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ABSTRACT Within the context of DNA rings, we analyze the relationship between intrinsic shape and the existence of
multiple stable equilibria, either nicked or cyclized with the same link. A simple test, based on a perturbation expansion of
symmetry breaking within a continuum elastic rod model, provides good predictions of the occurrence of such multiple
equilibria. The reliability of these predictions is verified by direct computation of nicked and cyclized equilibria for several
thousand DNA minicircles with lengths of 200 and 900 bp. Furthermore, our computations of equilibria for nicked rings predict
properties of the equilibrium distribution of link, as calculated by much more computationally intensive Monte Carlo
simulations.

1. INTRODUCTION

Various elastic models have been used to calculate DNArinsic curvature of DNA is taken into account: the existence
configurations subject to externally imposed constraintsof more than one cyclized local minimum of the same link,
One of these constraints, studied experimentally by Pulleywhich we will refer to asmultiple cyclized minimaln
blank et al. (1975), Depew and Wang (1975), Shore ancddition, the presence of intrinsic curvature can cause the
Baldwin (1983), and Horowitz and Wang (1984), is circu- DNA to have more than one nicked local minimum, a
larity, the requirement that the two ends of the DNA closephenomenon we refer to asultiple nicked minimawe will

to form a ring. If the two strands of the sugar-phosphatedescribe the two phenomena collectivelynasitiple minima
backbone are required to close, the DNA ring is referred to  As reviewed by Schlick (1995) and Olson (1996), there
ascyclized whereas if only one strand is closed, the DNA are several numerical strategies for determining local en-
is said to benicked ergy minima within elastic DNA models, including direct

Models of such cyclization experiments often assume aminimization, solution of equilibrium equations, or some
intrinsically straight reference state for the unconstrainedorm of simulated annealing (e.g., using Monte Carlo). This
double-helical DNA, as, for instance, in Levene and Croth-paper will primarily be concerned with the solution of
ers (1986), Shimada and Yamakawa (1988), Klenin et alequilibrium equations, particularly those associated with a
(1991), and Tobias (1998). Although this hypothesis maycontinuum rod model (Benham, 1979; LeBret, 1979; Yang
seem to be a fair first approximation, experimental evidencet al., 1993; Manning et al., 1996; Manning and Maddocks,
for a mild but significant intrinsic curvature has accumu-1999), as can be derived through standard procedures of the
lated during the last 20 years (for a review, see, for instancesalculus of variations. More precisely, we present an anal-
Olson and Zhurkin, 1996). These observations have motiysis of the equilibrium equations that provides a qualitative
vated a refinement of DNA models by the incorporation ofynderstanding of the existence of multiple minima not
intrinsically curved reference states, either as isolated berfeadily available from numerical minimization or simulated
sites (Bauer et al., 1993; Tobias and Olson, 1993; Westconnealing. (Because our results are derived from the equi-
etal., 1995; Yang et al., 1995; Klenin et al., 1995; Rippe efjiprium equations, they apply not only to multiple minima,
al., 1995), or in a sequence-dependent manner (De Santis gt also to multiple equilibria of other types (such as saddle
al., 1992; Katritch and Vologodskii, 1997; Manning et al., points), but we will focus here on the implications for local
1996; Kahn and Crothers, 1998). minima.)

DNA molecules can cyclize into several local minima of |, particular, we analyze the important consequences of
different links, forming the so-called topoisomer distribu- symmetry breaking in the equilibrium conditions in the
tion (as reviewed, for instance, in Bates and Maxwellyansition from the symmetrical case of an intrinsically
(1993), Levene (1994), and Stasiak (1996)). In this paper Wgtrajght, isotropic model to the nonsymmetrical case incor-
focus on a different phenomenon that arises when the inorating intrinsic curvature. The same transition was the
focus of the recent Metropolis Monte Carlo study (Katritch
and Vologodskii, 1997, hereafter abbreviated as KV), and
ZR(_(Jeggived for publication 2 September 1999 and in final form 20 Marchyye compare our results directly with their findings. For
Addr(.ess reprint requests to Dr. John H. Maddockgy@gment de Math- cyclized DNA, the.re 'S an mte-ger-vaIUEd li, which is
ématiques, Eole Polytechnique Teirale de Lausanne, CH-1015 Lau- related to total twisTw and wr|theWr by the W,e"'known,
sanne, Switzerland. Tel.: 41-21-6932762; Fax: 41-21-6935530; E-maiiformulaLk = Tw + Wr. Both the twist and writhe remain
maddocks@dma.epfl.ch. well defined for nicked minicircles, and KV therefore define
© 2000 by the Biophysical Society the sumTw + Wr to be a generalized, usually noninteger,
0006-3495/00/07/116/21  $2.00 link Lk. In their Monte Carlo simulations, KV discovered
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that the distributiorP(LK) of this noninteger link in nicked equilibrium distributions. This observation thus offers hope
DNA is dramatically affected by the presence of intrinsic that equilibrium computations can be used in the future as
DNA curvature. They observed that whiRéLk) for intrin-  valuable precomputations to guide the selection of interesting
sically straight DNA always looks Gaussian, the addition ofsequences for Monte Carlo simulations, or indeed, experi-
intrinsic curvature led in certain cases t®@.k) that could  ments.
only be fit by a sum of two (or more) Gaussians. They noted
that this bimodal behavior occurs especially when the in-2_ THEORY
trinsic shape of the DNA is S-like. They concluded from
these findings that the addition of intrinsic curvature canSection 2.1 presents the basic assumptions of rod mechan-
induce a second nicked minimum not found in the intrinsi-ics, and Section 2.2 describes our procedure for incorporat-
cally straight case. ing DNA parameters into this continuum model. Section 2.3
Of course, Metropolis Monte Carlo simulations do not describes the static equilibrium configurations of an elastic
directly compute equilibria, but rather sample an assumeding for an intrinsically straight isotropic rod. Then in Sec-
equilibrium distribution of shapes about one or more localtion 2.4 we present the central result to be applied in this
minima. Thus the presence of multiple minima can only bepaper: a perturbation computation that determines the num-
detected indirectly by Monte Carlo methods and then perber of ring equilibria that result when an infinitesimal in-
haps computed via the addition of simulated annealing. Ifrinsic curvature is added to the model. Finally, in Section
contrast, we will show that a direct analysis of the equilib-2.5, we discuss what this infinitesimal result implies for the
rium equations yields a computationally simple test for thetypical curvatures appearing in real DNA.
presence of multiple minima. This test is in good agreement
with the qute qulo findings_ of KV but is computationally 2.1. Elastic rod equilibria
much less intensive. Specifically, we show that the exis-
tence of multiple nicked minima arises from the perturba-We begin by summarizing the formulation presented by
tion of the family of degenerate equilibria that exists for theDichmann et al. (1996) of the special Cosserat theory (see,
symmetrical case of an intrinsically straight rod. The exis-€.9., Antman, 1995), commonly used in continuum mechan-
tence of multiple minima can be predicted via the evaluatiorics to model an inextensible and unshearable elastic rod. For
of certain simple integrals of intrinsic shape parameters tha¢ach value of arc length along the rod (0= s = 1), the
are computable from the basepair sequence in a few se€enter line is denoted hys), and the orientation of the rod
onds. Our predictions are in agreement with the distinctior£r0oss section is given by an orthonormal frame of directors
between C and S shapes proposed by KV, but they als@1(S), d(s), d3(s)). Under the assumptions of inextensibil-
provide a quantitative, more refined selection criterion inity and unshearability, the vectat; normal to the cross
other cases where the presence of multiple minima is lessection coincides with the unit tangent vector to the center-
intuitive. The new criterion accordingly offers a valuable line r’ (differentiation bys being denoted throughout by a
tool in guiding the selection of interesting sequences foPrime).
further investigation. Rod equilibria, by definition, are critical or stationary
In Section 2, we describe the continuum rod equilibriumpoints of a strain energf over a specified space of rod
equations, along with the perturbation expansion developegionfigurations, generally described via a set of constraints.
by Manning and Maddocks (1999) that is at the heart of oufFirst we describe the particular form that we will assume for
classification of multiple minima. In Section 3, we describe E and then present the constraints of interest for application
both the equilibrium and Monte Carlo computations used tdo DNA rings.
illustrate our results. In Sections 4.1-4.3, we present a study The strain energf is defined in terms of the straing(s):

of circular DNA minima (both nicked and cyclized) for Uy(dy, d,, ds) = —dlds

several thousand different DNA sequences of lengths 200 H T 2 Q)
and 900 bp that verifies the efficiency of the perturbation uyd;, d,, ds) = dids,

expansion as an indicator of multiple minima. Finally, in

Section 4.4, we investigate in detail the connections be- Us(dy, d;, dy) = dzds.

