk flow is required. Secondtation equilibrium exponentials, and, in some cases, the
it is experimentally powerful and very versatile: the mac-analysis has been constrained to parameterized model dis-
romolecules are characterized in solution, and can be stugrihytions (Lechner and NMtle, 1992). Sedimentation ve-
ied at a large range of concentrations, provided for byt experiments provide a richer database, because they
fluorescence (Laue et al., 1997; Schmidt and Riesnefypserve the strongly size-dependent time course of migra-
1992), interference (Laue, 1994; Schachman, 1959; Yphan;o, aithough here the size-distribution information is con-

tis et.al., 1994), absorbance (Giebeler, 1992; Hanlon et al,oted by the hydrodynamic properties of the particles.
1962; Schachman et al., 1962), and Schlieren optical detec- ge\era| different sedimentation velocity methods have

tion systems (Svedberg and Pedersen, 1940). It can br?een developed. For very large particles where separation is

achieved during the time of the experiment, a well-condi-
e blicat o dinfinal . tioned high-resolution analysis can be performed based on
ngg.we for publication 2 September 1999 and in final form 14 Decem e{he spgtial deriva_tiye of the sedimentation profilesldq
Address reprint requests to Dr. Peter Schuck, National Institutes of Health(BaIdWIn, and Williams, 1950; B“dgman’ 1942; Fujita,
Bidg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766. Tel..1962; Signer and Gross, 1934; Svedberg and Pedersen,
301-435-1950; Fax: 301-496-6608; E-mail: pschuck@helix.nih.gov. 1940), or by the related method of observing the time course
© 2000 by the Biophysical Society of sedimentation at a single radial position {dlidle, 1999).
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imentation boundary, which makes it more difficult to re- present, can only be applied to a few discrete species. This
solve subpopulations of the distribution. In this regime, anpaper describes an extension of the Lamm equation analysis
established and very useful method for analyzing size disfor the characterization of continuous size distributions of
tributions is the apparent sedimentation coefficient distribu-macromolecules. The problem is stated as an integral equa-
tion g*(s) (Frigon and Timasheff, 1975; Rivas et al., 1999; tion, and regularization is used for its numerical inversion.
Schachman, 1959; Schuster and Toedt, 1996; Staffordihe properties of the method in the application to discrete
1997), using d/dr, or the more recently introduced time distributions, and to broad, continuous size distributions are
derivative a/dt of the sedimentation profiles (Stafford, explored.

1992). However, the apparent sedimentation coefficient dis-

tribution obtained is convoluted by a Gaussian due to dif-

fusional broadening. An elegant and powerful method toTHEORY

overcome diffusional broadening has been described by vag the absence of interactions between the macromolecules

Holde and Weischet (Demeler et al., 1997; van Holde anqor particles), the experimentally observed sedimentation

Weischet, 1978). Here, by extrapolation of the apparenprofiles of a continuous size distribution can be described as

sedimentation coefficients of sedimentation boundary fracay superposition of the contributions of each subpopulation

tions to infinite time on d& °® scale, diffusion-free integral c(M) of particles with sizes betweel andM + dM. If

sedimentation coefficient d|5tr|but|0|1§(5) are obtained. L(M’ r, t) denotes the sedimentation prof”e of a monodis-
All the established sedimentation velocity methods forperse species of si2d at radiusr and timet, the problem

size-distribution analysis are similar in that they use differ-js described by a Fredholm integral equation of the first
ent transformations of the sedimentation data that have begiing,

analytically shown to reveal, under the condition of long
solution columns, the sedimentation coefficient distribution.
This approach has the virtue of a model-free analysis. In ar, t) = f c(M)L(M, 1, 1) dM + ¢, 1)
general, if a model for the sedimentation behavior of mac-

romolecul_es is ayailable_, _however, itis widely accepted thaf, here a(r, ) denotes the experimentally observed signal,
an analysis by directly fitting the model to the raw data canyith an error of measuremert This equation is encoun-
be superior in information and precision of the derivedereq in similar form in problems of polymer characteriza-
parameters, although this is frequently computationalljon jn many other techniques. In the following, first the
more difficult. For example, more information can be 0b- cqicyation of the kerndl(M, r, t) will be outlined, and then
tained from long-column sedimentation equilibrium exper-, getajled description of the method used for inverting Eq.
iments of mixtures of ideal species by multiexponentialy py reqgularization will be given. This will closely follow

decomposition of the raw data in global analyses, as NoWhe method applied by Provencher (1982a,b) in the program
commonly in use, when compared to the more traditionalconTIN.

In(c) versusr? transformations of a single data set. The
present study is concerned with the problem of formulating
and exploring the properties of an explicit boundary modelSolution of the Lamm equation for a
for the size-distribution analysis in sedimentation velocitymonodisperse subpopulation
experiments, based on numerical solutions to the equatior]s h . . . . .
that govern sedimentation and diffusion, the Lamm equa-n the case of sedimentation velocity ultracentrifugation of
. . . dilute solutions of a polymer, the kerne{M, r, t) of Eq. 1
tions (Lamm, 1929). This allows larger data sets in the. . .
analysis of a single experiment and in global analyses of° the solution of the Lamm equation (Lamm, 1929),
multiple experiments, and the incorporation of prior knowl- dy 1d dy

edge on the distribution, which, as will be demonstrated, can dat rarl PM - s(M)w?r?x . 2)

lead to a better resolution of size distributions.

Numerical solutions to the Lamm equations and their useThis partial differential equation describes the migration
for direct fitting of ultracentrifuge data have been developedand diffusion of a dilute solution of monodisperse particles
previously in several laboratories (among them, Cann angiith concentrationy(r, t) in a sector-shaped cell under the
Kegeles, 1974; Claverie et al., 1975; Cox and Dale, 1981linfluence of the centrifugal field generated at a rotor angular
and Dishon et al., 1966). More recently, enabled by thevelocity w. (M) and D(M) are the sedimentation and dif-
increased computational resources, this became an efficiefusion coefficient of the particle, respectively. They are both
and readily available tool for sedimentation-velocity datastrongly dependent on the molar mass, and are related by the
analysis (Demeler and Saber, 1998; Schuck, 1998; Schucgvedberg equation,
et al., 1998; Stafford, 1998). Lamm equation analysis can
take into account all boundary conditions of the finite length
of the centrifugal cell and of the effects of diffusion, but, at

M(1 — v
s(M) = D(M) M — Yir) RTVMp) , (3)
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where p denotes the solvent densitiR denotes the gas sion coefficient of the particle then follows from the Stokes—
constant, and denotes the rotor temperature (Svedberg andinstein relationship as

Pedersen, 1940). The partial specific volumg of the

solute may also be dependent on the macromolecular size, D(M) = KT _
but, in most cases, only weakly or even negligibly (such a 6mnen(fifg)uRM, Vi)’

weak dependence will be indicated by the subscript M).

