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Stability Analysis of Micropipette Aspiration of Neutrophils
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ABSTRACT During micropipette aspiration, neutrophil leukocytes exhibit a liquid-drop behavior, i.e., if a neutrophil is
aspirated by a pressure larger than a certain threshold pressure, it flows continuously into the pipette. The point of the largest
aspiration pressure at which the neutrophil can still be held in a stable equilibrium is called the critical point of aspiration. Here,
we present a theoretical analysis of the equilibrium behavior and stability of a neutrophil during micropipette aspiration with
the aim to rigorously characterize the critical point. We take the energy minimization approach, in which the critical point is
well defined as the point of the stability breakdown. We use the basic liquid-drop model of neutrophil rheology extended by
considering also the neutrophil elastic area expansivity. Our analysis predicts that the behavior at large pipette radii or small
elastic area expansivity is close to the one predicted by the basic liquid-drop model, where the critical point is attained slightly
before the projection length reaches the pipette radius. The effect of elastic area expansivity is qualitatively different at smaller
pipette radii, where our analysis predicts that the critical point is attained at the projection lengths that may significantly
exceed the pipette radius.

INTRODUCTION

Micropipette aspiration is an important experimental Evans and Yeung (1989) recognized that the liquid-drop
method in the research of the rheology of resting neutrophiimodel alone could not explain all neutrophil features and
leukocytes. In this experiment, one studies the behavior of ¢hat the neutrophil could exhibit also some elastic behavior,
single neutrophil as it is controllably aspirated into a mi-as had been proposed in an earlier study by Schmid+gcho
cropipette narrower than its diameter. A commonly ob-bein et al. (1981). Many attempts were made to combine the
served behavior of neutrophils during the micropipette exdiquid and the elastic nature of neutrophils. Some of the
periment is the following (Evans and Kukan, 1984): In theextended models attributed elasticity to the whole neutro-
free state, a resting neutrophil is spherical. If a small aspiphil (Dong and Skalak, 1992), whereas others focused more
ration pressure is applied, the neutrophil projects into theon the elasticity of the membrane cortex. For example, the
pipette and attains an equilibrium. In contrast, if the appliedexistence of a nonconstant cortical tension was investigated
aspiration pressure is above a certain threshold, the s¢Needham and Hochmuth, 1992), and the importance of
called critical pressure, the neutrophil does not reach agortex bending rigidity was examined (Zhelev et al., 1994).
equilibrium but flows continuously into the pipette. Finally, However, it has not been shown that any of these refined
if the neutrophil is released from the pipette, it recovers itsnodels completely describes both the dynamic (i.e., the
initial spherical shape. continuous flow) and the static equilibrium behavior of
Evans and Kukan (1984) were the first to recognize thaneutrophils.

this behavior can be explained by a liquid-drop nature of The micropipette experiment has also been used in the
neutrophils. They introduced the now generally acceptedesearch of the possible underlying molecular mechanisms
liquid-drop model of neutrophil viscoelasticity, in which the that govern neutrophil mechanical properties. For example,
neutrophil is regarded as a Newtonian fluid drop with aresearch was carried out to establish the dependence of
constant surface tension. The neutrophil surface tension hautrophil mechanical rigidity on the polymerization rate of
been related to the neutrophil membrane cortex (Evans aniés actin filaments (Tsai et al., 1994) and microtubules (Tsai
Kukan, 1984), therefore it is usually denoted asdbeical €t al., 1998). Because these experiments rely on the quan-
tension A general discussion on the validity of the basic titative measurements of the neutrophil viscoelastic param-
liquid-drop model and a good basis for further research ofters, a good theoretical characterization of these parameters
dynamics of micropipette aspiration was given recently byis of great importance. One of the neutrophil viscoelastic
Drury and Dembo (1999). parameters, its cortical tension, is normally determined by
measuring the critical aspiration pressure. However, the
notion of the critical pressure in the literature is ambiguous.
It is usually based on the prediction of the basic liquid-drop
Add - © 0 M. Jure D nstitute of Bioohvs model and the approximation that the critical pressure is
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the equilibrium projection lengths longer than the pipetteto comprise around 37% of the total cell volume (Schmid-
radius are unstable and should not be observed. However, Bchmbein et al., 1980). Another important neutrophil struc-
fact, it seems that the stable equilibrium of the aspiratedure is the membrane cortex, which supports the outer
neutrophil could be observed even for projection lengthgplasma membrane. It is composed mainly of actin filaments
much larger than the pipette radius (Evans and Yeungneshwork and has an approximate thickness of 0.1gth2
1989; Zhelev and Hochmuth, 1994). Although such behav{Sheterline and Rickard, 1989; Zhelev et al., 1994).

ior cannot be explained within the basic liquid-drop model, The analysis in the present paper is based on the basic
it can be intuitively expected as a consequence of neutrophiiquid-drop model extended by including the neutrophil
elasticity. elastic area expansivity. The neutrophil is thus considered as

