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ABSTRACT We consider the possibility of inferring the nature of cytoskeletal interaction with transmembrane proteins via
optical experiments such as single-particle tracking (SPT) and near-field scanning optical microscopy (NSOM). In particular,
we demonstrate that it may be possible to differentiate between static and dynamic barriers to diffusion by examining the
time-dependent variance and higher moments of protein population inside cytoskeletal “corrals.” Simulations modeling Band
3 diffusion on the surface of erythrocytes provide a concrete demonstration that these statistical tools might prove useful in
the study of biological systems.

INTRODUCTION

One commonly studied property of membrane-associated
proteins is the proteins’ mobility (or lack thereof) in the
plane of the membrane. Membrane protein mobility can
have far-reaching effects on cellular functioning (Lauffen-
burger and Linderman, 1993; Giancotti and Ruoslahti,
1999; Berg and Purcell, 1977). Early models of the plasma
membrane, notably the fluid mosaic model (Singer and
Nicolson, 1972), postulated that proteins were freely diffus-
ing in the plane of the membrane. More recently, it has
become apparent that the true situation is more complicated
than that suggested by the fluid mosaic model; proteins
associated with the membrane surface must contend with
various obstacles as they undergo Brownian motion. Study
of the hindered diffusion of membrane proteins thus sheds
light on the nature of interactions between proteins and the
constituents of the membrane interface where they reside. In
turn, knowledge of these interactions gives workers a more
complete picture of global cellular functioning.

Revision of the fluid mosaic model to incorporate the
effects of inhomogeneities in and near the plasma mem-
brane is an active area of research (Jacobson et al., 1995;
Edidin, 1990). Although a complete understanding of all of
the physical, chemical, and biological mechanisms at play at
the surface of cells is still lacking, there exists strong
evidence that the cytoskeleton just below the membrane
plays a central role in controlling the mobility of membrane
proteins in a variety of cells, such as epithelial, nerve, and
red blood cells (Fleming, 1987; Saxton, 1990b; Saxton and
Jacobson, 1997; Winckler et al., 1999). Erythrocytes, with
their unusually dense network of cytoskeletal elements,
have been particularly well studied in this context (Cherry,

1979; Schindler et al., 1980; Sheetz et al., 1980; Koppel et
al., 1981; Sheetz, 1983), leading to the formulation of the
“matrix” (Sheetz, 1983) or “skeleton fence” model for hin-
dered protein transport, in which transmembrane proteins
are effectively corralled by a “fence” of cytoskeleton just
beneath the membrane. Infrequent jumps over or through
the cytoskeletal fence allow proteins to explore the surface
of the cell, albeit much more slowly than predicted by the
fluid mosaic model (see Fig. 1). Numerous experimental
studies have confirmed the predictions of the skeleton fence
model in erythrocytes and other cells (Corbett et al., 1994;
Tsuji and Ohnishi, 1986; Tsuji et al., 1988; Kusumi and
Sako, 1996; Edidin et al., 1991), and theoretical modeling
(Saxton, 1989, 1990a,b, 1995; Boal, 1994; Boal and Boey,
1995) has helped in the interpretation of these experiments.

Interestingly, although the basic picture of the skeleton
fence model has held up under scrutiny, some detailed
aspects of the model have yet to be resolved. For instance,
the exact mechanisms proteins use to escape from one
corralled region to a neighboring one are unclear. It has
been suggested for some time that dynamic reorganization
of the matrix itself would lead to jumping between corrals
(Sheetz, 1983). Whether this reorganization is predomi-
nately associated with spectrin tetramer-dimer dissociation
events (Tomishige and Kusumi, 1999; Tomishige, 1997) or
with relative motion of the cytoskeleton away from the
membrane surface (Boal, 1994; Boal and Boey, 1995) is an
unresolved issue. Furthermore, it is unclear that one must
invoke a dynamic model for the cytoskeleton to explain
experimental results (Saxton, 1995). (Some experimental
evidence has been interpreted to suggest that a dynamic
cytoskeletal model may be closer to reality than a static
picture (Edidin et al., 1991; Tomishige, 1997); however, it
is unclear that there is any inconsistency between a static
model and these results. To our knowledge, no theoretical
treatment has ever shown these experimental results to
prove one mechanism over another.) By analogy with
Kramer’s rate theory for chemical reactions (Ha¨nggi et al.,
1990), it would be relatively easy to formulate a picture for
bound protein diffusion where corral jumps occur when
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Brownian motion instantaneously “shoves” hard enough to
push the protein over a “static” cytoskeletal fence. In this
picture, the cytoskeleton and/or membrane still moves, but
only when they are shoved away by a protein that happens
to be experiencing an especially hard thermal push across
the membrane. The static gating picture just described can
be thought of in terms of a door that is held shut by a spring.
Only when a protein runs into the door with sufficient force
does it pass through. This is to be contrasted with a dynamic
gating picture in which the door stochastically fluctuates
between being open or bolted shut.

In previous work we considered a dynamic gating model
where gating was assumed to result from dissociation/asso-
ciation of spectrin tetramers/dimers (Leitner et al., 2000). It
was shown that such a model appears to be consistent with
the existing experimental data. The question we address in
this article is whether it is possible to experimentally infer
which of the above-mentioned mechanisms (static or dy-
namic) is actually occurring in a cell. More specifically, we
consider the possibility of differentiating between a static
picture such as Saxton’s (1995) and a dynamic model for
cytoskeletal interference, using noninvasive optical tech-
niques such as single-particle tracking (SPT) and near-field
scanning optical microscopy (NSOM). Here we have made
the distinction between noninvasive techniques and invasive
techniques (such as dragging membrane proteins with laser
tweezers) because it is always preferable to observe a sys-
tem without interfering with it. (Experiments from the Ku-
sumi laboratory (Sako and Kusumi, 1995) suggest that
direct manipulation of membrane proteins via laser trapping
can lead to deformations in the membrane skeleton. These
deformations contain sufficient elastic energy to cause
trapped particles to “rebound” when they escape from the
trap.) When inferences are made about how a complex
system would behave when left alone, on the basis of

measurements conducted with a significant perturbation
present, there is always the possibility of drawing false
conclusions.

We will show that it is possible, in theory, to differentiate
between these two pictures. The basic premise is that while
a fluorescence recovery after photobleaching (FRAP) re-
covery curve (averaged over many individual experiments)
or similar averaged observables may not provide a clue to
the corralling mechanism, there is information contained in
the variance and higher moments of the experimental data
that is capable of making the distinction. (Throughout this
paper we will be referring to FRAP, even when the exper-
iments we describe require looking at length scales inacces-
sible to FRAP in its conventional form. In these cases, we
use FRAP to describe any experiment where a depleted
region of proteins is observed in the recovery process. SPT
and NSOM are possible experimental realizations of our
generic FRAP thought experiment.)

The organization of this paper is as follows. In the next
section we present a simple, analytically solvable model that
qualitatively captures the behavior just described, namely
that higher order moments in the experimental data provide
a means of discriminating between static and dynamic cy-
toskeletal interference pictures. In the third section we
present simulation results for Band 3 diffusion in erythro-
cytes that corroborate the picture established in the second
section. In the fourth and fifth sections we discuss our
results and conclude.