It can be seen at this point that the sedimentation velocit)‘év herte ktﬁenottes q thg Bo(;tzmlaPn cqnstar_]tt, a?gtihand 7“ i
analysis of particles with continuous size distributions is enote the standard and relative viscosity of the solution,

complicated by the fact that it requires knowledge of at IeasLeesrzeeC(;'XzE/O‘nT?ésq r%S)Lf[g g%?ag%&r; bgi:,r;iesr;a? :inntggz&)s ved-

e hinagy . 210 Y eSobi(9 andD), e e disbutoni)

algntl the diffusion coefficierD(M) Because,the, r(z)blem can then easily be transformed into a sedimentation coeffi-
Y, ' P cient distributionc(s) := c(M()) and a diffusion coefficient

of Eq. 1 is ill-posed, even if it is known how the sedimen- .~ . "~ . . : .
tation coefficient changes with size, it seems impossible téhstnbuuonc(D) = (M(D)). These are basically equivalent

L ' descriptions of the distribution, although they represent
calgulate both dlS’[I’Ibu"[IOhS(IVl) and S(M) from NOISY €X- " jitferent aspects of the particle size distribution.
perimental data. As will be described in the following, this

bl is add db . ior k led f th After calculatings and D for a particle of sizeM, the
problem 1S addressed by assuming prior knowledge o @ umerical integration of the Lamm equation was started
partial specific volumey,, and the frictional ratio f(f,),

8 - - with the initial condition of a uniform concentration
(l.e., prior knOWledge of the hydrOdynam|C ShaDE) of theX(r’ 0) = 1, and with graphically predetermined pOSitionS of

macromolecules, which will allow calculation sfM) and  he meniscus and bottom of the solution column (these can
D(M). (Only in favorable cases of very narrow monomodalgisq pe treated as floating parameters to be optimized in the
distributions or negligible diffusion does it seem feasible to,gniinear regression). Lamm equation solutions were cal-
treat eitherv, or (f/fo)y as a fitting parameter to be deter- ¢yjated on a grid of between 200 and 500 radial points. For
mined through the data analysis.) low values ofw?s, the finite element method developed by
Although Vi, and /fo)y. in general, will also depend on Cjaverie et al. (1975) was used, combined with a Crank—
the macromolecular size in many cases, either reasonabjgicholson scheme (Crank and Nicholson, 1947) and an
estimates or measurements can be made. In some casesa|fjorithm for adaptive step sizes in time (Schuck et al.,
may be a reasonable approximation thgtand/or {/fo)y  1998). For higher values ob?s, the moving grid finite
does not change with size; this may hold approximatelyelement method (Schuck, 1998) was used. The later method
true, for example, for particles such as random coils ofis particularly well suited for the simulation of sedimenta-
polymers, lipid vesicles, emulsions, or, in a first approxi-tion of large particles with low diffusion coefficient, be-
mation, even for mixtures of globular proteins. Alterna- cause it remains both numerically stable and relative effi-
tively, a parameterized model fdvfg),, could be used, such cient for very small values db.
as the model of rodlike particles at a length-to-radius ratio
that increases linearly witll. Similarly, if the particles can
be approximated by multisubunit assemblies with regulaAnalysis of the size distribution c(M)

geometry, values offfo)y, could be derived with the help of £q yery Jarge particles, the influence of diffusion flux on
hydrodynamic bead modeling (Bloomfield etal., 1967; de laig particle distribution during the time of the sedimentation
Torre, 1992). In some casel, may be constant, allowing  exneriment is negligible compared to the sedimentation
the direct use of Eq. 3 to derive as a function of the ,x As a consequencé(M, r, t) can be approximated by a
buoyant molar mass (an example of this, ferritin, is shownstep functiorL(M, 1, t) = exp(—2w?syt) X H(r — r*(M, 1))
below). Finally, the values fav,, and (/f),, may be mea- 4t 5 positionr*(M, t) = rexps,t) (with the meniscus
sured in additional experiments for several fractionated Sprositionrm) (Fujita, 1962). In this limiting case*(M, t) can
populations of the particles, which then can be combinethe uysed to change the integration variable in Eq. 1, and
with polynomial interpolation of the obtained values to differentiation with respect to the radiuslirectly solves the
approximate f(fo) at any size. How possible errors Wy, integral. Therefore, the derivative of the measured concen-
and {/fo)y affect the calculated distributiorgM) andc(s)  tration profiles at any time can be directly related to the
will be examined below. particle size distribution (Baldwin and Williams, 1950;
Givenyy,, one can calculate the radiRof an equivalent  Bridgman, 1942; Fujita, 1962; Signer and Gross, 1934;
sphere with the same volume as the particle by simpleSvedberg and Pedersen, 1940). Unfortunately, this approx-
geometrical relationships (Laue et al., 1992). This leads tdmation holds well only for larger macromolecules and is
the minimum hydrodynamic frictional coefficient of an not suitable for many biopolymers.
equivalent sphere. With the shape information of the parti- The consideration of diffusion increases the complexity
cle expressed through the frictional ratifd),,, the diffu-  of Eg. 1, and the smoothness of the sedimentation bound-

(4)
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aries of single speciels(M, r, t) makes Eq. 1 an ill-posed ness. But, whew is adjusted by the varianog(a)/x*(o =
problem. As is characteristic for such problems, a large seb), it also selects from the set of all distributioc®1) that

of differentc(M) distributions may fit the data equally well, lead to a statistically indistinguishable fit to the raw data the
and a straightforward discretization and inversion usuallyone distribution that exhibits the highest parsimony. As has
leads to large, artificial high-frequency oscillations in been pointed out by Provencher (1982a), this procedure
c(M).! It was observed that, for the present problem (inselects the solution that has the least amount of detail, but it
particular, in the case of narrow distributions), the conditionensures that the detail that is contained in the final distri-
of non-negativity imposed oc(M) suppresses most of these bution c¢(M) is essential to describe the data, and therefore
oscillations. For further stabilization, regularization wasless likely to be an artifact.

used. Following the maximum entropy method, a term can For the numerical calculations, first the continuous molar

be added to the inverse problem of Eq. 1, mass distributiort(M) of Eq. 1 is approximated by consid-
) ering the concentratiorgg on a grid ofN molar mass values
M 1
Min[z{a(ri, t) — JC(M)L(M, r, t) dm :
cv) Ui N
ar, t)=b + g+ > LM, 1, t), (6)
k=1

usually withN = 100-200. Depending on the optical sys-
tem used for centrifugal data acquisition, which determines
the noise structure ia(r;, t;), Eq. 6 includes the algebraic
time-invariant noise componerts and the radial-invariant
jitter componentsg;, as described in detail in Schuck and

: X X Demeler (1999). This allows the direct fitting of interfer-
0; and the increase of the ratio of the variang&a)/ ¢ ce optical data from samples at low loading concentra-
X(a = 0), can be correlated with a probabilify via  ong \where the systematic noise components due to optical

F-statistics (Johnson and Straume, 1994). Therefore, I:|anerfections are significant. After solution of the Lamm

statistics can be used to automatically adjust the regmarizae'quations, normal equations of the least-squares problem
tion parameter such that the quality of the fit still remains Eq. 6 are formed

statistically indistinguishable from the unconstrained fit,

+ ajc(M)In c(M) dM], (5a)

that maximizes the information entropya) (Press et al.,
1992; Smith and Grandy, 1985). For any positive value,of
this penalty term increases the rms error of the fit as com
pared to the optimal fit in the absence of regularizatior~(

based on a given confidence levebnd on the level of the y =Ac @)
noise of the data (Bevington and Robinson, 1992; Prov- _ . .
encher, 1979; Provencher, 1982a). The maximum entropy with y, = > a(r;, )My, i, 1)

principle introduces the statistical prior probability that, in i

the absence of additional information, all sizkt are A "

equally likely (this can be modified to incorporate more A= E LMy, i, H)L(M,, T3, 8),

specific prior knowledge on the size distribution). The effect K

of the maximum entropy regularization term is the selection(using matrix notation) where the hat @mndL denotes the

of the distributionc(M) with the minimal amount of infor-  algebraic transformations required for the calculation of the

mation inc(M) required to fit the raw data. systematic noise parameters (Schuck, 1999),cadenotes
Alternatively, Tikhonov—Phillips regularization with the the vector of the concentratiogs, . . . , cy. The maximum
term (Phillips, 1962) entropy minimization problem of Eq. 5a then leads to
2
Min[z{a(ri, t) — jc(M)L(M, ri, ) dM Min{cAc — 2yc + a X 6 In o, (8a)
cmy L1 G K

which can be solved by a Levenberg—Marquardt algorithm
+a | |C(MPEdM} (5b) as described_ i_n (Press gt e_ll., 1992). In the case of_ the
Tikhonov—Phillips regularization Eq. 5b, the resulting min-
imization remains a linear problem that can be directly
was used. In contrast to maximum entropy, this procedurgplved as

distinguishes the solutior§M) according to their smooth-
y = (A + aB)c, (8b)

