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On Hydrophobicity Correlations in Protein Chains

Anders Irback and Erik Sandelin
Complex Systems Division, Department of Theoretical Physics, Lund University, Sélvegatan 14A, S-223 62 Lund, Sweden

ABSTRACT We study the statistical properties of hydrophobic/polar model sequences with unique native states on the
square lattice. It is shown that this ensemble of sequences differs from random sequences in significant ways in terms of both
the distribution of hydrophobicity along the chains and total hydrophobicity. Whenever statistically feasible, the analogous
calculations are performed for a set of real enzymes, too.

INTRODUCTION

Functional protein sequences exhibit the ability to foldfunctional proteins show negative hydrophobicity correla-
spontaneously into a unique native state (Creighton, 1993jions. To this end we perform new calculations for both
A natural step in order to understand this crucial property isnodel and real sequences. The model we study is the
to compare good and bad folding sequences in simpleninimal HP model on the square lattice (Lau and Dill, 1989;
models where conformational space can be properly exbill et al., 1995). This choice makes it possible for us to
plored. Most such studies have been directed toward iderimprove significantly on the statistics in the previous study
tifying physical characteristics of good folders, and in this(Irback et al., 1997), which was based on an off-lattice
important area some progress has been madke €5al., model. The real sequences studied are single-domain en-
1994; Bryngelson et al., 1995; Klimov and Thirumalai, zymes taken from the CATH protein structure classification
1998; Nymeyer et al., 1998). In this paper we address theatabase (Orengo et al., 1997), which we hope displays
question of how good folders differ from random sequencestatistical properties representative of functional (globular)
in purely statistical terms. A related but different topic is folding units. With this restriction on protein type, it turns
how sequences that share the same (unique) native state anat that the previous, somewhat artificial, restriction on total
distributed in sequence space. This question and its evolurydrophobicity (Irbak et al., 1996) can be lifted.

tionary implications have recently attracted considerable

attention (Li et al., 1996; Bornberg-Bauer, 1997; Govin-

darajan and Goldstein, 1997a,b; Bastolla et al., 1999; BroMETHODS

glia et al., 1999; Bornberg-Bauer and Chan, 1999; Tiana e§equences

al'inzg?eoglem study of a hydrophobic/polar off-lattice model, Let us first define the sequences studied. The real sequences studied are the

it f d that d fold tend t h ti h 173 nonhomologous single domain enzymes found in the October 1998
itwas toun al good Tolaers tend to show negalive Ny=q eaqe of the CATH database (Orengo et al., 1997). These sequences are

drophobicity correlations a|0n_g the chains (lckaet al., _ transformed into binary hydrophobicity strings, by taking the six amino
1997). The analogous calculations gave, moreover, qualitacids Leu, lle, Val, Phe, Met, and Trp as hydrophohig £ 1) and the
tively similar results for a major class of real proteins, others as hydrophilic§ = —1). This choice is somewhat arbitrary.
Corresponding to typical total hydrophobicities (lckaet Therefore, we also tried a 20-valued hydrophobicity scale, which did not

. . ... affect any of the conclusions below. In CATH, the most general level of
al., 1996)' On the other hand, the opposite behavior, pOSItlvgassification is denoted “class” and describes the relative content of

hydrophobicity correlations, has been reported for a class Ofelices ang sheets. Below, the class dependence of our results is checked
designed model sequences that display certain protein-likiey separate calculations for each of the three major classes: mainly

features (Khokhlov and Khalatur, 1998, 1999). These demainly B, andap. A fourth class, low secondary structure content, exists
signed sequences are, for instance, not meant to have uniqﬁ‘é it is not considered separately, as only 3 of the 173 sequences belong

native states so the different results do not represent to It. In our calculations we also divide the sequences into extracellular and
! P ftracellular ones. Following Martin et al. (1998), we take the presence of

