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ABSTRACT A recently introduced real-space lattice methodology for solving the three-dimensional Poisson-Nernst-Planck
equations is used to compute current-voltage relations for ion permeation through the gramicidin A ion channel embedded
in membranes characterized by surface dipoles and/or surface charge. Comparisons to a variety of experimental results,
presented herein, have proven largely successful. Strengths and weaknesses of the method are discussed.

INTRODUCTION

Over the past decade methodological developments in
NMR, x-ray crystallography, and electron spectroscopy
have led to significant progress in determining structures of
integral membrane proteins that form ion channels (Doyle et
al., 1998; Song et al., 1996; Ketchem et al., 1997). This
accumulation of high-resolution structural information has
enabled better understanding of channel conductance, gat-
ing, and selectivity. Phenomenological descriptions of ion
flow through channel proteins in terms of kinetic, electro-
diffusion, and stochastic models have been given (Cooper et
al., 1985). At a more atomistic level, equilibrium molecular
dynamics simulations (Roux and Karplus, 1993) and non-
equilibrium Brownian dynamics simulations (Chung et al.,
1998, 1999; Corry et al., 1999) show long-term promise for
elucidating detailed mechanisms of biological ion transport
processes (Levitt, 1999).

Interest in biological ion channels is stimulated by the
important role they play in regulating the electrical proper-
ties of cells, as well as their tendency to bind various
antibiotic and toxin molecules (which can drastically alter
their functional properties, particularly current flow through
the channel). One of the most widely studied ion channels is
the neutral pentadecapeptide gramicidin A (GA), which
forms aqueous pores in lipid bilayers that selectively pass
monovalent cations (Andersen, 1984; Koeppe and
Andersen, 1996). Some of the functional properties of GA,
such as single-file flux and ion valence selectivity, are found
in physiologically important channels. This has made the
GA channel a focal point of many theoretical and experi-
mental studies.

Recent experiments on the gramicidin A channel have
elucidated the influence of membrane electrostatics on its
ion conductance. The dependence of GA channel conduc-

tance on lipid bilayer surface charge through the phospha-
tidylserine (PS) lipid was studied recently by Rostovtseva
and co-workers (Rostovtseva et al., 1998). Two methods of
varying surface charge were utilized, namely 1) titration of
the surface charge by changing the pH of the bulk solution,
and 2) reduction of lipid surface charge density by diluting
the PS lipid with the neutral phosphatidylcholine (PC) lipid.
The negatively charged PS membrane attracts cations to the
surface of the membrane (and hence to the mouth of the
channel), leading to increased cation conductance.

Busath and co-workers (Busath et al., 1998) studied the
effect of electrostatic middle-range and long-range interac-
tions on GA conductance, i.e., interactions with distant
residues and noncontact pore waters, and with lipid mole-
cules and bulk water, respectively. They measured single-
channel current-voltage relationships for GA in two differ-
ent planar bilayers, one being the dipolar PC membrane also
utilized by Rostovtseva et al. (1998) and the other the
glycerylmonoolein (GMO) bilayer, which is less dipolar
than PC lipid. The experimental differences in ion conduc-
tance were explained in terms of a difference in interfacial
dipole potentials for the two membranes.

In this paper we utilize Poisson-Nernst-Planck (PNP)
theory to study the influence of membrane surface charge
density and interfacial dipole potentials on the conductance
of GA channel embedded in lipid bilayers. PNP theory
combines the Nernst-Planck theory of electrodiffusion with
the Poisson equation of electrostatics, including contribu-
tions from both fixed charges in the system and from the
mobile charge density flowing through the channel. PNP
theory has previously been applied to the study of ion
transport in electrochemical liquid junction systems (Riv-
eros et al., 1989) and electron transport in semiconductor
devices (Markowich, 1986), as well as ion permeation
through biological membrane channels (Eisenberg, 1998;
Nonner et al., 1999).

There is some disagreement concerning the applicability
of the PNP approach to microscopical channels (Miller,
1999; Corry et al., 1999) when the size of the permeant ion
becomes comparable to that of the pore. The equilibrium
counterpart of PNP, Poisson-Boltzmann (PB) theory, has
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been widely utilized, with considerable success, to calculate
solvation and reorganization energies of molecules in solu-
tion (Sitkoff et al., 1994; Sharp, 1998). It is obvious that
application of a continuum theory like PB or PNP to a
microscopic system pushes the theory beyond the scope of
its derivation, and thorough testing is needed to decide if the
properties of the model resemble the properties of the real
system. Until recently all applications of PNP theory to ion
transport in biological systems either were one-dimensional
(1D) or were performed in simplified geometries such that
a detailed description of the protein structure and electro-
static properties was not possible. To compare the results of
the calculations of a 1D model with the corresponding
experimental values, the input parameters to the model must
be regarded as fitting coefficients. Therefore, for a reduced
1D model it is difficult to ascertain which properties of the
real system can be accounted for by the theory, given
sufficient resolution of the structural details of the 3D
system, and which ones result from parameter fitting (and
thus have no physical meaning).

In the present work, we employ the lattice relaxation
algorithm described in a recent paper (Kurnikova et al.,
1999) to solve the PNP equations for a fully 3D model of
the GA channel/charged membrane system. This procedure
is based on a mapping of the protein and the embedding
membrane onto a 3D cubic lattice, which defines dielectric
boundaries, a distribution of fixed (partial) charges associ-
ated with the protein and lipid membrane, and a flow region
for the mobile ions. The Poisson and Nernst-Planck equa-
tions are then solved self-consistently until convergence is
achieved. This type of algorithm has been used before to
solve the Poisson and the Poisson-Boltzmann equations for
biophysical systems (Nicholls et al., 1990; Luty et al.,
1992).

In Kurnikova et al. (1999) the accuracy of the 3D PNP
algorithm was calibrated using both parallel-plate and cyl-
inder models (for which numerically exact results could be
obtained by 1D methodology). The 3D algorithm was then
applied to a GA dimer channel embedded in a neutral
membrane, focusing on the influence of the atomic partial
charges of the protein upon the ion flux through the channel.
Reasonable agreement with experimental current/voltage
(I-V) results was obtained via PNP for this narrow channel,
with the diffusion coefficients for the permeant ions chosen
to have reasonable physical values.

