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ABSTRACT The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic.
Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow
the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., D2OV/K 5 0.9) accompanying hydride transfer and
an inverse equilibrium solvent isotope effect of 2.6 (i.e., D2OKs 5 0.4) accompanying the binding of nucleotide, NAD1. The
value of the kinetic effect is consistent with a reactant-state E-NAD1-Zn-OH2 having a fractionation factor of f ' 0.5 for the
zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor
between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple
hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD1. The absence of
significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton
transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis
suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate
commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on
capture at atmospheric pressure.

INTRODUCTION

Solvent isotope effects are complicated by the fact that
primary effects, secondary effects, and medium effects are
multiplied together, as in the following equation (Schowen,
1978):

SkH2O

kD2O
D

total

5 SkH

kD
D

pri

3 SkH

kD
D

sec

3 SkH2O

kD2O
D

medium

(1)

Previous attempts to factor experimental data into compo-
nents of Eq. 1 center around the proton inventory technique,
in which composite solvent isotope effects are plotted
against the atom fraction of deuterium in mixed isotopic
waters (Venkatasubban and Schowen, 1984). A linear plot
represents a single origin, whereas nonlinear plots may be
generated from multiple origins. To evaluate proton inven-
tories arising from multiple states, apparent first-order rate
constants are examined by fittings to the equation of Kresge
(1964):

kn 5 kH

P~1 2 n 1 nfT!

P~1 2 n 1 nfR!
(2)

wherekn represents the observed rate constants in mixed
isotopic waters,kH is the rate constant in H2O, n is the
fraction of deuterium in mixed isotopic waters, andfT and
fR are the deuterium fractionation factors of the transition

state and reactant state, respectively. Hence interpretations
are difficult, not only because of the products of multiple
effects of Eq. 1, but also because of the quotients of multiple
reactant- and transition-state fractionation factors of Eq. 2.
Typically, multiple origins can be distinguished from one
origin by using proton inventories, but rarely can three
origins be distinguished from two (Quinn and Sutton, 1991).

Further difficulties arise when solvent isotope effects are
applied to enzyme-catalyzed reactions because of the inher-
ent kinetic complexity of multistep mechanisms, which can
distort proton inventories (Kiick, 1991) in ways that some-
times can be resolved to extract intrinsic solvent isotope
effects (Quinn and Sutton, 1991). What is needed to sur-
mount these difficulties is a means of perturbing the sepa-
rate isotope effects differently. High pressure is here pro-
posed as such a perturbant. It is an ideal system variable in
that it adds nothing to the system; rather, it simply changes
distributions within preexisting equilibria. The results dem-
onstrate that effects of pressure can separate multiple iso-
tope effects from each other, which, in turn, may make it
possible to individually quantify them and assign each to
specific steps within kinetic mechanisms. Such assignments
are not possible at the level of Eqs. 1 and 2. Moreover, when
applied in conjunction with substrate isotope effects, a pri-
mary kinetic assignment can distinguish between concerted
and stepwise chemical mechanisms of enzymatic catalysis,
in a manner less ambiguous than that of multiple isotope
effects measured in the absence of pressure (Rendina et al.,
1984).

The oxidation of benzyl alcohol by yeast alcohol dehy-
drogenase (YADH) was chosen as a test system because an
intrinsic tritium isotope effect ofTk 5 7 arising from triti-
ated benzyl alcohol is fully expressed inV/K (Cha et al.,
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1989). It follows that at low to moderate pressures, changes
in V/K, or capture(Northrop, 1998) of benzyl alcohol, were
expected and later shown to be directly proportional to an
increase in the rate constant for hydride transfer due to its
negative activation volume (Cho and Northrop, 1999).
While these experiments were being initiated, however, it
was reported that the effect of pressure on YADH was
biphasic (Dallet and Legoy, 1996). The subsequent decrease
in capture at high pressure was then shown to be due to a
positive volume change in the conformational change of an
E-NAD1 complex (Cho and Northrop, 1999). Such a con-
formational change involves considerable solvent reorgani-
zation (Robinson and Sligar, 1995), which, in turn, might be
subject to a solvent isotope effect, but that had not previ-
ously been so demonstrated. These two assignments of
pressure effects were confirmed by pressure effects on
kinetic isotope effects arising from dideutero-benzyl alcohol
(Northrop and Cho, 2000). Solvent isotope effects have
been demonstrated previously for YADH, as well as for the
closely related horse liver enzyme (LADH), using a variety
of substrates (Klinman, 1975; Welsh et al., 1980; Taylor,
1983; Sekhar and Plapp, 1990; Ramaswamy et al., 1999).
The results with the different enzymes and substrates were
sometimes similar and sometimes different, as were their
interpretations.