tween the equilibria computed within our static elastic|y the ahsence of external forces, we assume the rod has a
model and the equilibrium distribution simulated by the KV unique minimal-energy intrinsic shapél(s), az(s), 83(5)),

Metropolis Monte Carlo computations. We find strong cor-itn associated intrinsic straifig(s) = ui(ab d,, ds). Under

relations between the number, locations, and areas of peajge assumption of hyperelasticity, the straingletermine a
in the distributionP(LK) with the number, links, and ener- gt qin energy via a density functioh(uy, Uy, Us, S):

gies of the equilibria. Given the complexity of the strain-

energy surface on which the Monte Carlo simulation wan- 1
ders, it is perhaps surprising that a relatively simple and fast E= J W(uy(s), Ux(S), Us(S), S)ds. 2)
equilibrium computation can yield such good predictions of 0
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In this paper, we further assume the particular form point:

r(1 =r(0),
W(uy, Uy, U s)=}§K~(u~—|:|~)2 K,=K nere @)
1y Y2y U3, 2i:l i\ i) 1 21 d3(1) — dg(O)
ithouah th d d i d similarlv b In the case of cyclization, the ribbon is closed, and the
alt oug the procedures we escribe could simriarly b, edges of the ribbon are closed curves. We can thus
applied to other, more general strain-energy functions. In al

o efine an integer linking number (or simply linkk of the
computed examples, we takg = 0.8, a value near the two edges, which is a topological invariant of the ribbon.

bottom of the typically reported range for the ratio of twist The Ciugaeanu-White-Fuller theorem [Gajreanu,
1959, 1961; White, 1969; Fuller, 1971) (see Moffatt and
"Ricca (1992) for a discussion of the history of this theorem)

between rod model energies and cyclizatidactors (Man- states that the integéik can be written as

ning et al., 1996). However, all of our analytic consider-

ations (such as Eq. 9) hold for arbitrary valueskaf> 0, Lk = Tw+ Wr, (5)
and the numerical computations could readily be repeated
for any other value. where the twisfTw and writheWr are defined as

We first consider the constraints for a ring, as shown in
Fig. 1, which require that the rod center line be closed, the

1 1
Tw=-— f Us(s)ds,

tangent vectors match at the closure point, and a twist angle 27
a be imposed: 0
r1) =r(), 1 R —r(e)(r'(s) X 1r'(0)

ds(1) = dx(0),

Becausel'w andWr are well defined for nonclosed ribbons,
it is reasonable to generalize the notion L& to a real-
e valued quantity defined by Eq. 5. This generalization is
1) = —sin + . . . . :

do(1) = —sine dy(0) + cosx d(0) consistent with the Monte Carlo study in KV, to which we
If « is a multiple of 2r, then these conditions model will make comparisons. We will also use the fact, reported

cyclization. In contrast, and following KV, our physical PY KV, that the fractional parts dfk and ofe/2m are equal.
model of a nicked equilibrium is that the DNA double helix S€€ Hoffman et al. (manuscript in preparation) for a proof of
on either side of the nick site has a common tangent direciS result and further discussion. o
tion but is free to rotate about it. Thus for a nick sitesat By standard techniques in the calculus of variations,
1 we impose only the constraints that require the center lin&"itical points ofE are found by solving a system of first-

to be closed and the tangent vectors to match at the closuf§der ordinary differential equations (ODEs); see Section
3.3 for a precise description of these equations. Throughout

this article, a ring equilibrium denotes a rod configuration
satisfying these ODEs, subject to the twisted ring boundary
d. (0) conditions in Eq. 3. A cyclized equilibrium is a ring equi-

! librium wherea is a multiple of 2, i.e., Lk is an integer.
For nicked molecules the absence of the twist anglethe
imposed conditions in Eq. 4 leads to a “natural boundary
condition” (Gelfand and Fomin, 1963, p. 26) that must be
satisfied by any equilibrium. The specific form of this
natural boundary condition iBy(1) = 0, wheremy(s) =
K3us(9) is the twist moment about the tangent vealgfs).
Thus a nicked equilibrium is any ring equilibrium that also
satisfiesmy(1) = O.

Because the approach taken here is to solve equilibrium
equations rather than numerically minimifg the ring
equilibria that we find may be (unstable) saddle points of
FIGURE 1 Ring boundary conditions. The center lirfg) is depicted as the strain energy in addition to the (stable) local minima of

a tube and is constrained to form a smooth ring. The direGlef is depicted ~ Primary interest. Minima and saddle points can be distin-
as a ribbon, and a twist angteis imposed betweed,(0) andd,(1). guished by the computation of a certain instability index

d1(1) = cosx dy(0) + sina d,(0),

d,(0)=d,(1)
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that gives the number of negative eigenvalues of an apprdength scale of interest in the problem. We therefore wvary
priate second derivative (roughly, the number of indepenaccording to the number of basepditsWhenN = 200, we
dent downward directions of the energy surface); in particchoosew = 20, the value used by Manning et al. (1996) for
ular, local minima have index zero, while equilibria with a study of 150—160-bp DNA. WheN = 900, we choose
positive index can be anticipated to be unstable. The indew = 50, because in that case, we are interested in curvature
can be determined by a straightforward computation basedn the order of several tens of basepairs.
on the conjugate point test described by Manning et al. Having determined the intrinsic center lifgwe find the
(1998). directords via the inextensibility-unshearability assumption
The solutions of primary interest in this paper are stablel, = '. It is then straightforward to generate a continuum
cyclized equilibria and stable nicked equilibria, which we (d,, d.), using the intrinsic twist of the wedge-angle model.
refer to as cyclized minima and nicked minima. We havePhysically, d,(s) will track the orientation of the major
seen above that a nicked equilibrium is a ring equilibriumgroove in the DNA intrinsic shape. Similarlyg,(s) tracks
for some value ofx at whichm,(1) = 0. It is easy to show, the major groove in any deformed shape. Thus we will call
furthermore, that a nicked minimum must satisfy two addi-(d,, d,, d;) the DNA-framing of the rod.
tional conditions. It must be a stable ring equilibrium at Unfortunately, the high twist in the DNA frame induces
fixed link, i.e., @ minimum among nearby configurations rapid variations irl;(s) and(,(s), hindering the coarse (but
with the same value af, and its energy must also be a local highly accurate) numerical rod discretizations that are one
minimum among ring equilibria at neartk (because iE  goal of the continuum model. This difficulty can be over-
were not a local minimum, the rod could lower its energy bycome by reexpressing the equilibrium equations in terms of
rotating d,(1) aboutd;(1) and hence would not be at a a new natural framing of the rod that we denote By(6),
nicked minimum). D,(s), D4(s) = d4(9)). A crucial fact is that given an equi-
librium shape D,(s), D,(s), d5(9)) for the naturally framed
rod, an equilibrium shapel{(s), d,(s), d;(s)) of the DNA-
2.2, Applying the continuum rod model to DNA framed rod is recovered by rotatin@{(s), D,(s)) about
)d3(s) through an angleQ)(s) (Manning and Maddocks,
1999), as shown in Fig. 2. Both the DNA and natural
gramings depend on the configuration of the rod, but the
angle Q) between the two framings is independent of the

We summarize the procedure from Manning et al. (1996
for determining values of the continuum paramet€rand
0;(s) appropriate for our DNA sequences. For the stiffnesse

Ki, tak ) ) ) ,
n W taKe configuration; the angl€ is defined once and for all by the
PRT following procedure. Given the DNA framel{(s), d;(s),
Ki=Ko=gp Ke=08,, ds(s)) of the intrinsic shape, define the intrinsic natural

frame O,(s), D,(s)) by the conditions

whereT is the temperaturéR = 8.314 J/mol-KelvinP ~
500 A is the persistence length~ 3.4 A is the helix rise D,(0) = d,(0),
per basepair, andN is the number of basepairs (which
appears here because the continuum rod has nondimension-  y,(D,(s), D4(s), ds(s)) =0, Vse& (0, 1).
alized length one). We note that at the basepair level, DNA
almost certainly has a preferential direction for bending, i.e.(Note thatu;(D,(s), D.(S), D4(9)) is not in general zero for
K, # K,, but that this local anisotropy is effectively aver- deformed shapes, so that the natural framing is only known
aged by the rapid DNA intrinsic twist to yield an effective to have zero twist for the intrinsic shape.) Then {¥fs)
isotropic rod over the length scales of concern here (hencéenote the angle betweer(s) andD,(s). (It is important to
the widely used assumptidfy = K,; cf. Kehrbaum, 1997). ensure that)(s) is an increasing continuous function, by

The centerlinef of the continuum intrinsic shape is choosingQ(s) € [2nm, 2(n + 1)7) if d,(¢) has undergone
derived by smoothing a piecewise linear center line conn full rotations with respect t®,(o) for 0 = ¢ = s.) We
structed from a basepair-level wedge-angle model (see, e.emphasize that no approximation is involved in the use of
Bolshoy et al., 1991). First, a tapered averaging filter ofthe natural framing for computations. The equilibria of the
width w basepairs is applied to the wedge-angle center linenaturally framed rod with the twist functiofl(s) added
and then the filtered center line is fit via least squares to dack in are exactly the same as the equilibria of the DNA-
piecewise polynomial with continuous third derivative framed rod; the natural frame is merely a computational
throughout the rod. (See Manning et al. (1996) for furtherconvenience that makes the coefficients of the equilibrium
details on the smoothing algorithm, including padding ofequations much more slowly varying. Similarly, there is no
the center line to minimize end effects of the averaging filterassumption about local twist variation implied by the use of
and the use of a double filtration to reduce the tendency othe natural frame. Any basepair-to-basepair twist variation
an averaging filter to straighten out intrinsic curvature.) Theis encapsulated in the functidid(s) and thus is fully ac-
choice of w corresponds to a modeling decision of the counted for by the continuum computations.