This can be understood by considering the lemma of Riemann-LebesgugyhereB d_enOt(_es the square of the second difference oper-
as s, = JPK(x, y)sinmy) dy — 0 asm — = for an integrable kemel ~&tor as given in Eq. 18.5.12 of Press et al. (1992). Non-
(Phillips, 1962; Provencher, 1982a). negativity of the concentrations, was achieved algebra-
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ically through the algorithm NNLS by Lawson and Hansondiluted into PBS, and epon double-sector centerpieces were
(1974), adapted for use with the normal equations andilled with 300 ul of the protein sample and PBS, respec-
Cholesky decomposition. tively. Using an An50-Ti rotor, the samples were centri-

As described above, the regularization paramet&ras  fuged at a rotor speed of 15,000 rpm at a temperature of
adjusted to reach the predetermined variance ratio calci24°C. Scans were acquired at a wavelength of 230 nm in
lated by F-statistics. Because of the large number of datiime intervals of 210 sec. The partial specific volume of
points involved in the analysis, the influence of the con-0.73 ml/g for apoferritin monomers was calculated based on
straints on the degrees of freedom is neglected. Unless notéde amino acid composition using the prograsbNTERP
otherwise, for any given data set, the variance ratio waglLaue et al., 1992)g*(s) analysis was performed with the
calculated corresponding to a probability= 0.95. Withthe  programopcpt+ (J. S. Philo, 3329 Heatherglow Ct., Thou-
usual number of experimental data points in the order oband Oaks, CA 91360). Dynamic light scattering experi-
10*-1C, the variance increase due to regularization is typ-ments were conducted with a DynaPro-MSTC200 (Protein
ically in the order of 1%. Finally, the distributiog, was  Solutions, Charlottesville, VA), with the temperature con-
rescaled by trapezoidal integration such that the integratrol adjusted to 24°C.
over c(M) equals the total loading concentration. Van-Holde—Weischet analyses were performed according

The computational cost of the method is an importantto methods described in detail in Demeler et al. (1997) and
factor for practical use. It is determined mainly by two van Holde and Weischet (1978). Briefly, the sedimentation
procedures: th& solutions of the Lamm equation and the boundaries were divided N; fractions of the plateau signal
N X N summations over all data points of the pairwisec,, and the best least-square radial positions of the boundary
products ol involved in the calculation of the elementg A fractions were calculated by averaging the radii of all data
of the normal equations. The latter increases quadratically ipoints a; with absorbance values within the limits of each
N, and therefore determines the computation time for largdraction (i.e., { — 1)*cy/N; < a < f*cy/N; for fractionf).
N and large data sets. (The importance of this can be seen fyhe first and last fraction was omitted in the further analysis
considering a typical set of interference data: with 100because of their larger noise in their calculated radial posi-
scans, 1000 data points per scan, ahek 100, 10 sum-  tions.N; was chosen such that all fractions had at least one
mation and multiplication operations are required to builddata point in each scan. Apparesrtalues were calculated,
the entire matrixA,,.) For a relatively low number of data and svalues at infinite time were determined by least-
points or a lower resolution ig(M), the solutions of the squares extrapolation in ta°° scale, as described in van
Lamm equations determine the computation time. DuringHolde and Weischet (1978), defining an integral sedimen-
Monte Carlo simulations, these two steps need only to béation coefficient distributiorG(s).
calculated once. The inversion of Eq. 8 and the adjustment All computational methods were implemented into the
of a can be accomplished comparatively rapidly. In theWindows-based ultracentrifugal analysis prograamriT,
current implementation of the prograsaprit, when using  which is available on request, or can be downloaded from
moderate amounts of data (e.g., 1x2.0* data pointsN = http://www.biochem.uthscsa.edu/auc/software, and from the
100), the distribution can be calculated with a fast PC,RASMB network at ftp://rasmb.bbri.org/rasmb/spin/ms_dos/.
typically, in significantly less than one minute, and one
Monte Carlo iteration in a few seconds.

The sedimentation coefficient distribution analysis in theRESULTS
absence of diffusion was performed by replacing the LamnThe resolution of the method will be examined first for the
equation distributions in Eq. 1 by the well-known step case of relatively small molecules, where the influence of
functionsU(r, t) = exp(—2w’syt) X H(r — r*(M,t)) ata diffusion is comparatively large and no visual separation
position r*(M, t) = rexpl’syt) (Fujita, 1962; Stafford, during the sedimentation process is achieved. Figute 1
1992). This is closely related to the conventiomfi(s)  shows simulated sedimentation profiles of a discrete mix-
approximation of the sedimentation coefficient distributionture of two spherical molecules of molar masses 30,000 and
in the absence of diffusion (Stafford, 1992), and, if applied50,000, and sedimentation coefficients of 3.4 and 4.78 S,
to a data set from a small time interval, the numerical resultsespectively, at loading concentrations of 0.5 for each spe-
are equivalent to those derived front/dt analysis (P. cies, superimposed by a normally distributed error of 0.01.
Schuck and P. Rossmanith, submitted). Also shown in Fig. 1A are the best-fit single-component
sedimentation profilesd@shed lines which resulted in an
apparent molar mass of 25,700 and a sedimentation coeffi-
EXPERIMENTAL cient of 4.1 S. The unphysical combination of such a low
Sedimentation velocity experiments were performed with avalue for the apparent molar mass (or high value for the
Beckman Optima XL-A analytical ultracentrifuge equipped apparent diffusion coefficient, respectively) and this rela-
with absorbance optics. Horse spleen apoferritin (Sigmaively high value for the sedimentation coefficient is a result
A3641) and horse spleen ferritin (Boehringer 197742) wereof the broadening of the sedimentation boundary due to the

Biophysical Journal 78(3) 1606-1619
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underlying heterogeneity. It should be noted that the fit is
not of acceptable quality (rms errer 0.0155), because a
single-component model cannot describe the initially sharp
but rapidly broadening sedimentation boundary well. This
distinct difference between the diffusion broadening of the
sedimentation boundary of a single sedimenting component,
and the boundary shape of a heterogeneous mixture, pro-
vides the potential for gaining information on the size
distribution. This difference will be larger when a larger
relative separation of the size of the species is present, and
in cases of larger particles with smaller diffusion coeffi-
cients (see Fig. B below).