In this paper, we present a theoretical analysis of then incompressible homogeneous fluid with a cortical ten-
critical aspiration pressure behavior, based on the basision, which increases with the apparent neutrophil surface
liquid-drop model extended by also considering neutrophilarea dilation (Needham and Hochmuth, 1992). Within this
elasticity. Specifically, we are taking into account the non-model, the equilibrium behavior of an aspirated neutrophil
constant cortical tension as it was observed by Needhans governed exclusively by itgortical energy i.e., the
and Hochmuth (1992). Accordingly, the neutrophil is con-energy of its membrane-cortex complex. In a general case,
sidered as a liquid drop with an apparent elastic area exhis might be an oversimplification, but as long as the
pansivity modulus. We focus on the equilibrium behavior ofdeformations are not too large and the organelles do not
the aspirated neutrophil and its stability. In this way, thetouch the membrane, and because we are focusing only on
critical aspiration pressure can be identified as the aspiratiothe equilibrium states of aspiration, this assumption is jus-
pressure at which stability of the aspirated neutrophil breaksfied. In addition, during the normal course of micropipette
and the neutrophil starts to flow into the pipette. Conse-aspiration, the adhesion of resting neutrophils to the pipette
quently, the point of the stability breakdown, i.e., the critical glass is negligible (Evans and Kukan, 1984; Needham and
point of aspiration, can be well characterized and the corHochmuth, 1992) and can be, therefore, safely omitted from
responding values of the critical aspiration pressure and thihe analysis. Also, in our model, we do not consider the
critical projection length can be calculated. Our analysisbending rigidity of the cortex, which may become important
provides the predictions for the critical projection lengthin the case of aspiration into very narrow pipettes (Zhelev et
and the critical aspiration pressure and can therefore be usedl, 1994).
to better evaluate the measurements of the neutrophil cor- The exact microscopical origin of the cortical tension is
tical tension. In addition, the analysis can serve as a basisot known, however, evidences exist that it is related to the
for further measurements of the apparent neutrophil elastiactin flaments in the cortex (Tsai et al., 1994; Tsai et al.,
area expansivity modulus. The paper is organized as fol1998). For example, the tension could be a consequence of
lows. We will first discuss the significant terms of neutro- some active processes, which constantly drive the actin
phil energy that govern neutrophil equilibrium behavior. filaments one across another and contract the cortex. An-
Then we will apply the variational approach to calculate theother imaginable origin of one part of the constant cortical
equilibrium states of the aspirated neutrophil and determinéension could be attributed to a possible difference of the
stability of these equilibrium states. Finally, we will present surface energy of the lipid bilayer stocked in the wrinkles
the predictions for the position of the critical point of and the bilayer stretched on the actin cortex (Svetina et al.,
aspiration. 1998)—if the hilayer preferred to reside in the wrinkles, the

result would be a contractile cortical tension. Needham and
Hochmuth (1992) indicated that the cortical tension might
THEORY change with the activation of the neutrophil.

Because the exact physical origin of the tension is not
known, the cortical energy has to be described phenomeno-
To understand the limitations of neutrophil mechanicallogically. To include the nonconstant cortical tension, the
properties models, one should bear in mind the complexortical energy is expanded up to the second power in the
structure of neutrophils. Free resting neutrophils are wrinneutrophil area,
kled spherical cells of-8 um in diameter (Bessis, 1973;

;ﬂng—BeaII et al., 1993). When a neutrophil is deformed W= A+ }E(A— AP 1)
rom the spherical shape, the wrinkles are smoothing out 2A

and the apparent neutrophil area enlarges. The wrinkles

provide enough material for extensions up to approximatelyvherey is the constant part of the cortical tensidnis the

two times the initial spherical area (Evans and Yeungneutrophil areaK is the area expansivity modulus, afglis
1989). The investigation of the neutrophil interior structuretaken to be the area of the free spherical neutrophil. The
reveals many small granules and the cell nucleus floating ivalue ofA, is fixed with the neutrophil volum¥,, which is

the neutrophil cytoplasm. These organelles were estimatecbnstant during a typical aspiration under stable osmotic

Model: liquid droplet with an elastic surface
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conditions. The quadratic term in Eq. 1 can be interpreted a$he variation ofG depends on the effective cortical tension.

the neutrophil elastic area expansivity term. IndicationsThe variational procedure sees no difference between the
exist that the parametefsandK may depend on the history constant tension and the effective one, because, in both
of aspiration, i.e., the increase of the rate of actin polymercases, the tension is just a parameter of a given equilibrium
ization in the cortex may be induced by the applied stresstate. Therefore, the equilibrium states of an elastic droplet