POntrad_iCtiQn- HOV\_’ever'_ it shows that sequence Correlation§ disulphide bridge as an indicator of extracellular location. The number of
in proteins is a delicate issue that requires a careful analysisnzymes in the different subsets studied can be found in Table 3 below.
The main goal of this paper is to test the robustness of the The model we use is the minimal two-dimensional HP model (Lau and

conclusion that gOOd folding model sequences as well aQiII, 1989), whose behavior is known in quite some detail (Dill et al.,
1995). It contains only two types of amino acids, H (hydrophobic: 1)

and P (polarg;, = —1), and the chain conformation is represented as a
self-avoiding walk on a lattice. The formation of a hydrophobic core is
favored by defining the energy as minus the number of HH pairs that are
nearest neighbors on the lattice but not along the chain. On the square
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Also central is that the sequences are able to fold fast into their nativét is easily verified that
states, a requirement that we ignore. This is a reasonable simplification

because the sequences are short and because almost all have the same N
energy gap between ground state and next lowest level. — 4 1
X—Nzhi(l_hi)"‘ﬁzcijy (6)
i=1 i#j
Sequence correlations whereh; = (1 + (o;)y)/2 denotes the fraction of sequences that hgve

1, andc; = (gi0))n — (o)n(op) IS thea;, o; correlation. So, if ther, values
Our statistical analysis of hydrophobicity strings can be divided into twoare uncorrelated, then
parts. The first part deals with the distribution of hydrophobicity along

the chains; how does a “good” sequence with lengthand total 4 N
hvdrophobietty X=x=y2hd-h) @)
N i=1
M=o (1)  which becomes
i=1
X = Xo=4h(1-h) ©)

differ from a typical sequence with the salNeandM? This question can
be addressed by monitoring variables such as the number of hydrophobiB case the hydrophobicity profileh{} is flat with b = h for all i. Below
and hydrophilic clumps along the chain (White and Jacobs, 1990), Fouriefhese two predictions are tested for the model sequences.
amplitudes (Irek et al., 1996), or random walk (Brownian bridge) rep- Unfortunately, our set of enzymes cannot be analyzed this way, due to
resentations (Pande et al., 1994). In this paper we work with blocklimited statistics. However, as we will see, it turns out that the data for the
variables, a widely used technique that has proven useful in studies of DNAN€an{M)y can be approximately described by a simple linear relation,
sequences (Peng et al., 1992) as well as proteinsciirbgal., 1996). (M)y = M = (2h — 1)N. As an effective measure of the fluctuationsMn

In addition to the distribution of hydrophobicity along the chains, we We therefore consider
also study the distribution of the total hydrophobichy. This analysis

7\ 2
relies entirely on comparisons between observed sequences, which makes - M-M
it statistically more difficult, especially for the real sequences with X~ N2 ’ 9)
varying N.

where the average now is over all sequences, irrespecti%e bfthe o;
values for eactN were uncorrelated with identica] = h, then we would

The blocking method have

In this method, for a given sizg the sequence is divided into blocks each X = Xo=4h(1— h). (10)
consisting ofs consecutiver; along the chain. The block variabig® is

then defined as the sum of tisar; values in blockk (k = 1,...,N/s). A Let us finally stress thay(® and y are fundamentally different measure-
useful quantity is the mean-square fluctuation ments. In the blocking method individual sequences are compared to

random sequences with the sameand M. Hence,y® provides direct
N/s 1 information on the distribution af; = =1 along the chains. This is not true
lll(s) — E E (ks) %U(ks) - = (O'f(s) _ SM/N)Z 2) for x and the correlatior;. This correlation is not necessarily physical.
N — K The behavior of the analogue gf in the ordered phase of an Ising magnet
provides an illustration of this. In this casg, does not vanish at large

o distance, although the physical correlation length is finite.
where we choose the normalization factor

2 _ \2
K=-———(1—¢9N). 3 Individual structures
As mentioned in the Introduction, several recent model studies have
With this choice, the average ¢f>) over all possible sequences with given addressed the question of how sequences that fold to the same native state

N andM takes the simple form (Il et al., 1996) are related. In particular, using an HP-like model with compact structures
only, Li et al. (1996) found that structure-preserving mutations tend to be
<¢(s)>NM =g (4) largely independent for highly designable structures. To see whether this

behavior is consistent with our analysis, we perform two measurements for
different fixed structures, too.