THEORY

The effect of multiple steps in substrate capture plus the
prevention of active enzyme from participating in capture
can be described within the conventions of an isomecha-
nism (Rebholz and Northrop, 1995):
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Scheme 1

where G represents an inactive isomer, or possibly isomers,
of free enzyme and E an active isomer. For the purpose of
the present discussion, EXº FY is the hydride transfer
step, which in a concerted mechanism includes the proton
transfer. In a stepwise mechanism, either ESº EX or FY
º FP may represent proton transfer. It is assumed that
between ES and F (the form of enzyme following the
release of a first product, P) only a single proton transfer
step is isotopically sensitive. Solvent isotope effects may
also arise within equilibria between G and E, and through
changes in viscosity that will affectk1 andk2. The inactive
G forms of enzyme may include slightly to completely
unfolded proteins; hence this kinetic design accommodates
the primary concern about applying high pressure to en-
zymes: that high pressure may cause denaturation as well as
changes in rate constants.

A general expression for the effect of pressure on sub-
strate capture can be written as (Cho and Northrop, 1999)

uV/Kup 5 S k1

1 1 KG/Ee
2DVG/Ep/RTD

z S R0e
2DV‡p/RT

1 1 Cfe
2DV‡p/RT 1 Cre

2(DV‡2DVeq)p/RTD
(3)

whereR0 is the product ratio of forward and reverse enzy-
matic rate constants up to and including the hydride transfer
step (e.g.,k3k5/k2k4 in Scheme 1),DV‡ is the volume of
activation between reactants E1 S and the transition state
EX‡ of hydride transfer (in ml/mol),p is the pressure in bars
(0.98692 standard atmospheres),R is the gas constant at
82.0578 ml.bar/mol.K, T is the temperature in Kelvin (298°),
KG/E is the equilibrium constant between free enzyme forms
E and G,DVG/E is the volume difference between the forms,
andCf andCr are the forward and reverse commitments to
catalysis,k5/k4 (11 k3/k2), and k6/k7 (1 1 k8/k9), respec-
tively (Northrop, 1977), for hydride transfer in Scheme 1.

For a proton transfer in a concerted mechanism, the
product ratio and the commitments for a solvent isotope
effect would be the same as for a substrate isotope effect on
hydride transfer. In a stepwise mechanism, however, the
definitions change even though the form of the overall
equation does not. For example, if ESº EX were a proton
transfer step and if it were subject to a solvent isotope effect,
then R0 would be k3/k2, DV‡ would be the volume of
activation between reactants E1 S and the transition state
ES‡ of k3, and Cf and Cr would bek3/k2 and k4/k5 (1 1
k6/k7(1 1 k8/k9)), respectively. Ifk5/k4 were small and less
than 1 ink5/k4 (11 k3/k2) with respect to hydride transfer,
then k4/k5 would have to be large and greater than 1 by
precisely the same degree ink4/k5 (1 1 k6/k7(1 1 k8/k9))
with respect to proton transfer.

To perform global fittings of primary isotopic data, an
expression for an isotopic dependence of sensitive rate
constants must be included. This expression has the follow-
ing form (Cleland, 1977a):

k1 5
kH2O

1 1 Ci@
D2Ok 2 1#

(4)

whereCi is the gram-atom fraction of D2O andD2Ok is an
intrinsic primary solvent isotope effect. A similar expres-
sion for the isotopic dependence of an equilibrium between
free enzyme forms can be written as

