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ABSTRACT Real synaptic systems consist of a nonuniform population of synapses with a broad spectrum of probability and
response distributions varying between synapses, and broad amplitude distributions of postsynaptic unitary responses within
a given synapse. A common approach to such systems has been to assume identical synapses and recover apparent quantal
parameters by deconvolution procedures from measured evoked (ePSC) and unitary evoked postsynaptic current (uePSC)
distributions. Here we explicitly consider nonuniform synaptic systems with both intra (type I) and intersynaptic (type Il)
response variability and formally define an equivalent system of uniform synapses in which both uePSC and ePSC amplitude
distributions best approximate those of the actual nonuniform synaptic system. This equivalent system has the advantage of
being fully defined by just four quantal parameters: /i, the number of equivalent synapses; f, the mean probability of quantal
release; fi, mean; and &2, variance of the uePSC distribution. We show that these equivalent parameters are weighted
averages of intrinsic parameters and can be approximated by apparent quantal parameters, therefore establishing a useful
analytical link between the apparent and intrinsic parameters. The present study extends previous work on compound
binomial analysis of synaptic transmission by highlighting the importance of the product of p and p, and the variance of that
product. Conditions for a unique deconvolution of apparent uniform synaptic parameters have been derived and justified. Our
approach does not require independence of synaptic parameters, such as p and p from each other, therefore the approach
will hold even if feedback (i.e., via retrograde transmission) exists between pre and postsynaptic signals. Using numerical
simulations we demonstrate how equivalent parameters are meaningful even when there is considerable variation in intrinsic
parameters, including systems where subpopulations of high- and low-release probability synapses are present, therefore
even under such conditions the apparent parameters estimated from experiments would be informative.

INTRODUCTION

The complexity of synaptic transmission between centrabystem; we conclude that they can. We place our analysis
neurons can pose fundamental problems to its investigatorsvithin a physiological context by considering fast glutama-
The number of synaptic contacts between given sets of preergic synaptic transmission between mammalian CNS neu-
and postsynaptic neurons is often unknown, as are theons mediated by punctate unitary synapses, as occurs on
average probability of release upon activation at each sitdippocampal pyramidal neurons in situ and in tissue culture.
and the average size of the postsynaptic event generated Bythough hippocampal synapses are not necessarily repre-
the release of a potentially variable quantum of transmittesentative of all types of CNS synapses in terms of morphol-
packaged in presynaptic vesicles of potentially variableogy and biophysical characteristics, the main steps in syn-
sizes. Furthermore, there is no a priori reason that averaggptic transmission and the methods of statistical analysis
properties should be constant and uniform from synapse tshould be comparable.

synapse. The overall measured evoked postsynaptic currentPresynaptic interactions at individual glutamatergic con-
(ePSC) distribution will be a convolution of the distribution tacts between hippocampal neurons appear to be small or
of unitary evoked synaptic currents (uePSCs) evoked aibsent (Murphy et al., 1995; Diamond and Jahr, 1995;
each synapse. By itself, the ePSC distribution provides\sztely et al., 1997) such that each synaptic site is “binary”
minimal information about actual quantal properties of theor binomial; it either releases a single quantum of transmit-
underlying system of synapses. Here we examine whethegr or fails to respond when invaded by a presynaptic action
methods that assume a simpler and more uniform underlypotential (Jack et al., 1981; Redman, 1990; Faber and Korn,
ing synaptic system provide physiologically meaningful ap-1991; Raastad et al., 1992; Kullmann and Siegelbaum,
proximations of the true, complex behavior of the native1995; Stevens and Wang, 1995; Rosenmund and Stevens,
1996; Walmley, 1995). Although a small proportion of
terminals associated with punctate synapses may release
Received for publication 16 December 1999 and in final form 29 Augustmare than one vesicle in response to an action potential (see
2000. , Prange and Murphy, 1999) these terminals may contain
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There is evidence for two broad groups of synapsestude distributions. Accordingly, this Gaussian noise ampli-
Some synapses are high-output with probabilities of releastude distribution could have been deconvoluted from the
>0.5, while others are low-output with release probabilitiesoverall distribution to reveal noise-free uePSC and ePSC
<0.2 (Rosenmund et al., 1993; Hessler et al., 1993). Thismplitude distributions (for a review, see Redman, 1990).
distribution may well be a continuous one and is certainly
influenced by activity (Markram et al., 1997). Within a THEORY
given synapse, variability in release probability can arise
due to interactions between the stimulation pattern and thEquivalent uniform distributions: basic principles
state of depletion/refilling of the presynaptic vesicular pOOISIt will be shown that an infinite variety of nonuniform synaptic systems can
(Murthy etal., 1997; Dobrunz and Stevens, 1997; I\/larkr""rrbive rise to any given unimodal ePSC distribution. This impossibility of a
et al.,, 1997). Although the presynaptic active zone andinique solution does not, however, mean that such systems cannot be
postsynaptic density are closely matched in size and dimemreaningfully quantified provided additional information is considered. We
sions, these excitatory glutamate synapses do vary in Sha[ﬁ?.St_‘Jlate that the simp!est, most co_nvenient, ar_1d most r_neaningful approx-
Moreover, release probability seems to be directly corre!Mation (o such nonuniform synaptic systems is the unique uniform syn-

. . : . ~aptic system that best describes the experimentally recorded distribution.
lated with synaptic area (Schikorski and Stevens, 1997). It i§ye then demonstrate how such equivalentuniform system can be
also possible that the mean amplitude of uePSCs will, up t@ormally defined in terms of the underlyingntrinsic parameters of the
a point, be correlated with synaptic area, while the varianceonuniform system. A specific set @fpparentparameters can then be
of uePSCs at a given synapse will be inversely C0rre|ate@stimated from observation of such a system. Although the question of

. . ompound binomial systems has been discussed extensively (Brown et al.,
with synaptic area (See Uteshev and Pennefather, 199 976; Mclachlan, 1975; Bennett and Lavadis, 1979; Korn and Faber, 1991,