Biophysical Journal 79(1) 116-136
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DNA framing
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Some discussion of notation is in ord&v is the appro-
priate continuum version of the quantities “relaxed twist” or
“relaxed link,” denotedTw, or Lk, in the literature (Bates
and Maxwell, 1993). There seems to be no standard defi-
nition for Tw, or Lk,, however; e.g., they have been used to
denote the center of a Gaussian fit to the topoisomer distri-
bution, or the ratio of humber of basepairs to the average
number of basepairs per full turn. The absence of an exact
definition for Twy, or Lk, may be no accident; this article
demonstrates that for some sequences there are multiple
nicked minima, so that there may not be a unique “relaxed”
ring.

In the literature, one often uses the symhaék to denote
Lk — Lk, i.e., the difference of a given link from its relaxed

value. ThusLk, = Lk — Tw is the exact analog of this
concept for the continuum rod, so we shall henceforth write
ALk instead ofLk,, so that Eq. 6 can be rewritten as

Lk = ALK + Tw. 8)

Most of our results in Section 4 refer to the true DNA link
Lk, but elements of our computations and theory are ex-
pressed in terms of the natural frame liakk. We caution
that ourALKk is not generally an integer for cyclized con-
figurations, as this notation sometimes implies. Instead, we
will call a cyclized configuration a @epoisomerif its ALk

is such that.k is the nearest integer fow, a +1-topoisomer
if its link is one more than the nearest integeriw, etc.

2.3. The perfect diagram

The principal goal of this article is to understand the mul-
tiplicities of ring equilibria in the transition from an ideal-
ized symmetrical case that we call therfect problen{(; =

0) to variousimperfect problemgd,, 0, # 0). The reason
for studying the perfect problem is that its solution set acts
as an organizing center for the solution set of more realistic

FIGURE 2 Natural and DNA framings of a ring equilibrium. The two problems with nonzero intrinsic curvature. Physically, the
framings are related through the known DNA-frame intrinsic twist (see perfect problem involves a uniform isotropic rod that is
text). Note that a cyclized DNA frame as shown here will not in generalimrinsica”y straight, while the imperfections considered

correspond to a cyclized natural frame.

Settings = 1 in the definition of()(s), the twist anglex
for a DNA-framed ring is related to the twist angig for
the corresponding naturally framed ring by= «,, + Q(1).
Furthermore, by Eq. 5, the linkk of any DNA-framed
configuration is related to the linkk, of the corresponding
naturally framed configuration by

Lk = Lk, + Tw, (6)
whereTw is the twist of the intrinsic DNA frame:

21T 2
0

__ 1 f T Q1)
Tw= 5= | Us(dy(9),dy(8),ds(8))ds=——. (7)
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here involve the introduction of intrinsic curvature. Because
all computations involve the naturally framed rod, we need
only consider zero intrinsic twistl; = 0. Arbitrary intrinsic

twist parameters, whether constant or sequence dependent,
are accounted for via the andl¥s) relating the natural and
DNA framings of the rod, as described in Section 2.2.

The perfect problem has been studied by several authors
(see, e.g., Schlick, 1995; Olson, 1996; Kehrbaum and Mad-
docks, 1997) for a discussion of the literature. Here we
follow the notation and formulation that are described in
detail by Dichmann et al. (1996).

2.3.1. The set of perfect equilibria

Fig. 3 shows a portion of the set of ring equilibria for the
perfect problem, with the enerdy plotted as a function of
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FIGURE 4 Portion of the bifurcation diagram for an imperfect rod.

Stability is indicated as in Fig. 3. Approximate images of poilyt8, C,

andD are marked. Each circle label@dor C represents two images of the

respective point in the perfect diagram. The stable trivial bra®@8 from

' Fig. 3 yields two branches in the imperfect diagram, one stable and one
unstable.

FIGURE 3 Portion of the bifurcation diagram for the perfect problem for
K; = 0.8K;. As the link ALk is varied, the energf and link ALk of the
ring equilibria are plotted; ——, stable equilibria (local minima); — ——
unstable equilibria.

the link ALk. There are many branches of higher-energy

equilibria not shown, but they are not of concern here. ThisHowever, because foKy/K; = 0.8 all solutions on this

perfect bifurcation diagram is described in detail by Li andnontrivial branch are unstable, we will not have need in this

Maddocks (1999). The trivial branch containing poiAf$,  paper to consider the nature of the splitting of the nontrivial

and C corresponds to configurations with circular centerpranch (although the images after perturbation of the non-

lines and constant twist rates. Connected to the triviatrivial branch will certainly appear in all computed diagrams

branch is a nontrivial brancADC corresponding to ring  shown). Our focus will be to determine the fate of the circle

equilibria with nonplanar center lines, with a planar figure of degenerate solutions when intrinsic curvature is added.

eight embedded dD. Note that the link jumps by two at

points of self-intersection such 8si.e., the whole segment

between the two points markdd actually represents the 2.4. Perturbation of the trivial branch

Is_ar_ne flgure—e!g_ht SOIUt'O.n‘ Solid Ime_s denote stable equS described in the previous section, whgr= 0, the rod

ibria (local minima), while dashed lines denote unstable’ ™ = =" " : !

equilibria. eq_umbnu_m condm_ons at any flxe_dSLk have a C|_rcle of
twisted-circle solutions, parameterized by the regigté&or

0, # 0, this circle of solutions typically breaks up into only

2.3.2. The register symmetry a finite set of solutions. For infinitesimal intrinsic curva-

. . tures, i.e., intrinsic curvatures of the foref, with e suffi-
Because of material symmetries of the perfect rod, every

: . . . o ciently small, we can draw some general conclusions about
point on the perfect diagram is not a single equilibrium, but : : .
instead represents an entire manifold of ring equilibria aIIthe symmetry-breaking from the perturbation expansion de-

'~ scribed by Manning and Maddocks (1999). Of course, we

with the same energy. The equilibria on this manifold areare ultimately interested in the case= 1 (see Section 2.5).

related by the action of a symmetry transformation that we It has been proved (Manning and Maddocks, 1999) that

will call rotational register, or simply register, following P T
. . . : for infinitesimal intrinsic curvatures, whenever one of the
Sanghani et al. (1996). This register symmetry involves

keeping the center line fixed, but spinning the framingtWO integrals

(d4(9), dy(9)) through a constant angleabout the tangent 1

dy(s). In the language of DNA, the register determines 1,(ALK) = | [Oy(9)sin2mALKS) + Uy(S)cog2mALKS |ds,
whether the major groove at a particular basepair of a DNA o

ring faces the center of the ring or away from the center or

is somewhere in between. See Manning and Maddocks 9)
(1999) for further discussion of this symmetry. Using this 1
register transformation, we find that every point on the |,(ALk) = J [Uy(s)cog2ALKS) — Uy(S)sin(2ALks)]ds,
trivial branchABC actually represents a circle of ring equi- 0

libria. Similarly, the register transformation plus a second

transformation based on translation in arclength imply thais nonzero, then the circle of trivial solutions at lidd k
each point on the nontrivial branch of Fig. 3 represents awill yield exactly two solutions; see Section 4.3 for one
torus of ring equilibria (Manning and Maddocks, 1999). geometric interpretation of the integrdls I,.