Ki 5
KH2O

1 1 Ci@
D2OK 2 1#

(5)

whereD2OK is a solvent isotope effect on the equilibrium
constant,KG/E. Furthermore, the viscosity of D2O is higher
than that of H2O by a factor of 1.24 at 25°C (Arnett and
McKelvey, 1969), which will reduce the diffusion-con-
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trolled rate constant,k1, when commitments are large. Ef-
fects of viscosity onk1 will be canceled by effects onk2 of
R0 when commitments are small andV/K is far from diffu-
sion controlled (Brouwer and Kirsch, 1982). Viscosity has
only recently been addressed with regard to isotope effects
(Kurz et al., 1992; Karsten et al., 1995). Substituting Eqs. 4
and 5 plus the viscosity factor into Eq. 3 yields the global
rate equation for the expression of solvent isotope effects on
the kinetics of capture as a function of pressure:

uV/Kup 5 S k1

1 1
KG/Ee

2DVG/Ep/RT
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When DVeq, the volume difference between E1 S and
F 1 P, is relatively small, commitments may be combined
as in the following expression:
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In the absence of significant commitments, Eq. 6 reduces to
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Equations 6–8 resemble Eqs. 1 and 2 in that they contain
solvent isotope effects multiplied together but differ signif-
icantly in that changes in pressure will modulate the expres-
sion of those effects differently, making it possible to sep-
arate, quantify, and assign individual effects.

MATERIALS AND METHODS

YADH and NAD1 were purchased from Boehringer, benzyl alcohol was
purchased from Sigma, and D2O was purchased from Cambridge Isotope
Lab. Tris-HCl buffer at 80 mM and pH 8.5 was used to minimize pressure-
dependent changes in pH; for pD 8.5, a value of 0.4 was added to pH meter
readings (Lumry et al., 1951). Enzymatic assays under pressure were
performed at 25°C to minimize pressure-dependent changes in viscosity
(Bett and Cappi, 1965), using 3.19mM alcohol dehydrogenase and 10.5
mM NAD1 (Km 5 1 mM) and 0.83–12.4 mM benzyl alcohol (Km 5 3.1
mM). The high-pressure-generating system with a servo feedback to a
computer controller was purchased from Advanced Pressure Products, and
the high-pressure cell was from SLM-Aminco. A Gilford Model 240 was
the light source and was placed in front of a sapphire window of the
pressure cell. An end-on photomultiplier was placed in line in front of the
opposite window. Photomultiplier voltages were collected and manipulated

with an OLIS Spectroscopy Operating System from which absorbencies
were calculated and stored on computer.

Enzymatic activity was determined by the absorbency change at 340 nm
associated with the formation of NADH during oxidation of benzyl alcohol
to benzaldehyde. Progress curves were collected and fitted to an integrated
form of the Michaelis-Menten equation (Duggleby, 1985) to compute the
initial velocities extrapolated to zero time at a given pressure. Sets of initial
velocities in which the alcohol substrate was varied in the presence of
excess nucleotide coenzyme were then fit to the Michaelis-Menten equa-
tion, and rate constants for capture were calculated; therefore, the “isomers
of free enzyme” G and E of Scheme 1 are forms of E-NAD1 in this
particular experimental design. The percentage of D2O was 99.4%, based
upon volumes of mixing; therefore,Ci of Eqs. 6–8 was 0.994. Nonlinear
regressions employed the BASIC computer program of Duggleby (1984).

RESULTS

Fig. 1 A shows the biphasic pressure dependence of the
capture of benzyl alcohol by YADH as determined in H2O
and D2O. The latter has a greater amplitude, indicating an
inverse solvent isotope effect, and is significantly shifted to
the right, suggesting different solvent isotope effects on the
two phases. A fit of the data in Fig. 1A to the truncated Eq.
7 generated the parameters listed in Table 1, and fits to
either Eq. 7 or Eq. 8 generated the solid lines in Fig. 1A.
The ratio of the fitted lines is plotted in Fig. 1B. The
resulting sigmoidal curve shows an inverse solvent isotope

FIGURE 1 Effect of pressure on relative rate constants for the capture of
benzyl alcohol by yeast alcohol dehydrogenase (A) in H2O (F) and D2O
(f) and on solvent isotope effects (B). The solid lines are a fit to Eqs. 7 or
8. The dashed line consists of ratios of the computed points used to
construct the solid lines.
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effect undergoing a smooth transition from one value at low
pressure to a more extreme value at high pressure. The fitted
parameters in Table 1 identify the former as a kinetic
solvent isotope effect on alcohol oxidation and the latter as
an equilibrium solvent isotope effect between a form of
enzyme that can participate in the capture of benzyl alcohol
and another form, or forms, that cannot.