1997). This, i.n turn, implies that Varianceland mean ampli-gyastel, 1997) our present analysis is more general and not only provides
tude will be inversely correlated. In addition, because o0fa useful extension of the previous work, but also gives rise to new insights
intrinsic variability in vesicle size and content, the numberinto the stochastic nature of synaptic transmission.
of glutamate molecules released during a given fusion event
can vary (_see Bekkers_ et al.,, 1990). _Th_us, the observeflq,jvalent uePSC distributions
variability in quantal size observed within and between _ _ . . _ _
these synapses may arise from a number of causes. THis"yPothetical uniform synaptic system is defined as “equivalent’ to a
. | | l | lvsis. but b nonuniform system if it produces ePSC and uePSC amplitude distributions
Va_”ance c eary.c.omp Icates quantal ana YSlS’ _Ut _ecaustﬁat closely approximate the actual (observed) distributions. et
of its structural origin may be tuned and exploited biologically. P/, p; denote a weighting factor, whepe = 1 — g, is the probability
A deconvolution theory for nonuniform synaptic systems,of the evoked release at ttjth synapse upon the arrival of an action
where all intrinsic Synaptic parameters Simu|taneous|y expotential. An equivalent uniform system will then be described by the
hibit intra (type 1), inter (type 1), and temporal synaptic normalized uePSC amplitude distribution function,
variability, is the most general but the least developed to n n
. . . ~ 2.71 pf*
date. To deal with the problem of nonuniform synaptic fr ~ Eajf?zlfnill_
systems, theoretical studies typically consider partial non- =1 ZH B
uniformity, i.e., type I, type II, or temporal variability . _ . o _
(Brown etal., 1976: McLachlan, 1975: Bennett and LavidiS,Here’fl is the'normallzed uePSp _amplltude dlst_nbutlon ofjmmsynapse
. Imsl 1995 Stricker et al. 1994: Wahl et al of the nonuniform system antt is the normalized uePSC amplitude
1979; Wa m_s ey, N " ! “distribution of the equivalent synapse. (The asterisk indicates that the
1995; Frerking and Wilson, 1996; Quastel, 1997). Experi-ntegral of the distribution function over the area where it is defined is
mental conditions are therefore sought to separate thegermalized to unity, i.e.f”.. fidx = [, fdx = 1)
types of variabilities from each other and to study one type Now, consider a sys_tem cm‘nongniform synapses Fhat produce a total
at a time (Bekkers et al., 1990; Raastad et al., 1992; Jack &t UePSCs upon arrival of a train & action potentials to the presyn-
| 1994- Liu and Tsien. 1995a.b: Forti et al.. 1997° Murth aptic terminals. Ifp, = 1 for all synapses, then there are no failures and
al., ! ! Uag) " ’ YMm = nK, otherwiseM = nK. Thejth synapse would contributd; = pK
et al., 1997; Dobrunz and Stevens, 1997; Liu et al., 1999)events on average, such that= S, M; = K S, p,. Therefore,
Here we consider in detail the general case where all quantal M M
parameters can vary and demonstrate useful relationships b

N =K 1
between parameters derived for an equivalent uniform sys- P 21:1 B @

tem and those describing the actual underlying Synaptic\rhe same Eq. 1 can be rewritten for the equivalent syshkéfi ~ M/ZL

system containing mixtures of binomial synapses of Vari‘pj, whereM is the number of responses produced by each of the equivalent
able “loudness” (see Kullmann, 1999). uniform synapses during a train Bf action potentials anf is the mean

In the present study we ignored synaptic noise; howevemrobability of release of each equivalent synapse. The number of re-
the approach will be valid in the case of “noisy” synaptic sponses, however, should remain constant whether equivalent or real
L. . . synapses are considered; therefore, the following is fiMe= M. Hence,
systems as well. Addition of noise would have contributed

one or more Gaussian amplitude distributions that would n
have convoluted with the response amplitude distributions AP~ > p = n(p). 2
to produce an overall “noisy” uePSC and/or ePSC ampli- j=1
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Here(p) is defined as the actual mean release probability. Equation 2 is thenoments around the origin of the characteristic functiél(t), will be,
same as that derived previously for a simpler nonuniform system (Bennetb'(t = 0) = &, and®”(t = 0) = &2 + 2 (see Kendall, 1977). Thus,
and Lavadis, 1979).

Let us now represent a uePSC amplitude distribution produced by the " n o
jth synapse of the nonuniform system by a Gaussian distribution function , . def % i .
ff = (LloyV2m)exp[— (x—p;)%207]. The overall uePSC amplitude distri- () = Fretdx= 2 {En D expl wit — (tzofIZ)]},
bution, fy, (Fig. 1B), which is a sum of Gaussian functions with different —o0 =1 1=1H
weighting factors, must also be a Gaussian function suchfthat filif, 3)
wheref* = (1/5°V/27)exp[— (x—1)%/257]. Because the mean and variance

by definition will be approximately the same for both the equivalent and En ™.
the actual uePSC distributions, we can equate actual parameters to the ’1, _ ('i)r(t =0) = i-1 Pk _ [L (4)
equivalent parameters using a moment-generating function. The first two ! j“:l P,
n 2
~ 2ol +p) .,
p= @ =0 ="y =i ()
A ji=1 B

()

The equivalent valuef and 5@ are thus related to the intrinsic parameters,
5 essentially as weighted averages of the nonuniform synaptic values. The use of
5 gamma distribution functions instead of Gaussian functions, such that
5
E Ay~ L= Bix;
g ! F(aj)
.*Oé
and
Paya—1a—px
N B B*x* e
Amplitude X I'(a)
B (wherefi = &/B and&2 = &?), leads to equations identical to Egs. 4 and 5.
0.3 — Let us introduce two components of the uePSC variance: variance
f): within a given synapse (type 1) such th@V?; = ((x) — p?)/u’ and
variance between a given synapse and the mean for the system (type 1),
_5 such thatCV4 ; = (w7 — ji1)/u. Therefore, from Eq. 5 we conclude,
Do.2
S 2_ ™2
E Sn b2 o W
ko] i—1 P2+ 2
5 ~y M K
2 0. o= .
& j=1 P
[a]
n 2
Ej:l Py (CVﬁj + CV|2|,J')

| = n (6)
100 Ejzl 9

Amplitude, pA

FIGURE 1 Definition of amplitude distributions and their components. Equivalent ePSC distributions
(A) The complete amplitude distribution function of a unitary synapse. A

