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ABSTRACT External pH (pHo) modifies T-type calcium channel gating and permeation properties. The mechanisms of
T-type channel modulation by pH remain unclear because native currents are small and are contaminated with L-type calcium
currents. Heterologous expression of the human cloned T-type channel, a1H, enables us to determine the effect of changing
pH on isolated T-type calcium currents. External acidification from pHo 8.2 to pHo 5.5 shifts the midpoint potential (V1/2) for
steady-state inactivation by 11 mV, shifts the V1/2 for maximal activation by 40 mV, and reduces the voltage dependence of
channel activation. The a1H reversal potential (Erev) shifts from 149 mV at pHo 8.2 to 136 mV at pHo 5.5. The maximal
macroscopic conductance (Gmax) of a1H increases at pHo 5.5 compared to pHo 8.2. The Erev and Gmax data taken together
suggest that external protons decrease calcium/monovalent ion relative permeability. In response to a sustained depolar-
ization a1H currents inactivate with a single exponential function. The macroscopic inactivation time constant is a steep
function of voltage for potentials , 230 mV at pHo 8.2. At pHo 5.5 the voltage dependence of tinact shifts more depolarized,
and is also a more gradual function of voltage. The macroscopic deactivation time constant (tdeact) is a function of voltage
at the potentials tested. At pHo 5.5 the voltage dependence of tdeact is simply transposed by ;40 mV, without a concomitant
change in the voltage dependence. Similarly, the delay in recovery from inactivation at Vrec of 280 mV in pHo 5.5 is similar
to that with a Vrec of 2120 mV at pHo 8.2. We conclude that a1H is uniquely modified by pHo compared to other calcium
channels. Protons do not block a1H current. Rather, a proton-induced change in activation gating accounts for most of the
change in current magnitude with acidification.

INTRODUCTION

Voltage-activated calcium channels are critical for regula-
tion of electrical and chemical signaling in the myocardium.
Calcium channels are responsible for the generation of
action potentials in pacemaker cells and shaping the plateau
phase of the cardiac action potential in myocytes. There are
two classes of calcium channels expressed in the myocar-
dium, the L- and the T-type calcium channels. These chan-
nels differ in their pharmacological, permeation, and gating
properties. L-type channels are sensitive to block by dihy-
dropyridines and cadmium, have a greater permeability for
barium than calcium, activate at potentials positive to220
mV, and L-type channel gating regulation is complex (Hille,
1992). L-type channel gating is governed by voltage, cal-
cium, and other intracellular second messengers. In con-
trast, T-type channels are sensitive to block by nickel (Lee
et al., 1999), conduct barium and calcium equally, activate
at potentials positive to270 mV, and their gating is strictly
voltage-dependent. The current kinetics of both these chan-
nel types are also dramatically different. L-type channels
continually reopen in response to depolarization and have a
slow decay rate (Hille, 1992). T-type channels open in brief
bursts before inactivating. Qualitatively, the T-type channel
gating kinetics are sodium channel-like (Droogmans and
Nilius, 1989). Both sodium and T-type calcium channel

current macroscopic kinetics are well described by the Al-
drich, Corey, and Stevens model for sodium channels (Al-
drich et al., 1983). However, a major difference betweenINa

and IT is that IT is ;50-fold slower thanINa.
Extracellular acidification commonly accompanies

pathophysiological events such as ischemic episodes (re-
viewed by Carmeliet, 1999). Occlusion of coronary circu-
lation, for example, can change external pH (pHo) from a
normal value of 7.2 to as low as 6.0 (Vanheel et al., 1990;
Clark et al., 1993). Extracellular acidification attenuates
inward currents measured from both native low-voltage-
activated calcium channels (LVA; Tytgat et al., 1990) and
high-voltage-activated calcium channels (HVA), including
Ica,L (Prod’hom et al., 1987; Krafte and Kass, 1988; Pietro-
bon et al., 1989). Decreases in calcium current with acidi-
fication may be caused by 1) block of the permeation
pathway; 2) decrease in local calcium concentrations, and;
3) proton modification of gating. An increase of external
proton concentration shifts the voltage dependence of HVA
calcium channels gating to more depolarized potentials
(e.g., Krafte and Kass, 1988; Kwan and Kass, 1993). This
shift effect is similar to that noted for voltage-gated sodium
channels (Woodhull, 1973), and T-type calcium channels in
cardiac myocytes (Tytgat et al., 1990).