It should be emphasized that a volume of activation is a
property of state, like free energy or entropy, and thus is
independent of the pathway of the change and of specific
volume changes that may occur along a particular pathway.
In the present case, a volume change may or may not
accompany the binding of the substrate, benzyl alcohol,
because such a volume change is tacitly incorporated into
DV ‡ as formulated in Eq. 3, i.e.,DV‡ 5 DV1 2 DV2 1 DV3

2 DV4 1 DV5, and DV‡ can attain a particular value
whetherDV2 is the same asDV1 or not, by compensating for
volume changes associated with the other rate constants. It
should also be noted that the physical origin of the volume
changes is immaterial. For example,DV3 might reflect a
change in apKa such as that of the zinc-bound water (see
below).

DISCUSSION

The kinetic argument for a concerted mechanism

Kinetic analyses traditionally proceed with a fitting of data
to alternative rate equations and the elimination of all but
one of them. Equation 6, however, is general and applies to
all forms of capture. Thus alternative mechanisms differ in
degree, not in kind. The extremely small sum of commit-
ments to catalysis in Table 1 reduces Eq. 7 to Eq. 8 and
unambiguously assigns the proton transfer responsible for
the kinetic solvent isotope effect to the same step containing
the hydride transfer, the intrinsic isotope effect of which is
known to be fully expressed because of small commitments
(Cha et al., 1989). If the proton transfer were associated
with a step other than hydride transfer, then one of the
commitments would have to be very large; they could not
both have commitments less than 1 or greater than 1. Only
when proton transfer and hydride transfer are both partially

rate limiting, because of commitments of similar magnitude
in the vicinity of 1, does any mechanistic ambiguity arise in
this kinetic design.

To illustrate this point, given the values in Table 1,k5/k4

must be less than the sum of the commitments, ork5/k4 ,
0.0014, Cf 1 Cr. It follows that if hydride transfer pre-
ceded proton transfer in a stepwise mechanism, then the
reciprocal ratiok4/k5 . 1000, in the reverse commitment of
a substrate isotope effect. Such a large commitment would
suppress the expression of the isotope effect to an undetect-
able level, which differs in the extreme from what was
reported by Cha et al. (1989). Consistent with the same step
assignment is the close agreement between the activation
volumes of the first phase when isotopic and nonisotopic
data were fit separately to Eq. 3 (not shown).

The role of a low-barrier hydrogen bond

Gould (1988) found twofold inverse solvent isotope effects
for the capture of 1-butanol by YADH, for which a normal
fourfold substrate deuterium kinetic isotope effect was ob-
served upon hydride transfer. These results were interpreted
within a mechanism in which the reactant-state enzyme-
NAD1 complex has a fractionation factor of;0.5 for a
zinc-bound water that is displaced by the alcohol, and the
transition state has a fractionation factor of 1.0. Subse-
quently, Sekhar and Plapp (1990) determined inverse sol-
vent isotope effects of LADH by the proton inventory
technique in the transient state and calculated a fractionation
factor of 0.37 for the reactant state and 0.73 for the transi-
tion state. Therefore, like a proton transfer from a thiol, the
proton in flight is moving from a state with a low fraction-
ation factor to one with a higher value, which generates an
inverse kinetic isotope effect (Quinn and Sutton, 1991).
Based on these data and the structures of LADH complexed
with NAD1 and substituted benzyl alcohols (Ramaswamy
et al., 1994), Ramaswamy et al. (1999) propose a mecha-
nism in which a low-barrier hydrogen bond (LBHB) is
formed between a serine hydroxyl and the alkoxide ion of
the substrate alcohol. A notable characteristic of LBHBs is
that they have low fractionation factors (Cleland et al.,
1998). Movement of the proton from this bond to fully join
the serine, in concert with hydride transfer, is consistent
with the transient inverse effects.

