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Il. Poisson-Nernst-Planck Theory versus Brownian Dynamics

Ben Corry,* Serdar Kuyucak,! and Shin-Ho Chung*

*Protein Dynamics Unit, Department of Chemistry, and TDepartment of Theoretical Physics, Research School of Physical Sciences,
Australian National University, Canberra, Australian Capital Territory 0200, Australia

ABSTRACT We test the validity of the mean-field approximation in Poisson-Nernst-Planck theory by contrasting its
predictions with those of Brownian dynamics simulations in schematic cylindrical channels and in a realistic potassium
channel. Equivalence of the two theories in bulk situations is demonstrated in a control study. In simple cylindrical channels,
considerable differences are found between the two theories with regard to the concentration profiles in the channel and its
conductance properties. These differences are at a maximum in narrow channels with a radius smaller than the Debye length
and diminish with increasing radius. Convergence occurs when the channel radius is over 2 Debye lengths. These tests
unequivocally demonstrate that the mean-field approximation in the Poisson-Nernst-Planck theory breaks down in narrow
ion channels that have radii smaller than the Debye length.

INTRODUCTION

In the previous article (Moy et al., 2000, hereafter calledto gain a realistic physical description of the system, and the
article 1), we have tested the validity of the mean-field validity of the continuum approaches, where ions are rep-
approximation in Poisson—Boltzmann (PB) theory, which isresented as a continuous charge density, would be largely
commonly used in potential energy calculations in ion chancompromised. The most direct way of checking the validity
nels. The PB theory is limited to equilibrium situations; to of the PNP theory is to compare its predictions for various
describe non-equilibrium processes such as ion transponphysical quantities (e.g., current and concentration) with
another continuum theory that is widely known as thethose obtained from Brownian dynamics (BD) simulations,
Nernst—Planck (NP) electrodiffusion equation is used. Thavhere individual ions are treated explicitly. The importance
NP equation combines Ohm’s law for drift of ions in a of such a test of PNP theory has been stressed in a recent
potential gradient with Fick’s law of diffusion due to a series of commentaries on ion permeation by all participants
concentration gradient (hence the name “drift-diffusion(Levitt, 1999; McClesky, 1999; Miller, 1999; Nonner et al.,
equation” is used in some fields). When the potential in the1999). Although molecular dynamics simulations (Roux
NP equation is determined from Poisson’s equation in and Karplus, 1994) are not yet at a stage to replace PNP
self-consistent manner, the combined system of equatiortheory in case of failure, BD simulations currently provide
form the Poisson—Nernst—Planck (PNP) theory, which proa genuine alternative for studying ion permeation in chan-
vides a premium description of ion transport problems innels (Li et al., 1998; Chung et al., 1998, 1999; Hoyles et al.,
many branches of physics and chemistry (e.g., Ashcroft and998a).

Mermin, 1976; Bockris and Reddy, 1970; Mason and Mc- In this article we test the PNP theory by comparing its
Daniel, 1988; Newman, 1991; Weiss, 1996). As in the casgredictions for conductance and concentration profiles in
of the PB theory, these applications usually involve bulkcylindrical channels and a potassium channel with those of
conditions with system sizes much larger than the Deby®D simulations. We emphasize that both theories are ap-
length, and the validity of the underlying mean-field ap- plied to three-dimensional (3-D) channels without any sim-
proximation is well established. Recent applications of theplifying assumptions that would reduce them to equivalent
NP and PNP theories in ion channels (see Levitt, 19861-D problems. Extension of both theories from effective
Cooper et al., 1988; Hille, 1992; Eisenberg, 1996, 1999 for1-D channels to realistic 3-D cases has been achieved very
reviews and further references), in contrast, involve systemgecently (see Kurnikova et al., 1999 for PNP, and the BD
with rather few ions and with dimensions smaller than thereferences quoted above). The 3-D aspect of the channel
Debye length. Under these conditions, one would intuitivelystructure is very important in settling such questions as the
expect that keeping the integrity of ions would be essentiahmount of shielding of dielectric forces on ions. In this
respect, the earlier 1-D BD simulations of ion channels
(Cooper et al., 1985; Jacobsson and Chiu, 1987; Bek and
ZR(_(Jeggived for publication 3 September 1999 and in final form 24 January\]acobsson, 1994) provide only a limited testing ground for
Addr(.ess reprint requests and requests for the source codes of the progrartnhse continuum theories. . - .

to Dr. S. H. Chung, Protein Dynamics Unit, Department of Chemistry, We note thaF the _contmugm_descrlptl(_)n OT water in both
Australian National University, Canberra, A.C.T. 0200, Australia. Tel.: BD and PNP is strictly valid in bulk situations, and the
+61-2-6249-2024; Fax: 61-2-6247-2792; E-mail: shin-ho.chung@anu.edu.achannel-water interactions are expected to play a role in ion
© 2000 by the Biophysical Society permeation. These interactions can be directly taken into
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sibility of molecular dynamics simulation of ion permeation where n,, denotes a reference density any is the potential energy
with the currently available supercomputers necessitates §Pressed in a dimensionless form. Using Eq. 3rfpas an integrating
more phenomenological approach to the problem. Ondo"in Ea- 1. it can be recast into the form

hopes that the effective parameters used in the phenomeno-

X e - : J, = —D,exp(—¢,)V[n,ex . 4
logical approaches (such as diffusion coefficient and dielec- Y X ) VInexpiys) ] “)
tric con;tant) will all be det.erm.'ned frqm mOIG.CU|ar dynam- ynder steady-state conditions and assuming a uniform Jiin the z
ics studies eventually. This will provide a bridge betweendirection, Eq. 4 reduces to 1-D and can be integrated to give
the microscopic and macroscopic approaches and a justifi-
cation for the use of the latter theories. In the mean time, it J=-D i ~ Mo (5)
is important to test the validity of various approximations v ”fg exd y,(2)]dz’
going into the phenomenological theories to assess their
suitability as models of membrane channels. Our compariwhere the values of, = n,exp(,) at the boundary poins= 0 andL are
son of PNP and BD in this article is carried out in this spirit. SPecified withn,o andx,, , respectively. While Eq. 5 appears o require

only the knowledge of the potential in the rangell,in fact, there is still

A summary of some of the results illustrated here Wasa density dependence through Poisson’s equation (2). A similar expression

communicated elsewhere (Corry et al., 1999). for the density can be obtained by integrating Eq. 4 from 8 &nd using
Eq. 5 to eliminatel,/D,,

THEORETICAL METHODS
PNP theory

The PNP approach to ion permeation in membrane channels has been used
in numerous papers in the last decade. Here we give an outline of th&inally, substituting Eq. 6 in Poisson’s equation, one obtains an integro-
theory, and refer to the recent review articles by Eisenberg (1996, 1999) fodifferential equation for the potential in PNP
further details and references. More recent references can be found in Chen
et al. (1997, 1999), Nonner and Eisenberg (1998), and Kurnikova et al. d
(1999). &0 dz{s(l) dz<1>(2)] = - zeexd (2]
In continuum theories, the fluk, of each ion species is described by the v
NP equation, which combines the diffusion due to a concentration gradient

Z . d
i 6)

with that from a potential gradient [t exdy,(2)]dz
Zen, 1Mo+ (ML — nvo)fl(; exfy,(2)]dz — pex (7)
JV = _DV<VnV + V¢>' (1) . . . . . . o
kT This is similar in form to the PB equation, and would reduce to i, jf =

1,0 that is, when the electrochemical forces balance out and the system is
hereD,, z,6, andn, are, respectively, the diffusion coefficient, charge, and in equilibrium. In general, there are no known analytical solutions of Eq.
number density of the ions of speciesNote thatn, (in Sl units) is related 7, and applications of the 1-D PNP to ion channels have to be carried out
to the concentration of ions, (in moles/liter) througm, = 10°N,c,. The using numerical methods (Eisenberg, 1996). For future reference, we quote
potential$ in Eq. 1 is determined from the solution of Poisson’s equation here the trivial solutions of the PNP equations. When the concentration is

uniform (0, = ny everywhere), one simply has Ohm’s law
eV * [e(NV()] = — 2 z.en, — pey, )
4 ‘]u = _(Duzuerb/k-r)(qbuL - d)uO)/Ll (8)
wheree is the dielectric constant, the sum owegives the charge density while in the case of a uniform potential (i.e., no electric forces), the

associated with the mobile ions in the electrolyte, pndrepresents all the  solutions are
other external charge sources such as fixed or induced charges on a

boundary. In the PNP theory, Egs. 1 and 2 are solved simultaneously, J, = —D,n,. — nelL
yielding the potential, concentration, and flux of ions in the system. Note v Y (9)
that both the ion concentration and flux are described by continuous n,(2 = n,o+ (N, —Nn,ZL.

quantities corresponding to macroscopic, space-time averages of micro-

scopic motion of individual ions. Because a self-consistent analytical solution of PNP equations is not
Due to their nonlinear nature, the PNP equations are notoriously diffi-yossiple, it is natural to look for approximations that will enable such

cult to solve analytically except in some very special cases, e.g., the classig| tions. Even if the potential could be determined in some way, there is