In the implementation of 3D PNP theory presented by
Kurnikova et al. (1999), some additional simplifying as-
sumptions were made, namely that the concentrations of the
mobile ions retain their bulk values right up to the channel
mouths, and that the external potential associated with elec-
trodes brought into proximity to the channel mouths can be
fixed as a boundary condition rather close to (within 5 Å of)
the mouth openings. These simplifications were invoked for
ease of numerical implementation in those exploratory cal-
culations. Further reflection suggests that both restrictions

should be removed. Experimentally, electrodes used to
probe applied voltages across the channel are situated at
least a micron away from the channel openings. Because of
the mobility (and hence the polarizability) of the electrolyte
ions in water solvent, a uniform asymptotic voltage is ob-
tained in the water outside of the immediate vicinity of the
electrodes and the channel/membrane system. The electro-
lyte concentrations assume their bulk values in this regime.

We have recently studied how these asymptotic boundary
conditions can be converted into boundary conditions ap-
propriate for a finite-box real-space lattice PNP calculation
(Graf et al., manuscript submitted for publication). For
systems like the GA dimer/membrane complex at experi-
mentally relevant ionic strengths and applied voltages, we
found that the asymptotic state is obtained at a distance of
;15 Å from the membrane surface. Thus, fixing the mobile
ions to their bulk concentrations and the electric potential to
the applied electrode potential on a “simulation box” bound-
ary at about this distance from the surface of the membrane
and then solving the lattice PNP equations produces anI-V
curve that does not change when the box boundaries are
moved farther from the channel/membrane system.

Because the electrolytes are now mobile in the region
between the box boundary and the channel membrane, it is
important to include the possibility that different diffusion
coefficients apply in the reservoir versus inside the channel
pore. In the former region, we expect that the bulk diffusion
constant values apply for each ion species. However, inside
the channel diffusion is significantly constrained by the
narrow pore walls. Intuition and related molecular dynamics
experiments (Lynden-Bell and Rasaiah, 1996; Smith and
Sansom, 1998) suggest that the diffusion coefficient inside
the channel region can be significantly lower than its bulk
analog. Consequences of these effects have also recently
been elucidated by Graf and co-workers (Graf et al., manu-
script submitted for publication).

The modifications just described, that is, including mo-
bile ions in the reservoirs outside the channel and allowing
for different diffusion constants in the reservoirs versus the
channel interior, were incorporated into the calculations
presented in this work. They are particularly important for
the systems under study here, because the charges or dipoles
embedded in the membrane affect the motion of ions near
the membrane.

In the section titled PNP Theory we briefly review the
PNP 3D equations. Their solution using a lattice relaxation
algorithm is discussed in Computational Implementation, as
is the basic model for the channel system. In the next
section, PNP Lattice Model of the Gramicidin A Channel,
the specific 3D lattice model used to represent the GA dimer
is described. Then, in the following section, Influence of
Membrane Charges and Interfacial Dipoles on GA Conduc-
tance, we study the influence of surface charges and inter-
facial dipoles on the GA channel conductance, using simple
membrane models. In Comparisons with Experimental Ob-
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servations we use these models to compare our results with
recent experimental data. This is followed by concluding
remarks.

PNP THEORY

The dynamical behavior of Brownian particles in the high-
friction regime is governed by the Smoluchowski equation
(Chandrasekhar, 1943),

c~RW , t!

t
5 2¹W z jW~RW , t!, (1)

where c(RW , t) is the concentration of these particles at
positionRW and the flux of particles is given by

jW~RW , t! 5 2D~RW !@¹W c~RW , t! 1 bc~RW , t!¹W V~RW !#. (2)

Here D(RW ) is the spatially dependent diffusion coefficient
(assumed to be isotropic),V(RW ) is the external potential
energy acting on the particles, andb21 5 kT, wherek is
Boltzmann’s constant andT is the absolute temperature.
The first term of the right-hand side of Eq. 2 describes the
motion of particles through a concentration gradient accord-
ing to Fick’s first law of diffusion. The second term ac-
counts for the drift velocity,2D(RW )¹W V(RW )/kT, induced on
the particles by the external force2¹W V(RW ).

For steady-state conditions, i.e.,c(RW , t)/t 5 0, the
Smoluchowski equation (also called the Nernst-Planck
equation) can be written as

0 5 ¹W z D~RW !@¹W c~RW ! 1 bc~RW !¹W V~RW !#. (3)

If the concentration values at the boundary surfaces are
known, this equation has a unique interior solution, which
can then be input into Eq. 2 to determine the particle flux
vector at any point in space and hence the ion current
through any surface.

When the mobile particles are charged the potential en-
ergy that appears in the Nernst-Planck equation (Eq. 2) can
have electrostatic and nonelectrostatic components, i.e.,

Vi~RW ! 5 U~RW ! 1 zief~RW !, (4)

whereU(RW ) is a nonelectrostatic potential energy assumed
for simplicity to be the same for all ion species,zie is the
charge of the ion speciesi (zi is its valence ande is the
magnitude of the electron’s charge), andf(RW ) is the electric
potential. The potentialU(RW ) represents repulsion by fixed
objects (e.g., the pore walls) or the effect of short-range
repulsions between mobile ions (Levitt, 1991a,b). [In fact,
we prevent mobile ions from “going through the wall” via
zero-flux boundary conditions (see below), and short-range
ion-ion interactions are neglected here. So, in practice, the
U(RW ) term is absent from the present version of our 3D PNP
algorithm.]