Previous steady-state studies using multiple heavy atom
and deuterium substrate isotope effects together with effects
of pH concluded that alcohol dehydrogenase proceeds by a
stepwise catalytic mechanism in which a proton dissociates
from the zinc-bound alcohol and then a hydride ion is
transferred from the resulting alkoxide to NAD1 (Shore et
al., 1974; Kvassman and Pettersson, 1978, 1980; Morris et
al., 1980; Cook and Cleland, 1981a–c; Eklund et al., 1982;
Scharschmidt et al., 1984; Pettersson, 1987). This proton is
ultimately transferred to a base, His51, facilitated by a hy-
drogen bond system that includes Ser48 (Thr48 in the yeast

TABLE 1 Pressure parameters of solvent isotope effects
D2Ok 0.9016 0.075
D2OK 2.616 0.34
V‡ 235.36 3.2 ml/mol
VG/E 272.26 2.5 ml/mol
KG/E 0.01926 0.0068
Cf 1 Cr 10217 6 0.0014
k1Ro* 1.00 6 0.09

Data points shown in Fig. 1A were fitted to Eq. 7, where, assumingCf 1
Cr 5 0.0014, the sum of the commitments did not exceed 0.05 at 2.5 kbar.
A fit to Eq. 8 with no commitments converged to identical values and
standard errors for the remaining parameters.
*Values of data points were normalized to yield a parameter value of 1.00.
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enzyme) and the 29-hydroxyl of the ribose attached to the
nicotinamide ring of NAD (Eklund et al., 1982). The trans-
fer by itself would generate a fully ionized alkoxide ion;
however, an LBHB places both the substrate alcohol and the
serine hydroxyl in partial or half-alkoxides. Therefore, the
previous steady-state studies address the proton release
from free alcohol to the LBHB coupled to protonation of the
histidine, whereas the transient-state studies reflect the pro-
ton exiting the bound alcohol LBHB coupled to the hydride
transfer, as illustrated in Fig. 2.

For the yeast enzyme, the inverse kinetic solvent isotope
effect appears to be on the same step as hydride transfer but
is more complicated than the original concept of a concerted
mechanism described by Rendina et al. (1984) for substrate
isotope effects. Steady-state capture with small commit-
ments reports on the change in fractionation factors between
reactant states of free E1 S and the final transition state of
RO, i.e., k5 in Scheme 1 and Fig. 2. The fractionation factor
for the zinc-bound water is not known, but cobalt-bound
water of carbonic anhydrase has been measured asf 5
0.72–0.77 (Kassebaum and Silverman, 1989). Therefore,
the reactant state of “free enzyme” for YADH is E-NAD1-
Zn-OH2 with fRe ' (.75)2 5 0.56 for the water that is
displaced by alcohol to join bulk water, wherefH2O 5 1.0.
The reactant state of the “free substrate” is an alcohol with
fRs5 1.0 (Cleland, 1980). The transition state of the proton

exiting an LBHB may be assumed to be similar to LADH,
with fT 5 0.73 (Sekhar and Plapp, 1990). Together, these
generate a composite solvent isotope effect ofD2Ok 5
fRefRs/fH2OfT 5 (0.56)(1.0)/(1.0)(0.73)5 0.77, accord-
ing to eq 2. This value approximatesD2Ok of Table 1.

Pressure-induced inhibition of a
conformational change

The magnitude of the volume change associated with the
binding of NAD1, represented by the difference in volume
between E and G of Scheme 1 and between E-NAD1 and
E*-NAD1 in Cho and Northrop (1999), has a sign opposite
that of the value in Table 1, orDV* 5 72 ml/mol in the
direction of catalysis. The positive volume change is con-
sistent with a variety of ligands binding to proteins, the
origins of which have been of interest for many years
(Weber et al., 1974; Heremans, 1982; Weber and Dricka-
mer, 1983; Rand et al., 1993). The primary candidates are
solvent reorganizations in the form of electrostriction of
water molecules surrounding ions and of icelike cages of
water molecules surrounding hydrophobic groups. Both oc-
cupy a smaller volume than bulk water and thereby contrib-
ute positive volume changes to ligand bindings that employ
salt bridges and hydrophobic bonds, respectively.