Goldman-Hodgkin-Katz equation (Hille, 1992). More recent discussionsg|| 4 problem in evaluating the integrals involving its exponential in Egs.

of the analytical treatment of the PNP equations can be found in Syganow_7 |, fact, the only known indefinite integral $fexpfi(2)]dzis for f =

and von Kitzing (1995, 1999a, b). Here we consider the basic formalism ofzy which simply gives back exg) This corresponds to the constant field

the PNP together with some special cases to indicate where and why the,,oximation in the Goldman—Hodgkin—Katz theory, and usipg@) =
PNP theory may break down. These solutions will also be used in Checking}m + (¥, — ¥,0)ZL in Egs. 5 and 6 yields the following solutions for the

the accuracy of the numerical results. flux and density
WhenJ, = 0 in Eqg. 1, the PNP equations trivially reduce to the PB
equation with the density given by the Boltzmann factor, D (llf — )(”fl — 1 )
v L 10, L 10,
J,=-= , (10)
n, = ne.exp(—,), ¥, = zedp/kT, (3) ' L exp(dn) — explio)
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n(2) = exd —¢,(2)] A

— 10 300 -
-{mo T (- m&e;f;:;(j;]_ eexxdp(w";))}. (11) _ _

150 -

The effect of the electrochemical forces on density, which is not so easy to__
surmise from Eq. 6, can be seen more clearly from Eq. 11: The density .«
which varies linearly between the boundary values when there are no
electric forces (Eq. 9), exhibits an exponential behavior when there is ag 0 -
uniform field (to be more specific, the density of one type of ions is @
enhanced while that of the counterions is suppressed relative to the lineass 5 .
case, see Fig. B). Thus the local potential has a significant effect on the
cation and anion densities, as in the case of the PB theory. The question is
then whether one can calculate this potential correctly in ion channels
within the continuum approach using a continuous distribution of charges
and mean-field approximation. If we use the BD results in article | as a -300 -
guide, the answer has to be negative for narrow channels with radius = ! : : ' ' . . .
smaller than the Debye length. We have already seen in article | that 04 0.2 0.0 0.2 0.4
shielding is largely overestimated in PB theory, and leads to a gross Voltage (V)

reduction of the potential energy of an ion inside a channel. It is expected

that shielding will play a similarly dominant role in the PNP calculations, B

leading to a largely distorted concentration (and hence current) values in
narrow channels when compared to those of the BD simulations.

To test this conjecture, a computer code has been written to solve the
PNP equations in three dimensions for a range of channel shapes. In this
code, a channel shape is constructed on a rectangular grid, and the P
equations are solved at the grid points using a finite difference algorithm £ 400
(see Appendix for details). The input of the program are the channel shapesw
dielectric constants in the channel and the protein wall, the concentrations€
and potentials on the reservoir boundaries, the diffusion coefficients of thesz 300
ions, and the locations and strengths of fixed charges in the channel walls&=
Once these parameters are specified, the program outputs the concentratic)
and potential throughout the system as well as the ionic currents throughg
the channel. The PNP program is executed on an alpha cluster, where &
typical run with 4¢ grid points takes 5-10 min. Inclusion of fixed charges 100
in the channel wall roughly doubles the above computation time. When a
finer mesh with 98 grid points is used, the computation time increases by
more than an order of magnitude.

150 | .

500

200

Axial distance (A)
Tests of accuracy
FIGURE 1 Tests of the accuracy of the PNP code in a cylindrical

As in the case of PB calculations in article I, the grid size has to be . ol with the same dielectric constant everywhere 80). The length

optimized for an efficient running of the PNP program. A smaller grid size

a factor of 20. In most of the PNP calculations, we have usetighl ¢, £q 8 golid ling). The concentration is set to 300 mM throughout and

points, which qorresEonds Ito g}:'d S';fs qf 1'—2 A. An exce”ptlon IS the V€¥the potential between the ends of the channel is var@dTbe concen-
narrow potassium channel, where a 98id is used. Smaller grid sizes tration profiles of cations and anions in a cylindrical channel when a

would lead to slightly larger v_alues of_ ﬂu_x than pr‘esented in this stud)_/. concentration difference is maintained between the eqds=(100 mM

Because we deal with potential and its integrals in PNP, rather than |t§jdeFa = 500 mM). In the absence of an applied potential, the numerical

derivative (i.e., force) as in PB, the results are found to be less sensitive tp. @diamond compare well with the analytical solution from Eq. 9

the grid size. ] » dashed ling When a constant field is enforced, the numerical cation
A number of tests are carried out to check the validity and accuracy Ofyjeq gircles) and anion gpen circley concentrations again follow closely

the numerical solutions of the PNP equations in cylindrical channels. Sinc%,Ie analytical results from Eq. 15dlid lineg. The exact PNP concentra-
the only known analytical solutions of PNP are in 1-D, and our program isjong \ith self-consistent potentials are indicated by the triangles.
written for 3-D channels, we simulate this condition by varying the

cylinder radius and making sure that the results are independent of the
radius. The length of the channel is 25 A and the same dielectric constargimilar agreements are obtained in channels with larger radius. Similarly,
(e = 80) is used inside and outside the channel in testing to avoid 3-Din the second case with a concentration gradient but no electric forces, the
effects arising from the induced boundary charges. concentrations obtained from the PNP codmufiondsin Fig. 1 B) repro-

The simplest checks are provided by either uniform concentration orduce the linear change predicted by Eqd@ghed linén Fig. 1 B). Again,
uniform potential. The first case corresponds to Ohm’s law, and as showthis result is completely independent of the channel radius.
in Fig. 1 A, the numerical PNP results for theV curve filled circles) As a final test, we consider the situation when there is both a potential
closely follow the line predicted by Eq. 8. Here a radifigd is used, but  gradient ¢, — ¢, = 100 mV) and a concentration gradienj & ¢, = 400
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mM). As noted above, an analytical solution exists only for a linearly simulation. Concentration is determined from the time average of the
varying applied potential, and therefore the PNP code is modified tonumber of ions in a given region. The BD program is executed on a Fujitsu
include this as an option in the program. The anion and cation concentra¥PP-300 supercomputer. With 48 ions in the system, the typical run time
tions obtained from the PNP code, when the constant field condition isor a simulation period of 1.Qus (10 million time steps) is-16 h.

enforced, are compared to the analytical solutions from Eq. 11 in Fg. 1 A list of the parameters used in the BD simulations was given in article
As before, the agreement between the numerical and analytical solutions Is Here we include the mass, diffusion coefficient, and ion radii Kor
very good regardless of the channel radius used. Naturally, one can alsshich was not used in article I:

calculate the exact results from the PNP code with self-consistent poten-

tials. In this case the 1-D character of the solutions is lost and a conver- me = 6.5X 102 kg,
gence study of the results with respect to the radius is required. Conver-

gence is obtained when the channel diameter is comparable to its length. Dy =1.96X 10°m?s ™4,
The exact results (after they converged) for the anion and cation concen-

trations are shown with the triangles in FigBllt is seen that there are ac=1.33 A.

substantial differences between the exact concentrations and those obtained

with the constant field approximation. This discrepancy is dependent on therhe same values of the dielectric constants and diffusion coefficients are
applied potential and gets smaller with increasing voltage difference. The;sed in the PNP calculations.

inadequacy of the constant field assumption in ion channels seen here has

been stressed in earlier studies (Chen et al., 1997; Syganow and von

Kitzing, 1999a). RESULTS AND DISCUSSION
Comparisons of PNP theory with BD simulations are car-
Brownian dynamics ried out in cylindrical channels with varying radius, and in

Brownian dynamics is relatively new in studies of ion permeation in a more realistic l_)Ut pomphcated model of the potassium
channels, and not as well known as some other methods. It has be€ghannel. The cylindrical channels are the most common
introduced to the field in the review article of Cooper et al. (1985), wheregeometry used in applications of the PNP approach, and
a good introduction to the technique in 1-D channel models is giventherefore they are used in the majority of tests in the

Despite the encouraging disposition of this article toward BD, it has rarelny"OWing Further comparisons are carried out in a model
been taken up in channel studies in the intervening years (Jacobsson and )

Chiu, 1987; Bek and Jacobsson, 1994). These earlier studies were Iimitéamass'um channel that is constructed from its recen.tly
to 1-D channels and could not be expected to model channel-ion interad€vealed structure (Doyle et al., 1998). Unless otherwise
tions correctly. Very recently, we have extended BD simulations to 3-Dstated, the average concentration in the system is kept at 300
channels, where all the ion—channel and ion-ion forces are correctiynM in both PNP and BD. We note that the Debye length for
treated according to Poisson’s equation (Li et al., 1998; Chung et al., 1998&1 300 mM solution is 5.6 A.