The electric potential depends on the charge distribution
of ions in the aqueous phase, any other fixed charged
species in the system, the dielectric properties of the me-
dium, and any external electric voltage applied across the
system. The electrical potential profile is determined by
solving the Poisson equation,

¹W z ~e~RW !¹W f~RW !! 5 24pFrf~RW ! 1 O
i51

N

zieci~RW !G, (5)

where e(RW ) is the dielectric constant profile,rf(RW ) is the
density of fixed charges in the system, and the second term
accounts for the charge density of theN ionic species in the
solution. Because, according to Eq. 5, the electrical poten-
tial depends on the concentration of ions in solution, we
must solve it self-consistently with the steady-state Nernst-
Planck equations (Eq. 3) for each ionic species in the liquid
phase:

0 5 ¹W z Di~RW !@¹W ci~RW ! 1 bci~RW !¹W Vi~RW !#; i 5 1, . . . ,N,
(6)

whereDi(RW ) is the spatially dependent diffusion coefficient
appropriate to speciesi. Equations 4–6 comprise the es-
sence of Poisson-Nernst-Planck (PNP) theory.

COMPUTATIONAL IMPLEMENTATION

To solve the 3D PNP equations for a protein channel/
membrane system, we discretize the system onto a cubic
lattice grid and then solve a finite-difference representation
of the PNP equations on the grid. The self-consistent solu-
tion of these equations is obtained using a Successive Over-
Relaxation (SOR) algorithm (Press et al., 1992; Coalson and
Beck, 1998), including zero-flux boundary conditions for
lattice points next to the channel and membrane walls. For
the solution of the Poisson equation we used DelPhi (Ni-
cholls et al., 1990), a finite-difference-based computer code
widely utilized in applications to biophysical systems. The
DelPhi program was modified to allow inclusion of a mem-
brane slab around the protein channel, as well as different
salt concentrations on either side of the channel and an
electric potential difference across it. The algorithm for
solving the NP equations has been described before (Kurni-
kova et al., 1999) for the case of a constant diffusion
coefficient. In the Appendix of the present paper we show
how this algorithm can be modified to allow spatial varia-
tion of the diffusion coefficient. This procedure was used in
all calculations presented in this work.

The channel-membrane system is discretized on the grid:
each grid point is characterized by the concentration of each
ionic species, the electrical potential, the dielectric constant,
and the diffusion coefficient. Ion concentrations are nonzero
only in the aqueous region. The dielectric constante takes
the valueea 5 80 in the aqueous region andem 5 2 in the
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protein/membrane region. Within the ion flow region, the
diffusion constant for speciesi takes the valueDb,i in the
bath region andDc,i in the channel region (specific values
for the systems under consideration in this work are noted
below).

The boundaries separating the solvent molecules and
mobile ions from the fixed membrane/protein region are
taken to be the solvent molecule- and ion-accessible van der
Waals surfaces. These are obtained using the method of
Connolly (1983) as implemented in DelPhi.

We used uniform cubic lattices of 131–145 grid points
per side to produce the results shown in this paper. Fixed
values for the electric potential and ion concentrations were
set on the upper and lower faces of the cubic box, and the
protein channel axis was oriented perpendicular to those
faces. As an initial “guess,” the electric potential and ion
concentration were taken to vary linearly along the channel
axis between the fixed values at the faces. At the lateral
walls of the box, a linear variation of the electric potential
between the upper and lower faces and zero-concentration
boundary conditions were imposed. It was verified that
computed channel properties (e.g.,I-V curves) were insen-
sitive to lateral box face boundary conditions when the
lateral box dimension significantly exceeded the width of
the permeation channel.

The profiles were then updated according to the self-
consistent SOR procedure outlined above. The concentra-
tions were allowed to change in the entire solvent region
(channel and reservoirs). Therefore, the condition of elec-
trolyte charge neutrality was imposed only at the faces of
the box. For the ion diffusion coefficients, a linear interpo-
lation between bath and internal channel values was adopted
(details are provided below).

Runs were performed on a DECa21164a-clone and a set
of IBM RS6000 workstations. Converged results for a point
on the current-voltage curve took several hours, with the
exact time depending on system details and initial conditions.

PNP LATTICE MODEL OF THE
GRAMICIDIN A CHANNEL

Gramicidin A (GA) is a 15-amino acid peptide that dimer-
izes to form a monovalent cation-selective channel in the
bacterial cell wall or in artificial lipid membranes (Ven-
katchalam and Urri, 1983; Wallace, 1990; Andersen and
Koeppe, 1992; Busath, 1993). The secondary structure of
the GA channel is ab-helix head-to-head dimer, comprising
two identical subunits, A and B (cf. Fig. 1a), which forms
a narrow water-filled pore. The 3D structure of the dimer is
known from 2D NMR and NOE spectroscopy studies to a
resolution of 0.86 Å (Arsen’ev et al., 1986). The GA chain
consists of amino acids with alternatingL andD stereochem-
istry, which permits nonpolar side groups to extend into the
membrane while the pore is lined by the polar backbone
peptide groups (see Fig. 1a).

Single-channel cation current for gramicidin A has been
studied under a variety of conditions (Aidley and Stanfield,
1996; Hille, 1992; Busath, 1993). The abundance of exper-
imental data available for the GA channel together with its
small size have made it the preferred choice for testing
theories of channel conductance (Barcilon et al., 1992;
Roux and Karplus, 1993; Andersen and Feldberg, 1996). In
previous work (Kurnikova et al., 1999), we used the GA
channel to test the reliability and performance of our 3D
PNP algorithm. Reasonable agreement between theoretical
and experimental results for current-voltage curves was
obtained. In the present work, we have refined our PNP
calculation by including relaxation of ion concentrations in
the bathing solutions and allowing for different diffusion
constants in the channel interior and exterior. This enables
us to study the influence on GA conductance of charged
groups and interfacial dipoles that reside on the membrane
surface and to compare our calculations with available
experimental results (Rostovtseva et al., 1998; Busath et al.,
1998).

Fig. 1 b shows how the gramicidin A channel, surround-
ing membrane (PC/PS bilayer model), and solvent baths are
represented on the grid. This setup is somewhat different
from the one used previously (Kurnikova et al., 1999). In
the present model, the protein molecule is completely em-
bedded in the membrane region, and the upper and lower
faces of the computation box (abutting the two entrances to
the pore region) are farther away from the channel mouths
to allow ion density relaxation in the bath regions. For this
47-Å-wide lipid bilayer we assume that the membrane com-
presses because of hydrophobic matching between the lipid
and the protein, as has been determined for another phos-
pholipid bilayer (Harroun et al., 1999a,b). The exact details
of PC/PS shrinkage are unknown—we used a funnel-like
geometry for computational simplicity. To model the thin-
ner (33 Å) GMO bilayer, which is characterized by a
nondipolar surface, we used a cylindrically shaped mem-
brane pore at the openings of the channel with a radius of
2.5 Å, as depicted in Fig. 1c.