(Zhelev and Hochmuth, 1994). are exactly the same as the equilibrium states of a liquid
The effective cortical tension associated with the corticaldromet_
energy defined above is Thus, two general results concerning the equilibrium
oW A— A states of a liquid droplet, widely used in the literature, are
T=—7=v+K (2) valid also in the case of an elastic droplet (the full derivation

oA A
For positive constanty andK, the cortical tension is also o .
positive and thus tends to minimize the cell area. When thd. The equilibrium shapes of an aspirated droplet are com-

neutrophil is undeformedy = A, the cortical tension has posed of spherical and cylindrical parts (Fig. 1). The free

of these results is given in the Appendix A):

the value ofy. This definition of the parametet§é andy is droplet is a sphere with the radilg,. As aspiration
consistent with the one proposed by Needham and Hoch- proceeds, the droplet projection in the pipette grows, the
muth (1992). radius of the spherical part in the pipefe, decreases

To emphasize that our analysis applies to very idealized and the projection length, increases. WheR,, (andL,)
neutrophils, we will use the term “elastic droplet” when  reaches the pipette radigs, the projection continues to
referring to the neutrophil within the extended |IQUId drop grow as a Cy|inder with a hemispherica| cap of the same
model, and “liquid droplet” when referring to the basic  radius as the pipette. The radius of the spherical part of
liquid-drop model. the droplet outside the pipette is denotedmy,.

2. The equilibrium aspiration pressure is related to the
Equilibrium states cortical tension by the law of Laplace,
Thermodynamically, the equilibrium of an aspirated droplet ~ 1
is characterized as the state of the extreme thermodynamic AP = ZT(_ - )
potential of the system. Within the presented model of R Rou
micropipette aspiration, the work done by aspiration is
entirely transformed into cortical energy, and the thermo-
dynamic potential of an aspirated droplet can be written as

(%)

whereT is the effective cortical tension given by Eq. 2.

Because of the simple geometry of the equilibrium states,
1K 5 the overall droplet equilibrium shape is fully defined by
G=-APV, +yA+ 2A, (A=A, () only two geometrical variables, the radif®,, and the
_ o . projection lengthL,,. In terms of these two variables, the
where AP is the aspiration pressure am is the droplet
volume aspirated into the pipette. The aspiration pressure,
AP, is defined as the difference between the pressure of the
solution outside the pipette and the pressure in the pipette A
and is positive during aspiration.

The extrema of the thermodynamic potential defined in
Eq. 3 can be found by means of the calculus of variations.
The extrema (i.e., the equilibrium states of an aspirated
droplet) are the states where the variation of the thermody-
namic potential with respect to all variables and to the shape
of the droplet is zerodG = 0. It turns out that the equilib- L L
rium shapes of an elastic droplet are the same as in the case
of a liquid droplet. This can be seen from the fact that therFIGURE 1 Schematic representation of the droplet equilibrium shape

variation of the potentiadG can be written in the same form during aspiration into a micropipetted The projection length is less than
as in the basic liquid drop model: the pipette radius and the shape is composed of two spherical {BrTd)1€
projection length exceeds the pipette radius and the projection is composed

A of a cylinder with a hemispherical cap of the same radius as the pipette. The
8G = —APSVD + y8A + K( - 1) SA radius of the outer spherical partRg,,, the radius of the part in the pipette
Aq is Ry, the droplet projection length in the pipettelis and the radius of the
_ pipette isR,. Note that, ifL, = R, the value ofR,, equals the pipette
= —AP8V, + ToA. (4)  radius,R, = R,
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equilibrium area and volume of a droplet are expressed ascaled by the initial spherical size of the droplet and the
constant part of the cortical tension These relative di-

27 Rou Rout + \er)ut_ RS) + 77(2R§ + '—5) mensionless quantities will be written in lowercase. The
A if L,<R, ©) radii and the projection length are normalized relative to the
= P E— radius of the initial sphere( = R/R,, i, = Ri/Ro, Tout =
2mRoulRout + \Row = Ry) + 271RiL RoufRo. andly, = LJR), tr{e aquglas relative to the initial
if L,>R,, droplet aread = A/A,, anda, = 1), and the volume relative
(, . to the constant droplet volume,(= V,/V;). In the dimen-
gﬁRiut + 577(2R§ut+ RS) \/Riut - Rf, sionless form, all possible ratios between the pipette radius
1 o and the neutrophil radius are obtained by varying the rela-
+5mLGBR L) ifL <R, tive pipette radius , from 0 to 1.

V= e D The rela | | ive aspi-
2 1 e relative thermodynamic potential and relative aspi
3 o 3 (2Rou+ RO \Row = Ry ration pressure are

+7T|:\’$Lp —%’ZTRg if L,>R,.