1999; Hoyles et al., 1998a). The basic notions of BD simulations are given

in the companion article (1). We do not repeat them here but discuss those

features of BD specific to ion permeation, which are not mentioned in . .

article | as only the equilibrium situations are considered there. Cylindrical channels

The Langevin equation (see Eq. 9 in article 1) is solved at discrete timerl_he evlindrical channel and reservoir svstem used in both
steps following the algorithm devised by van Gunsteren and Berendse il I VvoIr sy u :

(1982). A time step oAt = 100 fs is used in the BD simulations in general. the PNP calculations and the BD simulations is shown in
In the potassium channel we use a multiple time step algorithm in BD codeFig. 2 A. An identical system is used in article I, and as
as detailed in Chung et al. (1999). A shorter time step of 2 fs is used whegxplained there, rounding of the corners is due to the diffi-
an ion is either in the selectivity filter or near the entrance of the channelcuny of solving Poisson’s equation with sharp boundaries.

where the force acting on an ion changes rapidly. Simulations lasting on L . .
or two million time steps are repeated 36 times in the cylindrical channelerhe channel radiusis SyStematlca”y increased from 3 A to

and 10 to 15 times in the potassium channel to obtain good statistics. Al4 A, or from 0.5 to 2.5 times the Debye length. The
cylindrical reservoir with radius 30 A is placed at each end of the channedielectric constants are normally set to 80 in the electrolyte
and filled with ions. Its height is adjusted so that the average concentratiognd 2 in the protein wall, except in a control study where

in the channel/reservoir system remains at the desired value, usually 308 = 80is used to simulate bulk conditions. We use the
mM represented with a total of 48 ions. This larger value of the concen-, Protein ’

tration than the physiological range={50 mM) is preferred to improve term “passive channel” to .dIStInngh this non-interacting
statistics in BD. Initially, the ions in the reservoirs are assigned randomc@s€ from a real channel withy i, = 2. In these compar-
positions, with the provision that they do not overlap. Velocities are alsoisons, bare channels (i.e., no fixed charges) are considered

assigned randomly according to the Boltzmann distribution. For successivfirst, and then channels with fixed charges in the protein
simulations, the final positions and velocities of the ions in the previouswa”

simulation are used as initial positions and velocities in the next trial. To ensure that comparisons are carried out in nearl
Current is computed from the number of ions that pass through an imag- u par ! utl y

inary plane at the middle of the channel during a simulation period. Toldentical situations, we need to match the boundary condi-
maintain the specified concentrations in the reservoirs, a stochastic bounéions in PNP with those in BD. Due to the dynamic nature
ary is applied: when an ion crosses the channel, say from left to right, apf simulations in BD, there are no unique procedures to
ion of the same species is transplanted from the right reservoir to the 'ef‘i'mplement these conditions. We use a relatively simple

For this purpose, the ion on the furthermost right-hand side is chosen, and

it is placed far left-hand side of the left reservoir, making sure that it doesStrategy here, which will be justified in the control studies

not overlap with another ion. The stochastic boundary trigger points,P€low. The applied potential in BD is represented with a
located at either pore entrance, are checked at each time step of theniform electric field (usuallyE = 10 V/m). The potential

Biophysical Journal 78(5) 2364 -2381
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A calculations. Similarly, the average concentrations in the

. T , . reservoirs, determined from the number of ions in BD, are
40 ( \ . implemented in the PNP calculations. There is a slight
complication here arising from the fact that concentrations
in PNP are specified along the reservoir boundary which, in
35A - general, will not match their average values in the reservoir.
This happens because any potential drop across the system
produces a charge separation. Thus, one needs to find the
correct boundary value that will reproduce the desired av-
/T5R erage concentration in the reservoir. To this end, we first run
the PNP program in the absence of any electrolyte to find
the potential drop/ across the reservoir due to the applied
h voltage and channel shape. Away from the channel mouth,
the charge separation would be expected to balance this
40 - _ potential drop according to the Nernst equation. Thus the

| ! \ﬁ—/ ! ! ratio of concentrations at the two ends of the reservoir is
-40 20 0 20 40 given by

Axial distance (A)

N
[=}
T

30A

Radial distance (A)
o
>

0
o
I
1

c/c, = exp(—eVIKT), (12)

T ] T | which, together with the average concentratiog,= (c, +

C,)/2, determines the appropriate boundary value for con-
J 4 centration. This procedure works well in most cases except
when there are fixed charges in the channel or asymmetric
solutions are used. These cause further distortions in con-
centration values that are not taken into account in the above
2 method, with the result that the average concentration in the
reservoir does not coincide with the desired valueQf In

such cases, the PNP runs are iterated until we find the values
do of ¢, andc, that satisfy the Nernst equation (Eqg. 12) and the
average concentration in the reservoir is equal to the desired
value ofc,,.

20 -

~<—— Without charges

Potential energy (x102'J)
kT

\ — Potential profiles

1 ! 1 ! l To motivate the comparison of PNP and BD, we first show
=40 20 0 20 40 the potential energy profiles for a cation moving along the
Axial distance (A) central axis ba 4 A radius channel under an applied electric

field of 10’ V/m (Fig. 2 B). These profiles are constructed

FIGURE 2 @) Cylindrical channel models used in comparisons of PNP from an electrostatic calculation with only one cation in the

theory with BD simulations. A 3-D channel model is generated by rotatingsystem using an iterative solution of Poisson’s equation
the curve shown about the central axis by 180°. The cylindrical section is,

25 A in length, and the rounded corners have a radius of 5 A. The radiugHoyles et al, ?‘996’ _1998b_)' For a _pa_sswe channel
of the cylinder is varied from 3 to 14 A. The reservoir heights adjusted  (€protein = 80), this profile is linear, as indicated by the
so as to keep the total (reservoir and channel) volume constant when th@otted line. In the case of a real channel with a dielectric
radius_is changedB) The potential_en_ergy profiles in_a cylin_dricz_;\l chapnel boundary (;protein = 2), the profile éolid line) exhibits a
of radiusr = 4 A when an electric field of 10V/m is applied in the2 |46 harrier due to the repulsive forces emanating from the
direction. The dashed and solid lines correspond to the channels with and . . .
without fixed charges, respectively. The profile of a passive channelSurface _Charges mduced_ by_ the ion. Wh_en other ions a_re
(Eprotein = 80) is indicated by the dotted line. present in the system, shielding effects might have a role in
lowering this barrier and making it easier for ions to traverse
the channel. The importance of this shielding in ion perme-
difference between the top and bottom boundaries is deteation has always been emphasized in applications of PNP
mined from the potential energy profile of a single ion in the (Eisenberg, 1996). However, we have demonstrated in ar-
presence of this electric field (see FigB2, which should ticle | that shielding effects predicted by the sister Poisson—
yield a reasonable average value when the other ions aoltzmann theory are overestimated in ion channels.
present. This potential difference is then used in the PNRVhether this conclusion, derived under equilibrium condi-
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tions, changes when the system is in a state of flux can be

addressed by performing BD simulations of the system and l )
comparing the concentration and flux results with those :
obtained from PNP. Thus, in the following comparisons we

specifically aim to address the issue of shielding and its
impact on physically observable quantities.

The energy barrier due to the induced surface charges can ( - \

be lowered if one places negative charges on the protein

walls. The potential energy profile of a cation, when eight A
monopoles with charges0.0% are spread evenly around at
the pore mouthsz(= 12.5 A andz = —12.5 A), is shown i Na*
by the dashed line in Fig. B. Here, the strength of the fixed

charges is chosen so that the potential barrier created by the 300
induced charges is canceled out. Such fixed counter charge§

will be seen to be essential for ion permeation in narrowg
channels.

200

Control studies

ncentration

For the comparisons of the PNP and BD results to be8 100
meaningful, we need to demonstrate first that they agree
under bulk conditions. For this purpose, we perform a
control study using a passive channg} {..i, = 80) with a
fairly large radius of = 14 A. Because there are no induced 0
surface charges in a passive channel, it does not interact
with ions. This situation is similar to the bulk conditions,
and concentrations obtained from BD via time averaging B
should agree with the PNP results. &
Concentration profiles are constructed from the BD sim- € 5
ulations by dividing the channel into 16 layers, each with a% L
width of 2.2 A, as shown at the top of Fig. 3. The number==°
of ions in each layer is counted at each time step, and then;
averaged over the entire simulation period. The average—
number of ions is then converted to an average concentrad 3
tion in each layer. To give an idea of the amount of charge§ L
separation, reservoirs are represented with two layers. Confg’

L ! ] ] }

centration profiles are similarly found in PNP by averaging 5 2 ]

over all the grid points in a given layer. _'; i 7

The concentration profiles for the sodium ions with a § 1| -

symmetric solution of 300 mM in each reservoir and under'® L ]

an applied field of 10 V/m are shown in Fig. 3A. The g 0 T T T
4

corresponding concentration profiles for the chloride ions 3 6 9 12
are not shown because they exhibit an almost identical
picture once inverted about the center of the channel. The
BD results are represented by the histogram and the PNP _ _ , _ ,
. . e . . FIGURE 3 Comparison of PNP with BD in a passive channel with a
results by the filled circles jomed by a line. There is aradius 14 A and a symmetric solution of 300 mM in the reservoirs. The ions
general agreement between the PNP and BD results acrogg driven across the channel with an applied fieldEot 107 Vim as
the channel, with the average concentration remainingndicated in the insetA) Concentration profiles of sodium ions (chloride
around 300 mM. A slight increase in the BD values at theions exhibit a similar profile, hence not shown here). The channel is divided
mouth region [the left-hand side O4\X for Na* ions] is due into 16 layers as shown by the dott_ed linesin t_he inset, and each reservoir into
to the channel entrance effects. lons hitting the rounde layers. The average concentration values in layers are represented by the
: . g istograms in BD (reservoir values are shaded) and by the filled circles in
corners are bounced back most of the time, and as a resighp. g) conductance of Naand CI ions in channels of different radii
spend a slightly greater amount of time near the entrancewrmalized by the cross-sectional area. The conductance found from the
An opposite effect occurs for ions exiting the channel. AsBD simulations is indicated by the filled (sodium) and open (chloride)

expected, these entrance and exit effects are enhanced qiﬁ:les, while those from the PNP theory are shown by the solid lines.