The calculation of the molar mass distribution is per-
formed using Eq. 8, on a grid &f = 100 molar-mass values
between 20,000 and 70,000. For the calculation of both
sedimentation and diffusion coefficiengM) and D(M)
according to Eqgs. 3 and 4, first spherical particliél € 1)
with a partial-specific volum& = 0.73 cn¥/g were assumed
(the values identical to those used for generating the data).

molar mass (Da)

T

I

(M) (1/S)

T T T i T T T

a7 —D(s) too Iarge_u

correct D(s) _|

D(s) too sma_l_

In the absence of regularization & 0) this results in sharp
peaks at the correct molar masses underlying the simulation
(Fig. 1B). However, the location of these peaks depends
strongly on the details of the simulated data and of the
model. This is illustrated by the effect of using slightly
incorrect frictional ratios, which leads to shifts of the loca-

D(s)=0

ol ol

tion of these sharp peaks, or to fragmentation into two
groups of 2—3 peaks, without significantly changing the rms
error of the fit (<0.0101) (Fig. 1B). This clearly demon-
strates that the direct solution of Eq. 6 without regulariza-
tion results in an unreliable level of detail. When the pa-
rameter a« for the maximum entropy regularization is
adjusted to a probability gf = 0.68, significantly smoother
curves are obtained, which are much more robust against
small errors in the model. The two components can still be
FIGURE 1 (A) Simulated sedimentation profiles of a discrete mixture ofclearly resolved (Fig, B)_ Because the rms error of the fit

two components of molar masses 30,000 and 50,000, and sedimentatigq not significantly worse <(:0_0104) than the fits without

coefficients of 3.4 and 4.78 S, respectively, each with a partial specific.o 1317 ation, these curves reflect much better the informa-
volume v = 0.73 cn¥/g and a frictional ratiof/f, = 1, at a loading

concentration of 0.5splid lineg. Simulated conditiongs = 1.0067 g/erd, ~ t1ON that can be extracted from the distribution analysis of
m, = 1, ® = 50,000 rpm,T = 20°C, radial data interval 0.003 cm, and the sedimentation data. Similar results were found when
time-interval of scans 500 sec, Gaussian distributed error of measuremestudying discrete distributions in a |arger size range, or
of 0.01. Included are the best-fit single-component sedimentation profilegyhan using the Tikhonov—Phillips regularization (data not

(dashed lineg with a molar mass of 25,700 and a sedimentation coefficient L . . .
of 4.1 S, with an rms error of 0.0155B) Calculated distributions(M) shown). Under comparable conditions with simulated noisy

based on Eq. 8, withl = 100, and a baseline offset as a floating parameter.data, two discrete species with a 30% relative difference of
Shown are results fox = 0 (distributions with spikes, at 10-fold reduced the molar mass in the range of 100,000 and a 20% relative
scale) and with maximum entropy regularization amdadjusted to a  difference in the range of 1,000,000 could be resolved (data
probability ofp = 0.68 &mooth curves The distributions calculated using not shown).

the correct parameters for particle density and frictional ratio are shown as

bold solid lines. Results of the analysis with incorrect paramefégs=
1.03 (dotted liney, f/f, = 1.04 @ashed linek f/f; = 1.05 andv = 0.72
cmP/g (dash-dot lines Results of larger deviations of the frictional ratio
(fify = 1.2) are offset by Ix 10~*. (C) Transformation in sedimentation
coefficient distributions(s) with « adjusted tp = 0.683. Using a value  cn/g leads to an overestimation of the diffusiatagh-dot-dot ling (D)

for the frictional ratio off/f, = 1.0 (bold solid ling leads to the correct Result of ag*(s) analysis based on thec/dt data transformationsplid
relationshipD(s) between the diffusion and the sediment coefficient. Mod- line), and, for comparison, the distributions obtainedo# 0, and for the

els withf/fy = 1.1,1/f, = 1.3, andf/f, = 1.5 lead to an underestimation of correctD(s) from (C) (dashed lines The integral sedimentation coefficient
the diffusion coefficients dotted liney. The limit of no diffusion is distribution of the van Holde—Weischet analysis is plotted as a function of
presented as the dashed line. Using the paramiéigrs 1.0 withv = 0.70 the boundary fraction (—o-).

(M) (1/8)

boundary fraction

s (S)
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If the assumptions on the shape of the particles implie®, A andB, shows the analysis of a step-function model for
by f/f, = 1 and the assumed value @fdo not lead to a a homogeneous size distribution in the molar mass range
reasonable approximation efM) and D(M), however, the between 30,000 and 70,000 (FigAP and at 1000-fold
regularized distributions(M) are significantly broader, lim- higher molar masses (Fig.B). Without regularization¢ =
iting the resolution of the two species (FigBloffset datd. 0), as can be expected, a series of sharp peaks were ob-
It should be noted that this is accompanied by an increase d@éined, which, in their location and height, strongly depend
the rms error of the fit (9% increase for the data shown withon the noise of the data. Already with a very small degree
fifo = 1.2 in Fig. 1B). In cases where at least the assumptionof regularization (a variance increase & /o, < 0.1%,
of shape similarity among the species is correct, this inadjusted top = 0.55), the analysis resulted in continuous
crease of the rms error can be used as the basis for nonlinedistributions. However, they still can exhibit oscillations
regression and fitting for the parameféf,. (In the imple-  that mimic a structured, apparently multimodal distribution
mentation used isepriTwith a simplex routineN = 50 and  (this was observed in particular with the second derivative
p = 0.68, this converged rapidly to a best-fit value f regularization, data not shown). When the regularization
of 1.005.) parameter was increased to a level corresponding te

An alternative representation of the distribution is the0.68 Ao, /oy ~ 1%) orp = 0.95, which selects the most
transformation into a sedimentation coefficient distributionparsimonious of alt(M) distributions that lead to statisti-
c(s) using thes(M) relationship from the Svedberg equation cally comparable fits of the sedimentation data, in most
(Eq. 3) (Fig. 1C). The distributionsc(s) are much more cases, a relatively unstructured distribution was obtained in
robust tharc(M) against poor assumptions for the shape ofwhich misleading peaks were absent. Further increase of the
the molecules: whereas errors in the frictional ratios lead t@egularization parameter to a significantly larger value of
overall translations oft(M), these errors only affect the Ao, /o, = 10% (@ > 0.99) only slightly worsened the
resolution inc(s), but not the location of the peaks. If Eq. 1 resemblance of the calculated and the underlying model
is used in the limit of no diffusion, a broad apparent sedi-distributions (Fig. 2dash-dot line} As illustrated in Fig. 2,
mentation coefficient distribution is obtained. With esti- A andB, the resolution increased slowly with increasing size
mates of the hydrodynamic parameters that lead to a goodf the particles. Also, the results were found to improve
approximation of the diffusion coefficient(s) results in  when studying model distributions with higher degree of
two distinct peaks. Errors in the frictional ratios that pro- smoothness. This is illustrated in Fig Q2 where the cal-
duce too low diffusion coefficients in Eq. 4 led to broaden- culated c(M) distributions are shown for simulated noisy
ing of c(s), whereas errors that produce too large diffusionsedimentation data that are based on a size-distribution
coefficients (such as the case of the too small value of model combining a Gaussian anddunction.