Consider a given structure and let )"} be the corresponding hydro-
phobicity profile " is the probability thatr, = 1). The first quantity we

independent of\ and M.

calculate is

The distribution of total hydrophobicity

N . . . 4 N
We study theM distribution for different fixedN, focusing on the mean 0 _ 0 _ M1 — kO
(M) (the subscript indicates fixed) and the normalized variance Ax X N El h 1 h"), (1)

i=
Y= E((M — (M)y)Py, - (5) where x® is defined asy in Eq. 5 but for fixed structureA x measures
N the averager;, o; correlation for fixed structure (see Eq. 6). The second

Biophysical Journal 79(5) 2252-2258



2254 Irback and Sandelin

quantity is the entropy 10

S=— 2 [%INh® + (1 - hMIn(L - "] (12)

i=1 6" +

w
for a system of independent with hydrophobicity profile f"}. If the o, E- + X
values are approximately independent, thépmvides an order-of-mag-
nitude estimate of the actual number of sequerided this is not the case,
thene® overestimates,. 2+

RESULTS 0 > . 8 8 10

In this section we present the results of our analyses of the
e o

mean-square bl_o?k fluctuation$® and the distribution of FiGURE 1 The mean-square block fluctuatigf® against block size s

total hydrophobicity M, for model and real sequences. We for goodN = 18 sequences in the HP model. Shown are results both for the

end the section with some comments on our model resultiill sequences) and for the subsequences consisting of the central 14
and related studies of similar models. amino acids X). The straight line represents random sequences; see Eq. 4.

The blocking method 100 bins. The results obtained are shown in Fig. @/e see

Model sequences that h(§) is approximately constant throughout the interval

In our block variable analysis of HP sequences, we conside? = ¢ = 1. _ . . .

the 6349N = 18 sequences that have unique native states, In an earher block analy_S|s O_f functional protein se-
which can be obtained by exhaustive enumeration (Chaﬂuences (Irbd_< et al., 1996), in which there was no_restrlc—
and Dill, 1994). The results are compared to expecte(i'on on protein type, the ends were found to display a

values for random sequences, as described in Methods. Thqgfferent behavior than the rest of the sequences, and_ thgre—
fore they were removed from the analysis. To check if this

comparison makes sense only if the hydrophobicity profile,
{h} is uniform. From Table 1 it can be seen thatis 'S true for the present data set, we calculate the average of
1 N (4) . . . .
approximately constant in the midpart but increases toward¥k  (S€€ Ed. 2) as a function &f using 25 bins ir¢. The
the ends. As a check we therefore calculate the mear@su'ts are shown in Fig. 2 Although the uncertainties are
square block fluctuatio in two ways for each sequence: spﬁmewhlat large, there is no sign of the ends behaving
first, for the full sequence; and second, after elimination ofd' e_rentyr.] indi lcul he block f
two amino acids at each end. Fig. 1 shows the results of both C'Ven these two findings, we calculate the block fluctu-
these calculations. We see that the averatjis smaller ations using the full sequences, without any elimination of

than for random sequences, irrespective of whether th@8Mno acids at :]he eﬂds. S) inst block size
endpoints are included or not. The conclusion th& on In Fig. 3 we show the averagé® against block sizefor

average, is suppressed for good sequences is in perfetae 173 enzymes. Also shown are the results obtained for

agreement with earlier results for a different model (tloa 11V different subsets of these sequences (see Methods). We
et al., 1996, 1997). see that the results are similar in the different cases, and that