Channel radius (A)
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channels with smaller radius, resulting in larger asymme- These control studies confirm that the two theories are
tries between the left and right sides of the channel in BDproperly calibrated in bulk situations. Thus, any discrepan-
simulations. A similar asymmetry occurs in PNP due tocies found in comparisons of PNP and BD in narrow chan-
charge build-up but to a smaller extent. Thus the smalhels with dielectric boundaries have to arise from differ-
discrepancy between the PNP and BD concentrationences in their treatment of the ion—channel and ion—ion
slightly increases at smaller radii. We note that there arénteractions.
also small differences between the reservoir values, espe-
cially in the layers next to the channel. This is mainly due
to the different ways of handling the boundary conditions in
the two methods. In BD, the average concentration in eaclive first consider bare channels (i.€pein = 2 With no
reservoir is strictly maintained at 300 mM, and as a resultfixed charges), which illustrate with most clarity why and
charge separation occurs only across the reservoirs despi¢hen the continuum assumptions in the PNP theory fail in
the relatively large radius. In PNP, the approximate hanion channels. Effects of fixed charges in the protein wall
dling of the boundary conditions along the reservoir circum-will be discussed in the next subsection. Unless otherwise
ference (see Appendix), combined with the large radius ostated, in the following comparisons we use a symmetric
the channel, leads to charge separation across the channsblution of 300 mM and an applied field of 10v/m,
These differences in reservoir concentrations becomeorresponding to a potential difference of 105 mV inran
smaller in realistic channels and seem to have little impactt A channel. In Fig. 4 we compare the concentration pro-
on channel flux, and therefore they are ignored in thefiles found from PNP calculationdil{ed circles) with those
present study. constructed from the BD simulationisi§togram$ similar to

As a second control study we consider the flux throughFig. 3 A, but for a channel with a radius of= 4 A. Apart
the channel, which should reveal a similar level of confor-from a slight asymmetry caused by the applied potential,
mity as in the concentrations. To investigate possible chanboth sodium &) and chloride B) concentrations in PNP are
nel size effects and as a reference for future comparisonseen to stay around the reservoir value of 300 mM through-
we present in Fig. B the conductance results obtained in out the channel. That is, PNP predicts that the sodium and
PNP and BD as a function of the channel radius as it ixhloride concentrations across the channel are nearly equal,
varied fromr = 3 A to 14 A. In these plots, the conductance leading to almost perfect shielding of ionic charges inside
has been normalized by the cross-sectional area of thine channel. With equal amounts of positive and negative
channel to factor out the trivial increase in flux with the charge in the channel, surface charges induced by each are
area. In PNP, this area is simpty2. In the case of BD, an canceled by the other, and so there is no net induced surface
effective radius of — 1 A is used to take into account the charge. Thus ion—channel interaction is completely ignored
hard-wall interaction that elastically scatters ions when theyn PNP, and charge is transported across the channel as if
are within 1 A of the channel wall. Both calculations are the dielectric boundary did not exist (I-€protein = 80). The
carried out with a symmetric solution of 300 mM and an BD results in Fig. 4 paint a completely different picture.
applied field of 16 V/m. Note that with increasing radius, Here the ion concentration drops exponentially as one
the reservoir height is reduced from 25 A, which leads tomoves into the channel, and it is more than an order of
slightly smaller applied potentials than 85 mV. There is amagnitude smaller than the reservoir values at the middle of
general agreement between the PNP calculations of thihe channel. This result simply follows from the fact that
conductanceglid lineg and the BD resultscfrcles) within -+ ions enter the channel singly most of the time, and meet a
the accuracy of computations. We emphasize that the use sharply rising potential energy barrier due to the induced
an effective radius in BD results is essential in getting thisboundary charges (see Fig.B). This barrier, combined
agreement, which forms a reference point for future comwith the Boltzmann factor, reduces the probability of ions’
parisons. Otherwise, there would be a large discrepancgiccess to the channel interior exponentially. Due to fluctu-
between the PNP and BD results in FigB3 The anion ations in ions’ energy, they have sufficient energy at times
conductance is greater than the cation conductance becausecross the channel, which is why the concentrations do not
the anions have a larger diffusion coefficient. The down-completely vanish in the middle. Indeed, when the potential
ward trend seen in both models follows a roughly 1/ gradient in Fig. 4 is replaced with a relatively weaker
relationship, which is due to the access resistance of theoncentration gradient( = 100 mM andc; = 500 mM),
channel. The resistance of a cylinder with lengthand  as shown in Fig. 5, the BD results drop even faster and the
radiusr is given byL/zr%g, whereas its access resistance isconcentrations for both sodium and chloride vanish in most
1/rg (Hall, 1975). Hereg denotes the conductivity of ions. of the channel interior. The single ion barriers appear to
Combining the two resistances, one obtains a normalizedemain mostly intact in the BD simulations, preventing ions
conductance given bg/(L + mr/4). Due to the rounded from entering the channel interior, and thus they give no
corners, the conductance shown in Fi@ 8lightly deviates  hint of shielding in narrow channels. The PNP concentra-
from this expression. tions in Fig. 5, however, increase almost linearly from left

Bare channels
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FIGURE 4 Comparison of concentration profiles in PNP and BD as inFIGURE 5 Comparison of concentrations in ar- 4 A channel as in
Fig. 3 A but for a real channelef,owein = 2) With a radiusr = 4 A. PNP Fig. 4 but with asymmetric solutions,( = 100 mM andcg = 500 mM)
concentrations are shown with filled circles and BD results with the @nd no applied field.

histograms for sodiumA) and chloride B) ions. A symmetric solution of

300 mM is used and 105 mV is applied between the boundaries.

smaller effective volume in the reservoir layers next to the

channel. Due to shielding, such an effect does not occur in
to right, following the prediction of Eq. 9 for a bulk elec- PNP.