Furthermore, because the volume of the droplet during 9= YA
aspiration is constan®,,; and L, are connected by the
constant volume constraind = V,. Therefore, only one APV, VA
geometrical variable is truly independent, and the entire set p= , (V ~ 23 P%.
of the equilibrium shapes can be obtained and examined by Ao 0
varying only one geometrical variable. The computational
procedure to calculate the equilibrium states used in ou
analysis was the following: for a given valueRf andR,,
the constant volume constraint was used to calculate th
corresponding-,. The corresponding value &, was ob-
tained from the geometrical relations connectifjgandL;:

(YA, =6X 10 3=~ 1 X 1CPKT), (9)

(10)

he values in the parentheses represent typical energy and
pressure scales from the experiments. They are obtained by
gsing a typical neutrophil size (witRy, = 4 um) and a
typical value of the cortical tensioy = 30 uN/m; the
measured values of lie in the range from 24uN/m
(Needham and Hochmuth, 1992) to gB/m (Evans and

12 ; Yeung, 1989).
S+ RYIL, if Ly <

Rn = 2+ Ry r R (8) Using the relative dimensionless quantities, the thermo-
Ro if Lp> R, dynamic potential is written as

Then, the equilibrium aspiration pressure was determined
by using the law of Laplace (Eq. 5). Finally, Eq. 3 was
applied to calculate the corresponding thermodynamic po-
tential. At a given pipette radius, the whole set of the
possible equilibrium states was obtained by varyRg,  Note that the only parameter of the system material prop-
from R,,, = R, (which corresponds to the free spherical erties is the ratio between the area expansivity modulus and
droplet at zero aspiration pressute? = 0) to R, = R,  the constant part of the cortical tensidtly. The basic
(the droplet is aspirated completely to a cigar shape and thigquid-drop model is obtained if this parameter is set to zero
corresponding equilibrium aspiration pressure is again zerqK/y = 0), whereas the measured value of the ratio is on the
AP = 0). order of unity K/y ~ 1), (Needham and Hochmuth, 1992).
The radiusR,, is a smooth function of the projection
lengthL,,. However, because there are two distinct regimes
of the projection growth in the pipette, the functigp (L)
has a discontinuous second derivative in the point whgre
reacheR,. As a consequence, the same is true also for thJot all the equilibrium states of an aspirated droplet calcu-
equilibrium aspiration pressueeP(L,). lated by the procedure described above are in a stable
equilibrium. Thermodynamically, the stable equilibrium
states are only the states of the minimal thermodynamic
potential, whereas the states of the maximal thermodynamic
potential are in an unstable equilibrium. If a state was in an
Because the choice of the scale within the presented modehstable equilibrium, a small fluctuation would drag it away
does not affect the behavior of the system, the analysis cato a nearby stable equilibrium.
be simplified by the normalization of the involved quanti- By choosing the relative projection lengthas the only
ties. The natural way to normalize these quantities is tdree geometrical variable of the equilibrium states, the sta-
introduce relative dimensionless quantities that have beehility condition for the equilibrium states of an aspirated

1K
g=—Apy, +a+ 2y (a— 1>~ (11)

Stability of equilibrium states

Introduction of the relative
dimensionless quantities
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droplet can be mathematically expressed as rium aspiration pressure reaches its maximum (i.e., where
2

d dAp/di, = 0) is the critical point of aspiration. The corre-
7g> 0. (12) sponding aspiration pressure and projection length are the
diy critical aspiration pressur&p,,; and the critical projection

It is possible and useful to translate this stability condition!€N9thlperiy- If the pressure is increased above the critical
into a condition connecting the observable quantitipand ~ Pressure, the droplet starts to flow continuously into the
|, The stability condition can be thus written as (for g Pipette and therefore enters the dynamic regime, which is

detailed derivation see Appendix B) not.CO\_/ered by our analy_sis. The e_quilibrium s.tates, with
projection lengths exceeding the critical projection length,

dAp >0 13 have a negativeAp/dl, and are in an unstable equilibrium.
dTp ' (13) As can be seen from Fig. 2, the elasticity of the droplet

strongly affects the position of the critical point. For small

Intuitively, this is a reasonable condition, analogous to the aiins K/, the critical projection length is near the pipette
fact that the bulk modulus in the standard thermodynamm;adius but it can increase significantly with highity.

is always posmve._lf, foran equmbrlum_ state, one need_ed t_ ote that, in the case d€/y = 1 andr, = 0.5 urve cin
decrease the aspiration pressure to increase the projecti

%. 2), only a small aspiration pressure difference is needed
length, such a state would be unstable. to aspirate the droplet froy = r,, to the critical projection
lengthly, = lgcrie =~ 3rp.