Y is smaller than for random sequences. Qualitatively, the
behavior is similar to that found for the model sequences.
Enzymes In this analysis we have chosen to focusyd®. Similar
We now repeat essentially the same analysis for the enqeviations from randomness are expe_cted in oth_e_rquantities
zymes. The only difference is that, becadsés not fixed, ~SUCh as the number of hydrophobic/hydrophilic: clumps
the hydrophobicity profilen(£) is taken to be a function of 2109 t(hsge_chaln. The number of clumps tends to be large
the relative positioré along the chains. To calculatgs), ~ Wheny is small (Ibak et al., 1997).
we divide the interval irg from 0 (N end) to 1 (C end) into

The distribution of total hydrophobicity

Model sequences

TABLE 1 Hydrophobicity profile {h;} for good N = 18 L . ..
sequences in the HP model We now turn to the distribution of the total hydrophobicity

M. Table 2 show$ = (1 + (M)\/N)/2 and the normalized
variancey (see Eq. 5) for good HP sequences for=
0.794 0.642 0467 0456 0.553 0498 0.526 0479 052312 18Also shown in this table are the two predictions
By symmetry,h, = h,g_;. Xo andy, defined in Methods, and a predictigg that will

hy h, hy h, hg hg he o
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FIGURE 2 (@) Hydrophobicity profilen(¢) for the enzymes. The horizontal line indicates the mean0.29. p) ¢ as a function of for the enzymes.
The horizontal line represents random sequences.

be explained below. Note thatdepends quite weakly dx. being the entropy, which means that the effective number of
This implies that the fraction of hydrophobic amino acids, sequences contained R{o) is considerably larger than the
unlike the core to surface ratio of compact chains, does natumber of good\N = 18 sequences, 6349.
increase withN. Of course, it would be interesting to see
whether this trend persists for much lardgér
From Table 2 we see that is smaller thany,, which
implies that theo; values are not both uncorrelated and
uniformly distributed. Comparing tg, shows that the ma- To study theN dependence of the total hydrophobichy
jor part of this difference is due to correlations rather thanfor the enzymes, we divide the data set into groups corre-
non-uniformity. The fact thay < x, means that the average sponding to different intervals iN. Fig. 4 shows the aver-
¢; (i # j) is negative. age M for these groups againdi. We see that theN
The two measuremenhsandy are, of course, not enough dependence is approximately linear. Although the uncer-
to fully characterize the distribution of good sequences. Tdainties are difficult to estimate, it is interesting to note that
get an idea of how much information they provide, we maythe behavior is in perfect agreement with the model results.

compare to the one-dimensional Ising distribution Next we calculatey in Eq. 9, usingWl = N(2h — 1) and
h = 0.29, as obtained from a fit to the data in Fig. 4. Table

3 showsy for all sequences and for the different subgroups
Pla) = exp(Kl E 910111 Ke E i) (13) " Jescribed in Methods. We see thatfor all sequences is
' ' larger than predicted by Eq. 10, which contrasts sharply
The measured values bfandy for goodN = 18 sequences with the model results above. We also note that there seems
can be reproduced by choosiig ~ —0.16 andK, ~ 0.13.  to be a strong dependence on group. In particular there
For these parameters it turns out thdt~ 1.9 X 10°, S  appears to be a big difference between intra- and extracel-

Enzymes

14 T T T v T T 14 T T
it All —+— Mainly o
12 R 12 +
e |C —— Mainly B
10 10
—o— EC % —o— aff %
g [ R P
>, Cr S > 6 I
4 4+
2 (a) 2¢ (b)
0 . 0
o] 2 4 6 8 10 12 0 2 4 6 8 10 12
S S

FIGURE 3 The mean-square block fluctuati¢ff’ against block size for different groups of enzymesa) All sequences (data points connected by
dashed ling and intracellular (IC)/extracellular (EC) sequencés.Rivision of the sequences into three structural classes: mainigainly 8, and af3.
The straight lines represent random sequences.
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TABLE 2 h = (1 + (M)y/N)/2 and the normalized variance y TABLE 3 Analysis of the fluctuations in M for the enzymes
of M for good HP sequences for different N A _ _
Type of chain No. sequences X Xo
N h X Xo X X All chains 173 150+ 0.27 0.82
12 0.527 0.577 0.997 0.913 0.589 Intracellular 127 0.82- 0.13 0.83
13 0.507 0.550 1.000 0.937 0.553 Extracellular 46 2.92 1.15 0.78
14 0.519 0.684 0.999 0.924 0.688 Mainly « 23 145+ 0.25 0.81
15 0.556 0.594 0.987 0.959 0.593 Mainly 8 39 1.63+ 0.34 0.77
16 0.542 0.687 0.993 0.936 0.663 af 108 0.85+ 0.14 0.83
i; ggig 8??: 832? 832; 8222 The quantitiesy and x,, are defined by Egs. 9 and 10, respectively.