THEORETICAL MOTIVATION

Before proceeding with a statistical discussion, it is worth-
while to qualitatively consider just what it is we hope to
statistically quantify. Suppose we can directly observe a

FIGURE 1 Ultraschematic illustration of a mobile transmembrane protein as viewed from under the membrane. The cytoskeleton immediately below the
membrane hinders and regulates the transport, confining the protein temporarily to a corral (a). Jumps from one corral to another occur slowly and are
postulated to result from dynamic reorganization of the cytoskeletal matrix (by dissociation of spectrin tetramers (b) or thermal fluctuations in the gap
between membrane and skeleton (c)) or from infrequent crossing events where the protein is thermally kicked hard enough to force its way over a relatively
static cytoskeleton (d).
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single corral on the surface of the cell and further suppose
that we have labeled the proteins within this corral so that
they are observable (proteins in neighboring corrals are
unlabeled or have been bleached). If the proteins are nu-
merous enough to simulate a continuous concentration of
labels, as opposed to a collection of just a few individually
labeled proteins, then we imagine that the concentration of
labeled proteins within the corral will decay in time with
some characteristic shape indicative of the nature of the
cytoskeletal gating mechanism. Suppose, for instance, that
the static gating picture holds. Then the probability that
individual proteins will escape at any time remains constant
and the decay curve will appear smooth. If, however, gating
is controlled by an open-closed mechanism (such as spectrin
tetramer-dimer equilibrium), then proteins will only be able
to escape when the gate is open, and we will observe a
staircase (see Fig. 2). It is critical to realize that this stair-
case will not persist when we average over a number of
experiments. The opening and closing of the gates is gov-
erned by rate equations of the form

Ṗo~t! 5 2WcPo~t! 1 WoPc~t!

Ṗc~t! 5 WcPo~t! 1 2WoPc~t!, (1)

whereP0(t) (Pc(t)) is the probability that the gate is open
(closed), andWc (W0) is the closing (opening) rate. The
gate’s behavior is not deterministic (a gate that begins open
has a probability of staying open for some time interval, but

could also close), so that although each experiment will
have a staircase shape, the heights and lengths of each step
will vary from one experiment to another. When averaging
over individual experiments is performed we will obtain a
smooth decay curve, and indeed, with a proper choice of
parameters in a suitable model, we can imagine obtaining an
averaged curve that is identical to that which would be
obtained from a static model. A dynamic gating picture
leads to concentration versus time profiles with significant
variation from corral to corral, whereas a static picture
predicts profiles for which the average is the same as that
for any individual experiment. Of course, this picture will
break down when we have a limited number of proteins or
an inhomogeneous membrane surface or any other compli-
cation, and this is why it is helpful to think in terms of the
variance of the protein population as discussed below.

We discussed, in the preceding paragraph, the fact that a
dynamic gating model will give rise to “significant varia-
tion” among individual experiments. If we prepare 100
identical distributions of proteins within a corral, the sto-
chastic nature of the fluctuating gate will guarantee 100
different concentration versus time profiles such as the
staircase in Fig. 2. A mathematically meaningful way to
quantify this variation is to look at the variance in the
number of proteins within the corral as a function of time:

~N~t! 2 N~t!!2#5 N~t!2#2 N~t!#
2
, (2)

whereN(t) denotes the time-dependent number of proteins,
and the horizontal bars refer to averaging over all possible
stochastic trajectories for the gate and all possible diffusive
motions for the proteins. In this languageN(t) is the average
time-dependent number of proteins within the corral and
will be a smooth curve much like the dashed line of Fig. 2.
One need not stop with the variance. Higher order single
time moments as well as multiple time correlation functions
can shed further light upon the stochastic process of protein
depopulation of the corral. (A 10-time correlation, for ex-
ample, looks likeN(t1)N(t2) . . . N(t10).) In fact, the com-
plete set of correlation functions to all orders serves to
completely specify a stochastic process (van Kampen,
1992). In practice this statement is more formal than useful,
but it does give us hope that we may be able to differentiate
between different gating models by examining a finite num-
ber of moments and correlation functions. In the current
work we concentrate on distinguishing open-closed gating
from a static gating picture. We find that the variance is able
to distinguish between these two pictures for sufficiently
idealized experiments. Under less than ideal circumstances
it is harder to differentiate between the two models.

To rigorously study the statistical behavior ofN(t) for a
finite number of proteins requires careful consideration of
the stochastic behavior associated with Brownian motion as
well as any nondeterministic behavior affiliated with the
gating process. This is a question we will pursue via simu-

FIGURE 2 Hypothetical concentration versus time plots for labeled pro-
teins within a corral. At zero time we begin with a nonequilibrium distri-
bution of labeled proteins found only inside the corral. It is assumed that
there are enough proteins to simulate a continuous concentration within the
corral and that a corral with a permanently open gate would exhibit a nearly
vertical decrease to zero concentration on this time scale. The dashed line
represents the case where a static barrier to diffusion exists at the edge of
the corral, and the solid line the case for an open-closed gating mechanism.
These curves represent profiles for a single experiment. Averaging over
multiple experiments would not affect the dashed curve, but would cause
the solid line to smooth (approaching the dashed curve if the gating
parameters are chosen appropriately).
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lation in the following section. To get a feel for the physics
underlying these simulations we present the following sim-
plified model, which is useful because it is able to qualita-
tively reproduce some of the trends observed in our simu-
lations and because the model is simple enough to allow for
an analytical solution and physical interpretation. The pri-
mary assumption of the model is that we may disregard the
position of the proteins relative to the gate, categorizing
proteins as either “inside” or “outside” the corral and that
interconversion between these two flavors of protein is
governed by rate processes while the gate is in a set con-
figuration. By “rate process” we simply mean that the
waiting time distribution (van Kampen, 1992),w(t; m), as-
sociated with, for instance, the conversion of an “inside”
protein to an “outside” protein in timet, is given by

w~t; m! 5 me2mt. (3)

This waiting time distribution just tells us that a concentra-
tion of “inside” proteins will exponentially decay away
(with rate constantm) and that a specific one of these
proteins will leave at or after timet with probability e2mt.
Furthermore, we assume the proteins outside the corral to be
in a constant state of equilibrium, i.e., that the number of
proteins entering or leaving the corral does not affect the
bath of proteins outside the corral. In our previous examples
this approximation translates to a constant state of zero
proteins outside the corral.