- S - . An ePSC consists of the summed responsesinflependent but synchro-
complete amplitude distribution functiofy;(x), is the sum of the delta ) ! P rotep LSy

} L ; oW . nous unitary synaptic events, each of which can vary in amplitude from one
function describing the amplitude distribution of release failups(x), event to th{e )r:ex? or fail altogether. Therefore %\e reszonses of each
and the partial amplitude distribution functidj(x). The latter contains no synaptic contaq'tm;easured over many stimulationis can be described by an
information regarding failures. These two components reflect presynapti%mpmude distribution consisting of the sum of two components (Eq. 7:
and postsynaptic influences, respectively, and are of a fundamentall}gig. 1A): 1) the response failureg,5(x), whereg, — 1 — p, ands(x) is the ’

glfiereqt nztu;e. Note thal_tttr:je part!al atm;t)rl:tude d|str|i)_ut|otrr11 ﬂt"t]rft'on IS nOtSirac delta function; and 2) the normalized failure-free uePSC amplitude
etermined at zero amplitude, owing 1o the assumption that the source q istribution, f;(x) = (1 — qj)f’g(x). The normalized complete amplitude

Lratnsrplssmn ;allures Iﬁ stn;:.tl?/ prgzygaptlcl'?néi n(;).t td.Ltj)et,to afny f?”urefmdistribution for the synapsg(containing both failures and responses and
etection. B) An overall partial ue ampiitude distribution function o designated by the bracketed subscript) can thus be defined as,
unitary evoked events. A compound partial uePSC amplitude distribution

function, fy, is normalized tdVl and obtained as a sum of componefts,

each normalized t&; (long dashek that correspond to amplitude d'?stri— fﬁ)(x) = qu(X) + fi(x) = qJS(X) + (l - qj)f*j(x) (7)
butions of unitary evoked synapses involved in transmission. An amplitude

distribution function for an equivalent uniform system can be defined as, If a synaptic system containsindependent synaptic units, the resulting
f= fs/ft and is normalized tda. complete ePSC amplitude distributi&g, will be expressed as a convolution

Biophysical Journal 79(6) 2825-2839
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of the n individual complete uePSC amplitude distributions, such that and gamma distributions (see McLachlan, 1975, 1978):
n n—1
_ K K
E(z) = f(l) * f(z) * f(3) *oeoe ook f(n) = | * f(]) E(Z) - an(Z) + z qu
. k=0
- (8) o 2
11— " exd—(z— (n—Kw?2(n—ko*] (Gaus$
The characteristic functiong(t) for Eq. 8, assuming that each failure- b
free distributionf; is Gaussian, is given by, (13b)
N n—1
def ” . E, = q8(2 + > C
D) = [ [ F50edx 0 =d9(2) E:) nd
=1 J 9

-~ B(BZ)(nfk)aflefBZ
=9 ~ Ka)

Both gamma and Gaussian distributions are members of a class of unimo-
dal distribution functions that convolute regularly and thus can be used for
Hefining the uniform equivalent synapse systems. The failure-free ePSC
amplitude distribution function of members of this class can be introduced
asE,(2) = =3 Cg(1 — 9" “VX(2). Based on the physical understanding
n of the failure-free distribution functiof,(z), the kernel,V&(z), must be
. determined as thkth component of this distribution, i.e., as a convolution
In Pgyt) = - - -= (It)Z Py of k equivalent uePSC amplitude distributions with each other selected
=t from a total ofn distributions.
Because ePSC amplitude distributions represent sums of different com-
(i'[ 2 n ponents, i.e., a convolution of uePSC amplitude distributions, appropriate
+ 5 2 {p]-ojz + POyt (10) distribution functions for an equivalent uniform system should convolute
j=1 analytically with each other, giving rise to a new function of the same class.
Therefore, useful distribution functions must b&able with respect to
Therefore, convolution. This will minimize the number of parameters that is involved
in describing the response distribution. Furthermore, the statistical mo-
ments generated by these equivalent distribution functions will be ex-
(11) pressed in simplistic mathematical forms, readily permitting comparisons
and physical interpretations.
To explicitly define the class of suitable equivalent distribution func-
N N tions, let us consider an arbitrary (unimodal or multimodal) failure-free
ePSC amplitude distribution consisting mfcomponents, whera is the
U(ZE) = E pj(sz + qu]'IJ«j2 = E ijJ'jZ(C\/IZ,j + qj) number of uniform synapses involved in transmission. An immediate
=1 =1 consequence of the synaptic uniformity is that the mean ofrihe K)th
individual component of the failure-free ePSC amplitude distribution must
n n be equal torf — k), wherep is the mean of the unitary component, which
= E pj(O'jz + P«JZ) — E ijMjZ (12) will be the same as the uePSC amplitude distribution (see above). Thus,
j=1

n (Gamma (13c)
=[11{g + pexduit + ((it)s?)/2]}.

j=1

We solve Eqg. 9 using the Fourier convolution theorem and considering
logarithmic transformation. Hence,

n
WE) = > Py
=1

=1

Where ug, is the mean and?, is the variance of the complete ePSC
amplitude distribution. Equation 12 is the same as that derived by Quastel
(1997) using a different approach.

j Vi (2)dz “ w(n — K, (14a)

AKDdze (n— Ko+ (n— K22 (14b)

Equivalent ePSC amplitude distributions with

uniform synapses The kerngl\/ﬁ(z) denqtgs a class of failure-free dlstnbu_thn funct!ons such
that the first two statistical moments Bf(2) about the origin are given by

Equation 8 can be further simplifiedifidentical synapses are considered Egs. 15a and b, respectively.