Also shown are the three predictiogs(see Eq. 8)x; (Eqg. 7), andy, (see

Comments). . .
) form a neutral net, results first obtained by Bornberg-Bauer

(1997).
lular enzymes. However, it must be stressed that the uncer- The fact that structure-preserving mutations are largely
tainties are large. Improved statistics are definitely needethdependent for highN, does not contradict our previous
in order to draw any firm conclusion about the different results. To verify this, we calculateg from the known
groups and possible deviations from the model results. hydrophobicity profiles b} under the assumption that the
o, values are independent for each structure. The value
obtained this wayy,, can be found in Table 2 above, and is
indeed a relatively good approximation to the obseryed
Our study of HP sequences has been focused on structure-Admittedly, the model used in this study is crude. In
independent properties. The question of how sequences thaarticular, Buchler and Goldstein (1999, 2000) have re-
share the same (unique) native structure are related ha&ently argued, based on a study of compact lattice chains,
recently been examined using similar models (Li et al.that the use of a two-letter alphabet leads to designability
1996; Bornberg-Bauer, 1997; Bornberg-Bauer and Charartifacts, which disappear with increasing alphabet size. Let
1999). From these studies, a simple picture seems to emergié stress, therefore, that the analyses discussed in this paper
for structures that are highly designable. For higistruc-  can be tested on real proteins in a direct manner. Let us also
tures (, is the number of sequences that fold to the struccomment on the stability of our results. First, we note that
turer), it has been found that the sequences tend to form ¢he dependence on chain lendthis weak. This was ex-
single cluster connected by one-point mutations, called @licitly shown for x, and is true for)® too, although our
“neutral net” (Bornberg-Bauer, 1997), and that structure-discussion focused on one system size in this case. Second,
preserving mutations tend to be largely independent (Li ewe note that our results are in nice agreement with those
al., 1996). The latter property was observed in a model witrpbtained earlier using a simple hydrophobic/polar off-lattice
compact structures only. We checked that it holds in themodel (Irb@k et al., 1997). To further explore the model
present model too, which is illustrated in Fig. 5. From thisdependence of our results, we also did calculations for a
figure it can be seen that the quantites$N, and|Ax("|, as  “solvation-like” two-letter model discussed by Ejtehadi et
defined in Methods, indeed tend to be small for high  al. (1998a,b) and by Buchler and Goldstein (1999, 2000).
Also indicated in this figure is whether or not the sequenced his model differs from the HP model in that the interaction

strength is additive (H, H) = —2¢, ¢(H, P) = —e and

€(P, P) = 0], which means that the total energy can be

Comments

e expressed as a simple sum of monomer contributions.
s0F ] Buchler and Goldstein argued that HP-like models, unlike
s pair-contact models with larger alphabets, tend to have
100 | ui 1 solvation-like designability properties. It is therefore inter-
S so} }\f ] esting to note that when analyzing sequences with unique
i ground states in the solvation-like model defined above, we
-200 ¢ 1 obtained results qualitatively different from those for the HP
ol i r_nodel. Mo.re precisely, it turns out that the block fluctua-
tions are significantly larger, close to random, for the sol-
-300 : : ; : : vation-like model.
0 100 200 300 400 500 600
N