In a previous study (Leitner et al., 2000), we found the
rate process assumption to be valid for calculatingN(t) in
corrals parameterized to mimic typical cellular environ-
ments. Extending this assumption beyond the first moment,
N(t), to the calculation of higher moments seems a natural
thing to try. Under the set of approximations just described
we analytically obtain, for the average population and vari-
ance of proteins in astatic corral (see Appendix),

N~t!#5 ~N~0! 2 ^N&!e2mt 1 ^N&

N~t!2#2 N~t!#
2

5 N~0!e2mt~1 2 e2mt! 1 ^N&~1 2 e2mt!, (4)

whereN(0) is the initial number of proteins found in the
corral, ^N& is the average number of proteins within the
corral once equilibrium is established, andm is the rate
constant for decay out of the corral defined by Eqs. 3 and
A1. The numerical value of this constant is obtained in a
manner described in our previous work (Leitner et al.,
2000). Analogous quantities for a dynamically gated two-
state corral take the form (see Appendix)

N~t!#5 ~N~0! 2 ^N&!01~t! 1 ^N& (5)

N~t!2#2 N~t!#
2

5 N~0!~01 2 02! 1 ^N&~1 2 01!

1 ~N~0! 2 ^N&!2~02 2 01
2!

01~t! ; ^e2*0
t m(t)dt&T

02~t! ; ^e22 *0
t m(t)dt&T ,

where the functions01(t) and02(t) are the generalizations
of the exponentialse2mt and e22mt from Eq. 4 when the
gating becomes dynamic and the rate constants accordingly
assume a time dependence (see the Appendix for an expla-
nation and explicit formulae for computation). For two-state
gating these functions both exhibit simple biexponential
decay.

We show in Fig. 3 a direct comparison between simula-
tion and theory for the case of a dynamic corral with some
different gating parameters. The behavior we see is typical
in that we get good qualitative representation of trends, but
the plots are quantitatively off. We do not expect our
simplified model to perform perfectly because of the as-

FIGURE 3 Plots of the variance versus time for inverse FRAP experi-
ments, i.e., where an initial nonequilibrium distribution of proteins within
the observation region proceeds to decay away, with three different sets of
dynamic gating parameters. The dynamic gate fluctuates between being
completely open and completely closed. The simulated curves were ob-
tained from Monte Carlo runs, as detailed in our previous work (Leitner et
al., 2000), and the theoretical curves from Eq. 5. In each simulation, the
corral is a square of side length 128 nm initially occupied by 10 proteins
(N(0) 5 10), diffusing with constantD 5 0.5 mm2 s21. The equilibrium
value for protein occupation,̂N&, is zero. The gating rate constants are
W0 5 20 s21 andWc 5 80 s21 (solid line); W0 5 20 s21 andWc 5 320
s21 (dotted line); W0 5 10 s21 andWc 5 1280 s21 (dashed line). These
particular parameters, while distantly related to Band 3 diffusion in eryth-
rocytes, are only intended to be suggestive.
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sumptions involved. Our equations (Eqs. 4 and 5) are exact
for the problem of decay and/or growth of a set of particles
governed by static and dynamic rate constants. By looking
at solutions to this model problem we make some observa-
tions that should approximately hold for our skeleton fence
model for protein diffusion. Insight gained in this manner
has motivated the numerical simulations found in the next
section (Simulations).

By inspection of Eq. 4 we see that whenN(0) 5 0 the
variance equals the average population for a statically gated
corral. The caseN(0) 5 0 corresponds to a FRAP experi-
ment where the bleached region corresponds exactly to a
single corral. One could envision an experimental realiza-
tion of this initial condition by following multiple particles
in a SPT experiment with all particles removed from the
corral to start with. In any case, the theoretical implication
is clear and is not surprising: for a static gate we observe
Poisson-like statistics (van Kampen, 1992). For the corre-
sponding dynamic case we do not find that the variance
equals the population, and in fact the two can be quite
different (Fig. 4). The FRAP-type initial condition is par-
ticularly appealing because the variance and population are
both zero at zero time, so there is no uncertainty associated
with the state of the system when the experiment is begun.
We will see in the next section that when there is such an
initial certainty it serves to obscure the statistical signatures
of the gating process.

Changing the model parameters will change the shapes
and time scales of all population and variance curves. It is
particularly interesting to consider how changing the num-
ber of particles affects the curves. In Fig. 4 we present
illustrative FRAP variance curves for different values of
^N&. Larger values of̂N& correspond to higher densities of
proteins at equilibrium. We see that at high values of^N&,
static and dynamic gating give rise to very different vari-
ances, whereas at low values the curves are more similar.
This trend tells us that if we want to identify gating mech-
anisms we should look at a system with a high density of
proteins. This makes sense because the inherent noisiness of
the diffusion process is relatively large for a small number
of proteins. (The uncertainty in the path traveled by a
particle undergoing Brownian motion is significant, but the
evolution of an infinite number of such particles is governed
by the diffusion equation, which is completely determinis-
tic.) The inverse experiment (beginning with proteins inside
the corral and none outside) shows similar behavior, but
with even more pronounced changes with protein density
(see Fig. 5). The almost perfect coincidence of the static and
dynamic variance curves in Fig. 5 for the one-protein case
reflects the fact that we cannot hope to learn about the
gating mechanism when we have only a single protein to
observe. All we can see is that the protein leaves the corral
with some distribution of waiting times, and this informa-
tion is completely encoded inN(t) (which is taken to be
identical for the static and dynamic cases). Without at least

two proteins present to allow for possible correlations be-
tween decay times, there is no additional information that
could serve to distinguish gating mechanisms. Distinguish-
ing between mechanisms requires a large statistical pool of
proteins to characterize the stochastic process. In the limit of
very large^N& we are led to the “smooth” versus “staircase”
picture from earlier in this section. In this limit, we can

FIGURE 4 Theoretical plots of the variance versus time for FRAP-type
experiments with different equilibrium protein populations,^N&. Except for
the equilibrium population, the parameters in each panel are identical:D 5
0.5 mm2 s21, and the square corral under observation has sides of length
128 nm. The dynamically gated case in each panel (solid lines) is specified
by gating ratesW0 5 20 s21 and Wc 5 320 s21, while the transmission
probability for the static gating case (dashed lines) is taken to ensure
matching of the population curves between static and dynamic models. To
within the resolution of these plots, the population curves fall on top of the
static variance curves.
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distinguish between gating processes by inspection of a
single FRAP recovery curve. Cases intermediate between
^N& 5 1 and^N& 3 ` will still allow for differentiation of
gating mechanisms; however, the statistical signatures of
the gate will be obscured by the inherent noisiness of a
small number of proteins. This is the regime where our
analysis proves useful.

A similar trend is seen if we consider a dynamic corral
with multiple gates. Within our simple model, we account
for multiple dynamic gates on the same corral by making
our opening rate faster (linearly with gate number) while
allowing fewer proteins to escape per opening event. More
rigorously, if we are worried about more than one gate
opening at a time, we can extend the two-state picture to an
M 1 1-state picture, whereM is the number of gates. There
are thenM 1 1 rates at which proteins can leave, depending
upon how many gates are open at a given time. We illustrate
this in Fig. 6. Not surprisingly, increasing the number of
gates on the corral leads to a decrease in variance. Within
the staircase picture, we will have more but smaller steps than
we do for a single gate, and this leads to a lowered variance.
In the limit of an infinite number of gates, the dynamic and
static gating models will become indistinguishable.