Biophysical Journal 79(1) 116-136
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FIGURE 5 A finite-dimensional example of a functian= r*/4 — r?/2 FIGURE 6 The surface from Fig. 5 with a small linear perturbattir®
(r = V*% + y?) with a circle of local minimax® + y> = 1 (drawn with a  added. The circle of critical points breaks up to yield just two critical points
thick ling). (marked bydotg, one a local minimum and one a saddle point.

Of these two equilibria, only one is expected to be stableperturbations to the surface of revolution so that the per-
as shown in Fig. 4. Proving this assertion about stabilityturbed surface has more than two critical points, or more
involves computations beyond the perturbation expansiothan one local minimum; such special perturbations are
presented here but can be made plausible by a finite-dimergxactly analogous to intrinsic shapes for whigfALK) =
sional example. Consider a surface of revolution as showhy(ALK) = 0.
in Fig. 5, containing a circular “valley” of local minima
(analogous to the_ circle of s_olut|ons eX|st|ng_ at each pomb_sl Implications of perturbation results for
on the stable trivial branch in the perfect diagram). Each

. o S . . curved DNA
critical point is a local minimum but contains a single flat
direction along the circle of critical points. When we add aThe perturbation expansion from Section 2.4 predicts that
small perturbation to the surface of revolution as in Fig. 6for infinitesimal curvaturesQ;, if there are to be two or
(analogous to adding intrinsic curvature to the perfect probmore stable ring equilibria of linkALKk, we must have
lem), the circle of critical points is perturbed to only two I,(ALK) = I,(ALK) = 0. By the nature of perturbation
critical points in the tilted surface, one local minimum and expansions, this result is only directly applicable to suffi-
one saddle point. Of course, we can engineer infinitesimatiently small e. However, for small to moderate, the

Biophysical Journal 79(1) 116-136
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perturbation results should still correlate with the observed We chose to parameterize the sp&@3) of directors
behavior. Thus, for realistic DNA curvatures we can con-(d,, d,, dg), using Euler parameters (or quaternionsiE
jecture that the existence of multiple stable ring equilibria isR*:
well correlated with|l,|, |I,] being small. We verify this

I, lz| being VIS @) dta) dia))

conjecture in Sections 4.1 and 4.2.
G- G-+ 200 — 200 2010 + 2004
= 2040 + 2050 —QF + 05— G5+ O 20,05 — 20404

3. METHODS 20005 — 2000 2005+ 20hG  —CF — G5+ G5+ G

3.1. Random sequences In this case, the equilibrium equations can be cast in the
Random DNA sequences, 5017 of 200 bp and 2176 of gobtamiltonian form (see, e.g., Dichmann et al., 1996):

bp, were generated using the random number generator oH

ranl (Press et al., 1992), with equal probability of A, C, G, r’= an = ds(q),

or T at each base. Data collection was stopped at the above (20)

sample sizes as sufficient numbers of examples exhibiting

multiple minima occurred to give qualitatively stable statistics. oH _1

3
q = @ =5 i:El u(m, 9)Biq,

3.2. Intrinsic shape parameters oH

n=-—=0,
For each sequence, a preliminary piecewise-linear intrinsic
shape was determined using a standard wedge-angle model. 5 .
We confined our study to dinucleotide wedge angles based r— ﬂ _ } S u(p, QB — 87d3 n
on those presented by Bolshoy et al. (1991), but our com- K oq 27 I Q)5 aq
putations could easily be repeated for any other set of wedge
angles or other basepair level models for intrinsic shapewhere
Our first angle set (AS1) uses the intrinsic tilts and rolls B
derived by Bolshoy et al. (1991), while our second angle set u(p, q) = el + r 5 ,
(AS2) scales these tilts and rolls by 0.61, thereby producing 2K;
less intrinsic curvature (and increasing the static persistence 0 0
length (Trifonov et al., 1987) by 1/(0.61jrom 168 to 467 0o 0
nm). This scaling, inspired by Kahn and Crothers (1992), is B.=| o -1
used here to demonstrate the effects of smaller intrinsic 1 0
curvature on the quality of predictions based on the pertur-
bation expansion. In contrast to the sequence-dependent
intrinsic twists found in Bolshoy et al. (1991), our angle sets
AS1 and AS2 use a common intrinsic twist of 34.45°/bp for B2 =
all dinucleotide steps. This change is purely a matter of
convenience for the statistical survey of many molecules in

Section 4.2, so that the total intrinsic twisw will be : [(W'Big)? G(n'BQ)

, . _ nBq i Biq T
approximately constant across the molecules in the sample. H= 8K, t— + n'ds(q),
However, the general theory presented here allows basepair- i=1

dependent intrinsic twists if desired. Each preliminarysng the variables € R3 and u € R* are the conjugate

wedge-angle intrinsic shape was smoothed via the procgyariaples tar andq. The ring boundary conditions from Eq.
dure summarized in Section 2.2 to yield continuum intrinsics t5xe the form

shape parametetg(s) and the auxiliary functiorf)(s).

T

(11)

OO Rr o

0O -1 0 0
0 0 1 -1
0 O

-1 0

OoOr oo

o

vs]

w

I

o
leNeNeN

[eNeNe)
Orr OO

0 0

|
H

r(0=¢0,0,0, r(1)=<0,0,0,
3.3. Equilibrium equations th(0) = ax(0) = gs(0) = 0, (12)

For completeness we here present the specific equations we d(1) = (0, 0, =sin(e/2), —coga/2)), u4(0) = 0.
solved numerically in our determination of ring equilibria,

namely differential equations (Eg. 10) subject to the ring S .

boundary conditions in Eq. 12. However, a detailed under—3'4' Equilibrium computations
standing of the particular form of these equations is notHere we describe our procedure for solving the ring equi-
necessary to understand the results presented later. librium equations from Section 3.3, using the software
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package AUTO (Doedel et al., 1991), and for locating Finally, the particular solutions in the imperfect diagram
nicked and cyclized minima from among these ringthat correspond to nicked and cyclized minima are located
equilibria. numerically. Cyclized minima (wherek is an integer) are
The boundary value problem (BVP) defined by Egs. 10easily detected by searching the stable branches in the
and 12 has two parameters: the twist anglés the main  diagram for points where = «,, + (}(1) crosses a multiple
physical parameter of interest, and the parameteiEq. 11  of 27r. Nicked minima (which correspond to local minima of
is the symmetry-breaking parameter discussed in Sectiorfs along a stable branch of the diagram) are slightly harder
2.4 and 2.5. This BVP was solved via parameter continuat0 locate because a section of the diagram wkseenearly
tion, using the software package AUTO. We choose Alat (inflection points or local maxima) may be mistaken for
closed-form solutiorz®(s) = (r%(s), q°(s), n°%(s), n°(s)) on @ local minimum because of small numerical errors (e.g., in
the stable trivial branch of the perfeet € 0) problem (see the fourth or fifth decimal place) due to the tolerances set in
Fig. 3), say at linkALk* (with corresponding angle’). We the AUTO computation. To avoid such problem points, we
then derive an approximate solutiaf(s) + ezX(s) to the 100K .for quintuplets of adjacent splutions so that aI_I fivg
BVP for e = 0.01, using the perturbation expansion de-Solutions are stable, the changes in energy along this quin-
scribed by Manning and Maddocks (1999). This functiontuplet are down-down-up-up, and the twist momem(1)
2%(s) + ez'(s) serves as the initial approximate solution for (computed from the unknowrg) crosses zero between the

the numerical parameter continuation computations carrieflt @nd fifth points (see Section 2.1). o
out in AUTO. For a given sequence, the computation of the intrinsic

Using AUTO, we first compute solutions to the BVP shape and the gssociated integigls, requir.es less than a
through continuation i from 0.01 to 1, holdingy, = «f, minute on a smgk_a Spf"“c” CPU'. The. time required to
fixed. Then, holding = 1 fixed, we switch to continuation compute_ a bifurcation diagram varies with the complexity

of the diagram. In roughly half of the cases, the stable

in o, to compute a branch in the imperfect diagram. In thissoI tions lie on a simole closed loob that can be computed
first step ofa-continuationg, is required to increase, but as utl € 'mp P . pu
. - . in ~5-10 minutes. For more complicated diagrams, espe-

the branch progresses it may change direction. Computation ; o L
quaIIy when stopping condition 2) or 3) is invoked, runs can

Is s.toppe(.jlwh.en 1) the_branch closes up on itself, 2) a pOiIﬁ{ake as long as 30—45 min. This CPU time is not strongly
of instability index 4 is reached, or 3) the number of dependent on the number of basepairs, as opposed to the

computed points reaches a user-defined maximum. If e'th%{‘/lonte Carlo simulations described below. Once the bifur-

2) or t3 ) O(E.C ursk; the hprgutadure retumns to the dstart of th%ation diagram has been computed, it takes a few seconds to
a-continuation branch, but recommences withdecreas- extract the nicked and cyclized minima.