The coordinates of the heavy atoms of the protein
(Arsen’ev et al., 1986) were taken from the Protein Data
Bank (Bernstein et al., 1977). For the partial charges on GA
atoms we used values from the AMBER86 united-atom
force field (Pearlman et al., 1991), while values for the
atomic radii were taken from DelPhi (Nicholls et al., 1990);
the radii of the polar hydrogens were set at 1.0 Å. In the
present calculations, the membrane and protein regions
(gray area in Fig. 1, b and c) are described by the low
dielectric constantem 5 2. The high dielectric constantea 5
80 characterizes the aqueous (channel and bath) region
(white region of Fig. 1, b and c). For a more detailed
discussion concerning the choice of these values see Kurni-
kova et al. (1999).

To obtain the results presented in Comparisons with
Experimental Observations, where we compare our calcu-
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lations with experimental results, we used as bulk diffusion
constants for K1, Cs1, Cl2, and H1 the known experimen-
tal values of 1.963 1025, 2.063 1025, 2.033 1025, and
9.31 3 1025 cm2/s, respectively (Hille, 1992). In the next
section, the main purpose of which is to establish qualitative
effects of surface charge and/or surface dipoles on channel
properties (electrical potential and mobile ion distributions,
I-V curves, etc.), we use a bulk diffusion constant of 13
1025 cm2/s for both the positive and negative ions. In
general, values of diffusion coefficients inside the channel
are difficult to obtain experimentally. A molecular dynam-
ics simulation of ion transport inside a cylindrical channel
yielded diffusion coefficients two or three times smaller
than the bulk values (Lynden-Bell and Rasaiah, 1996).
Another recent molecular dynamics study of permeation
through several different ion channels found an;10-fold
reduction of the diffusion coefficient inside narrow channels
(Smith and Sansom, 1998). To obtain agreement with ex-
perimental GA results (for the case of an uncharged mem-
brane), channel diffusion coefficients 11 and 17 times
smaller than the bulk values were required for Cs1 and K1

ions, respectively. This reduction is consistent with the
decrease estimated by Smith and Sansom for Na1 ions
(which are somewhat smaller than Cs1 or K1) permeating
the narrow poly-Alaa-helix bundle model (cf. Figure 3B of
their paper, where reductions of;15 times are indicated).
Roux and Karplus found even larger reductions of the
internal channel diffusion coefficient in their molecular
dynamics simulation of permeation through gramicidin
(Roux and Karplus, 1991), thus reinforcing the basic
premise behind our modeling of the spatial diffusion con-
stant profile in the present work.

INFLUENCE OF MEMBRANE CHARGES AND
INTERFACIAL DIPOLES ON GA CONDUCTANCE

The ion transport characteristics of protein channels can be
modified by differences in electrical potential at the bulk
water-membrane surface induced by dipoles lining the
membrane surface. These dipoles are created by a nonran-
dom orientation of lipid headgroups, fatty acid carbonyl
groups, and water (Gawrisch et al., 1992). Another factor
that can strongly affect the channel conductance is the
presence of charged polar groups in some lipid bilayer
surfaces forming ion-channel systems (Green and

FIGURE 1 (a) Molecular representation of gramicidin A dimer, with the
two peptides (“monomers”) in dark gray (A) and light gray (B), respec-
tively. (b) A 2D cut of the lattice representation of the gramicidin A
channel in PC or PS lipid. The protein and membrane regions are in light
gray and the solvent is shown in white. The entrance and exit regions are
represented by a funnel-like pore with an external radius of 15 Å. (c) The
same 2D cut for the lattice representation of GA channel in GMO lipid. The
channel pore is taken to be cylindrical, with a radius of 2.5 Å.
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Andersen, 1991). Certain lipids like phosphatidylserine con-
tain both negatively charged carboxylic oxygens and inter-
facial dipoles on their surface. The ion current of GA
embedded in this membrane (PS) is larger than the corre-
sponding current through the uncharged phosphatidylcho-
line (PC) (Rostovtseva et al., 1998).

Here we use 3D PNP theory to study ion conduction
through the GA channel under several membrane electro-
statics conditions. Specifically, we compare the conduc-
tance properties of a charged membrane, a dipolar mem-
brane, a charged/dipolar membrane, and a neutral
membrane.

We modeled the charged membrane by including nega-
tively charged “dummy” atoms on the surfaces of the bi-
layer (Fig. 2a, black spheres). The positions of these atoms
were attached to the coordinate file for the GA atoms, and
their number was chosen to correspond to a surface charge
density of 0.021e/Å2 (a value estimated for the PS mem-
brane by Rostovtseva et al. (1998)). The specific geometri-
cal arrangement chosen, namely three concentric squares
(cf. Fig. 2b, black spheres), is somewhat arbitrary because
of the lack of knowledge about the structure of lipids in
bilayer membranes.

To model the interfacial dipoles at the membrane surface
we added dipoles at each side of the bilayer membrane (Fig.
2 a, light gray spheres). It has been determined for a wide
range of membrane structures that the potential is positive
inside the membrane with respect to the aqueous phase
(Haydon and Myers, 1973; Jordan, 1984). Accordingly, we
placed the positive ends of the dipoles inside the membrane
and separated this layer of charge by 5 Å from a negatively
charged layer, comprising the negative ends of the dipoles,
which abut the bath. The absolute values of the membrane
potential can be estimated from a simple capacitor model.
For such a dipolar interface, the dipole potentialDVd can be
approximated as (Flewelling and Hubbell, 1986)

DVd < 38rmm/eeff , (7)

whererm is the density of dipoles at the surface (in Å22), m
is the individual dipole moments (in Debyes), andeeff is an
effective dielectric constant at the interface, yieldingDVd in
volts. We used a charge of60.031e on the6 components
of each dipole and a dipolar density of 1 dipole per 9.4 Å2

(cf. Fig. 2 b, light gray spheres). Assumingeeff 5 20 (a
value intermediate between the bulk value for water and a
rigid structure; Flewelling and Hubbell, 1986), Eq. 7 gives
a dipole potential of;160 mV for the parameters given
above. This value is similar to the experimental value of
(1)120–200 mV for phosphatidylcholine (PC) lipid (Jor-
dan, 1984; Flewelling and Hubbell, 1986; Busath et al.,
1998) (compared with glycerylmonoolein (GMO) lipid)
(Haydon and Myers, 1973; Busath et al., 1998).