(“uniform synapses”). The functiok,, will simplify to,

n-1 (m) mi = pe = | ZE(9)dz

Ep =02 + 2 Ci| = f
k=0 n-1
73
= > {Ckr1 - 9" n—k
= q”6(z) + E(z)(Z), (13a) 1—q k§0{ nd ( Q) ( )}

whereq is the probability of failure for all the synapses= f; is their n (l . )
failure-free amplitude distribution, aref is the binomial coefficient (i.e., — e q (15a)
CK = nl/KI(n — K)!). Equation 13a can be rewritten as follows for Gaussian 1- q”

Biophysical Journal 79(6) 2825-2839
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parameters can be estimated. For example @hdo? are determined from
' = | 2E(2)dz the uePSC distribution and fixed at predicted values, suchuthat w; =
K2 J 2d wande? = of = o”for anyi andj, then Eq. 18 will give; = ¢, = g and
Eqg. 16 will given; = n, = n. In fact, a thorough analysis of Egs. 16-18
o1 determines that the uniqueness of the deconvolution will hold when the
following pairs of parameters are known and fixed at correct values during
_ k <Kk —k 2,2
11— qn Z{qu (1 - Q)n ((n - k)o'z + (n - k) [ )} the deconvolution: and¢?) or (q andn), or (w andn), or (u andg). In
k=0 contrast, the knowledge of the paitg*@ndq) or (6% andn) is insufficient
for a unique deconvolution.

n1-aq
= 1_7qn(02 + pig+n—ng)
Relation between actual and equivalent
np synaptic systems
= 1= gl T w) e (15b) _ o .
q For an equivalent complete ePSC amplitude distribution to approximate a

nonuniform ePSC distribution, the equivalent complete megp, and
variance o), must by definition be identical to values defined in Egs. 11
and 12, respectively (because Gaussian functions are defined completely

In Egs. 15a and b we used the equalities

nt "k ek by their means and variances). Therefore, using Egs. 11-17 we arrive at
2 Gl -9 n—-K =n(l-q) Egs. 19 and 20.
k=0
n
d B
" e = M) = NPKe = > P, (29)
n—-1 =1
Cid1— )" *n—Kk?=n(n—1)(1 - g?+ n(1 - q), o2 = AB(02 + u2) — AP
3 Gk~ @™~ kP =~ (1~ @ + n(L -~ q G = = R + B —
which we provide here without proofs. Although potentially the kernel n n
VK(2) can have arbitrary shapes, we will consider only unimodal kernels. => pilof + pf) — > P (20)
Equations 15a and b or 14a and b comprise a formal definition for the j=1 =1

class of distribution functions that are appropriate for defining equivalent

uniform systems. In particular, it can be readily verified that Gaussian andSolving Egs. 2, 4, 5, 19, and 20 simultaneously we arrive at Egs. 21 and 22.

gamma distributions belong to the above class.

The relationships between parameters describing complete and failure- - n

free portions of the ePSC distribution function (identified by the subscripts npPul = > PPt (21)

(E) and E, respectively) for uniform systems are known, but can be j=1

obtained from Egs. 11 and 12 by making all synaptic parameters identical,

and combining with Egs. 15a and b. Thus, 2

- - ~ o (2};1 ij«j)

pe(l =0 = pg = Dpp, (16) Y N (22)
=1 M) %

(NT%E) = np(a? + gud) = @ (? + qud), (17a)  Equation 22 is somewhat similar to the equation derived by Bennett and
[ Lavadis (1979) and Quastel (1997), but more general, as it now includes
variability in p;p;.

Thus, all binomial quantal parameters needed to define an equivalent
~ -~ -~ uniform system can be expressed in terms of weighted averages of the
0-(2E) = (1 - qn)(UZE + qnl-’é) (17b) intrinsic quantal parameters of a nonuniform system. These relations are

summarized in Table 1 and represent generalizations of some of the
equations derived by Brown et al. (1976).

or

Unique modeling of unimodal ePSC

amplitude distributions .

The meaning of CV,,,
Using Egs. 16 and 17a it is easily shown that there are an infinite number ] )
of sets of uniform quantal parameters that can describe a given unimodai we define the following means:

ePSC amplitude distribution [i.eu{, o1, 03, Ny), (L2 0, Upy M), - - -, (W4,
i, G, ), - . .]. Each such sets of parameters lead to identical valuggpf def1 " def1 "
and oZ.,. Combining Egs. 16 and 17a we obtain, for arbitrargnd j, () = A > e p) = i > P,
ey = ey andofey = oy The latter leads to Eq. 18. =1 =1
2 2
(o7 + qud) B (0]2 + o) (18) and
Mi M
derl 22def1n by o
and reduce the number of parameters involved to three. Thus, two of the () = n > P, p'p) = n > Py ks
four parameters need to be specified before a unique set of equivalent j=1 j=1

Biophysical Journal 79(6) 2825-2839
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TABLE 1 Relation between weighted averages of intrinsic
quantal parameters and quantal parameters describing the
equivalent uniform system

. Clipw)’ -1, _ el
N = S 22" p =Ly = =5
=1 p]""‘] n ’J“Ej:1 pj“’j
~ 3L P <o‘2 w2 = w2
o= : S I R
L 5 1Pk w
2l
_ L ppf(CVf) + CVi))
E]n:l pj
then Eq. 22 can be rewritten as
- n“(pw)* ()’
n(p'u?  (PPu?
. (pw>  n 23)
= 5 =
(pw)* + o5, 1+ CV,

whereCV,,, is a coefficient of variation of the valugsy;. In contrast to the

Uteshev et al.

Correlation between parameters of inter-synaptic
(Type Il) variability

In Eq. 25a we have separated the two components o€Cfg. Here we
take one further step to establish dependence anpang-, and pu-
variabilities. Consider three definitions?, = (p°u? — (pw)? o5 = ()
—(p)% 0% = (u?) — (w?. From Table 1 we have

~ Zjn Py P ()

I‘L = == "L

DY ()

and thus,i? (p)? = {pw)>. Solving all the above equations together, we

obtain ji* (p)* = [i*((p>) — o3) =~ (P*(u? — o2). Therefore, for the

relationship among,,, o5, ando?, we obtain:

0p, = W+ (pPu?) — pXp?)
~(p)o;, + (P — (P’

Recalling that(p?u? ~ (p?}u? for even distributions op and u, we
further obtain

G = 0+ ()5 = (PP + (o
= wop + (pYoy, + o)

Equations 26a and b provide an additional link among parametgrs.of
and pu.-variability and the averaged synaptic parameters.