In contrast to L-type calcium channel studies, only scant
information exists for regulation of T-type calcium chan-
nels. pHo modulates nativeIT differently than L-type chan-
nel currents in cardiac myocytes (Tytgat et al., 1990; Cohen
et al., 1992). Native myocyte T-currents, however, are dif-
ficult to study because myocyte currents are small and hard
to isolate. Most native preparations that expressIT also
expressICa,L. As a consequence, nativeIT is often measured
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as a subtraction current. Heterologous expression of cloned
T-type calcium channels provides a system whereIT can be
studied in isolation with native-like kinetics (Satin and
Cribbs, 1999). To better understand proton modification of
T-type channels, we examined the effect of acidification on
the human cardiac T-type channel,a1H (Cribbs et al.,
1998), stable-transfected in human embryonic kidney cells
(HEK) 293 cells. The major effect of decreasing pHo on
a1H is a shift of steady-state activation gating, with a novel
decrease of the voltage dependence of channel activation
gating. We also report the unique finding thata1H maximal
macroscopic slope conductance increases at pHo 5.5, com-
pared to 8.2. We conclude that the decrease of inward
T-type calcium currents, measured by sustained depolariza-
tions, are mainly due to proton modification of activation
gating.

MATERIALS AND METHODS

Cell culture

a1H cDNA (Cribbs et al., 1998) was used to generate a stable-transfected
HEK 293 cell line (Satin and Cribbs, 2000). Cells are incubated in DMEM
supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100
mg/ml streptomycin, and 1 mg/ml G-418.

Electrophysiology

Cells were digested with 0.125% trypsin and re-plated 1–3 days before
recording in the whole-cell clamp configuration. Culture media were
replaced with the extracellular bath solution immediately before recording.
The pipette solution contained (in mM): 110 potassium gluconate, 40 CsCl,
1 MgCl2, 5 Mg-ATP, 5 EGTA, 5 Hepes for pHi 7.4. The extracellular bath
solution consisted of (in mM): 140 NaCl, 5CsCl, 2.5 KCl, 10 TEA-Cl, 2.5
CaCl2, 1 MgCl2, 5 glucose, and 5 Hepes for pHo 8.2–6.8 or 5 MES for pHo
6.8 to 5.5. The solutions were titrated with CsOH to the appropriate pH.
Recordings were initiated 5 min after patch break to allow equilibration of
the pipette solution with the cell interior. The cells were recorded in a
chamber with a static bath volume of 250ml. To change pHo we superfused
6 ml bath solution at 1.5 m/min. Experiments were performed at room
temperature (20–22°C). Pipettes were pulled from borosilicate glass to
resistance in pipette solution ranging from 1.5 to 2 MV. The small
spherical cells used for analysis had a mean capacitance of 23 pF6 1.2 and
we measured a mean series resistance of 4.26 0.03 MV. Currents were
filtered at 10 kHZ and sampled at 50 kHz. For voltage steps used in tail
current measurements, the capacitative transient was complete in 100–200
ms. All tail current decays are fitted to data after the peak to reduce any
complexity introduced by slow settling time of the voltage clamp. Single-
exponentialfunctions superimpose the current decay, consistent with a con-
stantVCommandduring the measurement. pClamp 6.04 and 8.02b programs
(Axon Instruments) were used for data analysis and acquisition. Nonlinear
curve-fitting was performed with Origins v.4.1 (Microcal Software). Data are
reported as mean6 SEM. Student’st-tests on independent groups were used
to evaluatep-values.

Voltage protocols

Steady-state inactivation is measured by holding at2100 mV, then pre-
pulsing from290 to230 mV for 5 s, followed by aVtest to 220 mV. The

peak current ofVtest is plotted as a function of pre-pulse potential. The data
were fit with the Boltzmann distribution:

I/Imax 5 ~1 2 C/1 1 exp~V 2 V1/2!/k! 1 C (1)

WhereI/Imax is relative current,V is pre-pulse potential,V1/2 is midpoint
potential for complete inactivation,k is the slope of the voltage dependence
for inactivation, andC is the offset.

Activation gating was measured by holding at2100 followed by aVtest

from 290 mV to 140 mV for 300 ms. The peak current is plotted as a
function of Vtest. We fit the current voltage curves with the Boltzmann
form:

I~V! 5 G* ~V 2 Erev!/~1 1 exp~V1/2 2 V!/k! (2)

WhereG is conductance,Erev is the reversal potential,V1/2 is the midpoint,
andk is the slope of the voltage dependence for maximal inward current.
We also measure changes in activation gating by recording tail currents at
280 mV, after pre-pulsing from285 to 190 for 9 ms from a holding
potential of2100 mV. The data are fit with a single exponential from
cursors set from the peak inward current until the end of the test pulse.
Current amplitudes are plotted as a function of pre-pulse potential. The data
are fit with Eq. 1.

To assess open channel permeation properties andErev we pre-pulsed
cells from aVhold of 2100 mV to1100 mV for a duration corresponding
to the peak of the outward current (3 ms for pHo 8.2 and 6 ms for pHo 8.2;
see Results). After the pre-pulse to1100 mV we measured current am-
plitudes atVtest ranging from2120 to 1100 mV (see Fig. 3).Erev was
measured from the zero current or by linear extrapolation of voltage steps
5 mV apart.