0.70 cni/g shown in Fig. IC) led to artificially sharp Again, if the distributions are transformed into cés)
distributionsc(s). A comparison with the established meth- distribution, they can be easily compared with the integral
ods shows that the resultsat= 0 are very similar to those sedimentation coefficient distributions(s) from the van
from the time-derivative g% analysis (Stafford, 1992), Holde—Weischet analysis (insets of Fig. 2). The results of
which produces apparent sedimentation coefficient distribuboth methods were found to be very consistent. However,
tions in the approximation of no diffusion, whereas eventhe distributionsc(s) appear to have higher information
moderately precise estimates of the frictional ratios (orcontent in the description of the shape of the distributions:
diffusion coefficient, respectively) lead to peak sedimenta-whereas theG(s) curves from the van Holde—Weischet
tion coefficients consistent with those obtained by the varmanalysis of Figs. D and 2A are qualitatively similar, the
Holde-Weischet method, which corrects for diffusion corresponding(s) profiles resolve the difference between a
broadening of the boundary (Fig.Od) (van Holde and broad continuous and a discrete bimodal distribution better.
Weischet, 1978). As a first application of the method to discrete mixtures

The influence of the regularization parameter on theof globular proteins, the interference profiles from sedimen-
calculatedc(M) in the case of discrete distributions-( tation experiments with myoglobin and gamma globulin
functions) is that of a broadening of the peaks{M) (in  were analyzed (Fig. 3A—C). These data have been pub-
case of second-derivative regularization approximatelfished before (Schuck and Demeler, 1999) in the context of
Gaussian shaped), with a half-width that increases with demonstrating the validity of the algebraic systematic noise-
(Figs. 1B and 2C). For the discrete distribution of Fig. 1, reduction procedure developed for the analysis of interfer-
increasing the regularization from = 0.68 to 0.95 still ence optical data. In the previous analysis, known partial
allows clear distinction of the two peaks (with a ratioo(s) specific volumes and molar masses of the proteins had been
height at the peak to the enclosed minimunref:1, data used as prior knowledge. In the present context, to evaluate
not shown). the robustness of the size-distribution analysis method, the

To study the effect of regularization for broader, contin-data were reanalyzed without this prior knowledge, but
uous distributions, noisy sedimentation data based on modeistead making the assumption of having globular proteins
distributions in different size ranges were simulated. Figurevith approximately spherical shapdf{ = 1), and with an
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FIGURE 2 Calculated distributiongM) of simulated sedimentation ve- . . . .
: ) . S . . FIGURE 3 Interference fringe patterns of sedimentation velocity exper-
locity profiles of continuous model distributions. Sedimentation data were, . - . .
. . ) . “iments with @) myoglobin, 8) gamma globulin, andd) a mixture of both
simulated for a solution column of 1-cm length, assuming spherical pam-(w — 40.000 romT = 25°C. 20 scans in time intervals of 500 sec were
cles f/f, = 1,v X p = 0.73,m, = 1, T = 20°C) with the continuous molar ' pm. '

mass distribution models6ld dotted ling given by @) a step function analyzed). ) calculated molar mass distributiongM) with maximum

o _ ) . 0 .
centered at 50 kDag] a step-function centered at 50 MDa, ar@) @ entropy regularization gb = 0.68 (a variance increase of 0.6%), Wlt'h a
. . . . resolution ofN = 150 molar mass values from 1,000 to 500,000, using a
Gaussian at 500 kDa combined with a delta-function at 800 kDa, at rotor . o
. .~ constantf/f, of 1 and a partial specific volume value of 0.73%q(p =
speeds of 50,000, 5,000, and 30,000 rpm, respectively. The total loadin - : ) )
. L . .004 g/lcmd, m, = 0.9). The algebraic systematic noise was calculated
signal was 1, and normally distributed noise of 0.01 was added. Twenty : . )
) . . . . . . ...~ “according to Schuck and Demeler (1999). The analysis resulted in an rms
profiles were included in the sedimentation analysis, spaced in time inter- . . : )
. . . —error of 0.0072 fringes for myoglobindétted ling, 0.0067 fringes for
vals of 500, 300, and 300 sec, respectively, producing sedlmentatlonamma1 lobulin dashed lin and 0.0049 fringes for the mixturedid
patterns similar to those in Fig.A. The analysis was performed including g 9 ) 9

. . . . line), respectively. The inset shows the sedimentation coefficient distribu-
a floating baseline parameter, and using the correct hydrodynamic paran:

eters. Data are shown without regularizatien € 0, thin dash-dot-dot fons c(s) obtained with adjusted to a confidence limit gf = 0.95.
lines reduced in scale by a factor of 20), and with maximum entropy with

« adjusted tp = 0.55 Ao, /o, < 0.1%) @dashed ling « adjusted tp =

0.68 (Ao /o, ~ 1%) (bold solid ling, anda adjusted taAo, /o, = 10%  estimate of the partial specific volume of 0.73%g As is

(p > 99.9%) flash-dot ling. Panel Ashows a second distribution without - shown in Fig. 3D, the calculated distributiongM) andc(s)
regularization (offset by 0.5), which is based on replicated simulation,axhibit well-defined sharp peaks, as can be expected for

differing only in the details of the normally distributed noise (at the same i i rate mixture of proteins. Because these proteins are
rms). The insets show the integral sedimentation coefficient distributions

G(s) from a van Holde-Weischet analysis, plotted as boundary fraction 1Ot _trUIy spherical, the molar mass Values_ at the peak

versuss-value, and, for comparison, a (rescaled) transformation of themaxima ofc(M) (13,500-15,800 for myoglobin, 87,400—

calculated size distributions at= 0.68 intoc(s) distributions. 93,700 for gamma globulin monomer, 174,000—-190,000 for
the dimer) do not coincide with the true molar masses of
these species, but instead represent their molar masses ap-
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proximately reduced by the frictional ratitif;, ~ 1.5 for the

IgG species, based on the earlier results). This problem is
absent in the sedimentation coefficient distributiofs). =
Both distributionsc(M) andc(s) give an excellent fit to the o
data, and reflect the main features of the samples, i.e., thg
presence of a small component, and the presence of tw
larger components with a molar mass ratio of 2:1. Whenj
using the Tikhonov—Phillips regularization (Eq. 5b), theé
resulting distributions suggest the presence of a small
amount of aggregates much larger than the IgG dimer (data
not shown), but this cannot be resolved well, and is not
observed with the maximum entropy regularization. In both
methods, an artifact is visible at very small molar masses in
the distributions where the sedimentation profiles are cor-
related with the baseline parameters.

As an example for the application of the method to a
continuous mass distribution, the sedimentation velocity &
profiles of a ferritin sample were studied. Ferritin is well-
known to exhibit a broad distribution in the iron content
(see, e.g., Leapman and Hunt, 1995). Apoferritin and fer-
ritin do not differ in their sizes, but only in their molar
masses and partial specific volumes, depending on the numg
ber of iron molecules in the core. As a consequence, they
diffusion coefficient should remain constant, and the sedi- &
mentation coefficient distributios(M) according to Eq. 3
can be directly related to the buoyant molar mass distribu-
tion c(M*). Dynamic light-scattering experiments with the
ferritin and the apoferritin samples gave autocorrelation . . ‘
functions that were very well described by that of a single 6.2 6.4 6.6 6.8 7.0
species with nearly identical diffusion coefficients of radius (cm)
3.37x 10 " and 3.11x 10’ cmP/sec, and hydrodynamic
radii of 6.4 and 6.7 nm, respectively. This is consistent withFIGURE 4  Sedimentation velocity absorbance profiles A& épofer-

the radius of~6.5 nm measured for murine ferritin by ritin, (B) ferritin, and C) a mlxtoure, obtained at a rotor speed of 15,000
rpm, rotor temperature of 24°C, scanned at a wavelength of 230 nm.