(26a)

(26b)

case considered by Brown et al. (1976), in the present case of continuous

distributions, the means and variances are also variable. Therefore, the

valueCV, used by Browp gt al. (1976) is upgraded m_our thgory by a moreCoefficient of variation and variance to mean
general value oCV,,,. Similarly, Eq. 2 can be combined with Eq. 23 to .

give analysis of ePSCs

Using the definition oir(zE), given in Eq. 17a, one can further show that for
a fully equivalent system,

1

. . n
p= Epj:ﬁ@)
j=1

n 1 .
CVp = ==(CV2 + §)
(P°r?) w
= (P 1oy = P+ CVR) (24) 1 )
= —(1+CV—(pN(1+CV 27
Egs. 23 and 24 lead to Eq. 25a <m>( © <p>( ¢ P’*))’ @
5 5 N where fip = n(p) = (m) is the mean quantal content ai@¥V is the
2 ) — Py (PPN P ) equivalent coefficient of variation for the uePSC amplitude distribution,
(1 +C pu) - <p#«>2 = <p>2<M>2<p2><M2> which by definition approximates the actu@V. The form of this equation
is well known for compound binomial systems; however, the contribution
<p2M2> of CV,,,, has not previously been explicitly included and analyzed. Equation
=(1+ C\/g)(]_ + CV2) /5, 5 (25a) 27 shows that the inverse relation betwe@Kf., and quantal content
. <p ><P« > aIIowsCV(ZE) to give an accurate indication of presynaptic changes, even for

nonuniform systems where valuesmfu, ando? vary between synapses
The approximatiorp?u® ~ (p?)(u?) and the approximationépu) = (see also Quastel, 1997) providgy is low andCV can be estimated from
(PR = (PXw) and(pu?) ~ (pXp? hold relatively well for sufficiently  experimental observations.
smooth distributions of the parametersand u?. Moreover, these equal- Recently, there has been renewed interest in analyzing the expected

ities do not require synaptic parameters to be independent from each othggrabolic relation between ePSC variance and ePSC means. From Egs. 17a
under our definitions of means (the derivation and the computer simulagnd 27, we obtain:

tions are not shown). Therefore, under these conditions,

(1+C8)~(1+CW(L+CW),  (25h) 7= pepll t OV - (A CR,) - (262)
Pp p w
or
C\;, =~ CV; + CV2 + CVAC\2, (25¢) )
-y e _ P
If synapses are uniform such thaf = i ando; = &, thenCV,, = 0. O%E) = ker(l+CV) n 1+ CVS”)

Under this conditiorCV,,,, become<CV,, such that Eq. 24 reduces to that

derived by Brown et al. (1976). Using the equations from Table 1, we can rewrite Eq. 28a in the form of
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Eq. 28b, randomly. Each intrinsic synaptic parameter was allowed to
n ) ) vary uniformly between two limiting values, i, and&ax
P “(E)Ei:j Pyl + CV) _ il + CV5) Once the intrinsic synaptic parameters for each nonuniform
© i E}Ll p, n synaptic system were chosen, the fully equivalent synaptic
(28b)  parameters were calculated using the relations shown in
Table 1.

Eq. 28b is just as general as Eqg. 28a, and represents both intra and
intersynaptic variability. It can be reduced to Eq. 28¢fu?) ~ (p?)}u?)
(see above and Eq. 25a).

n versus n
0%y = pefm(L+ CV2) Fig. 2A shows the relationship between the actual number
5 of synapses and the number of synapses in the equivalent
FE) system fom = 500 simulated systems. The intrinsic number
- =21+ CH(1+ CB) (28c) Y y

n

Using a different approach, Frerking and Wilson (1996) and Silver et al.
(1998) have derived an identical equation for the specific condition of no
intrasynaptic variability.

A similar equation has been derived by Reid and Clements (1999) with 30
the assumption th&V, = CV = const for all synapses. In contrast, Eq. 28a
presents a general form of such a relationship defined in terms of equiv-
alent parameters.

As pointed out by Silver et al. (1998) and Reid and Clements (1999)
(see also Clements and Silver, 2000) useful information can be obtained by
measuring ePSC variance and means at different levels of release proba-
bility (controlled, for example, by reducing €ainflux). This allowsfi, f
to be determined from the ePSC data set alone, and therefore allows for
unique deconvolution of equivalent parameters (see above). When release
probability is low, the limiting slope of the relation will bg(1 + CV?).

The maximal ePSC amplitude will give information aboumt since A
~ . L . 4

e maxy = NPmax i, While the degree of curvature will give information b1

about(p)(1 + CV,,) and how this parameter varies with). However, 0L )

estimated equivalent quantal parameters are still model-dependent, espe- 0 10 20 30

cially if actual quantal parameters suchgsy;, ando; are not indepen-

dent. Equivalent parameters will depend on both pre and postsynaptic # synapses, n

factors. For example, if low-output synapses also had, on average, larger

values of w; and were somehow selectively potentiated, a presynaptic

change can appear to be associated with an incregsesifipostsynaptic” B p

parameter.

—~

Equivalent # synapses, n

20 .

RESULTS

Our strategy for studying the relationship amanginsic,
equivalentandapparentparameters was to simulate a large
number of different synaptic systems, each with substantial
nonuniformity in the intrinsic parameters defining each
synapse in the system. For each of these simulated nonuni-
form systems we calculated the equivalent parameters and
compared them to the average intrinsic parameters for that
system. We then analyzed the ePSC and uePSC amplitude
distributions generated numerically to determine apparergiGURE 2 Simulations of the effect of synaptic variability on the rela-
quantal parameters. tionships between intrinsic and equivalent parameté{sA(typical rela-
tionship between the actual number of synapses used in simulatiand

the equivalent estimat@, built for 500 nonuniform systems. The intrinsic
synaptic parameters for each system varied within the following ranges:
pmin = 01! pmax = 091 Mmin = 20 pAr Mmax = 50 pA, Cvmin = 02;
CViax = 0.9, and the number of synapses varied between 1 and 25. The

We generated a set of synaptic systemg,= 1 ...N, by d.ashed. line forms a 45°.an_gle to either of the ax&.10 a different
simulation, values of intrinsic parameters of 2000 synapses have been

ra"_‘do_m'Y Varymg_the number of synaps?_a_nd the values generated with the same ranges of variability asAn The graph shows
of intrinsic synaptic parameters of tité individual synapse  rejative positions of the intrinsic, average, and equivalent parameters in a
(fori =1...n),ie,p; andoﬁ or CV; were varied 3D parametric space.