ing, with the same stopping conditions (1-3). In this way,
we can be confident of finding all stable BVP solutions
*

lying on the same component as the = af, € = 1
solution. 3.5. Monte Carlo simulations

In ~90% of all of the molecules considered, the ab_oveTO provide a basis for comparison, we used the Metropolis
procedure appears to compute all stable BVP solutionsy,nte carlo procedure described by KV, without modifi-
However, there are exceptional intrinsic shapes for which,aiion of their source code. See Katritch and Vologodskii
stable solutions exist on two or more distinct components ir‘(1997) for details of this procedure. Their program is de-
the imperfect diagram, and the above procedure will onlygigneq to simulate the thermodynamic equilibrium distribu-
compute one of these components. To remedy this diffiyion for nicked conformations of intrinsically curved DNA,
culty, we repeat the above procedure for several values ofhq as a result we have confined our comparison with
ALk*. In each case, at the end of tkecontinuation, we equilibrium computations to the nicked case.
check if the solution already exists on a previously com- |ntrinsic curvature parameters were determined using the
puted branch of the imperfect diagram, and if not, weginucleotide angle sets AS1 and AS2 (see Section 3.2). The
compute a new branch usirgcontinuation and append it Kyhn statistical length was set to 100 nm, corresponding to
to the previous one. By the nature of parameter continuatiog bending rigidity constam = 2.0 X 10~*° erg-cm, and
computations, one is never guaranteed to have found ajhe torsional rigidity constant was set@®= 1.6 X 10 *°
BVP solutions, but by this multiple-starting-point proce- erg-cm to allow direct comparison to our equilibrium com-
dure, we maximize our chances of locating all stable soluputations aK,/K, = C/A = 0.8. The DNA effective diam-
tions of the BVP problem. eter was set to 2 nm, although self-contact does not appear

For each solution on the imperfect diagram, various into play a significant role in the effects investigated here
tegrals of interest such as writhe, twist, and energy ar¢because we are looking at relatively relaxed, nicked con-
computed numerically. In addition, the instability index is formations of short DNA rings). We chose linear segments
determined by solving a 54-dimensional initial value prob-of 10 bp each, so that there were 20 total segments for the
lem of ODEs (cf. Manning et al., 1998). 200-bp simulations and 90 total segments for the 900-bp
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simulations. The temperature was set to 293.15 K for all
runs.

The segmented chain is subject to three types of moves.
The simulation was sampled every 100th move, the writhe
and twist of the new conformation were calculated, and
from them the linking numbeltk was computed using the
definition Lk = Tw + Wr.

Each simulation involved 50< 10° steps, a number
apparently sufficient for the peak positions and areas of
P(LK) to equilibrate. A single 20-segment (200-bp) simula-
tion on a single Sparc processor require200 min, and a
single 90-segment simulatior70 h (in this Monte Carlo
implementation, the CPU time scales as the square of the
number of segments).

We used the Matlab (MathWorks, Natick, MA) 10 . . . .
leastsq function to fit P(Lk) with one or more Gaussians, 18 19 20 21
the centers and areas of which (measured by integration) Lk
were computed for comparison with continuum results, and
the functioncorrcoef  to evaluate correlation coefficients
reported in Sections 4.4.2 and 4.4.3. 7ot

4. RESULTS

4.1. Bifurcation diagrams exhibiting
multiple minima

E/K, o
19

The prevailing belief is that only one nicked minimum will
arise for any DNA minicircle. However, as emphasized by
KV, this belief is biased by the fact that most early studies 30f
treated the perfect problem, i.e., the case of an intrinsically
straight rod. In fact, the story is more complicated for rods
with intrinsic curvature.

10 20 21

18 19
4.1.1. The origin of multiple minima Lk

For an intrinsically straight rod, the bifurcation diagram for o , _ _

DNA equilibria is simplv the perfect diagram in Fia. 3 FIGURE 7 Qualitatively simple imperfect diagrams for a 200-bp DNA
) a ) ply P i ) g g molecule modeled by angle sets AS1 and AS2. The perfect diagram (in

shifted horizontally by the constamtv (which converts the  thinner lineg is superimposed. Stability is indicated as in Fig. 3. Nicked

natural-frame linkALk to the DNA-frame linkLK). Recall ~ minima (for the imperfect problem) are denoted by black triangles, and

from Section 2.3.2 that each point on this diagram repreg:ycllzed minima by gray circles. As in the perfect diagram, for this

t infinite family of t lated ilibri ith molecule there is a single nicked minimum, and at most one cyclized
sents an infinite family of symmetry-related equilibria with a0 ven o ink
the same energy, the same center line, but different regis-

ters. Thus, in the perfect problem, and modulo this register

symmetry, there is indeed exactly one nicked minimum (theviany of the diagrams we computed are more complicated
image after horizontal shift of poi8 in Fig. 3). Similarly,  than these figures, but the general pattern of introduction of
there is a single cyclized minimum for each integ&rthat  myitiple minima via branch kinking is persistent across the
falls between the links of points andC (after shift byTw), range of computed examples.
and no cyclized minima of other links (in the absence of In Fig. 7, the diagram retains the qualitative shape of the
self-contact). loop ABCD from the perfect diagram, although there are
However, when we add intrinsic curvature, which breakssome clear changes introduced by the intrinsic curvature
the register symmetry, the resulting imperfect diagram neede.g., energies are shifted downward, the range of links
not look as simple as the shifted perfect diagram, as showoovered by the stable solutions is slightly reduced). Indeed,
in Figs. 7-9. The three molecules used in these figures wertnere is once again a single nicked minimum (marked by a
chosen to illustrate most clearly the way in which multiple black trianglg and at most one cyclized minimum at each
minima can manifest themselves in bifurcation diagramsinteger link (marked bygray circleg. Quite naturally, the
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Lk

FIGURE 8 Imperfect diagrams showing a double well near the nickedFIGURE 9 Imperfect diagrams showing a kink near link 18. The intrin-
minimum of the perfect problem. The intrinsic shape is for a 200-bp DNA sic shape is for a 200-bp DNA modeled by angle sets AS1 and AS2. The
modeled by angle sets AS1 and AS2. The perfect diagram is superimposeperfect diagram is superimposed, stability is indicated as in Fig. 3, and
stability is indicated as in Fig. 3, and nicked and cyclized minima arenicked and cyclized minima are labeled as in Fig. 7. The kink introduces
labeled as in Fig. 7. For each angle set, the kink introduces a second nickedisecond cyclized minimum of link 18 for AS1, but with AS2 the kink is
minimum for the imperfect problem, although for AS2, the second nickedstraightened and only one link-18 cyclized minimum occurs.

minimum is on the verge of disappearing.

for AS1, two link-18 cyclized minima exist. Here the kink
is removed for AS2, but in other cases it can remain.
diagram for the smaller angle set AS2 resembles the perfect
diagram more closely than the diagram for AS1.

On the other hand, in Fig. 8, the intrinsic curvature
induces a kink near the bottom of the diagram, with theTo our knowledge, no experimental evidence for multiple
result that for both angle sets AS1 and AS2, there are twaoninima (either nicked or cyclized) has been reported. Might
nicked minima. The smaller angle set AS2 straightens outhis lack of evidence be due to the fact that the differences
this kink (pulling it closer to the perfect diagram), so that theamong these multiple minima are too small to be observed
second nicked minimum is on the verge of disappearing. experimentally? For instance, in gel migration experiments,

Similarly, in Fig. 9, we see an induced kink in the where the mobility of DNA minicircles has been observed
diagram in the neighborhood of link 18, with the result thatto correlate strongly with writhe, it seems reasonable to

4.1.2. Experimentally observable multiple minima
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conjecture that multiple equilibria would generate distinct A
bands only if their differences in writhe are sufficiently
large.

Motivated by this question, we pursued a statistical study
of the differences in writhe between multiple equilibria. In
particular, we selected from our 200-bp database all mole-
cules having either two nicked minima or two cyclized
minima of the same link (using the case of angle set AS1).
For each such molecule, we computed the difference in
writhes for its pair(s) of multiple minima. We fitted the
distributions of these differences to a Gaussian and found
the best fits to have (approximately) mean zero, with stan-
dard deviationo = 0.018 for nicked andr = 0.017 for
cyclized. Presumably these differences in writhe would be
too small for the multiple minima to be distinguished on a
gel.