We conclude from our simple modeling that it should be
possible to distinguish between corral gating mechanisms
simply by looking at the higher than first-order moments of
protein population within the corral. In particular, it would
appear that we will be able to distinguish between two-state
dynamic gating mechanisms and static mechanisms by
looking at the variance alone (when there are a sufficient
number of proteins and a limited number of ways to escape
the corral and it is possible to directly observe a single
corral region).

SIMULATIONS

The analytical results of the previous section are appealing
in their simplicity but were derived with certain approxima-
tions. Furthermore, we focused attention on a single corral
in a bath of diffusing proteins. This model falls well short of
the true situation on a cell membrane where each corral is
linked to neighboring corrals via a continuous “matrix” of
cytoskeletal barriers. In this section we present a series of
simulations performed on a somewhat more realistic model
for the cellular surface. This model explicitly includes the
Brownian motion behavior of the diffusing proteins as well
as the interaction among neighboring corrals. We also in-
vestigate the question of observing statistical signatures of
the gating mechanism when we are not able to exactly align
the observation region with the edges of a corral.

Our model for the cellular surface includes two basic
components. The first of these is the diffusive motion of the
membrane proteins, which we simulate via a random walk
on a two-dimensional square lattice. The cytoskeletal gates
are taken, for simplicity, to define a grid of barriers super-
imposed upon this lattice (see Fig. 7) and comprise the
second of our components. For the dynamic gating case,
each segment (line between two barrier vertices) is allowed
to open and close independently of all other segments. A
protein that encounters a closed barrier segment during its
random walk is returned to the point it last occupied before
hitting the barrier. For the static gating simulations, a pro-

FIGURE 5 Theoretical plots of variance versus time for an inverse
FRAP-type experiment (proteins begin localized inside the corral with
none outside) with different initial numbers of proteins,N(0). The model
parameters are the same as in Fig. 4. Also, as in Fig. 4, the thick solid line
is the dynamic case and the thick dashed line is the static case. The
population of the corral is given by the thin dotted line for comparison and
is the same for both static and dynamic models by construction. Notice that
with one protein it would be impossible to distinguish the two models—
there must be several proteins to overcome the inherent noisiness of a small
number of proteins and observe the effect of the gating mechanism.
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tein that tries to cross a barrier during its random walk is
allowed to cross with a probabilityPt or is reflected back to
its previous point with probability 12 Pt. As we may only
simulate a finite lattice of points we impose periodic bound-
ary conditions on our simulation to send proteins that walk
off the edge of the simulation to the opposite side. Because
our “experimentally observable region” will be taken to be
much smaller than the size of our lattice, this periodicity has
negligible consequences.

For concreteness and to establish contact with experiment
and our own previous theoretical efforts (Leitner et al.,
2000), we have chosen parameters for our simulations to
correspond with Band 3 diffusion on the surface of eryth-
rocytes. Our treatment is very approximate, and for this
reason we caution the reader against thinking of our results
as “red blood cell results.” (For example, we have used a
uniform square mesh of barriers rather than a heterogeneous
triangular one, which would more closely resemble the
cytoskeletal network of a true red blood cell. Moreover, the
numerical values of many of our parameters are accurate, at
best, only to within a factor of;2 because of experimental
ambiguities.) We prefer to classify our simulations as illus-
trative results, using parameters typical of red blood cells.
The set of parameters we have used will be discussed briefly
in the next few sentences and is summarized in Table 1. The

FIGURE 6 Theoretical plots of variance versus time for a FRAP-type
experiment with different numbers of gates around the corral. The model
parameters are the same as in Fig. 4, with^N& always equal to 20. The solid
lines are the dynamic model and the dashed line the static model chosen to
give agreement between dynamic and static gating population curves
(indistinguishable from thedashed line). As the number of gates increases
(^N& constant), the signature of dynamic gating begins to fade relative to the
static case.

FIGURE 7 Schematic diagram for our model of the membrane surface.
A protein (gray dot) randomly walks among the lattice points (black dots)
until it tries to walk through a barrier (any black line segment). In the static
barrier model the protein will pass through the barrier with probabilityPt,
or it will stay at the last point it occupied before the barrier was encoun-
tered with probability (12 Pt). In the dynamic barrier model the protein
will only pass if that particular barrier happens to be open; otherwise it
remains in its previous position. The dynamics of the gates are regulated by
Eq. 1. A protein that walks off the edge of the lattice in the simulation is
sent to the opposite side.

TABLE 1 Simulation parameters for Band 3 on
erythrocyte membrane

Parameter Description Value

L Corral dimension 140 nm
D Diffusion constant 0.53mm2 s21

Np Average number of proteins per corral 33
l Lattice spacing 7 nm
Dt Time Step 2.33 1025 s
Nc Number of corrals 25, 144
W0 Gate opening rate (dynamic) 14 s21

Wc Gate closing rate (dynamic) 4500 s21

Pt Transmission probability (static) 1.03 1023
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distance between segments of our barrier grid is taken to be
L 5 140 nm (Tomishige, 1997; Tomishige et al., 1998), so
that each corral is a 140 nm3 140 nm square. Diffusion of
Band 3 in the absence of barriers is given by the diffusion
constantD 5 0.53mm2 s21 (Tomishige, 1997; Tomishige et
al., 1998). We divide each corral into a 203 20 grid of
points upon which the protein random walk will occur, so
that each protein moves 7 nm[ l per time stepDt 5 2.33
1025 s, ensuring adherence to the diffusion equation,l2 5
4DDt. The average number of mobile Band 3 dimers per
corral is taken to beNp 5 33. (Given that the erythrocyte
membrane surface area is;40 mm2 (Williams et al., 1990)
and it contains 1.23 106 Band 3 monomers (Gennis, 1989),
we would calculate an average occupation of 84 band 3
dimers per 0.14mm 3 0.14 mm corral. We have rounded
this number down to 50, thus ensuring that any qualitative
effects we observe manifest themselves in a conservative
fashion. As the mobile fraction of Band 3 is approximately
two-thirds of the total found in the cell (Tomishige et al.,
1998), we arrive at the stated result.) Our simulations will
consist of a group ofNc corrals interconnected in a=Nc 3
=Nc array. The results we present will be almost exclu-
sively for Nc 5 25. For dynamic corralling the opening and
closing rates of the gates are given byW0 5 14 s21 (Tom-
ishige, 1997) andWc 5 4500 s21 (Leitner et al., 2000),
respectively. For static corralling, we found that the trans-
mission probability ofPt 5 0.001 gives average population
curves that are indistinguishable from the dynamic case,
using the rates defined above.