P =0.644

<p>=05

Statistical relationships between equivalent and
intrinsic parameters
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of synapses in each system, could be any number be- n, p, u versus fi, p, ji: dependence on the
tween 1 and 25, while the other intrinsic parameters werextent of variability

chosen from the broadly distributed ranges given in th
figure legend. The expected estimate for the number cj’
synapses in the equivalent systéimjs shown as a function
of the actual intrinsic value fom;.

Note that in each case the number of synapses in the full
equivalent uniform systenty, is always less than or equal
to the actual number of nonuniform synapsesregardless
of the values of other synaptic parameters used. This is
known feature of compound binomial systems (see Brow
et al., 1976; Quastel, 1997) and is predicted from Eq. 23. |
is notable that under these conditio@y,,, is independent
of n. The latter is obvious from Eq. 24, &V, is not an
explicit function ofn, but a function of the averages @ifi.)?
and(p®u?) by definition.

n the examples given above, each intrinsic parameter var-
ed over a wide range. We now investigate the accuracy of
the equivalent approximation in subsets of their possible
ranges selected to approximate actual synaptic parameters.
¥or example, although uePSCs are generally variable in
amplitude, mean uePSC amplitudes often appear to be sim-
ilar within an individual cell (Liu and Tsien, 1995a,b;
Bleskevich et al., 1999). We thus examine the equivalent
arameter approximation as a function of the degree of
ariability of ;.

The results of these simulations are shown in Fig. 3. The
influence of three different extents of variability fqr
between the different synapses is illustrated. In Figh-%;,

w ranged between 25 and 30 pA, increasing to the range
25-45 pA and then 25-60 pA in the next two columns. In
each casen ranged from 1 to 15p ranged from 0.7 to 1.0
n, p,  versus fi, p, ji (as recently shown in synaptic experiments done at physi-
, . , i ological temperatures, i.e., 35-37°C; Markram et al., 1997;
We next simulated Six dlfferen'F synaptic systems with aHardingham and Larkman, 1998), andlwas between 100
fixed vglue Ofn,i' but widely varying ranges fom;, p;, and and 250 pA. Intrinsic parameters were drawn from these
;- .For illustrative purposes we c_onS|dered a large numbeFanges at random for 500 simulations in each column, and
of '”depend‘?m Synapses, in th!s case 200,0, contacts pgfe equivalent parameters calculated. The relation between
system. Again, the average intrinsic probabilitp), was ihyinsic and equivalent values for each parameter is shown
~0.5 (ranging between 0.1 and 0.9), the average unitary, o,ch panel. Note that for low variability gf between
amplitude (u), was~35 pA (ranging between 20 and 50), g nanses (despite high variability of the quantal response
and the average CV (i.ég/w) was 0.55 (range 0.2-0.9)in ishin a synapse), the estimates given by the equivalent
each system. o o parameters are very accurate, with a progressive decline in

Fig. 2B shows the relationship between the intrinsic andthat accuracy as the variability of increases. When devi-

equivalent values. The plane of open dots at the left of thi%tions occur due to variability i, they do so in the

three-dimensional parameter space shows the values for ﬂ&‘ﬁ'ection of higher probability and lower number, as ex-
intrinsic probability and amplitude were evenly distributed pected for conditions that increa&y/ ’
P

within the plane defined by the fixed value of The large Similar results were obtained when we kepwithin a

filled circle on the right-most plane shows the values for thenarrow range of values (25-30 pA)was allowed to vary

fully equivalent parameters. As expected from the resultg,) other ranges were as given above). The results of 500
presented in Fig. A, the equivalent number of synapses, oy simulations are shown in Fig. 4. The equivalent pa-
fi = 1552, is smaller than the intrinsic value of 2000. Therameters degraded slightly at low values ¢py, where the

equivalent probability of releasg, is higher than the av- CV,,. will be larger. Nevertheless, the approximation was
erage intrinsic probability of releasg), and the equivalent quite good in each case.

mean i, is nearly identical to the average uePSC méah,

The estimates of the equivalent parameters and of averages

of the intrinsic parameters in six such simulations were . ) ) )

(+SD): fi = 1553 = 58: p = 0.64 + 0.01:(p) = 0.50 = ISynapt/c systems with a mixture of high- and

0.01;fi = 35.07+ 0.02 pA:(w) = 35.08= 0.02 pA. Thus, 0w oulPut synapses

differences between actual and estimated parameters are faifthough hippocampal synapses appear to be fairly station-

constant despite the wide range of possible combinations. ary, there is some evidence that hippocampal synapses can
We also performed six similar simulations with a systembe classified into two groups, high- and low-output syn-

that had only 50 nonuniform synapses and average intrinsiapses exhibiting high and low valuesmfrespectively. For

probability(p) = 0.48=+ 0.01, and amplitudéu) = 35.14+ example, Rosenmund et al. (1993) have presented evidence

0.87 pA (not shown). The resulting equivalent parametershat with autaptic synapses on hippocampal neurons in

were:fl = 38.6+ 1.4;p = 0.62% 0.01; = 34.6* 1.2 pA.  culture, the majority ¥75%) of synapses are low-output

The proportional differences between intrinsic and equivalenand exhibited a value fqu of around 0.09, and the remain-

parameters were virtually identical to those observed when ag exhibited a value fop of around 0.5. At physiological

system of 2000 synapses was considered. temperature§ is generally>0.7, and can approach 1 (Har-
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FIGURE 3 Relation between equivalent and mean intrinsic quantal parameters for different ranges of varialilityhoée columns of figures
demonstrate relationships betweeand (A, D, G), {p) andp (B, E, H), {(u) and i (C, F, I). The following ranges of variability of. have been used

to generate these dat&:-C, wmin = 25 PA, tmax = 30 PA; D-F, pmin = 25 PA, tmax = 45 PA; G-, tmin = 25 PA, tmax = 60 pA. In all simulations

the probability of releases varied randomly among synapses befwges 0.7 andp,,.,, = 0.99; uePSC variance varied randomly betwefg, = 100

pA? ando?,,, = 250 pA2, and the number of synapses used in simulation varied randomly between 1 and 15. Dashed lines form a 45° angle to either of
the axes. Figures in each column correspond to the same simulation, and 500 systems have been used for each simulation.