We performed the computations of this section using the
membrane model of PC shown in Fig. 1b. Calculations

were made for a membrane without charges or interfacial
dipoles (neutral membrane), with dipoles (no charges), with
charges (no dipoles), and with both dipoles and charges (cf.
Fig. 2). As noted at the end of the previous section, we used
a bulk diffusion coefficient ofD1 5 D2 5 1025 cm2/s. To
account for the expected reduction of permeation mobility
inside the pore a channel diffusion coefficient ofD1 5
D2 5 1026 cm2/s was employed. A linear variation of the
diffusion constant between these two values in the funnel-
shaped openings connecting the bulk solution to the “inner”
(protein) channel was imposed. We checked that this choice
of interpolation scheme for connecting internal and external
flow region, which is necessarily somewhat arbitrary, does
not qualitatively alter the computed channel properties.

FIGURE 2 Molecular representation of gramicidin A dimer with nega-
tive charges (black) and dipoles (light gray) embedded in the membrane.
(a) Lateral view. (b) Top view. The negative charges (84 in total) and the
positive charges of the dipoles (360 in total) are placed inside the mem-
brane (1 sign ina). The negative charges of the dipoles are placed on the
aqueous side of the membrane-liquid interface (2 sign in a).
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In Fig. 3, current-voltage curves for GA embedded in the
neutral, dipolar, charged, and dipolar/charged membrane
are shown for a symmetrical 0.2 M bathing solution. The
presence of negative charges on the membrane surface
increases the channel ion conduction compared with the
neutral membrane, in agreement with experimental obser-
vations (Apell et al., 1979; Rostovtseva et al., 1998). The
presence of a dipolar interface decreases the ion conduc-
tance relative to that of the corresponding neutral mem-
brane, also in agreement with experiment (Busath et al.,
1998), but this effect is moderate compared with the in-
crease in current due to the presence of charges in the
membrane.

The electrostatic potential and positive and negative ion
concentrations along the channel axis are shown in Figs. 4
and 5, respectively, for the different surface dipole/charge
configurations under consideration at an applied voltage of
100 mV. The presence of negative charges on the membrane
surface deepens the potential at the entrance and exit from
the channel by;29 mV; it also lowers the potential well
inside the channel by;18 mV (Fig. 4). Consequently, more
positive ions are attracted into the pore (Fig. 5), thus in-
creasing the ion current. The presence of dipoles at the
membrane-liquid interface produces a reduction in the depth
of the potential well (by;5 mV) with a concomitant
decrease of positive ion density inside the pore (Fig. 5). This
reduction of the electric potential has previously been
pointed out by Jordan (1984) to explain the effect of mem-
brane dipoles on channel conductance. The dipoles also

destabilize the entrance of positive charges into the pore
(manifested as a small bump in the electrostatic potential
curve between the membrane surface and the actual protein
pore entrance). The positive side of the interfacial dipoles
located in the membrane interior leads to this increase in the
electric potential, which in turn reduces the ion current
through the channel. In all cases, the anion distribution
density inside the channel is negligible compared with the
cation density, in agreement with the observed cationic

FIGURE 3 Current-voltage curves for GA embedded in a neutral mem-
brane (solid line), dipolar membrane (dashed line), charged membrane
(long dashed line), and charged and dipolar membrane (dot-dashed line).
The PNP equations were solved for a bulk salt concentration of 0.2 M on
both sides of the channel and diffusion coefficientsD1 5 D2 5 1025

cm2/s (bulk) andD1 5 D2 5 1026 cm2/s (channel).

FIGURE 4 Electrostatic potential along the channel axis. The symbols
are the same as in Fig. 3. The vertical lines indicate the position of the
membrane surfaces (external lines) and the protein mouths (internal lines).
The applied external potential drop is 100 mV, and the bulk concentration
is 0.2 M.

FIGURE 5 Positive and negative ion concentrations along the channel
axis (the anion concentrations are essentially zero inside the channel for all
four cases). The symbols are the same as in Figs. 3 and 4. The external
potential drop is 100 mV, and the bulk concentration is 0.2 M.
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selectivity for GA channels. Thus the issue of shielding of
cations inside the channel by negative counterions (Corry et
al., 1999) does not arise here.

In the following section we test the validity of these
membrane electrostatic models and of 3D PNP theory by
comparison with recent experimental studies on GA con-
ductance in different membrane environments.

COMPARISONS WITH EXPERIMENTAL
OBSERVATIONS

Titration of membrane charge in PS

It is well known that charged polar groups on the surface of
lipids can interact with ions in solution and thus modify the
physical properties of the bilayer system (Eisenberg et al.,
1979). Recently, Rostovtseva and co-workers (Rostovtseva
et al., 1998) used this fact to manipulate the surface charge
density of the membrane. In one set of experiments, they
titrated the lipid charge by changing the pH of the bulk
solution. In another set, they modified the membrane charge
density by diluting the charged lipid PS with uncharged PC.
They then utilized a model based on Gouy-Chapman theory
to study the surface titration process. Taking into account
chemical binding of counterions to the negatively charged
lipid groups and the corresponding decrease in effective
membrane charge, they estimated a value for the intrinsic
dissociation constant of the PS polar headgroups (see be-
low). They used three different models to determine the
cation concentration at the channel mouths: an analytical
solution for the planar Poisson-Boltzmann equation, a lin-
earized Poisson-Boltzmann equation solution, and construc-
tion of a Gibbs dividing surface between the solvent bath
and surface membrane. The conductance versus pH predic-
tions of this model were ultimately based on the measured
conductance of GA in neutral PC lipid (cf. equation 10 of
Rostovtseva et al. (1998)).