Figs. 8–11 display our simulation results. Although in-
dividual details may be found in the captions, we make
some general statements here. Each simulation represents a

FRAP-type experiment in which the initial condition corre-
sponds toN(0) 5 0 for the observation region. We arrive at
this initial condition by placingNp 3 Nc proteins randomly
on our lattice (two proteins may occupy the same lattice
point because we assume no protein-protein interaction) and
removing from the simulation all proteins within the obser-
vation region. The simulation is then allowed to proceed. At
each time step every protein is moved one lattice spacing in
a randomly determined direction. If a barrier is crossed or a

FIGURE 8 Population,N(t) (dashed line), and varianceN(t)2 2 N(t)
2

(solid lines), versus time for FRAP-type experiments with dynamic and
static barriers to diffusion. The population curves are indistinguishable for
these two models. The upper solid line is the dynamic gating variance, and
the lower solid line the static barrier variance. This simulation was run on
a grid of 25 corrals, with the bleached region corresponding to a single
corral (seeinset). Parameters were chosen to simulate Band 3 on an
erythrocyte membrane, as shown in Table 1.

FIGURE 9 Similar to Fig. 8, but with a bleached region corresponding to
four corrals (seeinset). Again, the dashed line represents the population
recovery and is the same for both static and dynamic mechanisms. The
solid lines correspond to dynamic (top) and static (bottom) models.

FIGURE 10 Similar to Figs. 8 and 9, but with an observation region
consisting of a circle of radiusL 5 140 nm that just fits inside a four-corral
square as seen in the inset. The dashed population curve is barely visible
here, as it is mostly obscured by the lower (static barrier) variance curve.
The rapid rise of all of the curves to;20 reflects the fact that the initial
bleach leaves a number of proteins near the observation region without any
barrier to slow their entrance. These proteins rapidly reequilibrate inside
the four corrals where the circular observation region lies. The higher noise
levels in these curves relative to the previous two figures result from the
constant rapid changes inN(t) associated with proteins that pass through no
barriers but still enter and leave the observation region. This additional
noise is not fully averaged out by looking at only 1000 experiments.

2264 Brown et al.

Biophysical Journal 78(5) 2257–2269



protein walks off the edge of the lattice, the move is dealt
with in the manner described above. For the dynamic gating
case, the status of all of the gates is reevaluated (see Eq. 1)
at each time step after the proteins have moved.N(t) was
determined for each run by checking to see how many
proteins were inside the observation region after each time
step. Simulations were run for 50,000 time steps, corre-
sponding to a physical time of 1.15 s. The reported values of
N(t) and N(t)2 2 N(t)

2
were calculated by repeating the

above procedure 1000 times and averaging.
It should be clear by looking at our figures that no effort

was made to converge our results by increasing our aver-
aging beyond 1000 systems. Our intent is to provide a
qualitative demonstration of a general phenomenon. It
would be somewhat misleading to give fully converged
results when an experiment will almost certainly not be able
to approach the statistics necessary to achieve such conver-
gence. Our results mimic what an experimentalist would see
if the experiment were repeated 1000 times. Furthermore,
the qualitative features we seek from the data, namely to
demonstrate the difference between statistical signatures for
different mechanisms, are sufficiently apparent when we
use 1000 systems. (Repeating the experiment only 100
times results in insufficient statistics to clearly display these
signatures.) Our relatively large lattice spacing ofl 5 7 nm
deserves comment. The time scale set by this spacing im-
plies a closing rate of approximately once every 10 time
steps and an opening rate hundreds of times slower. We do
not anticipate inaccuracy in the gating statistics because of
this time step, though it could be possible that the behavior
of proteins near the gate is affected by this coarse graining.

We have observed only very minor changes in preliminary
calculations on going froml 5 7 nm to l 5 7/4 nm, and
certainly no qualitative discrepancies were observed. The
spacing we have used is appealing because it is numerically
efficient and allows us to ignore any complicated behavior
that might be occurring near the cytoskeleton. We have not
considered any detailed mechanism for interaction between
the cytoskeleton and the proteins that would become im-
portant to consider were we to reduce the step size in our
simulations. We prefer to consider relatively large length
scales and impose a reflecting boundary condition between
points that straddle the cytoskeleton. Such neglect of details
near the cytoskeleton has been invoked previously (Saxton,
1995; Leitner et al., 2000), and insofar as our work is
intended to compare with previous theories (as well as to
motivate experiments), we feel justified in this approxima-
tion. Saxton (1995) has discussed (although not pursued)
the problem of more rigorously dealing with the protein/
cytoskeleton interaction, and we refer the interested reader
to his work.

The figures we have presented illustrate that the variance
can be a probe for distinguishing open-closed gating from a
static mechanism in a “realistic” biological system. In the
best-case scenarios (Figs. 8 and 9) the early time dynamic
variance is significantly different from the early time pop-
ulation, which is not true for a static gating mechanism. It is
clear that at short times we may see the gating statistics,
even when our observation region encompasses several
corrals, as long as the boundaries of the observation region
correspond with corral boundaries. When the observation
region is not assumed to be perfectly aligned with corral
boundaries the differences between the two cases are less-
ened but persist. We comment further in the following
section.

DISCUSSION

The simulations of the preceding section corroborate our
findings from the simple analytical models of the second
section (Theoretical Motivation). In particular, when the
observation is exactly aligned with corral boundaries, it is
possible to distinguish between static and dynamic gating
mechanisms of the cytoskeleton by examining the time-
dependent variance of population within corrals. Experi-
mentally, a worker would collect a series ofN(t) FRAP
measurements for different observation regions on the cell
and average to obtainN(t) and N(t)2 2 N(t)

2
. If the early

time behavior of the variance closely follows that of the
population, it could be concluded that static barriers are
present. Conversely, if the two curves show different be-
haviors (i.e., different slopes at early times), this would be
strong evidence for dynamic gating. This picture should
hold up even if the dynamic gating is not of the open-closed
type, although the differences between population and vari-

FIGURE 11 Similar to the previous figures, but with a circular obser-
vation region (radius5 L) that is randomly placed at a different lattice
position for each of the 1000 “experiments” over which we average. Our
curves here thus represent averaging over not only diffusion and gating
statistics, but also the placement of the observation region on the cell
membrane. This additional randomness leads to an inherent variance in
N(t) for early times as proteins rush into the observation region unhindered
by barriers. This “noise” associated with uncertainty about the observation
region largely obscures any statistical signatures of the gate mechanism.
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ance may be less pronounced for other dynamic corralling
models.

Our simulations have focused on the FRAP-type experi-
ment because the time dependence of the population and
variance are the same in the static case. Other nonequilib-
rium experiments beginning with a concentration of pro-
teins within the corral would also yield distinct variance
curves, depending on the corralling mechanism, butN(t)
would bear no resemblance to either variance curve. In such
cases, it would be difficult to identify the mechanism from
the statistics without actually comparing to simulation. The
Poisson-like behavior of variance following the population
in time is a clearly identifiable flag that sets FRAP-type
measurements apart as a potentially useful technique. One
could also envision experiments on equilibrium systems,
thus removing the need to bleach out the corral. We have
considered such cases, but in our experience nonequilibrium
measurements yield the strongest signatures of the gating
behavior. Primarily this is because we can specify a partic-
ular initial state for the system, so that there is no noise at
all in N(t) when the measurement begins. Trying to find an
equilibrium observable with an easily identifiable gating
signature is difficult because the measurements are ob-
scured everywhere by equilibrium noise similar to the sig-
nals in Fig. 11. The statistics of the gating mechanism must
be buried in the equilibrium observables, but not so obvi-
ously in the low-order moments and especially not when
averaging is carried out over a finite number of experiments.