dingham and Larkman, 1998). Modulation involving with the actual average quantal parameters of the high-
changes in{p) could then arise from an interconversion output synapses (Fig. 5).

between low- and high-output synapses. We therefore sim- In the simulation presented in Fig. 5, the number of
ulated the influence of the proportion of low-output synapsesynapses was kept constant at 100 and distributed randomly
on correspondence of the equivalent quantal parametefs®etween two groups. In one set of simulations the low-
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FIGURE 4 Dependence of equivalent parameters on the ranges of variabitityrbfee columns of figures demonstrate relationships betweserd i

(A, D, G), {py andp (B, E, H), (w) and (C, F, I). The following ranges of variability gb have been used to generate these d®8&; pin = 0.2, Pmax =

0.5; D—F, Prin = 0.45,p110x = 0.75; G, Pmin = 0.7, Pmax = 0.99. In all simulations uePSC mean amplitudes varied randomly among synapses between
Mmin = 25 pA andp,,.« = 30 pA; uePSC variance varied randomly betwegp, = 100 pA ando?,,, = 250 pA?, and the number of synapses used in
simulations varied randomly between 1 and 15. Dashed lines form a 45° angle to either of the axes. Figures in each column correspond to the same
simulation, and 500 systems have been used in each simulation.

output group was assigned a valuepobetween 0.03 and Despite this variability, the expected equivalent quantal
0.06, and in another set of simulations between 0.07 angarameters are close to those of the high-output group, even
0.099. The high-output group was assigned avalue®®  when this group represents only 25% of the total. Thius,
times greater, either between 0.3 and 0.6 or 0.7 and 0.9%alls linearly as the number of high-output synapses falls
respectively. For all groupse was assigned a value be- from 100% to 25% (Fig. B), while p remains relatively
tween 25 and 45 pA and® between 100 and 250 PA constant (Fig. B). This is true regardless of whether the
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range ofp for high-output synapses is between 0.3 and 0.6
A or between 0.7 and 0.99. The estimat&©f is not affected
100 ; by this variability (Fig. 5C). Thus, fully formed reserve
synapses (i.e., that can be recruited if needed) need not be
completely silent. Low-output synapses only distort the
system when they exceed 75—-80% of the total. It is perhaps
not a coincidence that a 4:1 ratio appears to represent the
ratio of low- to high-output synapses observed in the hip-
) pocampus (Rosenmund et al., 1993).
Consider now a mixed population of synapses with mean
ok . . release probabilities clustered around two valgps) and
0 50 100 {p_), which are high and low, respectively. If these synapses
% high output are indistinguishable postsynaptically (L&Y}, = CV,;
B Py = ) and exist in a proportiok = (n_/ny), then from
Eq. 28a, since variances add, and setting

e v
i k{pL) 1(1+CV)
§F = e - v
& “ (1 " )( ka+ow))

(P
[ gt e %y = el + CA{L— (p)(L+ CVE)K}  (29)

Equivalent number, n

50

o~
=
—

Thus, until the parametdf becomes significant, the low-
output synapses will be inaudible but still available for rapid
recruitment.

Equivalent probability, p
O
[8)]
N

1

0 50 100
% high output

O

An illustrative example of deconvolution of
7 equivalent quantal parameters from a
, nonuniform system

o
1=
o

;

.
.

% Various numerical and analytical techniques have recently
P been developed for deconvolution of ePSC amplitude dis-
‘ tributions (Dempster et al., 1977; Ling and Tolhurst, 1983;
L Smith et al., 1991; Kullmann, 1989, 1992; Dityatev and
. Clamann, 1993; Stricker et al., 1994, Stricker and Redman,
, 1994). Here we illustrate the feasibility of the approach
0 : using simulated data.
0 20 40 Consider a system of four nonuniform synapses (Fig. 6),
Average mean, <u> whose uePSC amplitude distributions are described by sin-
gle Gaussian functions. The incomplete uePSC mean and
FIGURE 5 Influence of low-output synapses on the relation betweenvariance and the probability of release for each synapse
equivalent parameters and mean intrinsic parameters for high-output sywere chosen randomly from a pool of values using a random
apses. In each panel we consider two sets of systems of 100 synapses, betalue generator. An overall uePSC amplitude distribution
made up o_f tW(_) populations of synapses; high-output and _Iow-outpu\NaS then built (Fig. &) as a result of an algebraic sum of
synapses differ in release p_robalmhty by a factor_of 10. In the_ first set thethose four randomly designated uePSC amplitude distribu-
range of values op for the high-output synapses is 0.7—-0.99, in the other . .
the range is 0.3-0.6. Hence, the range of valuep fafr the low-output ~ 1ONS (Not shown). A convolution of the same four nonuni-
synapses within a given randomly generated set will be between 0.03—0.0®rm uePSC amplitude distributions gave rise to the ePSC
and 0.07-0.099, respectively. For all sgtsyas assigned a value between amplitude distributions (Fig. 8-D, dotted line¥. Unique
25 and 45 pA and” between 100 and 250 pAFor each set the percentage deconvolution of unimodal ePSC distributions requires in-

f high- to low- i . .
of high- to low-output synapses varies between 0 and WPE(fect on 40500 qent estimates of at least one pair of parameters (see
equivalent numbef). The influence of low-output synapses on the number

of uniform synapses needed to generate an equivalent uniform distributioﬂ—heory)- It appears that the underlying unitary events during
is small until they represent50% of synapses. Even when low-output

synapses represent 75% of the synapses, the equivalent parameters primar-

ily reflect the number of high-output synapseB) Effect on equivalent
probability,p. The same lack of effect is seen with the predicted equivalentgffect on equivalent meafi,. Despite considerable variationfirand, the
probability. Even thougHp) is changing considerablyj remains fairly  value of i remains constant and a good estimate of the actual mean value
constant and close to the value (g} for the high-output synapse<X for the intrinsic system.