However, when we repeated this procedure on our 900-bp
database, we found significantly larger writhe differences;
for pairs of nicked minimas = 0.152, and for pairs of
cyclized minimao = 0.138. In particular, we found several
examples of pairs of minima in 900-bp molecules with B
substantial differences in writhe (see Fig. 10). As a further
assessment of the possible differences in writhe, we remark
that among the five 900-bp molecules in Fig. 16, the writhes
of the 13 nicked minima lie betweer0.26 and 0.18; in
particular some center lines, especially for the extreme
values ofLk, are quite nonplanar.

It may be interesting to seek to detect such differences in
writhes in gel mobility experiments. However, because of
the long duration of the gel migration experiment (several
minutes), it is not clear that two distinct writhes will be
observed at all; rather, a single band corresponding to an ¢z
average mobility might arise. Other experimental tech-£ § ¢
niques could perhaps overcome this limitation: for instance
electron cryomicroscopy, with its flash-freezing protocol,
may allow one to immobilize configurations close to the
different minima (Dubochet et al., 1992), and therefore such . .

. o . 85 86 87
experimental methods offer the possibility of revealing the Lk
existence of the multiple minima predicted here.

EK,

Lk

30

E/K,

110

Wr=0.05,Tw=86.52
«—

€

FIGURE 10 Two 900-bp molecules, each exhibiting multiple minima
o . ) o with a significant difference in writhe. The right part of each figure shows
4.1.3. An efficient predictor of multiple minima an E versusLk bifurcation diagram, as in Figs. 7-9 (but with largek

L . . corresponding to 900 bp). To the left are the physical configurations
Larger intrinsic curvatures create imperfect diagrams fur—correspomding to the two minima (two cyclized minima with= 85 in A,

ther from the perfect diagram, which can therefore moreand two nicked minima if). The physical configurations are drawn with
easily exhibit multiple minima. Such curvature enhance-their naturally framed ribbons.
ment arises, for example, if one assumes larger angle sets
for the same sequence, as exhibited by Figs. 7-9. Alterna-
tively, larger curvatures arise when treating longer DNA formolecule has multiple minima is to directly compute the set
a fixed angle set, because the nondimensionalized locaf equilibria as in Figs. 7-9. However, armed with the
curvatures for the (length one) continuum rod are largerperturbation analysis of Section 2.4, we have a simple
These effects are illustrated by the statistical study prepredictor for the existence of multiple minima, namely the
sented in Section 4.2. smallness of the integrallg (ALK)| and|I,(ALK)|. If multiple

For a given molecular length and angle set, can wenicked minima are sought, then one should consider intrin-
predict which sequences are more likely to exhibit multiplesic shapes withl,(ALK)| and |I,(ALk)| small atALk = O,
minima? The only way to know for certain if a given because the nicked minimum of the perfect problem occurs
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at ALk = 0. For examplel,(0)* + 1,(0)? is smaller in Fig.  bp promotes the likelihood of finding multiple nicked min-
8 (top) than in Fig. 7 fop) (0.7 versus 1.7). On the other ima by nearly threefold, from 23% to 64%.
hand, by Eq. 8, multiple cyclized minima of lilkk should Fig. 12 shows the results from a statistical analysis of the

arise for sequences with small values|igfLk — ﬂ)| and correlation of multiple nicked minima with the size of
l,(Lk — ﬂV)|- For example],(18 — ﬁv)z +1,(18 — ﬁv)z (1,(0), 1,(0)) among sets of the same length and angle set.

is smaller in Fig. 91op) than in Fig. 7 fop) (0.8 versus 3.3). The distribution ofl,(0)* + 1,(0)* was first separated into
Our discussion of the “typical” connection between mul- deciles, so that the first decile contains the 10% of the

H 2 2
tiple minima, length of molecule, angle set, and smallness oftolecules with the lowest values f(0)” + 15(0)", the

(11, 1) has thus far been purely anecdotal but is reinforceo‘se,co,nd decile the 10% W't,h the next lowest .values,_ etc.
by the statistical study described in the next section Within each decile, the fraction of molecules with multiple

nicked minima was then determined. The absolute ranges of
1,(0* + 1,(0)? vary with the data set. The minimum, max-
4.2, Statistical study of multiple minima imum, and median were (0.0004,26.3,2.25) for 200-AS1,

) ) _ (0.002,7.8,0.79) for 200-AS2, and (0.007,110,10.8) for 900-
We generated bifurcation diagrams for 5017 random 200-b&51

sequences and 2176 random 900-bp sequences with they;s figyre demonstrates that the molecules most likely to

angle set AS1 and analyzed each one as described in Sectighinit myltiple nicked minima are those with the lowest
3.4. In addition, we then selected the first 1000 of thevalues ofl1(0)2 + |2(0)2' This correlation is better for

200-bp sequences for further computation with the angle Se}OO-bp DNA than for 900-bp DNA. There are at least two
AS2 (corresponding to smaller intrinsic curvature thang,qginle explanations for this. As remarked in Section 4.1,
AS1). the continuum intrinsic curvatures for 900-bp DNA are
generally larger than those for 200-bp DNA. For such large
perturbations, kinks in the bifurcation diagram emanating
from a wide range ofALk can create a second nicked
The distribution of numbers of nicked minima for these minimum, so that a perturbation expansionMtk = 0
three data sets is reported in Fig. 11. This figure demongannot capture all behaviors. Indeed, over 60% of all 900-bp
strates that the probability of finding multiple minima iS pNA exhibited two or more nicked minima. A second
increased by using larger wedge angles or by lengtheningossible explanation is that the perturbation expansion we
the DNA. For instance, angle set AS1 produces largehave used addresses transitions from the perfect diagram at
intrinsic curvatures than AS2, and accordingly, we see iffixed link, and as such is more directly related to predicting
Fig. 11 that multiple nicked minima occur twice as often multiple cyclized minima. It is possible that a perturbation
with AS1 as compared to AS2. Similarly, within a fixed expansion directly tailored to the nicked problem would
angle set AS1, the increase in DNA length from 200 to 90Gyjve a better correlation than that seen in Fig. 12. This

4.2.1. Nicked minima

—_

100

"W 200-AS2 (1000 mols) B 200-AS2

«©
£
00-AS1 (5017 mols) = 57 200-AS1
80f [ ] 900-AS1 (2176 mols) + £0.8 [ 900-AS1 ||
Ee]
é 60} %
8 - £0.6
8
S | N |
o £
£
20!
So0.2
()
[
0 oo g
4 0

9 10

5 7
1,(0)%+1,(0)? decile

number of nicked minima 8

FIGURE 11 The influence of intrinsic curvature on the likelihood of

multiple nicked minima. Larger effective intrinsic curvature within the

continuum model can be induced either by increasing the size of the wedgelGURE 12 Fraction of DNA with multiple nicked minima as a function
angles (200-AS2 to 200-AS1) or by increasing the DNA length (200-AS1of the deciles ofl,(0)> + 1,(0)* (see text). These curves support the
to 900-AS1). For each of the three angle sets, the percentage of moleculéypothesis that smaller values f0)> + 1,(0)* predict multiple nicked
exhibiting one, two, three, or four nicked minima is shown. minima.
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conjecture is supported by the results in the next sectiorinformation regarding the emergence of multiple minima,
showing that for cyclized minima, the predictidr+ 15is  but they do not lend themselves to an immediate geometric
highly accurate, even for 900-bp DNA. intuition. In this section, we present a heuristic discussion of
their relation to simple geometric properties.

Recall first that the continuum intrinsic shape was de-
rived by starting with a sequence Kfdirector framesd{,
Fig. 13 shows the correlation between the siz€of I2and  d®, d?), the relative orientations of which were determined
the appearance of multiple cyclizedl-topoisomer minima from basepair-dependent wedge-angle parameters. The re-
(link 20 for 200-bp DNA and link 87 for 900-bp DNA). The sulting intrinsic shape was then smoothed and the rapid
corresponding continuum links areLk = 20 — Tw and intrinsic twist removed to give a continuum intrinsic shape
87 — Tw. The correlations for other links are similar (data (P1(S): D2(S), Ds(s). We may now think of redls(grep(zi)lng
not shown). The absolute ranges IQEALK)? + 1,(ALK)? this continuum shape to givid director framesD?y’, DY,

vary with data set: the minimum, maximum, and medianD¥): at eachs = i/N for i =0,...,N - 1 These new
were (0.0003,34.4,2.23) for 200-AS1, (0.0003,8.5,0.83) foffames trace out a center line similar to that of thg original
200-AS2, and (0.005,111,10.1) for 900-AS1. frgmes, buF vynhput_ rap|_d local bending fluctuations and
Even for 900-bp DNA, the likelihood of finding multiple without rapid intrinsic twist. b AG AG N,
cyclized minima with linkLKk is highly coupled to the size of A(i\/+\/lr)|teAt(ti1fl)rotat|on betweerD(, DY, DY) and D% '
12 + 12 at ALk = Lk — Tw. For the smallest intrinsic D2~ D3 ™7) as a product of funqamqntal rotations by
L2 - . three Euler angles9f’, ¢, 10) aboutD{’, DY, andDY. In
curvatures Ik — Tw in particular angle set AS2 and 200 the smoothed shape, these three angles will be small, and
bp), the correlation is nearly perfect, with all 10 (of 1000) e may easily show that((i — 1)/N) ~ N6V andi((i —
molecules exhibiting multiple cyclized minima occurring in 1)/N) ~ N¢o®. Thus if we discretize the integralg0) and
the first decile. Indeed, the correlation for 200-AS2 is even| () as sums over thi new frames, we find
better than that shown in Fig. 13, with four of the 10