Deactivation kinetics were determined by holding at2100 mV fol-
lowed by a125 mV pre-pulse for 20 ms, and then tails were measured
by stepping from240 to2150 mV. The tails were fit with a single exponen-
tial to obtain the time constant of current decay (tdeact). tdeactas a function of
test potential generates a curve that fits with a single exponential.

Recovery from inactivation is measured by pulsing 5 s to 0 mV
followed by a variable recovery interval atVrec 280 or 2120 mV. The
fraction of recovery current was determined by measuring tails at280 mV
after a 9-ms pre-pulse to175 mV. Tail currents are fit with a single
exponential to determine current amplitudes. The data plotted as a function
of recovery intervals are fit with a double exponential.

RESULTS

pHo shifts the voltage dependence of
steady-state inactivation

Two parameters define steady-state inactivation ofIT: the
midpoint voltage of steady-state availability (V1/2), and the
slope factor (k), which describes the voltage-dependent
availability of this process. External acidification from pHo

8.2 to 5.5 shifts steady-state inactivation to more depolar-
ized potentials without affecting the slope factor of the
steady-state inactivation curve (Fig. 1). Fig. 1,A andB show
the available currents recorded at aVtest of 220 mV, after
pre-pulsing 5 s from2120 to230 mV, for pHo 8.2 and 5.5.
At pHo 5.5 the inward currents are,8.2. The decrease of
inward current atVtest 220 mV is a consequence of a
positive shift of activation gating and a change in the
voltage dependence of channel activation (see below). The
currents are normalized to the maximal inward currents and
are plotted as a function of pre-pulse potential. Fig. 1C
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shows the change of the relative current plotted as a func-
tion of pre-pulse potential from Fig. 1,A andB. The only
effect of changing pHo from 8.2 to 5.5 is a positive shift of
the V1/2 by 11 mV (n 5 5). Fig. 1D summarizes the fitted
midpoint as a function of pHo over the range 8.2–5.5. The
only statistically significant shift ofV1/2 occurs for pHo 5.5.
However, acidification to pHo 6.0 shifts the meanV1/2 by 4
to 5 mV.

pHo modifies IT activation voltage
dependence and permeation

We used two methods to determine the effects of external
acidification on macroscopicIT activation. First, we mea-
sured current-voltage curves from peak inward calcium
current by stepping from aVhold of 2100 mV followed by
a Vtest ranging from290 mV to140 mV for 300 ms. This
voltage protocol is restricted to measuring net inward cur-
rent, and is useful for comparison to data in the literature.
Fig. 2 A is a plot of the peak inward current plotted as a
function ofVtest for pHo 8.2 and 5.5 in a representative cell.
For this wide pH range the peak inward current decreases,
the I(V) curve shifts depolarized, and the voltage depen-
dence decreases. Fig. 2,B–D summarize the Boltzmann
distribution fit parameters as a function of pHo ranging from
8.2 to 5.5. Changes in pHo from 8.2 to 6.8 have no signif-
icant effect on conductance, midpoint, or slope of the con-
ductance-transformedI(V) curve. For pH, 6.8 the macro-
scopic conductance obtained from a linear fit of the

ascending limb of the inwardI(V) curve begins to decline
(Fig. 2 B), the V1/2 for peak inward current shifts from
251 6 2 mV (pHo 8.2) to217 6 5 mV (pHo 5.5; n 5 6)
(Fig. 2 C), and the voltage dependence becomes more
shallow, changing from 4.66 0.3 mV/e-fold at pHo 8.2 to
8.8 6 0.6 mV/e-fold at pHo 5.5 (n 5 6; Fig. 2D).

The potential range tested above may not adequately
define changes in the voltage dependence of channel acti-
vation and macroscopic conductance. We determined how
pHo modifies both inward and outward currents by stepping
from aVhold of 2100 to aVtest from 290 mV to1100 mV.
This extended range peak current-voltage curve shows that
peak outward current is greater for pHo 5.5 than for 8.2 (Fig.
3 A). Fig. 3B is the data in panelA expanded to show that
external acidification causes a hyperpolarizing shift ofErev.
The pHo-induced change inErev is unequivocal, because at
the same potential of140 mV we measured inward current
in pHo 8.2 and outward current in pHo 5.5. The reversal
potential (Erev) for a1H shifts from 496 1.2 mV at pHo 8.2
to 36 6 0.58 mV at pHo 5.5 (n 5 4; p , 0.001).