RESULTS The stability of the equilibrium states can be examined
. . further by considering the values of the equilibrium ther-
Critical point modynamic potential (Eq. 11). As expected, the unstable
The critical point of micropipette aspiration can be charac-equilibrium states are at a higher thermodynamic potential
terized as the point of the equilibrium state’s stability break-than the stable equilibrium states (Fig. 3). A droplet in an
down. It can be analyzed by considering the relation beunstable equilibrium state would either slightly withdraw
tween the equilibrium aspiration pressufg and the from the pipette and reach the stable equilibrium state at the
corresponding projection lengtp (via the law of Laplace, same pressure or enter the continuous flow regime. Further-
Eg. 5), and by using the stability condition (Eq. 13). Themore, because of the fluctuations, spontaneous transitions
dependence of the equilibrium projection length on thefrom a stable equilibrium state (over the maximum pertain-
aspiration pressure during a typical course of aspiration i$ng to the unstable equilibrium states) to the dynamic re-
presented in Fig. 2. At the beginning of aspiration, thegime at a fixed pressure could be theoretically possible
projection length increases with increasing aspiration presbefore the critical point. However, the energy barrier to be
sure. These states are in a stable equilibrium because tlewercome is several orders of magnitude larger than the

derivative d\p/dl, is positive. The point where the equilib- thermal energkT (compare the energy scale in Fig. 3 and

L/,
N
o
N
m&.
o

0.65 0.66 0.67 0.68 0.69

Ap

FIGURE 2 The ratio between the equilibrium projection length and the pipette radius as a function of the relative aspiration pressure for five differe
ratiosK/y and at the relative pipette radigs= 0.5. (A) For complete course of aspiration ar) enlarged in the region where the critical projection length

is close to the pipette radiuk, ~ r,. The values of the ratio area)(K/y = 0, (b) 0.5, €) 1, (d) 2, and §) 4. The stable states and unstable states are
represented by solid and dashed lines respectively. The point of the maximal equilibrium aspiration pressure is the critical point. Thagd(ipcison

smooth in the whole interval, but has a discontinuous second derivative in the point where the projection length becomes equal to the pipdtee radius. T
relative unit of the aspiration pressure corresponds to 23 Pa.
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ﬁ pipette radius at five ratiok/y are presented in Fig. 4. In
9 1.5 “\l\ the case of a liquid dropleK({y = 0), the critical projection
1.4 \\\ length is always a few percent smaller than the pipette
13 radius (this result was already calculated by Drury and
12 ‘\\\ Dempq, 1999)'. prever, if t.he droplet is glgslﬁty # 0,
. ( ji 2 the critical projection length increases significantly at small
1.1 QEJ e ;' pipette radii.
10 A ey W This behavior can be explained. If the cortical tension is
09 4 s constant, as it is in the case of a liquid droplet, the equilib-
0 01 02 03 04 05 06 07 rium aspiration pressure is proportional directly to the dif-
Ap ference of curvatures of the inner and the outer spherical

part (a curvature is an inverse of a radiusj;, 1+ 1/, (EQ.
FIGURE 3 Thermodynamic potentiglversus aspiration pressulg for 5). At the beginning of aspiration, the inner curvature (}/

the equilibrium states at the relative pipette radiys= 0.5 and the . . .
elasticity paramete/y = 1. The solid line represents the stable states andmcreases more rapldly ng than the outer one (ﬂ‘!“‘) and

the dashed line the unstable ones. The level of the aspiration is indicate@P increases (dp/dl, > 0). Whenl, is near,, howeverAp
schematically at four characteristic points. The states aspirated beyond tiéecreases (p/dl, < 0). That is because, whépis nearr,,
critical point are in an unstable equilibrium and are on a higher thermo-the inner curvature Smooth'y approaches its final constant
dynamic potential than the stable equilibrium states. value 1fp and thus begins to increase more slowly V\l'gh
than the outer one. It follows that the maximum equilibrium

Eq. 9), so the spontaneous transitions to the continuous floRréssure—the critical pressure—is attained befdge

regime at aspiration pressures less than the critical are négaches,, . _ _
likely to occur. In the case of an elastic droplet, the cortical tension

increases as the droplet area increases during aspiration. The
. L greater cortical tension resists aspiration more strongly and
Critical projection length the critical point of aspiration is only attained at larger

The position of the critical point can be determined byprojection lengths. Once the critical projection length be-
finding the maximal possible equilibrium aspiration pres-comes larger than the pipette radius, its dependence on the
sure and the corresponding projection length. Because thHgipette radius (and also on the raidy) is much stronger.
analytical relations connecting the geometrical variables arés a consequence of the two different regimes of the pro-
complicated, we calculated the maximal equilibrium aspi-jection growth, the functionk, .+(r,) have a discontinuous
ration pressure numerically. The obtained predictions foffirst derivative in the point wherk, ., = r,. Note that the

the critical projection length as a function of the relative elasticity only weakly affects the smallest possible value of