electron micrOSCOPy (Ohkuma et al., 1976). In the analySisEquivalent subsets with time increments 200 sec are shown. The

of the sedimentation profiles of apoferritin (FigA¥, when  pest-fit distributions from the(M*) analysis (as described in Fig.4 are
constraining the diffusion coefficient to a value of 3.87  superimposed on the experimental daB). {lso shows the best-fit distri-
1077 Crr12/sec, a reasonable fit was obtained with a SedibL_‘tiO” to the first anpl last s_can_usingas_iqgle-species sedimentation model
mentation coefficiens,, ,,0f 18.9 S, which corresponds to ‘(’2215;23 ”ﬁ’]f;eterm'ned diffusion coefficient of 3.37 107" en/sec

a molar mass 0f~540,000 (rms error= 0.0113 OD; a

slightly better fit of rms error= 0.0100 OD could be

obtained by taking into account free monomers of ferritin).fraction of material of approximately double the size of the
In contrast, the sedimentation velocity profiles of the iron-main peak is suggested. Th@v*) distribution of ferritin is
loaded ferritin could not be well described by the single-characterized by a broad, asymmetric peak with a maximum
species model with the predetermined diffusion coefficientat a buoyant molar mass of 540,000, but also exhibiting a
(rms error= 0.0321,s, = 67.1 S, Fig. 8B), because the broad distribution of smaller material, including molecules
broadening of the sedimentation boundary is much largeof the size of apoferritin (Fig. 8, dashed ling For the
than that of a species with = 3.37 x 10 ' cné/sec, mixture, the clearly bimodal sedimentation profiles of Fig.
indicated by the dashed line in FigB4 This suggests strong 4 C translate in thes(M*) distribution into a bimodal mass

b

orbance (OD)

absorban

heterogeneity of the ferritin sample. distribution, with maxima at buoyant molar mass values
The calculated buoyant molar mass distributiofd*) of of 140,000 and 530,000 (Fig. A, solid line). The fea-
apoferritin, ferritin, and a mixture are shown in FigASAIl tures of the ferritin distribution seem to be reasonably well

result in very good fits of the data, with rms errors-ef  reproduced.

0.009 OD. For the apoferritin, the majority of the materialis It should be noted that size-distribution of the mixture
in a single peak with a maximum at a buoyant molar mas®xhibits a small oscillatory finer structure, which does not
of 140,000 (Fig. %A, dotted ling. The presence of a small appear in the ferritin distribution (Fig.A, dashedandsolid
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the sedimentation profiles of noninteracting macromole-

] cules (Eqg. 1). However, because of the practical importance
of this case for the study of proteins, the results obtained
when applied to a system of interacting species was inves-
tigated. The sedimentation process was simulated for a rapid
monomer—dimer and monomer—trimer self-association, us-
ing the Lamm equation methods described in Cox, (1969)

and Schuck (1998), with 1% normally distributed noise. The

conditions of the sedimentation were chosen to generate
profiles generally similar to those in Fig.A as can be

PR AN YT S S B

I

¢(M) (10°0D/Da)

0 200 400 600 800

1000 expected for these systems, no separation of sedimentation
buoyant molar mass (kDa) boundaries was achieved (data not shown). The sedimenta-
1.0 S B T tion profiles of these self-associating systems could be fitted
Af” i ] very well by the continuous mass distribution (data not
c 08 1= LS ,.,/-":;é 7 shown), which, in the absence of regularization, resulted in
g " & 7 ] a large number of discrete peaks @(M) (see, e.g., the
g 08 £ ¢ 7 dotted line in Fig. &). But, in contrast to discrete mass
> I /,,./gA/'/ 7 i distributions of noninteracting species, small regularization
g o4 TR ¥ } at a levelp = 0.68 already led to very broad, smooth
533 02 L __‘}{5 yd | distributions. This result was qualitatively independent on
I /f"‘:-/a D/n/n»f’” | the regularization procedure (data not shown). Compared to
0.0 = T R the relatively sharp distributions obtained from a superpo-
0 20 40 60 80 100 sition of noninteracting species under identical conditions
sedimentation coefficient (S) (Fig. 6, dashed lines the spreading of the sedimentation

o ] ) boundary that is caused by the rapid self-association results
FIGURE 5 Buoyant molar mass distributions of apoferritiotted ling,

ferritin (dashed ling and the mixturedolid line), from the analysis of the In an apparent pODUIatlon of macromolecules with a broad

data shown in Fig. 4, using the predetermined valuBof 3.37x 107  fange of intermediat_e sizes (Fig. Bold lines, With the
cm?/sec, withN = 150, maximum entropy: adjusted top = 0.95. For  positions of the maxima dependent on the loading concen-

comparison, the data of the mixture are scaled by a factor of 1.4. The insdtration and the association constant. This is analogous to the
shows the result of a Monte Carlo simulation 16plicates) based on the results from the van Holde—Weischet analysis, where the

-fit calcul imentation nd rms error from the analysis of th . . . . .
best-it calculated sedimentation data and rms error from the analysis of the, oo, ¢ jnteracting and noninteracting monomers and dimers
apoferritin/ferritin mixture. For each molar mass value, the méé&n the

5%, and the 95% levels of the setagM) data obtained are showB)(van ~ Can also be Clear_ly diStin_gUiShed frgm the positjve slope and
Holde—Weischet analysis of appropriate data subsets of the same expethe range of sedimentation coefficients@fs) (Fig. 6B).
ments with apoferritin 4), ferritin ((J) and the mixture®).

DISCUSSION

line). To study whether these oscillations are essential feathe present paper describes a method for direct boundary
tures of the data, and how sensitive they are to the noise imodeling for the size-distribution analysis in sedimentation
the raw data, we performed Monte Carlo simulations. Sim-~elocity analytical ultracentrifugation. Because the contin-
ulated data sets were replicated £ 10°) based on the uous size distributions are approximated by a superposition
calculated best-fit sedimentation profiles as shown in Figof Lamm equation solutions, the effects of diffusion can be
4 C, with normally distributed noise added in the magnitudetaken into account, and a relative high resolution can be
of the rms error of the fit. The inset in Fig.Ashows the achieved for small molecules in the size range of proteins.
mean distributionc(M*) and the 5% and 95% contours,  Although unraveling of diffusion effects in this way was
respectively. In this statistical average(M*) appears found to be similarly effective as the extrapolation to infi-
slightly smoother, which demonstrates that some of thenite time in the van Holde—-Weischet method (van Holde
oscillatory fine structure it(M*) can be governed by noise and Weischet, 1978), the direct boundary modeling can
in the data, and may not be features of the true underlyingffer several advantages. First, because the Lamm equation
particle size distribution. Nevertheless, comparing the dismethod can take into account the end effects of the solution
tributions obtained from the Monte Carlo analysis and thecolumn, there is no requirement for a solvent and solution
results from van Holde—-Weischet analysis, although theylateau to be established, which allows the analysis of the
are qualitatively consistent, it appears that a higher level oflata from an entire sedimentation experiment. This ability
detail can be extracted from the Lamm equation model. to make maximal use of the information of the boundary
A basic assumption of the distribution analysis is that thespreading observed over a large time period enhances the
observed sedimentation data are a simple superposition ability for distinguishing boundary spreading due to size
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0.7 compared to th&(s) curves. The new method can also be
06 A ] applied to experiments of mixtures that include small and
05 L N rapidly diffusing material, or samples with a very high
- L : degree of heterogeneity. Second, as an explicit boundary
L4 7] model, the method can use the algebraic noise decomposi-
2 03| - tion techniques (Schuck and Demeler, 1999), and be di-
S o2 B ] rectly applied to interference optical data where a signifi-
© o1 L ] cant systematic time-invariant background profile can be
b . superimposed to the macromolecular sedimentation pro-
0.0 100000 150000 200000 files. ThII‘.d, the analysis al_so lends itself to be gxtended to
molar mass (Da) a global fit of several experiments, and allows to incorporate
knowledge on the distribution into the analysis.
N . ' : The method presented here could be considered interme-
% g: B T diate between a more conventional direct boundary fitting
£ oal - ] method that uses an explicit single- (or few-) component
02 L ] Lamm equation model (Demeler and Saber, 1998; Philo,
0.0 ——"v— T 1997; Schuck, 1998; Schuck et al., 1998), and a relatively
7 8 " 12 model-free data transformation, such as the van Holde—
: . . Weischet method to obtai@(s) (Demeler et al., 1997; van
03 C ) | Holde and Weischet, 1978), or thec/dr (Baldwin and
' . “ Williams, 1950; Bridgman, 1942; Fujita, 1962; Signer and
- r & P ] Gross, 1934; Svedberg and Pedersen, 1940) efditl (Gtaf-
8 o2 [ i - ford, 1992) transformations used to obtajf{s). The size-
"'g | :' J distribution analysis proposed here is model-free in a sense
= [ { Y that it imposes virtually no constraints on the number and
= 01 [i : | — . . .
T o o 1) size of the species present. However, in contrast to the data
) AN ] transformations involved in the van Holde-Weischet
0.0 L s method and in the*(s) methods, it requires prior knowl-
100000 200000 300000 400000