Summary and Discussion
FIGURE 4 Total hydrophobicit¥ againstN for the enzymes. The data . . . .
points are averages over intervals of length 3MifThe straight line isa  Hydrophobicity plays a key role in the formation of protein
least-square fit. structures, which makes it of utmost interest to understand
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FIGURE 5 @) €N, N, and ) Ax®, N, scatter plots for the 1475 designable= 18 structures in the HP model. The shape of the plot symbol indicates
whether the sequences form a neutral ref ¢r not ).

the statistical distribution of hydrophobicity along the hydrophilic stretches in the amino acid sequence are likely
chains. In this paper we have analyzed hydrophobic/polato lead to degenerate structures, and the suppression of
sequences in the two-dimensional HP lattice model. Whensequences containing such stretches should indeed tend to
ever statistically feasible, the analogous calculations werenake ® smaller.

performed for a set of real enzymes, too. Our main findings The nonrandomness of the block fluctuations provides an
are as follows. indirect confirmation of the important role played by hy-

1. Both model sequences and enzymes show mean_squa%ophoblcny in the formation of protein structures. Further-

block fluctuationsy® that are smaller than for random more, it is tempting to take the similarity with the model

sequences. In particular, this implies that the enzyme§GSU|tS as an indication that the ability to form a stable

display the same behavior that had been found previ_structure represents a significant selective advantage in the

bicities (Irbaxk et al., 1996). The present analysis was '

performed without any restriction on total hydrophobicity.
2. The av?rage toFaI hyquphOblch varies approxi- This work was supported by the Swedish Foundation for Strategic Re-
mately linearly with chain lengtiN over the range oN ..
studied, both for model sequences and enzymes. This
implies, contrary to what one naively might expect, that
the fraction of hydrophobic amino acids does not growRerERENCES
with increasingN. The fluctuations irM are difficult to
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. . of model proteins: diffusion in sequence space and overdispersion.
For the model sequences it turns out that the normalized j 1.cor. Biol.200:49—64.

variance x is significantly smaller than for random Bornberg-Bauer, E. 1997. How are model protein structures distributed in
sequences. sequence spacé3ophys. J.73:2393-2403.

W | divided th . diff Bornberg-Bauer, E., and H. S. Chan. 1999. Modeling evolutionary
e also divided the enzymes Into different groups ac- |apgscapes: mutational stability, topology and superfunnels in sequence

cording to their structural content, and to whether they spaceProc. Natl. Acad. Sci. US/A6:10689-10694.
reside in an intra- or extracellular environment. The fluctu-Broglia, R. A., G. Tiana, H. E. Roman, E. Vigezzi, and E. Shakhnovich.
. T I 82:4727-4730.

However, whether this dependence is significant or not is _ ,
difficult to say, due to statistical uncertainties. The mean—Bryngelson’ J- D., J. N. Onuchic, N. D. Soccl, and P. G. Wolynes. 1995.

fmicu Y, ’ s : k Funnels, pathways, and the energy landscape of protein folding: a
square block fluctuations are statistically much easier to synthesisProteins Struct. Funct. Gene21:167-195.
measure, and show only a weak dependence on group. Tisachler, N. E. G., and R. A. Goldstein. 1999. Effect of alphabet size and
conclusion that[l(s) is suppressed is. in particular the same foldability requirements on protein structure designabiliBrotein

. ! ! Struct. Funct. GeneB4:113-124.

for all the different groups. _ , _

A full explanation of the suppression dlfs) is probabl Buchler, N. E. G., and R. A. Goldstein. 2000. Surveying determinants of

u - p pp p y protein structure designability across different energy models and ami-

hard to give. Let us note, however, that long hydrophobic or no-acid alphabets: a consensiisChem. Phys112:2533-2547.

Biophysical Journal 79(5) 2252-2258



2258 Irback and Sandelin

Chan, H. S., and K. A. Dill. 1994. Transition states and folding dynamicsLau, K. F., and K. A. Dill. 1989. A lattice statistical model for the
of proteins and heteropolymerd. Chem. Phys100:9238-9257. conformational and sequence spaces of protéitecromolecules22:
Creighton, T. E. 1993. Proteins: Their Structure and Molecular Properties. 3986-3997.