50 1.10
40 1.05
% 30 < 1.00
20 0.95
10 0.90
0 0.85

02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1

I I,

FIGURE 4 The ratio between the critical projection length and the pipette radius as a function of the relative pipette radius for five valuestigithe elas
parameteiK/y. Values ofK/y are the same as in Fig. 28)(Full scale andB) enlarged in the region where the critical projection length is close to the
pipette radiusl,iy/rp =~ 1. If K/y # 0, the critical projection length at small pipette radii exceeds the pipette radius. The critical projection lengths are
minimal aroundr, ~ 0.92 for all five values oK/y. The dashed line represents projection lengths of a fully aspirated droplet and thus presents the
geometrical limit for critical projection lengths. The dotted line represents projection lengths when the droplet area is increased to twartitiatartbe

of the spherical droplet and thus presents the approximate practical limit of aspiration when all the membrane bilayer is smoothed out (Evags and Yeun
1989).
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the critical projection lengths, which is aroung~ 0.92 for ~ procedure described by Zhelev and Hochmuth (1994) can
all reasonably expected values of the r&iey (Fig. 4B). be used, in which the neutrophils were first driven in the
Whether the critical length exceeds or does not exceedontinuous flow regime and then relaxed to the equilibrium
the pipette radius depends both on the rddley and the by a decrease of the aspiration pressure.
relative pipette radius. The values on the boundary between
the two cases are presented in Fig. 5. At smaller pipette
radii, even a smallK/y has a significant effect on the
elongation of the critical projection length. In contrast, if the
relative pipette radius is larger than 0.9164, even extrem&he approximation (based on the basic liquid-drop model)
elasticity (/v — =) cannot significantly affect the position that the critical point is reached when the projection length
of the critical point, and the critical projection length is reaches the pipette radius, leads to the estimation that the
always less than the pipette radius. In the casi/gf~ 1,  critical pressure of aspiration is an inverse function of the
which corresponds to the observed values of the parametgipette radius (Evans and Yeung, 1989). Our numerical
K/y (Needham and Hochmuth, 1992), the critical projectioncalculation of the critical pressure as the function of the
length exceeds the pipette radius for the relative pipette radjjipette radius forK/y = 0 shows that this estimation is
under~0.6. Therefore, the elongation of the critical projec- accurate to a few percent. Even for the pipette radius of
tion lengths above the pipette radius could be detected .92, where the critical projection length deviates most from
experimentally. the pipette radius (Fig. B), the difference is only about
The measurements of the position of the critical point15%. In the case of an elastic droplet, the critical pressure
should be carried out carefully. The reason for this is thajncreases withK/y, but the general inverse relation to the
the equilibrium projection lengths near the critical point canpipette radius is conserved (Fig. 6). However, it should be
depend strongly on the aspiration pressure (for the case @fressed once more that, whiéhy # 0 (curves bc, d, and
the relative pipette radiug, = 0.5 andK/y = 1, see Fig. 2). e in Fig. 6), the critical pressures can occur at larger pro-
Thus, considering the limited precision of the aspirationjection lengths and can therefore not be directly compared
pressure set up in current experiments, it might be difficulto the existing experimental data, where the critical pressure
to measure the exact value of the critical projection length afyas generally reported to be measured,at r,,
all relative pipette radii. In addition, the noninstantaneous The imprecise definition of the critical aspiration pressure
response of the neutrophil to the change of the aspiratiopsed in the literature should not affect the measurements of
pressure should be considered. Therefore, to avoid missingie cortical tension. That is because the law of Laplace,
the critical point, approaching toward the critical point \yhich is used as the relation between the aspiration pressure
through the equilibrium states by increasing the aspiratiomnd the effective cortical tension, is valid in all the equilib-
pressure should be performed slowly. Or, alternatively, thgjum states and not only at the critical point. So, if the law
of Laplace is strictly used, the cortical tension can be safely
determined by measuring any of the equilibrium aspiration

Critical aspiration pressure

10 - pressures.
Khy
8
6 Ip(crit)> rp 5
4 4 alb c\d\ e
2 Ip(cri!) < l"p 5 3
: F
0 : 2
0 0.2 0.4 0.6 0.8 1
1 L
rD
I . 0 ‘
FIGURE 5 The limiting values of the rati¢/y andr, of the two regimes 0 0.2 04 0.6 0.8 1
of behavior of the elastic droplet. At large pipette radii and small raigs
the droplet behaves as a liquid droplet with the critical projection length Iy

slightly smaller than the pipette radius. At small pipette radii and high

ratiosK/vy, the critical projection lengths are larger than the pipette radius.FIGURE 6 The relation between the relative critical pressure and the
The vertical dotted line represents the asymptotic valug,of 0.9164, relative pipette radius for five values of the elasticity paramétéy.
beyond which the critical projection length is less than the pipette radiusvalues ofK/y are the same as in Fig. 2. The critical pressure increases with
even in the limitK/y — oo, increasingK/y.
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CONCLUSION The equilibrium states of an aspirated droplet are the extrema of the
thermodynamic potential defined in Eq. 11. Because of the fixed droplet