trolyte. The sodium and chloride concentrations are equal The above examples clearly show that the concentrations
everywhere in the channel, and perfect shielding in PNP ipredicted by PNP in narrow channels have no bearing at all
again seen to lead to a radically different result compared tavith the time-averaged concentrations obtained from the
BD. BD simulations. This is in conformity with the observed
The lack of shielding near a dielectric boundary in BD breakdown of the continuum assumptions in the PB theory
also has some effect on the reservoir concentrations. We s@ehen the channel radius is smaller than the Debye length
that the asymmetry caused by charge separation in thgsee article 1). With increasing channel radius, the discrep-
reservoirs in Fig. 3A is canceled on the left-hand side of ancies between the two theories should get smaller as one
Fig. 4 A, but enhanced on the right-hand side. A similar butapproaches to bulk conditions. To see where this happens,
opposite effect is observed for Clons in Fig. 4B. This  we show in Fig. 6 how the average concentrations in the two
simply results from ions being repelled from the proteintheories change with increasing radius. The PNP results for
boundary, leading to a zone of exclusion, and hence aodium @) and chloride B) are indicated by a single solid
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A case, similar average concentrations follow simply from the
fact that both anions and cations see identical potential
barriers as they enter the channel. To answer this question,
. we have carried out conditional probability studies in BD
simulations by counting the number of anions in channel
q layers when a cation is in a specified layer. For example,
Lo R when an Na ion is at the pore entrance (the second layer of
200 |- IR -1 the channel from the left in Fig. 4), the probability of
o S finding a CI” ion in the channel is found to be 27%, that is,
) R 3 out of 4 times ions enter the channel singly. This supports
100 6A | our assertion that counterions are not usually present to
S : shield the electrostatic barriers to ion permeation in narrow
: ] channels. It is worthwhile to emphasize that even when
4A ........ there is a counterion in the channel so that it is neutral, one
0 | | | only gains a small shielding effect from its presence (see
Fig. 4 in article 1). Complete screening of an ion’s charge
B occurs only when counterions have space to move around
the ion freely in all directions, which is obviously not
possible in a narrow channel. When the radius of the chan-
4 nel is increased to 12 A, the probability of finding a coun-
terion in the channel rises to 100%. Thus shielding can play
. a more appreciable role in a wide channel both in terms of
o L presence of counterions and available space.
200 - R 7 Because the potential and concentration are determined
F C self-consistently in PNP, the errors committed in concen-
L IS trations are expected to affect the potential results, and these
100 1 6A . in turn will lead to inaccuracies in the flux results. To
] BTTUR- A S . illustrate the magnitude of these errors and how they change
: with the increasing channel size, in Fig. 7 we compare the
e IR normalized conductances in PNP and BD as a function of
0 | | the radius (cf. Fig. 8). The PNP results for both the Na
(A) and CI" (B) ions are almost the same as in FigB 3or
Channel layers a passive channel, regardless of the channel size. This is a
natural consequence of perfect shielding that prevents any
FIGURE 6 Similar to Fig. 4 but shows the changes in the concentrationg,_ channel interaction. Thus, whether the dielectric con-
profiles in PNP $olid lineg and BD (otted line$ as the channel radius is L . .
increased progressively from= 4 to 6, 8, and 12 A. The concentration of stant of the prOte_m IS 2.0I’ 80 makes almost rlO dlﬁerence In
sodium ions is shown in&) and of chloride ions in&). PNP. The BD simulations show a dramatically different
result: the conductance vanishes inraa 3 A channel and
is suppressed by an order of magnitude in other narrow
line because there is no visible dependence on the channehannels. As the channel radius is increased further, the
radius. Naturally, size doesn’t matter when there is noconductance obtained from BD rises rapidly, converging
interaction between the channel and ions. In contrast, thtoward the predictions of PNP (and the passive channel
concentrations in BD gradually increase with the channeresults) at around 14 A. The small discrepancy between the
size, and are expected to converge to the PNP results &N\P and BD results at large radii is presumably due to the
aroundr = 16 A, i.e., about 3 Debye lengths. In large-radiusfact that the area used in the normalization of the conduc-
channels, ions can remain further away from the channeiance in BD would actually be smaller if the effect of the
walls, where the boundary forces are quite small. Also, theepulsive boundary is taken into account. Fig. 7 nicely
channel is often occupied by counterions leading to appresummarizes the results in bare channels, depicting how
ciable shielding (see below). Thus, the channel does nathielding in PNP leads to an overestimate of current in
play a significant role in ion permeation any more, and thenarrow channels and where one could expect it to work again.
situation is more like in a bulk electrolyte.

Though they are much suppressed in narrow channels, trﬁx
sodium and chloride concentrations in BD are quite similar
in magnitude. This raises the question of whether ions entdon channels usually have excess charges in the protein wall
the channel in pairs or singly at different times. In the latterthat help permeation of one type of ions while discouraging

300 -

Concentration ( mM)

300 +—

Concentration ( mM)
[
I

ed charges in the channel
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FIGURE 7 Normalized conductance of N4A) and CI” (B) ions in a
bare channel are plotted against the channel radius as in Fgy. 8
symmetric solution of 300 mM and an applied potential of 105 mV are
used. The BD resultxircles) are fitted by the dotted line and the PNP
results liamond$ by the solid line. Each BD data point is obtained from
a 3.6 us simulation period.

the counterions from entering the channel. Here we considelf;:‘, - §
the case of a cation-selective channel by placing a set of2
negative charges in the walls near the each end of the3 100 ]

channel. Eight monopoles with charge®.0% are spread
evenly around at = 12.5 A and another set at= —12.5

2373

The PNP and BD concentration profiles fora= 4 A
channel with fixed negative charges are compared in Fig. 8.
This figure is obtained under identical conditions as in Fig.

4 except for the inclusion of the fixed charges. It is seen
from Fig. 8 A that the sodium concentration has two sharp
peaks adjacent to where the negative charges are located,
and the agreement between PNP and BD in this region is
quite reasonable. There is a sharp drop in the cation con-
centration between these peaks, and here the PNP results are
a factor of 3—4 larger than those of BD. The BD concen-
tration is less than the average concentration of 300 mM,
demonstrating that ions are still largely excluded from the
central section of the channel because of the remnant energy
barrier there (see Fig. B). This also explains why the

A

1200

Na*

800 f \

400 '

Concentration (mM)
I)/

W onoolL

300 —

ration (mM)

T

A. The effect of these charges on the potential profile of a ol DDDDDDDDDDDDDU ]
cation, as shown in Fig. B, is to cancel the barrier due to L | | L

a bare channel with radius= 4 A. For anions, the opposite

happens and the barrier is roughly doubled. In PNP, the bias Channel layers

introduced by the fixed charges spoils the coexistence of _ o _
cations and anions in the channel, and hence reduces tﬁgSURE 8 Comparison of concentrations in e 4 A channel as in

perfect shielding conditions that had been the source of,

F1g. 4 but with fixed charges in the protein wall. Eight monopoles, each
ith charge—0.0%, are distributed around each end of the channel. A

problems in bare channels. As a result we expect the dissymmetric solution of 300 mM and an applied potential of 105 mV are
crepancies between the PNP and BD results to get smalleused.
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left-hand peak is higher than the right-hand one in BD, in A
contrast to PNP results, which correlate with the intuitive , : .
expectation that having a deeper potential well on the right- 1200 1= N
hand side compared to the left should yield a larger con-
centration there (see Fig.B). In fact, in BD simulations,
cations have difficulty in crossing the central barrier from
left to right, and therefore build up in the left-hand well.

The chloride concentration in BD (Fig.B has a similar
appearance as in Fig.B} without fixed charges except that
the larger barrier leads to an even stronger suppression o
the concentration in the channel interior. The fixed chargesS
also reduce the chloride concentration in PNP, but this Ry
effect is nowhere near as great as in BD. In the middle of the . §
channel, the chloride concentration rises to 200 mM, which
is an order of magnitude larger than in BD. Thus, we see 0 ' : '
that shielding in channels with fixed charges, though much
reduced compared to the bare channels, is still quite effec- B
tive in PNP. A study similar to Fig. 5, where the potential 400 - T | ]
gradient is replaced by a concentration gradient, is not . cl-
shown here because it gives much the same message as Fig. o 4
8, once the asymmetry in the reservoir values is taken intog '
account.

To see when congruence of the two theories can be_ -
expected, we present in Fig. 9 a study of the averages
concentrations in PNP and BD as the channel radius i
progressively increased from= 4 to 12 A, similar to Fig.

6. One welcome change here compared to the bare chann
is that the PNP results now depend on the channel radius.
Fixed charges introduce back a size-dependent ion—channel -
interaction in PNP by destroying the perfect shielding con-
ditions, and also via the direct Coulomb interaction. Al-
though this improves the concentration profiles in PNP Channel layers
compared to BD, there are still sizable discrepancies at all
radii shown, and a full convergence between the two theoEIGURE 9  Concentration profiles in PNB(id lineg and BD @lotted
ries occurs around 16 A, as in the case of the bare channe'l es) in cylindrical channels of differing radii as in Fig. 6 but with fixed

. charges.
(cf. Fig. 6).

For a narrow channel, the presence of negative fixed
charges greatly assists cations to cross the channel whitance, which still suffers from shielding effects in PNP. The
hindering the anions further. Consequently, compared to thanion current in PNP is an order of magnitude larger com-
bare channels, we expect the cation conductance to increapared to BD in narrow channels, and remains significantly
significantly and the anion conductance to diminish. Theséigher as the radius is increased (Fig. BD The fixed
effects are seen in both theories, however, as shown in Figharges are less successful in excluding anions in PNP
10, the extent to which conductance are enhanced or imncompared to BD because they are shielded out to a large
peded and how this changes with the channel radius diffeextent. The conductance of both cations and anions in PNP
markedly between the two. In BD simulations, the inducedand BD converge toward each other and to that expected
surface charge effects still dominate the dynamics in narrowvithout fixed charges when the channel radius becomes
channels, and the cation current remains quite small despitarge. The differences in the limiting values are again pre-
the presence of fixed charges (Fig. AR In contrast, the sumably due to over- and under-estimation of the cross-
fixed charges greatly enhance the cation current in PNP, anskctional area used in normalization of the current in BD.
as a result there is an order of magnitude discrepancWith fixed negative charges, a larger effective area than
between PNP and BD in the= 3 A channel. This discrep- used is expected for cations and vice versa for anions, which
ancy in the cation conductance drops to a factor of 2-at  will lead to a reduction in conductance for sodium ions and
4 A, and the PNP and BD results quickly converge after thaan increase for chloride ions.
as the channel gets wider. This relatively happy state of So far we have mainly considered channels with sym-
affairs, unfortunately, does not extend to the anion conducmetric solutions and a fixed applied potential. Because most
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FIGURE 11 Comparison of-V curves in PNP diamonds fitted with