The shift of Erev for peak currents elicited by sustained
depolarizations suggests a change in selectivity. Therefore,
to assess open channel properties we activated channels and
measured tail currents elicited by voltage steps to potentials
ranging from2120 to 1100 mV. The pre-pulse duration
was set to the peak of the outward current measured at
1100 mV for pHo 8.2 and 5.5. The open channel current-
voltage curve is clearly nonlinear (Fig. 3C). The expanded
voltage axis shows unequivocal evidence for a pHo-induced

FIGURE 1 External acidification to pHo 5.5
decreases peakIT and shifts the voltage depen-
dence of steady-state inactivation. (A, B) Fam-
ily of currents for pHo 8.2 and 5.5 elicited by
a Vtestof 220 mV, following a pre-pulse from
2120 to 230 mV for 5 s. (C) Peak currents
from panelsA (squares), andB (open circles)
are normalized to the peak of the maximally
available currents. The relative current is plot-
ted as a function of pre-pulse potential and is
fitted with a Boltzmann distribution (solid
line). The V1/2 of inactivation is shifted from
268.7 at pHo 8.2 to257.2 at pHo 5.5, without
any effect on the slope (4.6 at pHo 8.2 and 4.5
at pHo 5.5). (D) A plot of the meanV1/2 for
inactivation as a function of pHo shows an
11-mV difference between pHo 8.2 and 5.5
(n 5 8; pp , 0.01).
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change inErev (Fig. 3 D). The slope of the open channel
current-voltage curve reflects channel conductance. Notice
that the maximal slope is in fact slightly steeper for voltages
corresponding to inward current at pHo 5.5 compared to 8.2
(Fig. 3 C). The dashed line in Fig. 3C represents the data
recorded at pHo 5.5 shifted by 15 mV, to normalize for the
change inErev. This effect is subtle, but reproducible in all
cells tested (n 5 4, p , 0.01). We conclude that acidifica-
tion increases macroscopic T-type channel slope conduc-
tance under our physiological ionic conditions.

External acidification reduces IT activation
voltage dependence

Determining pH effects onIT activation voltage dependence
from the peak inwardI-V relationship is problematic. To test
the effects of external acidification on activation we used a
broad range of pre-pulse potentials, followed by a step to a
common test potential. We voltage-clamped cells express-
ing a1H from Vhold 5 2100 mV to potentials ranging from
285 to190 mV for 9 ms, and then measured the instanta-
neous tail currents elicited by a return step to280 mV. All
tail currents are well-fitted by a single exponential function.
This is an important minimal test of adequate voltage con-
trol. Fig. 4,A andB show raw current traces from this tail
current voltage protocol at pHo 8.2 and 5.5. Different pre-
pulse potentials are shown in pHo 8.2 versus 5.5 because of
the dramatic difference in the maximal current activation

range for these two conditions (Fig. 4C). In Fig. 4 A
pre-pulses to280,255,245,220, and 25 mV are shown.
Fig. 4 B shows pre-pulses of280, 0, 25, 70, and 90 mV.
Pre-pulses to175 mV are necessary for maximal current
activation at pHo 5.5 compared to210 mV for pHo 8.2. The
V1/2 for maximal current activation is shifted depolarized
and the slope for maximal current activation is about three-
fold more gradual for pHo 5.5 than 8.2. Fig. 4,D and E
summarize the pooled data obtained from Boltzmann fits of
the tail I(V) curves plotted as a function of pHo. Acidifica-
tion from pHo 8.2 to 5.5 shifts theV1/2 for activation by 50
mV. The slope factor is approximately tripled at pHo 5.5
compared to 8.2 (16.06 1.8 and 5.36 1.6 for pH 8.2 and
5.5, respectively).

External acidification shifts and decreases the
voltage dependence of tinact

To characterize the pHo modification of channel kinetics we
measured the effect of pHo on macroscopic channel inacti-
vation. The decaying phase of current for various sustained
depolarizations is well described by a single exponential
function for both pHo 8.2 and 5.5 (Fig. 5,A andB). The plot
of the time constant of inactivation (tinact) as a function of
Vtest reveals a voltage-dependent and a voltage-independent
phase oftinact for all pHo tested (Fig. 5C). There is no
pHo-induced change in the voltage-independenttinact (Fig. 5
C, 160 mV). NativeIT can be described by an ACS-like