In this paper, we theoretically analyzed the stability of thevolume constraint, the extrema of the thermodynamic potential correspond

equilibrium states of micropipette aspiration with the aim toto the stationary points of the functional

rigorously characterize the critical point of aspiration. Our 1K

analysis shows that the critical point of aspiration does not g’ = —Apy, +a+ > (@a—172%+Myv—vy), (A1)

necessarily occur when the projection length in the pipette Y

becomes equal to the pipette radius. Specifically, it showsihereM is the Lagrange multiplier for the volume ang is the fixed

that, if the neutrophil membrane-cortex complex has an elastieverall volume of the droplet (in the relative units = 1).

area expansivity the neutrophil can be held in a static equilib— In the stationary point, the variation of the functional with respect to

rium even if its projection length in the pipette exceeds the'aPe 'S 2ero" = 0. Written out, the variation off is

pipette radi_us. This feature was, in fact, obse_rved_ (see, for 89’ = —Apdv, + m8a + M(8V, + dVou), (A2)

example, Fig. 4 in Evans and Yeung, 1989 or Fig. 9 in Zhelev B

and Hochmuth 1994) but could not be described within thé(vhere? is the dimensionless effective cortical tensigns T/y = 1 +

basic quuid-drop model of neutrophil rheology (Kly)(a — 1), andv,,, is the relative volume of the part of the droplet

. e 7 outside the pipette. We used the relatior v, + V.

We emphasize _that the_ notion “critical aspiration pressure” e aspirated droplet is axisymmetric, therefore we can parametrize the
has to be used with caution. Because the critical pressure igoplet shape in terms of its axisymmetric contour and express the functional
defined as the |argest possible aspiration pressure at which tlmeterms of an integral over this contour. We get a classical problem of the
neutrophil can be held in a static equilibrium it should not becalculus of variations; the stationary shapes correspond to the solutions of the
genera”y attributed to the aspiration pressure, which is attaine ler-Lagrange egqatlons derived for our system (for a general refere_ncg on

o . . the calculus of variations see Elsgolc (1961), and, for the calculus of variations
when the pr_OJectlor_1 |en9th _r?aChes the |_o_|pette radius. Nevekppjied to the calculation of equilibrium shapes of closed lipid membranes, see
theless, the imprecise definition of the critical pressure shouldticher and Seifert (1994) and Biézet al. (1997)).
normally not affect the measurements of the effective cortical The standard parameterization of a closed axisymmetric surface is done
tension. As Iong as the law of Laplace is strictly used, the"ia coordinates (s), z(s), and ys(s), wherer is the radial distance of the

contour to the axis of symmetry,is the position along the axig; is the

cortical tension can be reliably determined by the measurec_ontour angle, and is the arclength along the contour (Fig. 7). The angle

ments of the equilibrium aspiration pressure. of the contoury(s) is defined by the equation taph= dz/dr.
Finally, we suggest that the presented analysis serves asUsing integral relations for the volume and area,

a basis for further measurements of the neutrophil elastic

properties. Although the exact positions of the critical point 3 J 8

— 2ai
of aspiration at all relative pipette radii might be difficult to Vou = rsinyds,

4
obtain, a comparison between the presented predictions and A
the measured critical projection length as a function of the c
relative pipette radius can yield new information on the V. = 3[ r2sin i ds
values of the neutrophil area expansivity modusnd the P4 ’
constant cortical tensiom.

If experiments reveal that the equilibrium neutrophil be-and
havior differs significantly from the predictions of the pre-
sented analysis, the simple neutrophil elastic area expansion } ¢
rigidity could not be the main neutrophil elastic property 2
and at least two further options for the neutrophil elasticity
should be investigated. The first possibility is that the neu-
trophil cytoplasm has significant elastic rigidity. The second
possibility is that the cortical tension is not only a function
of the area dilation, but depends also on the history of
aspiration, i.e., the cortical tension is governed by some
active processes that can be triggered by the applied stress.

APPENDIX A. MINIMIZATION OF THE

THERMODYNAMIC POTENTIAL f _
i | -

In this appendix, we present a rigorous calculation of the equilibrium states A C S |

of an aspirated droplet. The equilibrium states are obtained by the mini- ¥4

mization of the system’s thermodynamic potential. In the case of the model

used in this paper, the result could be also derived from the force-balancEIGURE 7 Cell contour during aspiration into a micropipette. The con-
equations. However, the energy minimization approach enables us ttour is parametrized by variablegs), z(s), and y(s), where s is the
perform the stability analysis of the equilibrium states. arclength along it.
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we can express the variation of the functiogalas

B C
Pouds + 8

A B

59 =8 L0, (A3)

where both Lagrangian functions can be written in a similar form,
_ 3.2 . 1-
Fi=3rMssing + S

+ I'i(r — cosy) + Fi(z— siny). (A4)

The subscripi stands for “out” when referring to the part of the droplet
outside the pipette, and for “in” when referring to the part of the droplet in 8s are arbitrary

the pipette. Note tha¥l,,, = M, whereasV;, = M — Ap. Note also that,
for the sake of simplicity, the subscript is omitted from the variables
and z. The additional Lagrange multiplierk;(s) and F;(s) had to be

introduced because the variabt¢s), z(s), andys(s) are not independent but

are related through equations= dr/ds = cosy andz = dzds = sin .