4.2.2. Cyclized minima

multiple cyclized minimum examples occurring in the first N N
12 + 12 percentile. 1,0) = X2 9, 1,(0) = X 69.
i=1 i=1
4.3. Geometric interpretation of I, I, If the intrinsic shape is roughly planar and not too bent,

N ) thenl,(0), 1,(0) are approximately equal to the Euler angles
The quantitied, andl, in Eq. 9 are global averages of the it respect td$, DY of the overall rotation between the
local intrinsic curvature§; andQ, that arise naturally from  fist and last basepairs. We then find that the end-to-end
an analysis of symmetry breaking in the continuum equi-cosine, i.e., the cosine of the angle between the initial and
librium equations. As such, these averages provide precisg,a) tangent vectors, is approximately equal to td8))
cos(,(0)), or to 1 — (1,(0)* + 1,(0))/2. Clearly, many
approximations are involved in this analysis, but neverthe-
less, a good correlation exists between—1 (1,(0)*> +

@
o)

8 200_AS? 1,(0)%)/2 and the end-to-end cosine over our entire database
05l ] 200-AS1 || of molecules (data not shown here).
: (1 900-ASt1 This connection is also seen if we look at the intrinsic

shapes of molecules with particularly high or low values of
1,(0)* + 1,(0) as in Fig. 14. The intrinsic shape of the 20
200-bp DNA with the largest values 6f(0)* + 1,(0)? (Fig.
14 A) are essentially C-shaped (with relatively small end-
to-end cosines), while the 20 with the smallest values (Fig.

o
»

Fraction with multiple +1-topo minima
o
w

0.2 14 B) appear to be more or less S-shaped (with end-to-end
cosines near 1). We have seen in Section 4.2 that small
0.1 ] values ofl,(0)*> + 1,(0)? promote the existence of multiple
ﬂ ﬂ H H 0 nicked minima, so Fig. 14A and B, reinforces the theme
0 2 5 6 7 8 é” 10 noted by KV that S-shaped DNA is more likely than C-
(A Lk)2+I2(A Lk)? decile shaped DNA to yield multiple nicked minima. The quantity

1,(0)* + 1,(0)? provides a more precise categorization of
, , _ , , this geometric classification and allows analysis of cases
FIGURE 13 Fraction of DNA with multiple cyclized+1-topoisomer

minima as a function of the deciles gfALK)? + 1,(ALK)? (see text). These fa"mg between the C and S eXtr_emeS' o
curves strongly support the hypothesis that smaller valudg(af k) + When we look at the more irregular 900-bp intrinsic
I,(ALK)? predict multiple cyclized minima. shapes in Fig. 142 andD, the S-versus-C distinction is less
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FIGURE 14 Projections of intrinsic shapes for molecules with the highest and lowest valug8)df+ 1,(0)°. A andB each show 20 200-bp DNA
(aligned according to their principal inertial moments); the molecules with (@ + 1,(0)? (A) are C-shaped, while those with smBl{0)? + 1,(0)?
(B) are closer to being S-shape@landD each contain 20 900-bp DNA (aligned according to the first tangent vector). The molecules with (8)ge-
1,(0)? (C) have global bends of at least 180°, while those with sméll)> + 1,(0)? (D) are globally straighter.

apt, but one can still see a clear qualitative differencefunction exp-E/RT) (suitably normalized). How much in-

between molecules with large (Fig. & and small (Fig. formation can a study of the set of energy minima give
14 D) values of,(0)* + 1,(0)% Large values correspond to about the thermodynamic equilibrium distribution of con-
highly bent DNA (with negative end-to-end cosines) andformations generated by MMC? For instance, how well can

small values to relatively straight DNA. one predict the number, positions, and relative intensities of
peaks in theLk distribution P(Lk) computed by MMC,
4.4. Metropolis Monte Carlo based purely on the number, links, and elastic energies of

the static energy nicked minima?
Stable ring equilibria are local minima of the elastic energy The data presented in Figs. 15 and 16 suggest, at least
Ein Eq. 2. The Metropolis Monte Carlo (MMC) simulations qualitatively, a clear connection. In Fig. 15, the rows rep-
of KV simulate an equilibrium distribution of a nearly resent four different molecules of 200 bp. In the left column,
equivalent energy function, i.e., they sample the configurawe plot theE versusLk projection of the bifurcation dia-
tion space of nicked rings with the probability density gram as in Section 4.1. In the right column, we show the

Biophysical Journal 79(1) 116-136



Multiple Equilibria of DNA Rings 131
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FIGURE 15 Comparison of bifurcation diagrams and Monte CR(lk) for four 200-bp DNA (angle set AS1). The energy in the bifurcation diagram
is shifted downward b¥,,;,, the energy of the global minimum. For molecéiea single nicked minimum yields a single Monte Carlo peak. If there are
two nicked minima, then, depending on the difference in their energiesl{gnthe Monte Carlo can either produce no second p&ka shoulder or
nascent second peak); or a well-separated second ped&X.(In the center column, the bifurcation diagram is “Boltzmann-transformed” (see text) to
facilitate comparison with Monte Carlo data.

MMC P(LK). To compare these two quantities, we insert inwould be expected to sample a wider range of configura-
the center column a plot we refer to as the Boltzmanrtions for the longer, effectively more flexible, molecules.
transform: at eachk, we compute the sum @& ¥R" over ~ However, even at 900 bp, the qualitative fit of the Boltz-
all stable equilibria (i.e., points on the solid curves in themann transform to the Monte Carlo results is good enough
bifurcation diagram) with that link, and then normalize soto suggest that our fast equilibrium computations can be
that the entire curve becomes a probability density functionused as an effective guide for the design of molecules that
A similar approach was recently followed by Swigon et al. can then be further studied with Monte Carlo simulations or
(1998). This transform, although it involves only a small actual experiments. For longer DNA molecules, we pre-
subset of the configuration space sampled by MMC, namelygume that entropic contributions would increasingly domi-
the local minima at prescribed, fits P(LK) for nicked rings  nate the influence of the equilibria on the Monte Carlo
remarkably well. In Fig. 16, we repeat this analysis for adistribution.
subset of five molecules of 900 bp, with similar results. The molecules in Figs. 15 and 16 were selected from our
The quality of the fit for 900 bp is worse than for 200 bp, database to illustrate the appearance of multiple peaks in
which is not surprising, because the Monte Carlo simulatiorP(Lk) when there are multiple nicked minima. Heuristically,
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FIGURE 16 Comparison of bifurcation diagrams and Monte CR(lK) for five 900-bp DNA (angle set AS1). As in Fig. 14, the number of peaks in
P(LK) is less than or equal to the number of nicked minima. Whereas molég8aedC show the same number of peaks as nicked minima (two and three,
respectively), the four nicked minima of moleculBsand E only give rise to three separated peak${irk).

the number of nicked minima equals the number of peaks iphenomenon arises between the number of minima and

P(LK) unless number of peaks in the Boltzmann transform.