The thermodynamic solvent isotope effect on the binding
of NAD1 is the reciprocal of the value shown in Table 1, or
D2OK* 5 0.38 6 0.04, a new parameter with an unusually
large magnitude. Isotope effects on binding are usually quite
small (LaReau et al., 1989), with a few exceptions involving
covalent interactions, such as formation of a hemiketal
(Stein and Trainor, 1986) or Schiff base (Bruice and Santi,
1982). However, this thermodynamic effect would itself
appear small in a direct binding experiment conducted at
atmospheric pressure. Because the equilibrium lies so far to
the right, i.e.,K* 5 1/0.01925 52, a further shift to the
right by an inverse solvent isotope effect is without a
noticeable effect. According to the data in Table 1, 98.1% of
free enzyme is in the E form in H2O. This increases to just
99.3% in D2O, giving an apparent solvent isotope effect of
only 0.988. Hence the effect of pressure is absolutely es-
sential to draw out this otherwise hidden phenomenon to
where it can be detected at all, let alone measured with
precision.

The origin of the solvent isotope effect on ligand binding
has significant implications for protein-ligand interactions.
It could be associated directly with the volume change
arising from electrostriction and icelike cages of water.
However, given a fractionation factor off 5 1.02 between
ice and water (Arnason, 1969) and assuming the same
change in bond order for ice, electrostriction, and icelike
cages, the resulting isotope effect should be normal, not
inverse as observed. The inverse effect must therefore arise
from some component other than desolvation associated
with tighter binding of NAD1. The magnitude of the in-

FIGURE 2 Imaginary reaction coordinate diagrams at low pressure for
substrate capture described by Scheme 1 (upper curve): the equilibrium
between G and E forms of enzyme strongly favors E; both forward and
reverse commitments to catalysis with respect to hydride transfer are small,
which defines the transition state for hydride transfer (‡) as the one with the
highest energy. The lower curve represents the parallel steps of stepwise
and concerted proton transfers: a LBHB (represented by AiuHiuB) forms
before hydride transfer can occur (i.e., the stepwise mechanism) and breaks
down to form a normal hydrogen bond during the hydride transfer gov-
erned byk5 in the upper curve (i.e., the concerted mechanism).

Pressure Effects and Solvent Isotope Effects 1625

Biophysical Journal 79(3) 1621–1628



verse effect seems extreme for a secondary isotope effect;
however, it is not unlike the values reported by Gould
(1988) of D2OV/K 5 0.43–0.47 for the oxidation ofn-
butanol by YADH. These extreme values could result from
a large number of exchangeable hydrogens in the enzyme
that become more stiffly bonded when the enzyme clamps
down on the nucleotide and both undergo some desolvation.
Returning to Scheme I for a model and assuming that ESº
EX is the clamping step and EXº EY is an isotopically
sensitive proton transfer fully expressed on capture not of
nucleotide but of alcohol and ignoring the isomechanism,
thenV/K 5 k1k3k5/k2k4 and isotope effects on any or all rate
constantsk1 to k5 will be expressed, i.e., they are all equally
“rate-limiting.” If only clamping and proton transfer are
isotopically sensitive, then

D2O~V/K! 5 ~k1/k2! z D2O~k3/k4! z D2Ok5 (9)

Stiffer bonding makes theD2O(k3/k4) equilibrium isotope
effect on clamping inverse, which is offset somewhat by a
normal D2Ok5 kinetic isotope effect in the overall solvent
isotope effect on capture. An inverse solvent isotope effect
of D2OKi 5 0.69 was also observed in the slow onset of
inhibition of pepsin by pepstatin (Cho et al., 1994). In this
experimental design, there is no catalytic effect, but only the
equilibrium isotope effect of clamping analogous to Eq. 9.

Similar and otherwise inexplicable inverse effects on
capture have been observed for several other enzymes,
notably malic enzyme withD2OV/K 5 0.50 (Cleland,
1977b); glucokinase with 0.29 (Pollard-Knight and Cornish-
Bowden, 1984); adenosine deaminase with 0.45 (Weiss et al.,
1987); adenosine 59-monophosphate deaminase with 0.33, ac-
companied by a curved proton inventory wheren $ 2 (Merkler
and Schramm, 1993);b-lactamase with 0.88 (Adediran et al.,
1996); and desuccinylase with 0.62 (Born et al., 1998). Cleland
makes a strong case for restrictions on torsional motions—but
not bending or stretching motions—as the origin of such ef-
fects, based on a series of calculated fractionation factors in
which the torsional force constant of methanethiol was varied
(Cleland, 1987), and on multiple experimental isotope effects
(Waldrop et al., 1992; Rishavy and Cleland, 1999). The results
in Table 1 confirm Cleland’s hypothesis that the likely origin
of large inverse solvent isotope effects is a binding phenome-
non and not a catalytic one, becauseD2OKE/G is solely thermo-
dynamic, as opposed to Eq. 9, which has the ambiguity of both
thermodynamic and kinetic components. Most importantly,
this hypothesis of restricted torsional motions on the way to
transition states of enzymatic reactions complements the me-
chanical models of catalysis proposed on the basis of the
effects of pressure on a substrate isotope effect (Northrop and
Cho, 2000).