Restriction to the population and variance in this study
has been a choice, not only of simplicity, but also of
practicality. The noisiness in our simulation results reflects
the fact that we averaged each plot over only 1000 experi-
ments; the Monte Carlo procedure has not completely con-
verged, and the convergence gets poorer on going from the
population to the variance. This trend will continue to
higher order observables as the statistically meaningful
combinations of moments will result from the addition and
subtraction of terms on the orderN(t)n for nth-order observ-
ables. We will need more and more individual runs to
converge higher and higher order observables. Although we
can achieve this to some extent numerically, experimental-
ists are limited in the number of measurements they can
perform. Our claims that the variance is a useful observable
would be meaningless if it took 106 experiments to differ-
entiate possible gating mechanisms. We have presented
observables that we think are practical and are capable of
distinguishing between two models proposed in the literature.

Some features of our simulation results warrant attention.
The variance curves in the simulations appear to be reduced
in magnitude relative to theory (see Fig. 3), and, in partic-
ular, the static curves appear to systematically drop below
the population lines at late times. In our rate equation theory
(Eq. 4) the static variance and population would exactly
coincide. The discrepancy here results from the approxima-
tions in our theory. The proteins that enter the bleached

region come from neighboring corrals that are not infinite
reserves of protein. When a protein enters the bleached
corral it is depleted from a neighboring corral, which makes
the recovery process a little more deterministic than would
be the case for a single huge bath of proteins coupled to the
observed corral. For the dynamic gating case we have also
invoked the rather severe approximation in our theoretical
calculations that all of the proteins within the corral leave
with an exponential waiting time distribution. This approx-
imation was motivated by the fact that we can adequately
approximate the short time depopulation of an open corral
as exponential decay if we are only interested in studying
N(t) for corrals that are transiently open (Leitner et al.,
2000). One possible way to achieve exponential decay of
N(t) is to impose an exponential waiting time for decay on
each protein within the corral, but this approach is not
physically motivated and was only chosen to simplify the
equations. It should be clear that the proteins within a corral
are not all equally likely to leave at a given time, because a
protein at the center will be far less likely to escape than one
at the edge. This behavior translates to a reduced variance
relative to the simple theory of the second section and
explains why our simulations show diminished signatures of
gating.

Happily, although somewhat smaller in effect than pre-
dicted by our simple estimates, gating manifests itself in the
variance curves. Also fortunate is the fact that the statistics
appear robust with respect to the size of the observation
region, as long as the region is taken to coincide with the
boundaries of the corral meshwork. Indeed, simulations on
somewhat larger regions show very similar statistical sig-
natures of dynamic gating when the observation region is
chosen to coincide with the corralling boundaries (unpub-
lished results). Unfortunately, these signatures are markedly
reduced when we complicate matters by choosing an obser-
vation region that is not aligned with the cytoskeletal mesh-
work (Figs. 10 and 11). The reason for this is clear and was
alluded to in the previous section. Basically we are trying to
sort out the “noise” connected with a dynamic gate, which
is superimposed on a baseline of noise from the diffusion of
the proteins. Our job is made much more difficult when we
are forced to contend with additional noise associated with
the placement of the observation region. Eventually, it be-
comes impossible to observe the gating when we can only
perform a finite number of experiments. Averaging over
more experiments could potentially alleviate this problem,
but for severe enough situations (imagine an observation
region that is square, with all edges passing through corral
centers and the corrals are very large) we will be faced with
a hopeless situation. Clearly, the best way to perform the
experiments we describe is to perfectly align the observa-
tion region with the cytoskeletal meshwork for each mea-
surement. Failing this ideal experiment, it may still be
possible to learn about the system if the observation region
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closely follows the meshwork (Fig. 10), but severe departures
will mask the statistical signatures of the gating mechanism.

CONCLUSION

This work represents an initial theoretical study of how it
might be possible to indirectly see the cellular cytoskeleton
in motion. The question of whether the cytoskeleton is
dynamically interfering with protein motion on the surface
of cells or whether its effect is primarily static remains
unanswered. We do not advance either hypothesis here, but
rather suggest that a dynamic cytoskeleton should influence
the motion of membrane proteins in a manner different from
that of a static skeleton. Our particular dynamic model
(open-closed gating) continues to find support in the recent
literature (Tomishige and Kusumi, 1999) and leads to quite
different behavior than predicted for a static corralling
mechanism. Comparison to other dynamic models (e.g.,
cytoskeletal diffusion; Boal, 1994; Boal and Boey, 1995)
has not been attempted at this point.

Our use of the acronym FRAP should not lead the reader
to conclude that the experiments we suggest could easily be
carried out using a currently available FRAP apparatus. In
fact, the size of most cytoskeletal corrals (generally between
100 and 600 nm across) is less than or comparable to the
diffraction limit for light, which precludes a straightforward
FRAP measurement of a single corral. It might be possible
to get around this problem by looking at a multiple corral
region, but our results suggest that this experiment would
only be useful if the observation region could be aligned
with the cytoskeletal network. As pointed out earlier, our
proposed FRAP-type experiment would more easily be car-
ried out with an alternative technology. Particle tracking
(Qian et al., 1991; Saxton and Jacobson, 1997) would seem
to be an obvious choice and could be extremely powerful if
coupled to laser tweezer experiments (Edidin et al., 1991;
Kusumi et al., 1998), which could first map out the corral
boundaries. Near-field (Levi, 1999) and multiphoton tech-
niques (Squier, personal communication) could alsopoten-
tially be used to study the phenomenon we have
described.

The statistical analysis presented here is very general and
is not limited to membrane protein diffusion or even to
biological systems. Our theoretical treatment provides an
analysis for a finite system of particles interconverting via
time-dependent rate processes and could, be applied, per-
haps, to systems of chemical interest. Similar theories, uti-
lizing higher statistical moments than the population to
differentiate between competing mechanisms, have recently
been applied to the field of single-molecule spectroscopy
(Wang and Wolynes, 1995). More generally, the classifica-
tion of a stochastic process by its moments and correlation
functions is a standard technique of statistical physics (van
Kampen, 1992) that should find many varied applications in
biology.

APPENDIX

In this appendix we demonstrate how analytical expressions for various
corral observables may be obtained when we approximate the flow of
proteins into and out of the corral by rate processes. In particular, we derive
expressions for the population,N(t), and variance,N2(t) 2 N(t)

2
, of

proteins within static and dynamic corrals. Expressions for other observ-
ables (multiple time correlation functions, higher moments, etc.) may be
obtained in a similar (but algebraically messier) fashion.

Static corral

We consider an isolated corral in a “sea” of proteins at thermal equilibrium.
This sea of proteins is taken to be infinite and is not influenced by the
presence of the corral, in the sense that loss of proteins to the corral and/or
gain of proteins from the corral does not change the statistical probability
of another gain/loss event occurring. With the additional assumption that
we may describe the loss of proteins from the corral and the influx of
proteins to the corral as rate processes, the problem becomes analytically
tractable. We stress that the rate process assumption is quite adequate for
describingN(t) inside corrals that are infrequently crossed (static corral
case) or for gates that open infrequently with short duration (Leitner et al.,
2000), but that invoking this approximation to describe the variance and
higher moments of the population is harder to justify.