Freeman, New York. Li, H., R. Helling, C. Tang, and N. Wingreen. 1996. Emergence of

Dill, K. A., S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas,  preferred structures in a simple model of protein foldiggience.
and H. S. Chan. 1995. Principles of protein folding: a perspective from 573.666-669.

simple exact modelrotein Sci.4:561-602. Martin A C. R. C. A O E G. Hutchi s 3 M
Ejtehadi, M. R., N. Hamedani, H. Seyed-Allaei, V. Shahrezaei, and M. artin, A. ©. R, L. A Orengo, £. . Huichinson, >. Jones, M.
Yahyanejad. 1998a. Stability of preferable structures for a hydrophobic- Karamirantzou, R. A. L_aSkOWSk" J.B. O_' Mitchell, C._Taronl, and J. M.
polar model of protein foldingPhys. Rev. E57:3298-3301. Thornton. 1998. Protein folds and functidBtructure.6:875—884.
Ejtehadi, M. R., N. Hamedani, H. Seyed-Allaei, V. Shahrezaei, and M.Nymeyer, H., A. E. Garcia, and J. N. Onuchic. 1998. Folding funnels and
Yahyanejad. 1998b. Highly designable protein structures and inter- frustration in off-lattice minimalist protein landscap®soc. Natl. Acad.
monomer interactionsl. Phys. A31:6141-6155. Sci. USA95:5921-5928.

Govindarajan, S., and R. A. Goldstein. 1997a. Evolution of model proteinsOrengQ C. A., A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and
on a foldability landscapéeProteins: Struct. Funct. Gene29:461—-466. J. M. Thornton. 1997. CATH: a hierarchic classification of protein

Govindarajan, S., and R. A. Goldstein. 1997b. The foldability landscape of gomain structuresStructure.5:1093—1108.
model proteinsBiopolymers42:427—-438.

Irback, A., C. Peterson, and F. Potthast. 1996. Evidence for nonrando
hydrophobicity structures in protein chai&oc. Natl. Acad. Sci. USA.

nli’ande, V. S., A. Y. Grosberg, and T. Tanaka. 1994. Nonrandomness in
protein sequences: evidence for a physically driven stage of evolution?

93:9533-9538, Proc. Natl. Acad. Sci. USA1:12972-12975.

Irback, A., C. Peterson, and F. Potthast. 1997. Identification of amino acid®eng, C.-K., S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M.
sequences with good folding properties in an off-lattice moBélys. Simons, and H. E. Stanley. 1992. Long-range correlations in nucleotide
Rev. E.55:860-867. sequencedNature.356:168-170.

Irbéck, A., and E. Sandelin. 1998. Local interactions and protein folding:ggj A E. Shakhnovich, and M. Karplus. 1994. Kinetics of protein
a model study on the square and triangular latticesChem. Phys. folding: a lattice model study of the requirements for folding to the

108:2245-2250. native stateJ. Mol. Biol. 235:1614—1636.
Khokhlov, A. R., and P. G. Khalatur. 1998. Protein-like copolymers: _ . . L
computer simulationPhysica A.249:253—261. Tiana, G., R. A. Broglia, and E. I. Shakhnovich. 2000. Hiking in the energy
Khokhlov, A. R., and P. G. Khalatur. 1999. Conformation-dependent sequence Igtnds::ag € ”: sgquegg«lazzgaczes:la bumpy road to good foltzins
design (engineering) a&B copolymersPhys. Rev. LetB2:3456-34509. ruct. Funct. Genebs:2ad—2ol.
Klimov, D. K., and D. Thirumalai. 1998. Linking rates of folding in lattice White, S. H., and R. E. Jacobs. 1990. Statistical distribution of hydrophobic
models of proteins with underlying thermodynamic characteristics. residues along the length of protein chains: implications for protein
J. Chem. Phys109:4119-4125. folding and evolutionBiophys. J57:911-921.

Biophysical Journal 79(5) 2252-2258