161
out, the conditions for boundary poingsandC are
(Coudr + FoudZ — HoudS)|a = 0
and (A13)
(I'pdr + Findz — Hpd89)|c = 0,
whereas the condition in junction poiBtreads
(AT'Sr + AF8z — AH8s)|s = 0, (A14)

whereAl' = I'g; — Iy, AF = Fo — Fiy andAH = Hg,, — Hi,,.

The variationsr, 6z, andds are independent, so each term in Egs. A13
and A14 has to vanish separately. In poiAtandC, the variations5z and
therefor€; and H; at those points have to be zero. In
contrast, the radius is fixed in poinfsandC, ér = 0, so at those points,
the boundary condition gives no constraintslonSimilarly, because and
z in the junction are fixed (by the fixed coordinates of the pipette tip),
8rlg = 0 anddzg = 0, it follows that the boundary condition gives no
constraints onAI" and AF. The variationds, however, is arbitrary and

The variational procedure can be carried out in a relatively simple WaYihereforeAH = 0.

by using the Hamilton notation. We therefore define

1. The vector of variables;, x; = (r, §, z I}, F).
2. The vector of the generalized momentpm= &,

0L, 0%, 0% 0%, 0%
pi =

ar "oy oz ol oF;)

In our case, the generalized momentpm= (I}, O, F;, 0, 0).
3. The HamiltoniarH; = —%; + X; - p;. In our case, the Hamiltonian is

_ 3 . 1-
Hi= —;r*Mssing — S
+ I'icosy + Fisin . (A5)

The classic result of variational calculus is that the variatByh
vanishes if the Euler-Lagrange equations,

d
<§£ix‘ - ES pi = 0, (A6)
and the boundary conditions,
[pout' oyt — HoutSS]/? + [pin * 8Xin — Hinds (B: =0, (A7)

are satisfied.
Thus, we obtain two sets of differential equations (one ferin and the
other fori = out) for the variables, ¢, z, I';, andF;:

SMising + 37 =T, (A8)
2r’Micosy + I'siny — Ficosy = 0, (A9)
F, =0, (A10)

I = COS, (A11)

z=sin. (A12)

Because the Lagrangidfi does not explicitly depend og the Ham-
iltonian has to be constant along each integration contour. The same is true
for F; (Eq. A10), therefore,

H,.=0 and H, =0, (A15)

Fou=0 and F,=0. (A16)
In summary, the equilibrium neutrophil shape should satisfy Eqs. A8—-A12
and A15-A16.

By expressing the spherical parts witk- r; sin s, one can easily verify
that the spherical shapes are the equilibrium shapes. The law of Laplace
(Eq. 5) can be derived by eliminatiig from Eqgs. A9 and A5, and then
writing them in the spherical parameterization,

3
Inside: 5 (M —Ap) + rl =0, (A17)

) 3 T
Outside: =M +-—=0.
2 rOl.lt

(A18)
The law of Laplace (Eqg. 5) is just the difference of these two equations
written out in the normal, nondimensionless, form.

When the part in the pipette becomes a hemisphere with the radius of
the pipette, it starts to elongate as a cylinder. Analogous with the analysis
presented above, it can be shown that this elongated shape is also in
equilibrium. First, one has to divide the contour into three parts, the two
spherical parts and a cylinder in between. Instead of two sets of Euler—
Lagrange equations (Eqgs. A8—A12), one obtains three sets, one for each
part. The two spherical parts still solve these equations and the same can
be easily verified for the cylinder by expressing the cylinder contour with
r=r, = m2).

The boundary condition in this case is

[pout' Xout — Houtss:li1 + [pcyl : axcyl - HcyISS]gi

Cc _
+ [pin * OXin — Hin85]82 - (Alg)
where the subscript cyl stands for the variables in the cylindrical part, and
B, and B, are the junction points between the spherical parts and the
cylindrical one (Fig. 8). Now, the boundary condition (Eg. A19) can be
written in four distinct parts, the conditions for poimdsand C and the

Because the variations in poirsB, andC (Fig. 7) are independent, the  conditions for the two junction poin®, andB,. Because of the cylindrical
boundary condition (Eq. A7) can be written in three separate parts. Writtergeometry, the variations afandzin pointsB, andB, are not independent
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Because ¢,/dl, is positive, the condition of stability of the aspirated
r droplet can be rewritten as

dAp

Tp > 0. (B5)
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