We denote the rate constants for protein influx and loss asl and m,
respectively.m may be obtained analytically for simple corral geometries
or numerically from simulation in general (Saxton, 1995). The average
number of proteins inside the corral at long times (when equilibrium with
the sea has been reached) is denoted by^N& and together withm sets the
ratel 5 m^N& by detailed balance (Kubo et al., 1998). Given that the sea
of proteins is in constant equilibrium and we have assumed rate processes
for the escape/entrance of proteins from/to the corral, our system is
completely specified by the number of proteins inside the corral as a
function of time. Denoting the probability that there aren proteins in a
corral at timet asPn(t), we arrive at the set of equations

Ṗ0~t! 5 2lP0~t! 1 mP1~t!

Ṗn~t! 5 2~l 1 nm!Pn~t! 1 lPn21~t! 1 ~n 1 1!mPn11~t!.
(A1)

Consider the generating function,

P~s, t! ; O
n50

Pn~t!s
n. (A2)

It is easily verified that Eq. A1 implies that the generating function obeys

P

t
5 ~1 2 s!H2lP 1 m

P

sJ, (A3)

which has the solution (Feller, 1968)

P~s, t! 5 exp~2^N&~1 2 s!~1 2 e2mt!!~1 2 ~1 2 s!e2mt!N(0)

(A4)

for the initial condition {PN(0)(0) 5 1, PnÞN(0)(0) 5 0}. For simplicity we
have assumed that the corral begins with a specific number of proteins; this
restriction is easily relaxed by averaging our results over an initial distri-
bution of protein occupations. Because the average population and average
square population are obtained from the generating function by (Feller,
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1968)

N~t!#5
P

s
U

s51

N~t!2#5
2P

s2U
s51

1
P

s
U

s51

, (A5)

we obtain

N~t!#5 ~N~0! 2 ^N&!e2mt 1 ^N&

N~t!2#2 N~t!#
2

5 N~0!e2mt~1 2 e2mt! 1 ^N&~1 2 e2mt! (A6)

for the population and variance.

Dynamic corral

Consider now a dynamically gated corral. Although we were concerned
primarily with open-closed gating in the body of this paper, we present here
a derivation for a slightly more general situation, namely that the corral has
a boundary that is stochastically fluctuating in such a way as to give rise to
time dependence of the rate constantsm and l discussed above. In the
open-closed model this simply corresponds to rate constants that assume
only two values (zero and the free diffusion values) as time evolves. This
generalization to time-dependent rate constants trivially complicates the set
of coupled Eqs. A1 to

Ṗ0~t! 5 2l~t!P0~t! 1 m~t!P1~t!

Ṗn~t! 5 2~l~t! 1 nm~t!!Pn~t! 1 l~t!Pn21~t!

1 ~n 1 1!m~t!Pn11~t!, (A7)

where the time dependence ofm(t) andl(t) has been explicitly included.
These equations lead to an analog of Eq. A3, withm andl replaced by their
time-dependent generalizations. The generating function that solves this
equation is given by

P~s, t! 5 exp~2^N&~1 2 s!~1 2 e2*0
t m(t)dt!!

z~12~12s!e2*0
t m(t)dt!N(0). (A8)

Utilizing the differentiation formulae (Eq. A5), we are led to expressions
for the average population and average square population for a given
stochastic trajectory of the gate defined by a set temporal dependence of
m(t) andl(t):

N~t!#traj. 5 ~N~0! 2 ^N&!e2*0
t m(t)dt1^N& (A9)

N~t!2#
traj. 5 N~0!~e2*0

t m(t)dt2e22 *0
t m(t)dt!

1 ^N&~12e2*0
t m(t)dt!1^N&2

1 ~N~0!2^N&!2e22 *0
t m(t)dt

1 2^N&~N~0!2^N&!e2*0
t m(t)dt.

The averaging ((. . .)traj.) in the above equations reflects only averaging
over proteins entering and leaving the corral for a given temporal behavior
of the gate. In practice we need to define an average ((. . .)) that further
averages the above formulae over all possible stochastic trajectories for the
gate. Inspection of the above formulae reveals that arriving at a solution for

such a trajectory-averaged result requires computation of terms resembling

^e2*0
t m(t)dt&T , (A10)

where^. . .&T represents an average over all possible stochastic trajectories
for the gate. In general it is not a simple matter to compute this quantity,
but for gating mechanisms with sufficiently simple stochastic properties
there do exist analytical solutions (Zwanzig, 1990). Our focus here will be
on solutions when the gate may occupy a finite number of states and there
is random Markovian hopping between these gating states. In this case,
averages such as Eq. A10 closely resemble expressions familiar to chem-
ical physicists dealing with line broadening in condensed phases, and the
solutions are well known (Kubo, 1962).

For simplicity, consider a two-state gating system with protein loss rates
m1 andm2 in each of the two states and transition rates between the two
states given byW132 andW231. (Because the equilibrium value ofN is ^N&
for both of these states we also necessarily have two different protein influx
ratesl1 5 ^N&m1 and l2 5 ^N&m2.) The expression for Eq. A10 is then
given by (Kubo, 1962)

^e2*0
t m~t!dt&T (A11)

5 ~1, 1! z expFtS 2m1 2 W132 W231

W132 2m2 2 W231
DG

z 1
W231

~W132 1 W231!

W132

~W132 1 W231!
2.

Generalizing the above expression to more than two gating states should be
transparent. The exponentiated matrix becomesN 3 N instead of 23 2 and
is filled with the various transition probabilities between states. Along the
diagonal there will be the addition of2m9is to the sum of the negative rates
to the other gating states. The column vector becomes filled with the
probabilities that the gate will be found in a given state at equilibrium, and
the row vector becomes a 13 N vector of ones.

Our final expressions for the average population and variance are most
easily written in terms of the functions

01~t! ; ^e2*0
t m(t)dt&T

02~t! ; ^e22 *0
t m(t)dt&T , (A12)

where it is understood that the0(t)9s depend upon them9is andW9i3js for
the system in question, as dictated by Eq. A11 for01(t) and a modified
form of Eq. A11, where eachmi is replaced with 2mi for 02(t). The final
results for the average population and variance are given in Eq. 5 of the
text. These equations simplify for the case of an empty bath (i.e.,^N& 5 0)
or a corral that begins empty (i.e.,N(0) 5 0). We have concentrated on
these situations in the text.

We thank Paul Wiseman for stimulating discussions.

This material is based upon work supported in part by the National Science
Foundation under a fellowship grant awarded to FLHB in 1999.

REFERENCES

Berg, H. C., and E. M. Purcell. 1977. Physics of chemoreception.Biophys.
J. 20:193–219.

Boal, D. H. 1994. Computer simulation of a model network for the
erythrocyte cytoskeleton.Biophys. J.67:521–529.