Here we use a 3D PNP algorithm to study the effect of
titration on the ion conductance of the GA channel. Any
ambiguity in the determination of the electric potential at
the surface of the charged membrane and at the center of the
channel mouths is eliminated when the PNP equations are
self-consistently solved in the 3D system. Another advan-
tage of the 3D PNP approach is that its predictions of the pH
dependence of ion current through a GA channel in the PS
membrane are independent of the ion conductance (mea-
sured or calculated) in neutral PC lipid.

We modeled the uncharged PC and charged PS lipids as
indicated in Fig. 1b. We assumed that the two membrane
bilayers have the same width (47 Å) and the same dipolar
interface (Rostovtseva and co-workers made this assump-
tion implicitly because they did not include effects of the
dipolar interface in their conductance study of PC and PS).
These two assumptions can be justified by the similarities
between the zwitterionic headgroup of phosphatidylcholine

and phosphatidylserine and the approximately equal sizes of
the hydrocarbon chains in the two phospholipids. Dipoles
were included on both sides of the membrane bilayer model
for PC and PS. To model the charged PS we embedded
surface charges in the membrane (Fig. 2). The same values
of surface dipolar and charge density utilized in the previous
section were adopted here. We did not include interfacial
dipoles or surface charges along the funnel-like entrance/
exit to the channel because the structural modifications of
the lipid molecules due to the membrane shrinkage at the
pore are not known.

We determined the current-voltage relation for GA in
both charged (PS) and uncharged (PC) membranes. Results
based on a channel diffusion constant of 1.793 1026 cm2/s
for both cations and anions are shown in Fig. 6. This
diffusion constant value was chosen to fit the experimental
data for GA/neutral membrane conductance in a 1 M CsCl
solution (Rostovtseva et al., 1998) (inset of Fig. 6, filled
triangles). The increase in current for GA embedded in the
charged membrane compared to that obtained for the same
ion channel embedded in an uncharged membrane under
otherwise identical conditions is in good agreement with the
experimental data. The negative charges in the lipid bilayer
surface decrease the electrostatic potential along the channel
axis (cf. Fig. 4), which attracts cation density to the pore
(Fig. 5), thus increasing the ion current compared with the
case of an uncharged (but still dipolar) membrane.

To study the titration of the negative carboxyl groups of
PS lipid with bulk solution protons we follow the analysis of
Rostovtseva et al. relating the membrane charge density to

FIGURE 6 Calculated current-voltage relationship for GA embedded in
an uncharged PC membrane (solid symbols) and a charged PS membrane
(open symbols) at neutral pH. The electrolyte concentrations are 0.1 M
(diamonds) and 1.0 M (triangles). The inset shows experimental results
(Rostovtseva et al., 1998), using the same symbol convention as in the
main panel (it also shows experimental results at pH 1 (solid circles and
squares)).
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the local counterion concentrations and dissociation con-
stants. Cs1 and H1 can bind to the carboxyl groups of the
bilayer PS lipids:

~COOH!sº ~COO2!s 1 Hint
1

~COOCs!sº ~COO2!s 1 Csint
1

with dissociation constants

KCs 5
~COO2!s@Cs1#int

~COOCs!s

Ka 5
~COO2!s@H

1#int

~COOH!s
. (8)

Parentheses here denote two-dimensional surface concen-
trations (with subscript s), and 3D concentrations of mobile
ions at the surface interface are labeled with subscript int.
The lipid surface charge densitys is

s 5 2e~COO2!s, (9)

and the maximum charge densitysmax is proportional to the
concentration of carboxyl groups in PS:

smax 5 2e@~COO2!s 1 ~COOH!s 1 ~COOCs!s#. (10)

Combining Eqs. 8–10, the following expression for the
charge density at the lipid surface is obtained (Rostovtseva
et al., 1998):

s 5
smax

1 1 @Cs1#int~@H
1#b/@Cs1#bKa 1 1/KCs!

, (11)

where [. . .]b denotes bulk concentration and it has been
assumed that [H1]int/[Cs1]int 5 [H1]b/[Cs1]b. Equation 11
relates the charge density of the membrane to the bulk
concentrations of the metal ion and proton, the local con-
centration of Cs1 at the interface of the surface membrane
and in solution, and the dissociation constantsKa andKCs.
The bulk concentrations are known experimentally, but the
electrolyte concentrations near the surface and dissociation
constants are not. Rostovtseva et al. used a simple 1D
solution of the PB equation for the local concentration,
using the Gouy-Chapman expression to estimate the elec-
trical potential at the surface/solution interface. Here we
solve the 3D PNP equations self-consistently with Eq. 11
for the surface charge density (which depends implicitly on
the local concentration of mobile positive ions). We used a
value of 6.03 1025 cm2/s for the proton diffusion coeffi-
cient in the GA channel. This value produced agreement
with the channel conductance measured in uncharged PC
bilayers at pH 1.0 in the absence of Cs1 (table 2 of Ros-
tovtseva et al.). ForKCs we used the value 20 M (Eisenberg
et al., 1979), and we varied the value ofKa to fit the
experimental data as discussed below.

In Fig. 7 a, the pH dependence of the GA channel
conductance in the charged membrane calculated with the

3D PNP algorithm is compared with the experimental re-
sult. (We included the proton current in addition to the metal
ion current for our calculation of the pH dependence of
channel conductance; for the rest of the calculations pre-
sented in this section, which were carried out in pH neutral
solutions, only metal ion current was included.) Our results
reproduce the experimental curve rather well in the pH
range between 1.5 and 6, with more deviation at lower pH.
There is a slight reduction of the conductance as the pH is
reduced from 8.0 to;2.75, which can be traced to a
decrease in the effective membrane charge density caused
by protons binding to the carboxyl groups (Fig. 7b). Below
pH 2.75 the conductance increases sharply, even though the
net surface charge density continues to decrease (Fig. 7b),

FIGURE 7 (a) Conductance and (b) effective negative surface charge
density, calculated using 3D PNP theory versus pH for a gramicidin A
channel embedded in a PS membrane. The bulk electrolyte concentration
is 0.1 M, and the conductance values were calculated for a potential
difference of 100 mV. Shown in the inset ofa (open and filled circles) are
the experimental values (Rostovtseva et al., 1998).
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because of the rise in proton concentration and hence in the
proton current (the proton has a larger diffusion constant
than the Cs1 ion). We obtained best fits to the experimental
data whenKa 5 1.8, which is somewhat smaller than the
value obtained by Rostovtseva et al. (Ka 5 2.5).