FIGURE 2 External acidification to pHo
5.5 decreases conductance, shifts the acti-
vation V1/2 depolarized, and reduces the
voltage dependence of activation obtained
from the peakI(V) curve. (A) Peak inward
currents are plotted as a function ofVtestfor
pHo 8.2 (squares) and 5.5 (open circles)
and fitted to a Boltzmann distribution (solid
line). Acidification from pHo 8.2 to 5.5
shifts theV1/2 for peak current from245 to
29 mV, decreases the voltage dependence
from 4.1 to 8.6 mV/e-fold, and decreases
conductance from 23 to 5 nS. (B–D) The
means of the conductance, the midpoint
(V1/2), and the slope of inward currents
derived from the fitted Boltzmann distribu-
tion are plotted as a function of pHo (n 5
14; #p , 0.05,pp , 0.01,ppp , 0.001).
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model of gating (Droogmans and Nilius, 1989). A funda-
mental principle is that for small depolarizations activation
is the slow, rate-limiting transition, and therefore contrib-
utes to the macroscopic inactivation rate. Following this
logic, we predict that acidification should shift and decrease
the voltage dependence of the inactivation time constant.
Fig. 5C is a plot of thetinactas a function of voltage for pHo
8.2 and 5.5. There is not a simple 40–50-mV translation of
the tinact(V) curve (dashed line, Fig. 5 C). Consistent with
the effects of pHo modification of steady-state activation
gating, thetinact(V) is both more gradual and shifted depo-
larized at pHo 5.5 relative to 8.2 (Fig. 5C).

External acidification shifts deactivation kinetics
on the voltage axis without an effect on
voltage dependence

To characterize channel deactivation kinetics we activated
channels with a pre-pulse to125 mV for 20 ms and re-
turned the membrane potential ranging fromVtestof 240 to
2160 mV for pHo 8.2 and 5.5 (Fig. 6,A andB). For allVtest,
and for all pHo tested the current relaxed with a single
exponential (Fig. 6,C andD). The time constant of deac-
tivation (tdeact) is a function of voltage for the potential
range tested. For pHo 5.5 the voltage-dependence of acti-
vation is shifted;40–50 mV (Figs. 2 and 4). If the deac-
tivation process involves the same voltage-dependent rate
transitions as the activation process, but in the opposite net

direction, thentdeact(V) should be altered in response to
external acidification. Fig. 6 compares the effect of pHo 8.2
and 5.5 on the voltage dependence of deactivation. The
single-exponential fit the oftdeact(V) plot (Fig. 6 E) yields
the slope or voltage dependence of deactivation. Interest-
ingly, the voltage dependence of deactivation (slope5 496
1.2 and 466 1.0 mV/e-fold change for pHo 8.2 and 5.5,
respectively) was not significantly affected by pHo. In fact,
a 40-mV shift oftdeact(V) at pHo 8.2 superimposes over the
tdeact(V) data at pHo 5.5 (Fig. 6F). This is in contrast to
proton effects on the voltage dependence of activation (Figs.
2 and 4). These data suggest that multiple closed-state
transitions of the activation pathway are differentially mod-
ified by external pH.

Recovery from inactivation parallels the
deactivation response to acidification

In parallel with voltage-gated sodium channels, T-type cal-
cium channels exhibit a delay in recovery from inactivation
(Satin and Cribbs, 1999). The delay in the recovery from
inactivation is voltage-dependent. This delay is shorter for
more hyperpolarized recovery potentials, and becomes neg-
ligible at recovery potentials negative to2120 mV. It has
been postulated that the delay in recovery from inactivation
reflects a voltage-dependent deactivation step necessary for
recovery from inactivation (Kuo and Bean, 1994). Because
acidification from pHo 8.2 to 5.5 shifts thetdeact(V) rela-

FIGURE 3 External acidification shifts
the Erev of a1H IT and increases macro-
scopic open channel slope conductance.
(A) Peak inward current-voltage curve for
a representative obtained from a sustained
depolarization for pH 8.2 (solid squares)
and 5.5 (open circles). Smooth curve is a
modified Boltzmann distribution fit to the
inward current as in Fig. 2. (B) Same data
as inA, expanded on voltage axis to show
unequivocal demonstration of a change in
Erev. Note at140 mV current is inward for
pH 8.2 and outward for 5.5. (C) Open
channelI(V) curve obtained by pre-pulsing
for a duration corresponding to the peak of
the current elicited by a1100 mV depo-
larization. Tail amplitude versus return
step potential yields distinctly nonlinear
curve. The dashed line was drawn through
the data for pH 5.5 (open circles) and
translated115 mV to illustrate the in-
crease of slope conductance. (D) Same
data as inC, expanded on voltage axis to
show unequivocal demonstration of a
change inErev. Note that at140 mV current
is inward for pH 8.2 and outward for 5.5.
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tionship ;40 mV, we wanted to determine whether the
voltage dependence of the delay in recovery from inactiva-
tion is also shifted by;40 mV. Recovery from inactivation
is measured by pulsing 5 s to 0 mV,followed by a variable
recovery interval at recovery potentials (Vrec) of 280 or
2120 mV. The fraction of recovery current was determined
by measuring tail current at280 mV, following a 9-ms
pre-pulse to175 mV (Fig. 7). We pre-pulsed to175 mV
for 9 ms to maximally activateIT for pHo 8.2 and 5.5. Tail
currents are fit with a single exponential to determine cur-
rent amplitudes. The data are normalized to the maximal
current recovered at 8 s for each recovery potential. The
relative current is plotted as a function of recovery interval
(Fig. 7). Fig. 7A shows that there is no significant differ-
ence between the fraction of current recovered atVrec 5
2120 mV for pHo 8.2 and 5.5. ForVrec5 280, the recovery