Channel radius (A) solid line§ and BD (ircles fitted with dotted lingsn anr = 4 A channel
with fixed charges. An asymmetric solution with = 100 mM andcg =
FIGURE 10 Normalized conductance of N¢A) and CI- (B) ions are 500 mM is used. Each BD point represents aslsimulation period.
plotted against the channel radius as in Fig. 7 but for a channel with fixed
charges. The BD resultsi(cles), representing a 3.fs simulation period,
are fitted by the dotted line and the PNP resuttihond$ by the solid
line. its the same features at low voltages. An upswing in current

observed near 150 mV is due to the central barrier becoming

less of an impediment to permeation of Naons with
applications of PNP involve prediction dfV curves in increasing driving force. The chloride current in PNP (Fig.
narrow channels with fixed charges and asymmetric soluil B), apart from a reduction in magnitude and inversion of
tions, it is worthwhile to compare PNP and BD in such athe curve, is similar to the sodium current. In complete
situation. For this purpose, we useras 4 A channel with  contrast, the chloride current in BD essentially vanishes at
the fixed charges placed as above and with the concentrall applied voltages. As already noted above, shielding of
tions in the left and right reservoirs @& = 100 mM and fixed negative charges is responsible for the large anion
cg = 500 mM, respectively. In Fig. 11, theV curves currents in PNP, and lack of it in BD keeps the large
obtained from the PNP calculationdigmonds fitted with potential barrier intact and prevents anions from crossing
solid lineg are compared with the BD resultsircles fitted  the channel. Anion—cation selectivity, which is simply
with dotted liney The sodium current in PNP (Fig. ®) is  achieved with the introduction of fixed charges in BD, is
similar (though not identical) to the prediction of the Gold- one of the problems in applications of PNP. There is no
man—Hodgkin—Katz equation. The zero point is shifted bynatural mechanism to implement it in PNP, and therefore
the Nernst potential and the slopes for the negative andrtificially low values of diffusion coefficients have often
positive current ranges are different. Though much reducetieen used to suppress the anion current. The range of ion
compared to PNP, the sodium current in BD broadly exhib-diffusion coefficients that are appropriate for model chan-
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nels used here are estimated from molecular dynamics studharges are seen to suppress the anion conductance quite
ies and will be published in a forthcoming article. successfully at small concentrations. But this situation is
Another experimental quantity that is expected to exhibitquickly rectified with increasing concentration and both
large discrepancies between PNP and BD is the condu@nion and cation conductance reach a linear regime with
tance—concentration curves. Because there is no limit to iosimilar slopes. Thus, no saturation of conductance is seen in
concentrations inside a channel, and no barriers to impede@NP. To explain the observed saturation, nonelectrostatic
ions from crossing a channel, one intuitively expects that thenechanisms have been incorporated in the PNP formalism,
observed saturation property of channels cannot be exuch as suppressing the diffusion coefficient in a localized
plained in PNP. In Fig. 12 we compare the conductance+egion near the fixed charges (Levitt, 1991a, b), or intro-
concentration curves obtained from PNP and BD iman  ducing different chemical potentials for each ion type (Non-
4 A channel with fixed charges. Symmetric solutions and amer and Eisenberg, 1998). The connection of these ad hoc
applied potential of 105 mV are used in this study. In PNPmeasures to the underlying electrostatic ion—channel inter-
both the sodiumA) and chloride B) conductance mono- action, however, is not clear. In BD, the sodium conduc-
tonically increase with concentration. Fixed negativetance exhibits the expected saturation propedy While
that of chloride vanishes, as in the case oflthécurve B).
The latter is simply due to the large potential barrier seen by
anions as before. Saturation of the sodium conductance,
however, arises from the processing time required for the
transit of a Nd ion across the channel. If there were no
barriers in the channel, this time would be very small and no
saturation would have been observed within the range of
concentrations used in Fig. 12. However, when ions enter
the channel singly, there are residual potential barriers in the
channel as seen in Fig. R, and such barriers provide the
rate-limiting step necessary for the saturation of conductance.
The dielectric constant inside a channel, is not a
well-determined quantity, and in narrow channels, it may
well be much lower than 80. In the tests of PB theory in
article I, use of a smaller dielectric constant has been shown
to lead to a reduction in shielding, though this was not
sufficient to procure an agreement with BD. We carry out a
similar study here to see whether a reductioreincould
lead to an improvement in PNP predictions. How this re-
duction is implemented inside a channel in the two theories
has been described in article I, so it is not repeated here. The
comparisons are done in an= 3 A channel with a sym-
metric solution of 300 mM and an applied field of 1@/m.
The results for a bare channel are shown in FigAl8nd
those for a channel with fixed charges in Fig. B3Con-
sidering the significant increases in potential energy profiles
when ¢, is reduced (see Fig. 9 in article 1), the current in
PNP is hardly perturbed. It may seem perplexing that the
rapid increase in the potential barrier height in PB theory
does not lead to an even stronger suppression of the current
in PNP. This is because the potential energy profiles in PB
are obtained for a test ion with a full chargenvhereas ionic
charge is distributed throughout the system in PNP and its
value on a grid point is typicallyze/1000. Recalling that the
Born energy is proportional to the charge squared, it is easy
Concentration (mM) to see why a reduction is. makes almost no difference in
PNP. In the same vein, the fixed charges increase the cation
, - : : ) e concentration by fourfold in PNP, and hence cause a little
with solid line§ and BD gircles fitted with dotted lingsin anr = 4 A L . . .
channel with fixed charges. Symmetric solutions and an applied potentiaﬁ‘nore reduction in the sodium current in Fig. B&Ompared

of 105 mV are used. Each BD data point is derived fromgssimulation 0 Fig. 13 A. In BD, the energy barriers increase with
period. decreasing in the channel, causing ionic currents to vanish
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FIGURE 12 Conductance-concentration curves in P8lBnfonds fitted
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A served in bare channels. An interesting question here is
: | : : : I . whether further improvements in PNP theory can be
15 i achieved by increasing the amount of fixed charges in the
Without charges . - - . .
protein wall. This question will be addressed in the next
L oo — section in the realm of the potassium channel, which has a
Cl highly charged protein wall.
< 10
< *~—e * * * *~——— *~——e Potassium channel
o i + N . . .
E Na The cylindrical channels used in the last section provide
© 5L only a schematic model for channels. It is of interest to
repeat the tests of PNP and BD using a more realistic
| channel model. For this purpose we use the potassium
channel whose crystal structure has been revealed in a
ol o, .o e recent x-ray study (Doyle et al., 1998). A thorough inves-
L . I . | ) ! | tigation of this channel using BD is given in Chung et al.,
1999. Here we give a minimal description of the model
B channel necessary for the ensuing discussions. The shape of
. : . , the channel is shown in Fig. 14. A cylindrical reservoir
T T . . . .
) ' with radius 30 A and variable length is connected to each
With charges
20 - i
Na*
A
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g 15 - — < 10} .
= g
£E 10+ — 2 ok .
3 2
O ©
s
sk cr- 3
. € -0 .
S~ o2 | I 1
20 0 20
................... a
oL e PRTTRT @ o Axial distance (A)
L I | 1 I L | ! | |
0 20 40 60 80 B
T T | T
Dielectric constant 75 2
3
FIGURE 13 Effect of changing the dielectric constant inside an3 A &
channel on sodium and chloride currents. The dielectric constant is kept at*;< 0
2 in the protein. Both channels without)(and with B) fixed charges are ~ -
considered. A symmetric solution of 300 mM and an applied field df 10 5 —
VIm are used. The PNP results are indicated by diamonds fitted with the @ i ~
solid lines. The BD results are shown with circles and mostly vanish. 1’ 75 - - / R 20
= s
2 N
o
. . & -150 |-
quickly even if they have not been already zereat 80. - 40
Thus, a possible reduction in the dielectric constant in the ) | . | |
channel will lead to larger discrepancies between PNP and -40 20 0 20 40

BD due to the complete neglect of the Born energy in PNP.

Axial distance (A)

The fixed negative charges in the above study has been
chosen so as to cancel the barrier seen by a cation in a baF6SURE 14 @) Cross-section of the potassium channel model. The
channel. In applications of PNP, similar amounts of fixedpositions of various dipole groups in the channel walls are indicated in the
charges are used. The presence of negative charges in tiiﬂ_yre: filled circles show the oxygen atoms of carbonyl groups; open

channel creates conditions conducive for cation cond Cglrcles, the N-terminals of the helix dipoles; and filled diamonds, the mouth
. S itions . _u I\_/ : u dipoles. Dipoles are spread with a fourfold symmetry abouttheis. B)
tance in BD and decreases shielding in PNP, thereby redu@nanges in the potential profiles of a cation traversing the channel when

ing the large discrepancies between the two theories olike charge on the dipoles is 8)(0.3 ©), 0.6 ), and 0.9 ¢) x 1071°C,
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end of the channel. The dielectric constantssgyg., = 80, A

€protein = 2 @S In the cylindrical channels. As shown below, e e e T B e e e i
for this narrow channel to conduct it must have fixed 250 -
charges in the protein wall. These charge groups are mod-

eled as sets of dipoles with fourfold symmetry about zhe 200
axis as follows: 1) four rings of four carbonyl groups are "
placed along the selectivity filter, locatedat 10, 13.33,
16.67, and 20 A. The negative pole of each carbonyl group
(filled circlesin Fig. 2B) is placa 1 A from the boundary,
the positive pole 1.2 A away from the negative pole, with
their orientation perpendicular to theaxis; 2) four helix
macrodipolesdpen circle$, with their N-terminals pointing

at the oval chamber near the middle of the channel, are
placed 90° apart. The positions of the N-terminals of the

helix dipoles are = 10.66 A andr = 5.66 A, and those of 0
the C-terminals are = 22 A andr = 17 A. The length of

the dipole is 16 A; 3) four “mouth” dipolesfifled dia-

mond$ 5 A in length are placed at each entrance of the
channel. These are locatedzat 22.83 A andz = —20 A.