molar mass (Da)

edge on the approximate density and shape of the mole-
cules, and the density and viscosity of the solvent. When
available, this knowledge can be used to enhance the reso-

FIGURE 6 Analysis of simulated sedimentation profiles of discreteI tion of the sedimentation coefficient distribution and
components in rapid monomer—dimér §ndB) and monomer—trimerQ) utl : : Icl Istributi

self-association equilibriumAj Simulated monomer—dimer data based on transform it into a size distributioc(M).
a monomer molar mass of 100,000, = 1.0, andv = 0.73 cn/g. The relationship and the resolution of the different meth-
Sedimentation profiles were generated at a total loading concentration of lpds can be understood by considering different degrees of

with 0.01 normally distributed noise, and with dimerization constants 4iffsion incorporated into the Lamm equation model (Fig
leading to initial monomer/dimer ratios of 26, 5.9, 2.2, 1, 0.5, 0.25, and :

0.11, respectivelysplid lineg. Shown are the calculated mass distributions 1, CandD). In _the_ ab_sence of any diffusion, as can b_e
(M) with N = 100, maximum entropy regularization withadjusted to ~ €Xpected, the distribution(s) resembles an apparent sedi-

p = 0.68. The distributions obtained at equal loading concentrations ofmentation coefficient distributiog*(s). Even moderately
monomer and oligomer are highlighteldo(d lineg, and, for comparison,  precise estimates of the hydrodynamic shape and relatively

the distributions from the sedimentation profiles of a noninteracting mix-|OW estimates of the diffusion coefficient leads to a substan-
ture of species at equal concentrations are shalashed lines (B) The

same data analyzed by van Holde—Weischet analysis. The integral seo’i'—al Increase II’! resoluthq af(s), which then defines a range
mentation coefficient distributiofs(s) is given for a mixture of monomer  Of sedimentation coefficients of the sample consistent and
and dimer at equal loading concentrations in rapid self-association equieomparable withG(s). It is important to note that the van
librium (bold line) and noninteractingdashed ling (C) Monomer—trimer  Holde—Weischet method is very powerful in indicating the

system, with a monomer molar mass of 100,008, = 1.3, andv = 0.73  anqe of the true sedimentation coefficients of the sample,
cmP/g. Simulations were performed with an association constant for trimer

formation of 4, and total concentrations of 0.1, 1, and 10, respectively, ea\cwlthout further assumptions. If pI’IOI.’ knOWIEdge. can b_e
with 1% normally distributed noise (eactM) was scaled to a total loading  Us€d, howeverg(s) seems to have a higher resolution. This
concentration of 1). The distribution at a total concentration of 1 is alsois indicated by a comparison of tl&(s) from the bimodal
shown without regularizatiordptted ling. discrete distribution of Fig. D and the broader distribution
of Fig. 2A, where qualitatively very similaG(s) distribu-
tions were obtained, whereas the correspondiisy could
heterogeneity from simple diffusional spreading. This, com-distinguish the distributions better. Also, the comparison of
bined with better statistical properties of a direct fit, seemghe ¢(M*) and the G(s) distributions of the ferritin experi-
to be the origin of the higher level of detall in tikgM) as  ment (Fig. 5) indicates slightly higher information content
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of the Lamm equation analysis. However, because of théhe information on how much boundary spreading one
well-known tendency of the inversion of integral equationswould expect for a discrete single species of any given size.
to produce oscillations, some of the detailsc{iM) can be  Fortunately, there are many alternative ways of obtaining
deceptive. This is illustrated by the Monte Carlo simulationssuch hydrodynamic prior knowledge, and many cases in
in Fig. 5, and represents a major technical difficulty with thewhich good approximations can be made (see above)
presented approach. (Frigon and Timasheff, 1975). Although the quantitative
The underlying problem is that Eq. 1 is an ill-posed aspects of the calculated distributions depend on this prior
problem for smooth kernels (Phillips, 1962). This has beerknowledge, the method was found robust in reporting the
extensively studied (Amato and Hughes, 1991; Hansergssential qualitative features of the distributions even when
1992; Phillips, 1962), and is well known to occur in many using slightly incorrect size and shape assumptions (Fig.
biophysical techniques, for example, in dynamic light scat-3 D). Furthermore, if the distribution is transformed to a
tering (Provencher, 1979). Because, in a direct inversionsedimentation coefficient distributicg(s), only the resolu-
the size-distribution analysis in Eq. 1 tends to produce largéion of the distribution was found to suffer slightly from
oscillations inc(M), the analysis requires regularization and errors in f/f; and v. (In c¢(M), these errors additionally
adjustment to the level of detail that one can reliably extracinfluence the location of the peaks, which will depend
from the experimental data. The approach used here closelinearly onf/f,, and approximately with &z power depen-
followed the technique of adjusting the regularization pa-dence orv.) However, even with relatively gross estimates
rameter by controlling the variance increase of the fit that isof the hydrodynamic parameters, the sedimentation coeffi-
introduced by the regularization constraint, a technique deeient distributionc(s) can have a higher resolution than a
veloped by Provencher and implemented in the progransedimentation coefficient distribution that is uncorrected for
CONTIN (Provencher, 1982b). As regularization methods diffusion (Figs. 1,C andD, and 3D).
maximum entropy regularization and Tikhonov—Phillips The utility of the method, if applied to protein mixtures,
regularization with a second derivative operator were studis illustrated in Fig. 3, where all three species, including a
ied. Maximum entropy performed slightly better, because itsmall component, can be clearly resolved. Beyond the cal-
could create sharper peaks for discrete size distributions armllation of molar mass estimates for species in discrete
had a somewhat lower tendency to exhibit oscillations forprotein mixtures, which could be useful for diagnostics of
broader distributions. Overall, the results are consistent witlprotein homogeneity and aggregation, the method may also
the previous findings from numerical simulations (Amato allow the diagnosis of the presence and stoichiometry of fast
and Hughes, 1991) and from studies of broadly distributedeversible interactions. Similar to the broadening of@{s)
biopolymers by light scattering (Provencher, 1992). Alter-distributions obtained from van Holde—Weischet analysis of
native numerical methods to avoid artificial peaks, such as reaction boundary, very broad appare(il) and c(s)
described by Provencher (1992) could be adapted. distributions were obtained for interacting systems (Fig. 6).
If one compares the physical processes observed fdn both methods, this broadening can be observed without
particle-size analysis in sedimentation velocity ultracentrif-macroscopic separation of the species, such as in monomer—
ugation with those of dynamic light scattering, centrifuga-dimer and monomer—trimer self-associations (Gilbert, 1955;
tion has a strongly size-dependent directed migration in th&ilbert and Gilbert, 1973), which is a reflection of the
centrifugal field in addition to the diffusion. Therefore, it boundary spreading in a reaction boundary being different
appears that this additional source of information in centrif-from that of noninteracting species. The possibility of a
ugal data should make the choice of the regularizatiordetailed quantitative analysis of these appacélt) curves
procedure less critical. In both the experimental and théveyond their diagnostic utility is unclear. However, once the
simulated data with continuous distributions, it was foundstoichiometry of an interaction has been identified, more
that it is advantageous to slightly increase the regularizatiodirect modeling with the Lamm equation expanded by the
parameter to suppress artificial oscillations. This may beeaction terms seems advantageous and practical (see, for
due to the inactivity of the non-negativity constraints in theexample, Claverie, 1976; Cox, 1969; Frigon and Timasheff,
case of broad distributions. Clearly, the adjustment of thel975; Goad and Cann, 1969; Schuck, 1998; Stafford, 1998).
regularization parameter to obtain the optimal degree of The characterization of broad continuous distributions is
information will require experience, and may depend onan important application, and a ferritin sample was used as
knowledge of the type of sample under study. This problenra model system. In conventional sedimentation velocity
of ill-posed analysis can also be minimized experimentallyanalysis apoferritin showed a molar mass that is slightly
at high rotor speeds and long solution columns, where th@igh compared to the previously determined value of
diffusional spreading of the sedimentation boundaries 260,000 (Stefanini et al., 1982), this could be due to a small
smallest, and their translation is largest. fraction of aggregates, such as those observed by flow field
Another difficulty in the presented approach is the re-flow fractionation in Pauck and Tfen (1998). Interest-
quirement for estimates of the partial specific volume andngly, in the size-distribution analysis of the apoferritin, a
the hydrodynamic frictional ratio, which basically provides small peak in the size range of double the main peak was