fraction is significantly smaller for recovery intervals,100
ms at pHo 8.2 compared to pHo 5.5 (Fig. 7,B andC). Fig.
7 D shows that the fraction of current recovered at pHo 8.2
and Vrec 5 2120 mV overlaps the fraction of current
recovered at pHo 5.5 andVrec 5 280 mV. This result is
consistent with a 40-mV shift of deactivation for pHo 5.5
compared to pHo 8.2.

DISCUSSION

This study reports the novel finding that external acidifica-
tion reduces thea1H T-type calcium channel voltage de-
pendence for activation. Similar to most other voltage-
dependent cation channels, external acidification causes a
reduction of the inward current througha1H. However, this

FIGURE 4 External acidification reduces
and shifts the voltage dependence for acti-
vation. (A) pHo 8.2. Tail currents elicited at
a Vtest of 280 mV after a 9-ms pre-pulse to
280, 255, 245, 220, and 25 mV. (B) pHo

5.5. Tail currents elicited atVtestof 280 mV
after a 9-ms pre-pulse to280, 0, 25, 70, and
90 mV. For all pHo tested the tail current
decay is fit by a single exponential. (C) The
relative tail current amplitudes are plotted as
a function of pre-pulse potential for pHo 8.2
(squares), pHo 5.5 (open circles), and wash-
out back to pHo 8.2 (open squares) for a
representative cell. The data are fitted with a
Boltzmann distribution (solid line; V1/2 5
246, 19, and246; k 5 4.6, 15.9, and 5.7
for pHo 8.2, 5.5, and washout with 8.2,
respectively). (D and E) Pooled data from
Boltzmann fits from 13 cells. (D) External
acidification from pHo 8.2 to 5.5 shifts the
V1/2 for maximal current activation150
mV. (ppp , 0.001) (E) Acidification to pHo

5.5 causes a threefold more shallow slope.
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reduction of inward current is only observed for currents
elicited by a sustained depolarization. The mechanism un-
derlying this reduction of inward current for thea1H chan-
nel is a depolarizing shift and a decrease of the voltage
dependence of activation gating.

Paradoxically to the decrease of current elicited by a
sustained depolarization, acidification from pH 8.2 to 5.5
actually increases macroscopic slope conductance. External
acidification also hyperpolarizing shiftsErev. This is con-
sistent with the postulate that this T-type calcium channel
isoform becomes less calcium-selective relative to monova-
lent ions. It is well established that single calcium channel
conductance for monovalent ions is larger than that for
divalent cations. Therefore, our data suggest that protona-
tion of the T-type calcium channel simultaneously slows
activation gating and reduces calcium selectivity.

External acidification decreases the voltage
dependence of activation for a1H

An unexpected major finding of our study was that external
protons dramatically reduced the slope factor for the acti-
vation curve. To our knowledge there are no reports of
proton reduction of voltage dependence in a variety of
cation channels that have been extensively studied. This
result suggests that T-type channels have evolved unique
gating properties. To determine the effect of acidification on
activation kinetics we used an isochronal pre-pulse from

285 to190 mV for 9 ms, followed by aVtest to 280 mV.
For small depolarizations channel activation is underesti-
mated, because current time-to-peak is.9 ms. The voltage
dependence of activation is also obscured by the temporal
overlap of inactivation. Nevertheless, an increase in this
activation curve slope factor, with acidification, indicates a
slowing of the activation rate. These effects are distinct
from sodium channel (Woodhull, 1973; Begenisich and
Danko, 1983; Daumas and Andersen, 1993; Benitah et al.,
1997) or HVA calcium channel modulation by protons in
native (Zhou and Jones, 1996) or heterologous expression
systems. Both gating charge movement and the energy
transferred from the voltage sensor to the gating machinery
contribute to this slope factor. Because of the change in
slope it is tempting to suggest that external acidification
titrates some of the charge involved in voltage sensing, thus
reducing the overall gating charge movement. Our conclu-
sion that pH modification involves conformational changes
of calcium channels is consistent with the early finding from
HVA calcium channels that pH modifies one or more sites
on the external surface (Prod’hom et al., 1989).

pH modification of channel kinetics and gating
distinguish effects on specific transitions

The change in voltage dependence (slope factor) induced by
protons may be separable from the midpoint shift. A number
of emerging schemes of T-type channel gating allow us to