2268 Brown et al.

Biophysical Journal 78(5) 2257–2269



Boal, D. H., and S. K. Boey. 1995. Barrier-free paths of directed protein
motion in the erythrocyte plasma membrane.Biophys. J.69:372–379.

Cherry, R. J. 1979. Rotational and lateral diffusion of membrane proteins.
Biochim. Biophys. Acta.559:289–327.

Corbett, J. D., P. Agre, J. Palek, and D. E. Golan. 1994. Differential control
of band 3 lateral and rotational mobility in intact red cells.J. Clin. Invest.
94:683–688.

Edidin, M. 1990. Molecular associations and membrane domains.Curr.
Top. Membr. Transp.36:81–96.

Edidin, M., S. C. Kuo, and M. P. Sheetz. 1991. Lateral movements of
membrane glycoproteins restricted by dynamic cytoplasmic barriers.
Science.254:1379–1382.

Feller, W. 1968. An Introduction to Probability Theory and Its Applica-
tions, Vol. 1, 3rd Ed. John Wiley and Sons, New York.

Fleming, T. P. 1987. Trapped by a skeleton—the maintenance of epithelial
membrane dynamics.Bioassays.7:179–181.

Gennis, R. B. 1989. Biomembranes: Molecular Structure and Function.
Springer-Verlag, Berlin.

Giancotti, F. G., and E. Ruoslahti. 1999. Integrin signaling.Science.
285:1028–1032.

Hänggi, P., P. Talkner, and M. Borkovec. 1990. Reaction-rate theory: fifty
years after Kramers.Rev. Mod. Phys.62:251–341.

Jacobson, K., E. D. Sheets, and R. Simson. 1995. Revisiting the fluid
mosaic model of membranes.Science.268:1441–1442.

Koppel, D. E., M. P. Sheetz, and M. Schindler. 1981. Matrix control of
protein diffusion in biological membranes.Proc. Natl. Acad. Sci. USA.
78:3576–3580.

Kubo, R. 1962. Stochastic theory of line-shape.In Fluctuation, Relaxation
and Resonance in Magnetic Systems. D. TerHaar, editor. Oliver and
Boyd, Edinburgh. 23–68.

Kubo, R., M. Toda, and N. Hashitsume. 1998. Statistical Physics II:
Nonequilibrium Statistical Mechanics, 2nd Ed. Springer-Verlag, Berlin.

Kusumi, A., and Y. Sako. 1996. Cell surface organization by the membrane
skeleton.Curr. Opin. Cell Biol.8:566–574.

Kusumi, A., Y. Sako, T. Fujiwara, and M. Tomishige. 1998. Application of
laser tweezers to studies of the fences and tethers of the membrane
skeleton that regulate the movements of plasma membrane proteins.
Methods Cell Biol.55:174–194.

Lauffenburger, D. A., and J. J. Linderman. 1993. Receptors: Models for
Binding, Trafficking and Signaling. Oxford University Press, New York.

Leitner, D. M., F. L. H. Brown, and K. R. Wilson. 2000. Regulation of
protein mobility in cell membranes: a dynamic corral model.Biophys. J.
78:125–135.

Levi, B. G. 1999. Progress made in near-field imaging with light from a
sharp tip.Phys. Today.52:18–20.

Qian, H., M. P. Sheetz, and E. L. Elson. 1991. Single particle tracking:
analysis of diffusion and flow in two-dimensional systems.Biophys. J.
60:910–921.

Sako, Y., and A. Kusumi. 1995. Barriers for lateral diffusion of transferrin
receptor in the plasma membrane as characterized by receptor dragging
by laser tweezers: fence versus tether.J. Cell Biol. 129:1559–1574.

Saxton, M. J. 1989. The spectrin network as a barrier to lateral diffusion in
erythrocytes: a percolation analysis.Biophys. J.55:21–28.

Saxton, M. J. 1990a. The membrane skeleton of erythrocytes: a percolation
model.Biophys. J.57:1167–1177.

Saxton, M. J. 1990b. The membrane skeleton of erythrocytes: models of its
effect on lateral diffusion.Int. J. Biochem.22:801–809.

Saxton, M. J. 1995. Single-particle tracking: effects of corrals.Biophys. J.
69:389–398.

Saxton, M. J., and K. Jacobson. 1997. Single particle tracking: applications
to membrane dynamics.Annu. Rev. Biophys. Biomol. Struct.26:
373–399.

Schindler, M., D. E. Koppel, and M. P. Sheetz. 1980. Modulation of
protein lateral mobility by polyphosphates and polyamines.Proc. Natl.
Acad. Sci. USA.77:1457–1461.

Sheetz, M. P. 1983. Membrane skeletal dynamics: role in modulation of
red blood cell deformability, mobility of transmembrane proteins, and
shape.Semin. Hematol.20:175–188.

Sheetz, M. P., M. Schindler, and D. E. Koppel. 1980. The lateral mobility
of integral membrane proteins is increased in spherocytic erythrocytes.
Nature.285:510–512.

Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the
structure of cell membranes.Science.175:720–731.

Tomishige, M. 1997. Regulation mechanism of the lateral diffusion of band
3 in erythrocyte membranes: corralling and binding effects of the mem-
brane skeleton. Ph.D. thesis. University of Tokyo.

Tomishige, M., and A. Kusumi. 1999. Regulation of band 3 diffusion by
dissociation-association equilibrium of the erythrocyte membrane skel-
eton.Biophys. J.76:A390.

Tomishige, M., Y. Sako, and A. Kusumi. 1998. Regulation mechanism of
the lateral diffusion of band 3 in erythrocyte membranes by the mem-
brane skeleton.J. Cell Biol. 142:989–1000.

Tsuji, A., K. Kawasaki, S. Ohnishi, H. Merkle, and A. Kusumi. 1988.
Regulation of band 3 mobilities in erythrocyte ghost membranes by
protein association and cytoskeletal meshwork.Biochemistry.27:
7447–7452.

Tsuji, A., and S. Ohnishi. 1986. Restriction of the lateral motion of band 3
in the erythrocyte membrane by the cytoskeletal network: dependence
on spectrin association state.Biochemistry.25:6133–6139.

van Kampen, N. G. 1992. Stochastic Processes in Chemistry and Physics,
2nd Ed. North-Holland, Amsterdam.

Wang, J., and P. Wolynes. 1995. Intermittency of single molecule reaction
dynamics in fluctuating environments.Phys. Rev. Lett.74:4317–4320.

Williams, W. J., E. Beutler, A. J. Erslev, and M. A. Lichtman. 1990.
Hematology, 4th Ed. McGraw-Hill, New York.

Winckler, B., P. Forscher, and I. Mellman. 1999. A diffusion barrier
maintains distribution of membrane proteins in polarized neurons.Na-
ture. 397:698–701.

Zwanzig, R. 1990. Rate processes with dynamical disorder.Accounts
Chem. Res.23:148–152.

Lateral Diffusion of Membrane Proteins 2269

Biophysical Journal 78(5) 2257–2269