We also studied the effect of titrating the charged PS lipid
by mixing in neutral PC lipid. The conductance of GA
varies because of the change in membrane charge density
induced by “diluting” the membrane with uncharged lipid.
Surface charge densities at several PS-PC compositions
were estimated by Rostovtseva et al. with the nonactin
method (McLaughlin et al., 1970). As in the case of pure
PS, we modeled these mixtures by embedding charged
particles on both surfaces of the (already dipolar) bilayer
membrane to get the appropriate charge densities at differ-
ent PS-PC lipid compositions and then calculated the con-
ductance. In Fig. 8, we show the results obtained with our
3D PNP algorithm. The agreement with the experimental
curve (shown in the inset of the figure) is reasonable. The
calculated conductance is in general smaller than the corre-
sponding experimental value, especially for the uncharged,
PC-rich mixtures. Nevertheless, the qualitative similarities
between the results of our model and experiment suggest
that the variations in ion current are induced mainly by the
changes in membrane charge and less so by any additional
lipid-dependent structural factors.

I-V curves for GA in neutral and
dipolar membranes

Busath et al. (1998) measured K1 and Na1 conductance
through a GA channel embedded in planar di-
phytanoylphosphatidylcholine (DPhPC) and GMO bilayers.
The interfacial dipole potential is significantly larger for
DPhPC than for GMO lipid (cf. previous section). We
performed 3D PNP calculations, using our dipolar mem-
brane model of DPhPC (Figs. 1b and 2), and for a model of
GMO, which comprises a neutral membrane model 33 Å
wide containing a narrow cylindrical pore of radius 2.5 Å
(cf. Fig. 1c). (The membrane shrinkage is probably smaller
for this bilayer, which has a width only slightly greater than
the length of GA (de Planque et al., 1998).) As in the case
of the DPhPC membrane, a linear interpolation between
bulk and inner (GA) channel diffusion constants was im-
posed, although for GMO the spatial extent of the interpo-
lation region is much smaller (cf. Fig. 1,b and c). The
calculated current-voltage curves for different salt concen-
trations are plotted in Figs. 9 and 10 for the dipolar (DPhPC)
and neutral (GMO) membrane, respectively. A channel dif-
fusion coefficient of 1.123 1026 cm2/s was used for K1.
(This value fits the calculatedI-V curve with the experi-
mental value in neutral GMO lipid for a cation concentra-
tion of 1 M.) The corresponding experimentalI-V curves
(Busath et al., 1998) are shown as insets in the figures. The
reduction in channel current observed with the dipolar
DPhPC lipid relative to neutral GMO lipid is well repro-
duced by our model. The interfacial dipoles increase the
electrostatic potential along the channel and at the pore
openings (cf. Fig. 4), which results in decreased flux of

FIGURE 8 Ion conductance for gramicidin A in mixed bilayers as a
function of PS/(PC1 PS) ratio in a pH neutral solution with 0.1 M CsCl.
These conductances were calculated for an applied external potential of
100 mV. The corresponding experimental results (Rostovtseva et al., 1998)
are shown in the inset.

FIGURE 9 Current-voltage relationship in DPhPC (dipolar) membrane.
The electrolyte concentrations are 0.1 (open triangle), 0.2 (closed circle),
0.5 (open square), 1.0 (open circle), and 2.0 M (closed square). The inset
shows the experimental results (Busath et al., 1998), with the same symbol
convention, except that these authors used dot-filled squares for 0.1 M.
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positive ions through the channel. The difference in mem-
brane width also affects theI-V relationship: compare the
rather modest effect of the dipoles in Fig. 3 with the more
significant dipole-induced changes observed in Figs. 9 and
10. These latter can be traced to a.10% increase in current
through the narrow GMO pore relative to the current ob-
tained for the “hypothetical” nondipolar DPhPC considered
in Fig. 3. Our results also show a very slight superlinearity
and sublinearity of theI-V curves at high and low concen-
trations, respectively, compared with the experimental re-
sults. Saturation and superlinear behavior of the experimen-
tal I-V curve in DPhPC (and superlinearity in GMO) at
concentrations 2 M and higher, probably caused by multiion
interference, is not reproduced by primitive PNP theory,
which assumes a continuum description of the (infinitesi-
mal) ions in the system.

CONCLUSIONS

In this paper we have utilized a 3D PNP algorithm to study
the effect of membrane surface charges and dipoles on the
conductance properties of the gramicidin A channel. Good
agreement with a range of experimental results was ob-
tained. Three-dimensional PNP calculations can provide
valuable insights concerning the influence of membrane
electrostatics on ion flux through the bulk solution and
channel.

We have found, for example, that the observed current
decreases when dipoles are included on the membrane sur-
faces, but these dipoles have only a small effect on ion

permeation through the GA channel (all other factors being
equal). By switching the dipoles off in the DPhPC mem-
brane (a useful exercise, which is more easily done in a
numerical simulation than a laboratory experiment!), we
find that the observed difference in the currents through
GA/GMO and GA/DPhPC systems is in large part due to
the difference in the thickness of the GMO and DPhPC
membranes, indicating that it is important to take into ac-
count the specific details of the membrane to understand ion
flow through these systems.

Charges on the membrane surface have a larger effect on
the ionic conductance through the GA channel. The ob-
served increase in current when there are negative charges
on the membrane surface was traced to a drop in the
electrostatic potential inside the channel and the channel
mouths. The rather good agreement between experimental
and PNP results in this case suggests that the difference in
conductance between GA/PC and GA/PS (modeled with the
same membrane thickness) is due mainly to the presence of
charges on the surface of the latter.