The absolute values of the charge on each end of each of the . 1 .
dipoles are estimated to be 0:6107° C, which yield an 500 - -
optimal currentin BD (Chung et al., 1999). In one study, the
charges on dipoles are varied simultaneously from 0 to__ 400
1.2 X 10°'° C to see their effect on the conductance
properties of the channel.

To clarify the role of fixed charges and provide an intu-
itive understanding of the BD results, we first study the
potential energy of an ion with varying fixed charges in the g 200
channel. Potential energy profiles of a single cation travers-&
ing the channel with an applied potential of 105 mV be-
tween the ends of the reservoirs are shown in FigBl14
These profiles are constructed from numerical solutions of
Poisson’s equation as explained for FigB2The top plot 06
(a) shows the potential energy in the channel when no ' . L — ! ' L 1)
dipoles are in place. Because the channel contains a very 0 200 400 600 800 1000
narrow selectivity filter with a radius of 1.5 A, the potential Concentration (mM)
barrier due to the induced boundary charges is too large (17
kT) for ions to surmount. When all the dipoles discussedFIGURE 15 Conductance in a potassium channel. An applied voltage of
above are included, this barrier can be turned into a potentiép5de is mfﬂimai”ted *?e“Ne:” thel reiﬁwoki)f eln‘f‘)-\(fliria“?nhOf the A
wel. Plotsb-dshow the pofentil energy prfiles whe the Xenee L oiseur e e soshac vaues o o e
Charges on each end of each of the dlpoles are 0.3, 0.6, aﬂ&w C. A symmetric, 300 mM solution is used in the calculations. The
0.9x 10 *°C, respectively. The potential wells mandd conductance of potassiurfilled diamond$ and chloride ¢pen diamonds
are very deep-£24 and—45 kT, respectively), so that ions in PNP are fitted with the solid lines. The BD results for potassium are
would have difficulty in climbing out of them on their own. shown with the filled circles joined with the dotted line. The chloride

Th it is ex h h lectivity filter i rmanentl con_ductance vanishes, anc_i therefore not shoB/hC()nductance-conf:en- _
us it is expected that the selectivity filter is permane tytratlon study of the potassium channel when the charge on the dipoles is

OCCUpIed by one or more ions in these cases. held at 0.6x 107'° C. The results of PNP theory are shown by the
Both the PNP calculations and the BD simulations aregiamonds and are fitted by the solid line, while those of BD simulations are

carried out with an applied potential of 105 mV between theshown by the filled circles and are fitted using the Michaelis—Menten

reservoir ends and an average concentration of 300 mM igduation dotted ling. The chloride conductance vanishes in both theories

each reservoir, which is represented by 16 ions of eaCﬁnd hence is not shown. BD data pointsAimndB are obtained from a 2

L ' . us simulation period.

species in BD. In Fig. 13 we show how the conductance

of the channel changes as the strength of the dipoles is

increased. Without charges, both the potassium and chloridence remains zero; therefore it is not shown in this figure.

conductance vanish in BD. With increasing dipole chargesThe potassium conductance in Bfilléd circles joined with

the barrier on CI ions increases further, and its conduc- the dotted curve exhibits an interesting behavior. It in-
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creases at first with the charge, reaching a maximum valué5 B, is that the potassium conductance in PNP does not
at 0.6x 10 1°C, and then decreases again. Explanation obaturate, but keeps growing with concentration. The BD
this behavior requires analysis of multiple ion—channel in-simulations, however, reproduce the well-known saturation
teractions to find the residual barriers in the channel (se@roperty of the potassium channel (see, e.g., Rae et al.,
Chung et al., 1999). We do not enter such a discussion her&988). The BD results in Fig. 1B are fitted by the Michae-
but simply note that the channel is occupied by twbikns  lis—Menten equationdptted line3
on average in the optimal configuration.

In the absence of charges, PNP predicts nearly equal | = I max (13)
conductance for potassiunfilied diamondsin Fig. 15 A) 1+ KJ[c]’
and chloride ¢pen diamonds which is the result of the ) i
perfect shielding conditions as discussed in bare cylindricaf/N€r€lmax the saturation current, ad are fit parameters.

channels earlier. With increasing dipole strength, the chlo£S in the case of the cylindrical channel (Fig. 12), saturation

ride conductance in PNP is quickly suppressed, vanishing &f the conductance in the potassium channel arises from the
0.3 X 10°1° C. Thus the cation—anion selectivity in PNP residual barriers that ions have to surmount (see Chung et

gal-, 1999 for a detailed discussion). On the positive side, the
chloride conductance in PNP remains vanishingly small at

behavior with a maximum at 0.X 10~° C, which may all concentrations in agreement with BD. Despite the rapid
appear to mimic the conductance in BD élbeit at a muctProwth in anions in the channel with concentration, they are
higher value. However, there are no barriers in PNP, and th@till excluded from the highly charged regions. Preservation

reason for the drop in the conductance is actually due to th@ the cation-anion selectivity in the potassium channel is
saturation and decrease of the potassium concentration ffit€ remarkable for PNP, especially when compared to Fig.

the center of the channel where there are no dipoles. Note2 B- This is due to the large amount of fixed charge in the
that the dielectric constants in the channel are likely to bérotéin wall, which dominates the electrostatic forces and

lower than 80, in which case the difference between the tw(giminishes the role of boundary forces. While being helpful

theories will be amplified. For example, the conductance id"? SUPPressing the anion current in a natural way, this
BD drops by half whers, = 60 is used in the potassium situation is, in fact, a mixed blessing for a continuum theory,
Cc

channel instead of 80 (see Chung et al., 1999), whereas tﬁénce it creates a multi-ion environment where the ion—ion

PNP results are hardly affected by such a change (Selgteractions seem to be playing a crucial role in ion perme-

Fig. 13). ation (Chung et al., 1999). Because the ion—ion interactions

With the optimal choice of the dipole charges (06 are washed out in the mean-field approximation, such an
10°1° C), the agreement between PNP and BD abpear'gwtricate behavior of ions cannot be modeled within the PNP

can be achieved when the protein wall is highly charge
The potassium conductance in Fig.Agxhibits a parabolic

reasonable given that it is such a narrow channel; th@pproach.
chloride conductance vanishes and the discrepancy in the
potassium conductance is only a factor of 2. Though w
have not presented a study of concentration here becaus:qp NCLUSIONS
exhibits wild changes, a look at the total ionic charges in thdn this article we have presented extensive comparisons of
channel will throw some light on this relatively successful PNP theory with BD simulations using a variety of channel
outcome. The total cation and anion charges in the channshapes and conditions. Our main conclusion, as in the
are, respectively, 2.7 and0.27ein PNP and 2.1 andélin ~ companion article, is that shielding does not play any role in
BD. The reason why the anion conductance is zero in PNkon permeation in narrow channels, and that the shielding
despite the presence of chloride ions in the channel is that itseen in PNP theory is largely a chimera of its continuum
concentration vanishes in the highly charged regions of thassumptions rather than a real feature of the underlying
channel, e.g., the selectivity filter. The dipoles are seen t@hysics. This is mostly clearly shown in bare cylindrical
lead to an order of magnitude difference between the catioshannels, where the uniform occupation of the channel by
and anion charges in PNP, which is sufficiently high tocations and anions in PNP leads to perfect shielding and
protect it from the undesired influences of shielding. thus no ion—channel interaction. However, in BD simula-
To see whether PNP can maintain the above success &bns, where ions are treated as discrete entities, it is found
higher concentrations, we subject it to a final hurdle with athat counterions cannot provide any shielding and so ions
study of conductance—concentration relationship. With infardly ever enter the channel due to the repulsive ion—
creasing average concentration in the reservoirs, the numbehannel interaction. Consequently, PNP theory fails in its
of cations and anions stay more or less the same in BD, bygredictions of physically observable quantities. In more
monotonically increase in PNP. Worse, this increase igormal terms, the time averages of concentration and poten-
much faster for anions so that the anion/cation ratio rapidiytial profiles obtained from the BD simulations are in com-
grows with concentration, bringing the unwanted shieldingplete disagreement with the PNP predictions, and hence the
back into the folds of PNP. The end result, as shown in Figmean-field approximation in PNP breaks down in narrow
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channels. A convergence between the two theories occuSPPENDIX
only in wide channels with radius 2-3 Debye lengths
(11-17 A for a 300 mM solution). Agreement arises in wide
channels simply because bulk conditions prevail. The coupled PNP equations in three dimensions (1 and 2) are solved using
Besides the channel radius, a second parameter that hagnite difference methods similar to those used for the PB equation in
significant influence on ion permeation is the amount Ofarticlel.AsimiIar algorithm was also used by Kurnikova et al. (1999). The
fixed charde in the protein wall. In PNP. fixed charges s c)”sys;tem is discretized by placing a rectangular grid of points with cell
_g P . ) S 9 p dimensiongh, X h, X h, over the channel and reservoirs. All the physical
the coexistence of cations and anions in the channel, angantities (e.g., potential, flux, and number density of ions, etc.) are
thereby reduce the false shielding effects. When moderatgpproximated by discrete values at the grid points which represent their
amounts of fixed charge are present, as in most applicatiorgyerage over the cell volume.
of PNP. there is some improvement in the PNP results (e g Poisson’s equation (2) is discretized in the same way as in the Appendix
the -V ! in Fia. 11A). but i t ts it still fail "~of article | by integrating it over a cell of volumé = h,h h, centered at
el-v curve in '_g' ), butin mps _aSpeC S It st _a' S a grid pointr;, and using Gauss’ theorem, which gives
the tests (e.g., anion conductance in FigBland saturation