FIGURE 5 External acidification to pHo
5.5 decreases and shifts the voltage dependence
of macroscopic inactivation kinetics. (A, B)
Representative current traces after a sustained
depolarization to theVtest indicated at pH 8.2
(A), or 5.5 (B). The time constant of inactivation
(tinact) is obtained by fitting the decay current
from theI(V) protocol with a single exponential
(smooth curve). (C) tinactis plotted as a function
of voltage. At pHo 8.2 (squares) tinact is voltage
independent at potentials positive to230 mV
with an offset of 17 ms. At pHo 5.5 (open
circles) tinact is voltage independent at poten-
tials positive to155 mV with an offset of 14
ms. Notice thetinact(V) curve at pHo 5.5 shifts
more positive and is less voltage dependent
than pHo 8.2 (voltage-dependent slope5 7.0
and 17.8 mV/e-fold for pHo 8.2 and 5.5, respec-
tively). The effect of pHo ontinact(V) is not due
to a simple translation on the voltage axis (panel
C, dashed line).
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interpret our shift and voltage-dependent effect with respect to
channel state transitions. T-type calcium channels gate with
similar features as posed by the ACS model (Aldrich et al.,
1983) for a variety of sodium channels. The cloned T-type
channelsa1G, a1H, and native T-type current share several
similar macroscopic kinetic features (Chen and Hess, 1990;
Satin and Cribbs, 1999; Serrano et al., 1999). These include
voltage-dependent and independent phases of inactivation and
deactivation. The voltage-dependent phase of activation can be
derived from a slow rate of transfer between closed states at
small depolarizations. This would argue that pH effects on
steady-state activation should also be reflected in the kinetics
of macroscopic inactivation for small depolarizations. This
contention is supported by our data.

The voltage-dependent phase of deactivation is domi-
nated by transitions through closed states proximal to the
open state. However, in contrast to pH modification of

inactivation kinetics, there is only a shift on the voltage axis
of the time course of deactivation; pH does not alter the
voltage dependence of deactivation. The simplest explana-
tion for these results is that protons slow the voltage depen-
dence of closed transitions distal to opening only. The
finding that the proton-induced depolarizing shift is similar
for all measures is consistent with a reduction of negative
surface potential by protons (Hille et al., 1975). Alterna-
tively, Armstrong and colleagues recently posed the intrigu-
ing mechanism that apparent surface potential shifts can in
fact be due to intrapore ion binding in sodium channels
(Armstrong, 1999; Armstrong and Cota, 1999). The crux of
Armstrong’s hypothesis is that intrapore calcium in the
sodium channel facilitates open-to-close gating of the so-
dium channel. Lower pH shiftsErev away fromECa; pre-
sumably, this reduces calcium occupancy. Although a sur-
face potential mechanism is consistent with our data, we

FIGURE 6 In pHo 5.5tdeact(V) shifts140
mV compared totdeact(V) in pHo 8.2. (A, B)
Tail currents are recorded from a maximally
activating potential toVtest ranging from
240 to 2150 mV. (C, D) The deactivating
tail currents forVtest 2100 and2150 are
well fit with a single exponential (smooth,
solid line) to obtain the time constant of
deactivation (tdeact). (E) tdeactis plotted as a
function of voltage for pHo 8.2 (squares)
and pHo 5.5 (open circles), and is fitted with
a single exponential. The slope factor5 49,
46, and 48 does not significantly change for
pHo 8.2, 5.5, and washback to 8.2, respec-
tively. (F) The tdeact(V) data for pH 8.2
shifted by 40 mV and superimposed over
the tdeact(V) data for pHo 5.5. There is no
pHo effect on the voltage dependence of
deactivation.
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cannot eliminate a connection between changes in pore
properties and channel gating. Future experiments varying
ionic conditions are necessary to test whether intrapore ions
stabilize individual channel states.

Recovery from inactivation ofIT is distinct from sodium
channel recovery in that there is no voltage dependence of
the rate of recovery from inactivation (Chen and Hess,
1990; Satin and Cribbs, 1999; Serrano et al., 1999). How-
ever, in parallel with sodium channel gating schemes (Kuo
and Bean, 1994), there is a voltage dependence to the delay
in the onset of recovery from inactivation ofIT (Satin and
Cribbs, 1999). The interpretation is that this delay reflects
the deactivation through the inactivated states. Our pH
modification results are entirely consistent with this scheme
for T-type channels. Protons have the same shift effect on
voltage dependence of the onset of recovery from inactiva-
tion as observed for deactivation.

Native studies of T-type calcium channels suggest that
inactivation is linked to channel activation (Droogmans and
Nilius, 1989). Therefore, changes in activation gating
should be reflected in inactivation gating. The effect on the
V1/2 for activation is significant at pHo 6 or less. While we
did not find a significant difference in theV1/2 for inactiva-
tion at pHo 6.0, there is an;5 mV meanV1/2 depolarizing
shift. At pHo 5.5 this shift achieves statistical significance.