The correlation between minima aR@Lk) is better quan-

1. TheLkvalues of two nicked minima lie too close to each tified in the statistics presented in Sections 4.4.1-4.4.3.
other (compared to the width of a typical peakF(Lk))  Because-10 h is required for each MMC simulation, it was
for the Monte Carlo computation to be able to resolveimpractical to test the correlation using all 8193 random
them (see, e.g., the two central equilibria in Fig.E)6  sequences for which we have computed equilibria, so we

2. The relative difference in elastic energy between twoinstead randomly selected small subsets (usually 25-50
nicked minima is so large that the higher energy nickedmolecules) for MMC simulation.
minimum has a negligible probability of occurring in the
Monte Carlo runs (see, e.g., Fig. By

Whenever either of these conditions holds, one may se4el'4'1' Number of peaks versus number of nicked minima

fewer peaks irP(Lk) than the number of local minima, as  Single nicked minimaAs a control, we selected at ran-

seen in Fig. 1B, although one may also see a peak with andom 25 200-bp sequences and 25 900-bp sequences for

attached “shoulder,” as in Fig. I& Exactly the same which the equilibrium approach predicted a single nicked

Biophysical Journal 79(1) 116-136



Multiple Equilibria of DNA Rings 133

minimum.P(LK) for these sequences exhibited a single peak A
without exception (as in Figs. 1& and 16A).
Double nicked minimapplying criteria 1 and 2 from the

previous section, we can screen large numbers of DNA to
identify muItipIe-minimasgquences that are likely to e>_<hibit _19.6 + | minimury § peak in PLL) ‘ -
two peaks or shoulders iR(LK). For example, applying CEJ A
only criterion (1), we selected the 10 molecules from the =19.4; »
data set 200-AS2 exhibiting the largest splité kwvalues of 2 .
two nicked minima and found that three of tRéLK) ex- 192 ot
hibited two separated peaks, while seven gave shoulders. £
Hence, with the benefit of this preliminary screening tech- § 197 C o
nique, we were able to find multiple nicked minima at lower 844 g/ 'y
intrinsic curvatures, or equivalently higher static persistence 2
lengths, than was feasible for KV using only MMC §18.6~
simulations. .
Triple and quadruple nicked minimmthough our dgta- 18-%.4 56 168 19 152 154 155 9.8
base of 200-bp sequences contains 24 cases with three Lk (equilibrium)

nicked minima (and one with four nicked minima), we
found none with more than two peaksR(Lk). However, in
our 900-bp database, we were able to find several examples

that do in fact yield triple-peakeB(LKk) (see Fig. 16C and B
D). The equilibrium computations also located 26 900-bp
molecules (of 2176) with four nicked minima. However, for 87.2
the reasons cited above, the number of peakB(irk) for . +  minimu; 1 peak in B(Li) ‘ .
these molecules is three at most (see, e.g., Fidg)16 %86_8_ .
3 iy
4.4.2. Lk correlation $86.4:
Do the Lk values of individual nicked minima match the < o fiEe T
peak positions in the correspondifgLk)? To investigate 2 86! . "
this question, we studied molecules with single nicked min- § * .
ima, as well as molecules with two nicked minima that also <
exhibit two peaks irP(Lk). Molecules exhibiting shoulders 856
were discarded because of the large uncertainty in their peak
positions. In Fig. 17, we compare the valuesL&ffor the 850" . ‘ . .
nicked minima with the centers of the Gaussians fit to the 852 856 86 86.4 868 87.

P(LK) peaks. The global correlation coefficients are 0.992 Lk (equilibrium)

(n = 55) and 0.962 r{ = 47) for 200 bp and 900 bp, , _ .
FIGURE 17 Correlation betweebk values of nicked minima versus

respegtlvely. . peak positions irP(LK) (as determined by Gaussian fits), for single- and
While the above correlations are good, there do appear tgypie-nicked equilibria of either 200 b)(or 900 bp B).

be some differences between thevalues of equilibria and

the correspondind®(LK) peak positions in Monte Carlo,

which merit further investigation. Some of these differencesA, of the Gaussians fit to the(Lk) peaks is approximately

could be due to various computational errors and differequal to expf(E, — E,)/RT). This conjecture is supported

ences in the underlying energy models, as discussed iby Fig. 18. The correlation coefficients are 0.95% 38)

Section 4.4.4. In addition, there is no reason for the Monteand 0.89 1 = 35) for 200 and 900 bp, respectively. The

Carlo peaks to occur exactly at the equilibria, as Montecorrelation is weaker for the 900-bp case, perhaps because

Carlo simulations produce averages over many configurationgxcursions from the nicked minima are more frequent and
distant.

4.4.3. Arealenergy correlation for double nicked minima

Consider a molecule with two nicked minima of energies4'4'4' Possible sources of error

E,, E,, for which P(LK) has two peaks (or one peak plus a Continuum computation€nce a sequence and angle set are
prominent shoulder). Based on the Boltzmann probabilitychosen, the main source of uncertainty in the continuum
densitye”¥RT we might hope that the ratio of the areéss ~ computations is the choice of the smoothing parameters in
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between equilibria and key Monte Carlo features would

6 | . 1 only be improved if these differences were removed. Fi-
: 8% BB nally, KV account for rod self-contact by assigning an
4 1 effective diameted to the DNA and disallowing interpen-
—_ Y etration during the simulation. However, this should not
<\:°‘ 2 ¢ o o . 1 have a significant effect on our comparisons, as we are
< N7 3 comparing nicked minima that are quite far from self-
= 0+ . +,'- CH ] contact; in fact, KV assert that their results are not affected
ot significantly by changingd over the range from 0 nm to
-2 . o2 1 8nm.
-4 .
-6t { 5. CONCLUSION
—‘6 ;4 _'2 o 2 4 6 Because experimental (discrete) topoisomer distributions
(Eo—E))/RT have not been observed to be bimodal, it has generally been

concluded that a DNA molecule has only one nicked (local)
FIGURE 18 Correlation between the difference in elastic energy of aMinimum of its energy. This conclusion was reinforced by
pair of nicked minima and the ratio of areas of the correspondiygeaks.  several numerical simulations of the (continuous) link equi-
The results support the conjecture tWatA; ~ exp(-(E, — E)/RT). librium distribution P(LK) for models of intrinsically

straight DNA. Recently, however, Katritch and Vologodskii

(1997) reported Monte Carlo simulations yielding bimodal

consk';ructindg a congnuum center Iiner.] Wre]:_b_s_elected 1% k) for DNA with sufficiently large intrinsic curvature
200-bp and 10 900-bp sequences, each exhibiting a uniqug, , computed multiple nicked minima with a simulated

nicked minimum, and calculated the average SD of the 1 nnealing technique. In this paper, we explain the phenom-

stgpdard dewaponst_ n tr:cethenergy f‘h’?d I|nl_< gf the_nlcke enon of multiple nicked minima. Essentially we reverse the

minimum as a function ot the Smoothing Window wi Katritch and Vologodskii (1997) procedure: we describe

(see Section 2.2). For 200 bp,wsanges from 10 to 50 bp, . . ; . . . .
ways first to identify sequences with multiple nicked min-

we find SD= 0.02 forLk and SD= 0.14 forE/K,. For 900 ima, second to compute these equilibria, and third to predict
bp, asw ranges from 20 to 80 bp, we find SB 0.04 forLk - o "o DA will exhibit multiple peake@(LK). In

and SD= 0.16 forE/K,. These uncertainties should have no . . - .
fact, we show that multiple nicked minima can arise even

significant effect on the results presented. o Lo . .
for arbitrarily small intrinsic curvatures, in particular, well

Monte Carlo simulationsFollowing KV, we analyzed bel h h he bh db
the effect on the Monte Carlo distributioR(LKk) of the eoyvt € range w ere“t € phenomenon was reported by
é(atntch and Vologodskii (1997).

choice of segment length. We simulated single-peake
P(LK) for 10 200-bp molecules with segment lengths of 5,
10, 20, and 25 bp per segment. The standard deviation of the
P(LK) peak positions (as determined by Gaussian fits) giveg,1, Multiple minima for DNA rings can be
an estimate of-0.04 for the 200-bjik position uncertainty  predicted from symmetry breaking
due to segmentation. This uncertainty is about twice as large . o o
for 900-bp Lk fitting and thus should have no significant The emergence of multiple minima for small intrinsic cur-
effect on the reportetlk correlations. vature is associated with the fact that an intrinsically straight
Differences between continuum and Monte Carlo enerPNA does not, in fact, have a single nicked minimum, but
gies.Our discretization of the continuum energy from Eq. 2 father a circle of minima related by the register symmetry.
and the energy function in the KV Monte Carlo code areWhen the register symmetry is broken by the addition of
close but not identical. KV use a piecewise linear apprOXi_intrinSiC curvature, this circle of degenerate minima can
mation to the DNA center line and assign a single twist toyield multiple isolated minima. Our perturbation analysis of
each linear segment, whereas the rod model uses a contiftis symmetry breaking provides a simple and accurate
uous center line and continuous twist function (discretizedoredictor for the presence of multiple nicked minima. This
in AUTO via a piecewise fifth-order polynomial). For the predictor refines the heuristic argument given by Katritch
segmentation lengths and discretizations chosen here, neind Vologodskii (1997) that S-shaped DNA are more likely
ther of these differences appears to be crucial, but a furthép yield multiple nicked minima than C-shaped DNA. Es-
study of the connection between Monte Carlo simulationssentially the same predictor can be applied to the case of
and equilibria could benefit from an exact matching of thecyclized DNA rings, so that we can identify DNA sequences
underlying energy models. One would expect that the fitexhibiting multiple cyclized minima of the same link.
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