Algorithms for solving PNP equations

of conductance in Fig. 12). Comparisons in the potassium 6 (i +hj) — () V
channel provide a test of PNP in the high-charge limit. Here, > £08; ]h- e -V > zen(r;) — q.
finally, the problem with the anion conductance is resolved, =t ) ! v

and the discrepancies between PNP and BD are quite sm@ll : . . ,
. . L ere thej sum is over the six surfaces of the rectangular box \ujth=
considering the fact that it is a rather narrow channel;n4 —hy h, = hg = h,, hy = hy = h,, and] = %, 9, 2for j = 1, 2, 3, and
Nevertheless, PNP still cannot reproduce the saturation ofg, —¢, —2 forj = 4, 5, 6. On the right-hand side of the equation, the
conductance, due to shielding becoming significant agaisum is over the ion species aggdis the total external charge contained in
with increasing concentration. Another problem in the ap__the cell volume. Solving for the central potential, we can relate it to its

plication of PNP to the potassium channel is that it is'Mmediate neighbors as

occupied with multiple ions whose interactions are ignored EJ_ gl + > zenile, + ql(soV)
in PNP. b= S olh? ., (14)
Our results demonstrate clearly that ions in a narrow pore j &l

formEd by the_ protein wall must be treateq as IndlVldualwhere the subscripisandj on ¢, €, andn, refer to the grid positions, and

particles carrying an elementary chamge Their represen- r, + hJ, respectively.

tation as a continuous charge density, as in the PNP theory, Discretization of the Nernst-Planck equation is even simpler since it

leads to erroneous results. The physical interpretation of thigvolves only the first derivatives in number density and potential. Using

process of ion permeation across a narrow channel given Hye definition of grid points and its neighbors introduced above, the NP
. . quation (1) can be readily converted to the following finite difference

the PNP theory does not reflect the reality. In this respect, @quation at thath grid point

match between experimentally determined current—voltage

relationships and those calculated from the PNP theory by J=-D n—n n E} (n +n) & — & (15)

adjusting several free parameters is fortuitous. Some of the ! h kT2'! : h |

parameters used in many applications of PNP, such as the . .

diffusion coefficients of different ionic species, are not in awhere.]J,] =1,..., 6 denotes the flux through each of the six surfaces of

the rectangular box at, and an average of the densities in the celiad

phyS|caIIy allowed range (for example, Nonner and Elsen] is used in the last term. Here we have suppressed the subséoipion

berg, 1998; Chen et al., 1997, 1999). Thus, the error comspecies for convenience. Otherwise, an identical equation is obtained for
mitted by an inappropriate application of the PNP theoryeach ion species. Under steady-state condifiond = 0, and the total flux
outside its domain of validity is remedied by adopting of each ion species from any grid point must vanish, thakfs,J; = 0.
phySIca”y unrealistic values of the diffusion coefficients of U;lng thIS gondltlon with Eq. 15 and solving for the density at the central

. . . . . . o . grid point gives

ions. This point will be discussed in detail in a forthcoming

grtilcl:le., where di.ffusion coefficientsfof a var:ety Iof biolog- . j6:1[1/hj + (eZ2kT)(¢; — d)/h]In, (16)
ically important ions are estlmatgd rom molecular dynam- i S [ + (e22KT) (¢ — d)ihy]

ics simulations in both schematic cylindrical channels and

in a realistic potassium channel, as given by Doyle et alwhich relates the density at a grid point to its immediate neighbors. Clearly,
(1998) the sum over all six surfaces applies when all the neighboring grid points

Brownian dvnamics provides a viable alternative for de_a\re in the electrolyte. Because there can be no flux through the boundary,
y p grid points that lie outside the electrolyte are excluded from the sums in

scription of ion permeation in channels. In the past, it hasq, 16.
been applied to toroidal (Li et al., 1998) and catenary Equations 14 and 16 are solved simultaneously using an iterative
(Chung et al., 1998; Hoyles et al., 1998a) shaped channeksheme: starting with some initial guesses for the concentration and po-

as well as the potassium channel (Chung et al 1999) W@ntial values at all the grid points and successively updating them until
hope that it will be used more frequently in fut ré’ st d'e‘s 0fthey converge to stable values. The convergence criterion used is that the
P itwi . qu y Infutu Hal maximum change in both concentration and potential between successive

ion channels both in interpretation of the channel data angerations at any grid point is smaller than the tolerance value, which is
for a better understanding of the physics of ion channels. typically set to 107 V for potential and 107 M for concentration. To
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speed up convergence, we use the Gauss—Seidal method with over- Bisenberg, R. S. 1999. From structure to function in open ionic channels.
under-relaxation (see the Appendix of article | for an explanation of these J. Membr. Biol.171:1-24.

terms). Over-relaxation is used in most cases for faster convergencéiall, J. 1975. Access resistance of a small circular pdré&en. Physiol.
Exceptions occur in the presence of large fixed charges in the channel (e.g., 66:531-532.

potassium channel), which lead to instabilities in the iterative procedureHille, B. 1992. lonic Channels of Excitable Membranes, 2nd Ed. Sinauer
and require use of under-relaxation to achieve convergence. Associates Inc., Sunderland, MA.

The algorithm requires specification of the concentration and potentiaHoyles, M., S. Kuyucak, and S. H. Chung. 1996. Energy barrier presented
values along the boundary of the computational box. For this purpose we to ions by the vestibule of the biological membrane chariiephys. J.
assign the constant concentration values, oindc, to the boundaries on 70:1628-1642.
the left and right reservoirs, and a zero value for the protein. The potentiaiioyles, M., S. Kuyucak, and S. H. Chung. 1998a. Computer simulation of
along the boundary is determined similarly; the top and bottom of the [On conductance in membrane channélgys. Rev. E58:3654-3661.
computational box are assigned values according to the potential droploy'es, M., S. Kuyucak, and S. H. Chung. 1998b. Solutions of Poisson’s
across the system, and the potential is varied linearly between these valuesiggaegon in channel-like geometrieSomputer Phys. Commui15:
along the side boundaries. While these simple choices lead to some ' . . . .
inaccuracies near the sides of the reservoirs, they have no discernible effetgkobsson, E., and S. W. Chiu. 1987. Stochastic th_eory of ion movement in
on the channel results because the radius of the reservoir is sufficientl chgnnels with single-ion occupandgiophys. ‘]'52'3,3_45' )
large. An accurate implementation of the boundary conditions on the sidegum'kova' M. G., R.D. Coalson, P. Graf, and A. Nitzan. 1999. A lattice

. . ; . o relaxation algorithm for three-dimensional Poisson—Nernst—Planck the-
can be aCh',EVEd by extenq|ng the grid sys_tem in the radial dlrgctlon beyond ory with application to ion transport through the gramicidin A channel.
the reservoir. Naturally, this comes at an increased computational cost, and Biophys. J.76:642—656.

since it is unwarranted, we have not used it in this study. Levitt, D. G. 1986. Interpretation of biological ion channel flux data:

reaction-rate versus continuum theoAnnu. Rev. Biophys. Biophys.
) . . . . . Chem.15:29-57.
The calculations upon which this work is based were carried out using th?_evitt D. G. 1991a. General continuum theory for multiion channel. |
Fujitsu VPP-300 and the Linux cluster of the ANU Supercomputer Théor);.Biophys. 359:271-277. T

Facility. Levitt, D. G. 1991b. General continuum theory for multiion channel. II.
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