An inverse effect on capture can also be found in data for
carboxypeptidase withD2OV/K 5 0.45 (Lumry et al., 1951).
This pioneering reference has been unfairly overlooked for
two reasons. First, calculating pD from pH meter readings

(see Methods and Materials) was independently rediscov-
ered by P. K. Glasoe and F. A. Long in 1960 and published
in a paper which did not cite the Lumry, Smith, and Glantz
paper. Subsequent reviews cited Glasoe and Long (e.g.,
Schowen, 1978). The 1960s was the decade that popularized
isotope effects in enzymology (Katz and Crespi, 1970), so
the 1951 paper was ahead of its time. Second, Lumry et al.
varied the concentration of substrate carbobenzoxyglycyl-
L-tryptophan and measured the effects of deuterium on
Michaelian kinetic parameters—the first of its kind in en-
zyme kinetics—and found that the solvent isotope effects
were greater forK than for V, i.e., #3.1 versus#1.3,
respectively. Subsequent reviews of kinetic isotope effects
in enzyme-catalyzed reactions did not cite or discuss these
data (e.g., Thompson, 1963, which nevertheless does cite
the paper for its pD measurement), perhaps because an
effect on the “binding” of substrate was not considered a
real kinetic effect. Now we know that the Michaelis con-
stant is more than binding (and the authors interpretedDK to
mean precisely that, again far ahead of its time; see Simon
and Palm, 1966). We also know that the authors’ data really
express an inverse solvent isotope effect onV/K or “cap-
ture,” a kinetic phenomenon that has nothing to do with
catalytic turnover (Northrop, 1998). Moreover, by confirm-
ing Cleland’s hypothesis that restrictions on torsional mo-
tions is the origin of anomalous inverse solvent effects on
V/K, the present paper and Eq. 9 provide the necessary
foundation needed to reinterpret the isotopic data of Lumry
et al. Thus we have come full circle. Combining the mea-
surements of pD and inverseD2O(V/K) for carboxypeptidase
in a historical retrospective reveals that this overlooked but
very important paper was the first definitive report of a
solvent isotope effect on an enzyme-catalyzed reaction (and
only the second enzymatic isotope effect to be determined).
Other reports had appeared in which a reaction rate of an
enzyme-catalyzed reaction was altered in D2O, but in the
absence of the proper pH correction, those alterations might
have been effects of pH instead of deuterium. This possi-
bility was also delineated by Lumry et al., who varied pH as
well, showing that the two effects are intertwined—yet
another first in enzymology, a demonstration of a pH-
dependent isotope effect.

CONCLUDING REMARKS

Differential changes caused by high pressure allow the
deconvolution of a composite solvent isotope effect into two
component parts, one kinetic and one thermodynamic in
origin. The nature and magnitude of the individual isotope
effects allow for reasonable interpretations of their origins,
namely participation of a LBHB in catalysis and restrictions
on torsional motions during ligand binding, respectively. In
addition, new information is obtained in the form of esti-
mates of the commitments to catalysis. In the present anal-
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ysis, commitments were very small, and only the upper limit
was significant. But in future experiments using substrates
such as propanol or butanol, the isotope effects of which are
less fully expressed, it may be possible to extract finite
values for other, more moderate commitments. One reason
for optimism is the constancy of the equilibrium constant
and volume change associated with the conformational
change accompanying the binding of NAD1; these are
independent of the choice of alcohol substrate, and the
values from Table 1 can be inserted into future nonlinear
regressions as constants instead of parameters, thus ensur-
ing a greater likelihood of convergence to the remaining
parameters. With commitments in hand, precise estimates
for intrinsic isotope effects will also soon be in hand.
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