Biophysical Journal 78(3) 1606-1619



1618 P. Schuck

found. In the size-distributions of the ferritin sample, aCann, J. R., and G. Kegeles. 1974. Theory of sedimentation for kinetically

small degree of artificial oscillations iI(M*) was identified controlled dimerization reactionBiochemistry.13:1868—-1874.

. . Claverie, J.-M. 1976. Sedimentation of generalized systems of interacting
by Monte Carlo simulation. These prOblemS could be char particles. 1ll. Concentration-dependent sedimentation and extension to

acteristic of the study of broadly distributed macromole- other transport method8iopolymers15:843—857.
cules. However, the gross shapec@*) was reproducible  Claverie, J.-M., H. Dreux, and R. Cohen. 1975. Sedimentation of gener-
and appears reasonable. The difference in the buoyant masdlized systems of interacting particles. I. Solution of systems of complete

L " Lamm equationsBiopolymers.14:1685-1700.
between apoferritin and ferritin corresponds ta1000— N polyme ) . o .
. . . Cox, D. J. 1969. Computer simulation of sedimentation in the ultracentri-
5000 iron atoms per molecule, consistent with values for fge v Velocity sedimentation of self-associating solutesh. Bio-

maximal loading found in Leapman and Hunt (1995). Fur- chem. Biophys129:06-123.
ther studies are in progress to explore the properties of théox, D. J., and R. S. Dale. 1981. Simulation of transport experiments for

; ; ; _ interacting systemsin Protein—Protein Interactions. C. Frieden, and
new method in more detail when applied to the character L. W. Nichol (eds.). Wiley, New York.

ization of broad distributions, such as emulsions (M. I:)e'(:rank, J., and P. Nicholson. 1947. A practical method for numerical

rugini, P. Schuck, and G. Howlett, in preparation) and evaluation of solutions of partial differential equations of the heat-
polystyrene. conduction typeProc. Cambridge Philos. Sod3:50—-67.

In summary it was shown that an explicit Lamm equationde la Torre, J. G. 1992. Sedimentation coefficients of complex biological
! particles.In Analytical Ultracentrifugation in Biochemistry and Polymer

model for continuous size-distribution analysis can be for- sience, s. E. Harding, A. J. Rowe, and J. C. Horton (eds.), Royal
mulated and applied. Equipped with maximum entropy reg- Society of Chemistry, Cambridge, U.K. 333-358.

ularization, it reveals relatively high-resolution distribu- Demeler, B., and H. Saber. 1998. Determination of molecular parameters
tions. which were tested with simulated and experimental by fitting sedimentation data to finite element solutions of the Lamm

: . AN . equation.Biophys. J.74:444—-454.
data of both discrete and broad continuous dlsmbuuonsDemeler, B., H. Saber, and J. C. Hansen. 1997. Identification and inter-

Although the results obtained are qualitatively comparable pretation of complexity in sedimentation velocity boundarigso-
to those from van Holde-Weischet analysis, providing a phys.J.72:397-407.

much different from those of the van Holde—Weischet of the Lamm equation. |I. Numerical procedurBiopolymers.
4:449-455.

method and the adt- or dc/dr-basedg*(s) method. This Frigon, R. P., and S. N. Timasheff. 1975. Magnesium-induced self-
suggests that it could be a useful new tool for ultracentrifu- association of calf brain tubulin. I. Stoichiometriochemistry.14:

gal studies. Furthermore, the described method can be ex-4559—4566.

Fujita, H. 1962. Mathematical Theory of Sedimentation Analysis. Aca-
tended to global analyses, for example, of several experi demic Press, New York.

ments at dlffer.ent rotor speeds, and can be aqapted 1i‘é?iebeler, R. 1992. The Optima XL-A: a new analytical ultracentrifuge with
different experimental protocols such as gravitational- a novel precision absorption optical system Analytical Ultracentrif-

sweep sedimentation (Mhtle, 1999). Also, the explicit légation ind Biochzmistfy agd PC%I%/mgr Sclience_- S. fE #art_iing, A J.
Lamm equation model for continuous distributions could be br?é’gee’ and J. C. “lorton (eds.). The Royal Society of Chemistry, Cam-

used to combine the analysis of sedimentation velocity angipert, G. A. 1955Disc. Faraday S0c20:68—-71.

dynamic light-scattering experiments, which may provide &gilbert, L. M., and G. A. Gilbert. 1973. Sedimentation velocity measure-

significant increase in resolution, and possibly additional ment of protein associatiodMethods EnzymoR7:273-296.

information on the hydrodynamic shape of the macromoleGoad, W. B., and J. R. Cann. 1969. Theory of sedimentation of interacting

cules as a function of their size. systemsAnn. N.Y. Acad. Scll64:172-182.

Hanlon, S., K. Lamers, G. Lauterbach, R. Johnson, and H. K. Schachman.
1962. Ultracentrifuge studies with absorption optics. I. An automatic
photoelectric scanning absorption systéknch. Biochem. Biophy€9:
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