External acidification decreases calcium
selectivity and increases inward
ionic conductance

The explanation for the increase of maximal macroscopic
conductance (Gmax) is simple in the context of established
models of calcium channel selectivity (reviewed by Hille,
1992; also see Deng and McCleskey, 1999). Our experi-
ments were performed in physiological external ionic con-
ditions with respect to calcium and sodium. We show a
change inErev that is consistent with a decrease in relative
calcium selectivity (Fig. 3). We also note that the conduc-
tance of inward currents is greater at pHo 5.5 compared to
pHo 8.2. Together, these data suggest that protons are de-
creasing the affinity of calcium to the pore and increasing
monovalent permeation. An increase in monovalent perme-
ation increases conductance, because monovalent ions do
not bind to the pore with high affinity (reviewed by Hille,
1992).

Comparison to native cardiac T-type
calcium current

There is substantial apparent block by protons ofIT and
Gmax in both native ventricular myocytes (Tytgat et al.,

FIGURE 7 The onset of recovery from in-
activation at a recovery potential (Vrec) of
2120 mV and pHo 8.2 is similar toVrecat280
mV in pHo 5.5. Recovery from inactivation is
measured by pulsing to 0 mV for 5 s and
stepping to2120 or 280 mV for intervals
ranging from 0.002 to 8 s (A, inset). The
available currents are measured from tails at
280 mV after stepping to175 mV for 9 ms.
Currents are normalized to the maximal cur-
rent recovered after 8 s at thetest recovery
potential. (A) The time course of recovery
from inactivation forVrec 2120 mV for pHo

8.2 (squares) and 5.5 (open circles), respec-
tively. There is no significant difference
among the data points. (B) The time course of
recovery from inactivation forVrec 280 mV
for pHo 8.2 (squares) and 5.5 (open circles).
There is no significant difference among the
data points at intervals. 60 ms. (C) Expanded
scale from panelB showing the first 60 ms
(#p , 0.05,pp , 0.01). (D) At pHo 5.5 (open
circles) the recovery of current atVrec 280
mV during the first 60 ms overlaps the recov-
ery of current at pHo 8.2 (squares) and Vrec

2120 mV.
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1990) and atrial cardiac myocytes (Cohen et al., 1992). In
the study on ventricular myocytesGmax analysis was based
on currents elicited by a sustained depolarization (Tytgat et
al., 1990; cf., Fig. 1 in our study). Complications with such
an interpretation are highlighted in our present study. Al-
though single-channel currents were recorded, the ionic
conditions were different. Given our finding that pH mod-
ifies selectivity it may be difficult to simply extrapolate
single-channel results to macroscopic recordings under
mixed ionic conditions. In atrial myocytes (Cohen et al.,
1992) the data are qualitatively consistent with our findings
with respect to the decrease of slope factor and shift ofV1/2

in response to protonation. However, atrial T-type channel
Gmaxdecreases with acidification. In this sole study on atrial
myocytes the bath solution contained Ba21 as the charge
carrier and no permeant monovalent ions. Therefore, the
discrepant decrease ofGmax from our study may be related
to differences in charge carrier. We performed our studies in
physiological ionic conditions with respect to sodium and
calcium. This simply cannot be done in native tissues be-
cause of the overlap of sodium and L-type calcium currents
with IT. In addition, an important limitation of native T-type
calcium channel studies is that they rely on subtraction
currents. Significant contamination of L-type channels may
distort data analysis.

Physiological implications

Although pHo 5.5 seems extreme, acidification of local
external myocardium can reach levels as low as 5.9 after
coronary artery occlusion (Axford et al., 1992; Yan and
Kleber, 1992). Cardiac hypertrophy is common in patients
with ischemic episodes. NativeIT increases in response to
hypertrophy (Nuss and Houser, 1993).a1H is a human
cardiovascular T-type calcium channel (Cribbs et al., 1998).
Therefore,a1H channels may be important pharmacologi-
cal targets under such pathophysiological conditions. Car-
diac hypertrophy and heart failure share the feature of
prolonged action potential duration. In both conditions,
early after depolarizations (EADs) or spontaneous sub-
threshold depolarizations (coined SD by Nuss et al., 1999)
may generate arrhythmias. While EADs are in part pro-
moted by increasedICa,L activity (January and Riddle, 1989;
Zeng and Rudy, 1995), SDs occur in the subthreshold
voltage range whereIT is active (Nuss et al., 1999). The
hyperpolarized range ofIT activation is well suited for
initiating and sustaining subthreshold oscillatory potentials.
There is evidence for this in the myocardium (Hagiwara et
al., 1988; Sen and Smith, 1994; Zhou and Lipsius, 1994). If
IT contributes to SD, then local acidification may actually
be, in part, protective against abnormal rhythm generation
due to attenuation ofIT.
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