Nevertheless, limitations of PNP theory should be kept in
mind. These include a continuum description of the solvent
and permeant ions, treating the latter as infinitesimal point
particles, and an intrinsic reliance on a mean field approx-
imation that disregards ion-ion correlations (Corry et al.,
1999). These limitations render models based on primitive
PNP theory incapable of predicting properties that depend
critically on the correlated motion of finite-size particles,
such as multiion interference effects observed at high salt
concentrations (see, for example, Fig. 9). Furthermore,
primitive PNP does not account for the energetic barrier
encountered by a mobile ion when it moves through a
narrow channel, which is a consequence of the finite radius
of the ion. When there is a large dielectric discontinuity
between the aqueous pore and the surrounding protein chan-
nel/membrane structure, this barrier can be large (Dieck-
mann et al., 1998, Chung et al., 1998, 1999), particularly for
narrow channels. The success of 3D PNP modeling in
accounting for a range of experimentally observed perme-
ation data on the GA channel thus suggests that long-range
structural electrostatic forces (induced by the shape of the
embedding membrane and the distribution of charges at-
tached to it) significantly influence the dynamics of the
permeant ions, and that such considerations, rather than
delicate atomistic-level details of the migration of particles
through the narrow channel, dominate the behavior of ob-
servableI-V curves in GA systems. Another general source
of difficulties with PNP theory (and others, too; Chung et
al., 1998, 1999; Corry et al., 1999) is the lack of experi-
mental knowledge concerning the values of some parame-
ters, e.g., the dielectric constants of water in the channel and
the diffusion coefficients for ions inside the channel, as well
as the lack of high-resolution information concerning the
lipid bilayer structures. Despite these limitations, our results
suggest that solutions of the 3D PNP equations, combined

FIGURE 10 Current-voltage relationship in GMO (nondipolar) mem-
brane. The symbol legend is the same as in the previous figure. The
experimental results (Busath et al., 1998) are shown in the inset.
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with intuition (based on experimental evidence) concerning
structural details of the protein channel/membrane system,
may be useful for understanding a range of biological ion
transport processes.

APPENDIX: INCLUSION OF SPATIAL VARIATION
OF THE DIFFUSION COEFFICIENT IN THE FINITE
DIFFERENCE/SUCCESSIVE OVERRELAXATION
ALGORITHM TO SOLVE THE
NERNST-PLANCK EQUATION

We utilize a 2D system to illustrate the derivation of the equations.
Generalization to the 3D case is straightforward—the final 3D result is
given below.

For an aqueous phase region (Fig. 11a), the flux vector at the midpoint
between two adjacent grid points is associated with concentrations and
potentials at those grid points. For example, the fluxj i11

x in thex direction
halfway between the points (i, j) and (i 1 1, j) is represented in the
finite-difference method as

j i11
x 5 2@~Di11,j 1 Di, j!/2a#@ci11,j 2 ci, j

1 b~Vi11,j 2 Vi, j!~ci11,j 1 ci, j!/2#, (12)

wherea is the lattice spacing. The steady-state flux condition 05 ¹W z jW for
this lattice point can be written as

j i11
x 2 j i21

x 1 j j11
y 2 j j21

y 5 0. (13)

Substituting the expressions for the flux components (Eq. 12) and rear-
ranging, we get an expression for the concentration of the central lattice
point. This is most simply expressed by using a notation in which the
concentration, potential, and diffusion constant of the central point are
indicated by subscript 0, while the corresponding quantities for the four
nearest-neighbor lattice points are labeled by subscripts 1,. . . , 4:

c0 5
Oi51

4 @1 1 ~b/2!~Vi 2 V0!#ciD# i

Oi51
4 D# i@1 2 ~b/2!~Vi 2 V0!#

, (14)

where D# i [ (Di 1 D0)/2. In the successive overrelaxation method the
lattice concentrations are updated using

ci, j 5 ~1 2 w!ci, j
old 1 wc0, (15)

whereci, j
old is the current value ofci, j, c0 is the value obtained via Eq. 14

(using the current values of the concentrations of the nearest-neighbor
points surrounding (i, j)), and w is a positive weight factor, which is
adjusted to get the fastest possible convergence without losing stability.
Strictly speaking, the procedure is termed “overrelaxation” ifw . 1 and
“underrelaxation” ifw , 1. Although we have referred to the method as
SOR (Successive Overrelaxation) in the text, certain cases treated there
required a choice ofw , 1 to obtain convergence.

When one of the grid points that surrounds the central one is outside the
flow region (Fig. 11b), no particle flows from that point to the central
point, and the steady-state condition is given by

j i11
x 2 j i21

x 1 j j11
y 5 0. (16)

Following the procedure sketched above, the concentration for the central
lattice point is, in this case,

c0 5
Oi51

3 @1 1 ~b/2!~Vi 2 V0!#ciD# i

Oi51
3 D# i@1 2 ~b/2!~Vi 2 V0!#

. (17)

For a 3D system the derivation of these expressions follows the same steps.
The concentration for a lattice point completely inside the flow region is

c0 5
Oi51

6 @1 1 ~b/2!~Vi 2 V0!#ciD# i

Oi51
6 D# i@1 2 ~b/2!~Vi 2 V0!#

, (18)

and when the central point is next to the (impenetrable) boundary,

c0 5
Oi51

5 @1 1 ~b/2!~Vi 2 V0!#ciD# i

Oi51
5 D# i@1 2 ~b/2!~Vi 2 V0!#

. (19)

Analogous expressions can be obtained when two or more nearest neigh-
bors are out of the flux region.

FIGURE 11 Schematic representation of flux into grid point (i, j) for a
2D system. (a) The central point is completely inside the flux region. (b)
The central point is next to an external boundary (wall).
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It should be noted that the incorporation of a variable diffusion coeffi-
cient in the context of the Slotboom-transformed NP equation (Slotboom,
1969) has been reported (Graf et al., manuscript submitted for publication).
Both algorithms have proved successful (convergent and accurate) in
numerical tests to date.
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