Equivalent mean,
N
(]
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FIGURE 6 Equivalent approximation in the case of unimodal ePSC amplitude distribut®nBogr arbitrary sets of intrinsic synaptic parameters
corresponding to four independent synapses have been obtained using a random value generator (not shown), and an overall unimodal uPSC amplitude
distribution has been built as a sum of four uPSC amplitude distributions and digitized with the step size ofi@&tpé Ifne$ and fitted by a single
Gaussian functionsplid ling). The following random values for the intrinsic synaptic parameters have been gengratef®9.2395, 28.4381, 29.8069,
24.8404} (pA), (n) = 30.58 pA);p = {0.690621, 0.775514, 0.674932, 0.702032p)(= 0.710775).c = {10.5209, 13.6437, 11.9397, 10.4485} (pA),

((o) = 11.6382 pA). The equivalent values of the parameters were the followirg3.89647,i. = 30.4985 pAp = 0.72966. The mean and variance
estimated from the fit of the uePSC amplitude distribution showrA)jnwere: . psc = 30.4848 pA andr psc = 13.0285 pA. B-D) ePSC amplitude
distribution function has been generated by convoluting four random nonuniform uePSC amplitude distribution functions used to generataigie3Qeral
distribution shown in &) (a theoretical convolution is possible for the Gaussian functions). Equation 13b, derived for the uniform systems, was then used
to fit the ePSC amplitude distribution of the nonuniform system. As a result of the fit the apparent values of the probability of release were ibtained w
various initial guesses for the number of synapsBsn( = 4; (C) n’ = 3; (D) n" = 5; the correct number of synapses has been revealedij,g= n =

4~

spontaneous or asynchronously released uni-quantal evertsat shown in Fig. 8\. These values, in turn, can be used to
and evoked synchronously released events are identical anthiquely deconvolute the ePSC distribution obtained by
are released from the same pool (Raastad et al., 1992; Olietcording from pairs of hippocampal neurons, as shown in
et al., 1996; Liu and Tsien, 1995a,b; Callister and Walms+ig. 6B. If n" is forced to be 3 or 5, the fit is not acceptable.
ley, 1996; Taschenberger et al., 1995; Rosenmund and

Stevens, 1996). Thus quantal parameters should simulta-

neously desc_rlpe the_und_erlylng behgwor of both types OBISCUSSION

observed activity. This will be especially true when asyn-

chronous release is measured during an action potentiaWe have presented here a rational approach toward the
induced after-discharge of uPSCs such as occurs in thanalysis of nonuniform synaptic systems. With a system
presence of strontium (Abdul-Ghani et al., 1996; Rumpelhat has an arbitrary number of identical synapses it is
and Behrends, 1999; Bekkers and Clements, 1999). In thigenerally possible to determine, using a combination of
case, the equivalent parametgrsand &° can be obtained ePSC and uePSC amplitude distributions, a unique quanti-
from fitting the overall uePSC amplitude distribution ob- tative description of the underlying synaptic properties.
tained from a strontium induced after-discharge, similar toHowever, this task becomes impossible when those syn-
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apses are nonuniform and only the ePSC distribution isctual nonuniform synaptic systems would be expected to have
available. The alternate form of quantification describedvalues clustered with more normal distributions around their
and justified in the present study is that of equivalentaverage values. Because our simulations have a greater fraction
systems, in which the actual experimental observations aref parameters at the extremes of their ranges, we expect that
modeled by a uniform system that can be described comthe deviation between intrinsic and equivalent values for the
pletely by four parameters. In our approach equivalent pareal systems would be less than demonstrated here.
rameters are approximated by apparent parameters, provid- The approach we present thus provides a framework for
ing a useful analytical link between the real quantal propertiegxperimental determination of descriptive parameters in a
of nonuniform synaptic systems and the experimental resultgiven synaptic system and the meaning of the obtained
Our calculations demonstrate that an equivalent system pr@xperimental values. Amplitude distributions for ePSC and
vides a reasonable summary estimate of the heterogeneousPSC events are constructed and examined for their form.
properties of the underlying nonuniform synapses. We discud$ both the ePSC and uePSC distributions are unimddeh
the practical accuracy of our approach, its limitations, and it¢he experimenter would have no direct means to determine
implications for interpreting synaptic function, as well as for awhether the underlying parameters were uniform. Neverthe-
wide range of different complex systems. less, deconvolution under the assumption of uniformity yields
The theoretical treatment presented here does not requieeunique set of descriptive parameters. If the synaptic systems
that the distributions be unimodal or even have regularlywere in fact uniform, then these apparent parameters approx-
spaced peaks. It provides a theoretical justification to theémate the actual intrinsic parameters. However, if those sys-
intuitive supposition that the equivalent estimate of distributedems were actually nonuniform, then the apparent parameters
parameters such as release probability or mean amplitudgpproximate the equivalent system, which in turn provides all
would be a weighted average. Our simulations show that this good description of the average intrinsic properties of the
result is applicable over a wide range of possible values for thactual synapses. Moreover, this approach does not demand
number of synaptic connections. In particular, for systems wittindependence of the intrinsic parameters from each other. Even
large numbers of synapses (with concomitant unimodal distria subsequent demonstration of nonuniformity and existence of
butions) the equivalent presentation provides an excellent es- feedback between pre and postsynaptic terminals, via a
timation of the average unitary amplitude and its variance, andetrograde transmission, would not invalidate the estimates if
close estimates of synaptic number and release probabilitpverage descriptors are sought.
These latter two parameters deviate from the average intrinsic
values in a systematic way, with a tendency toward lower .
numbers of equivalent synapses, each with a higher probabilit9 n the weighted average, Q.
of release (see Brown et al., 1976; Quastel, 1997). The syskn approach of weighted average€3,, andP,,, has been
tematic deviation becomes larger as the spread of unitarsecently introduced to monitor pre and postsynaptic contri-
amplitudes becomes greater, yet it always remains within &utions to changes in synaptic activity that occur during
reasonable range. Indeed, as will be discussed below, thisTP (Reid and Clements, 1999; Clements and Silver, 2000).
deviation points toward a fundamental property of nonuniformin particular, assuming that pre and postsynaptic events and
systems, and is therefore instructive. contributions to LTP are independent, the authors intro-
We have also justified that whereas the determination ofluced a specific paramete®,,, which was presented as
unique parameters is impossible from a single unimodaindependent of the presynaptic events and therefore could
ePSC distribution, the independent specification of definede used as a selective indicator of the postsynaptic changes
pairs of parameters will permit a unique solution. We haveduring LTP. This approach is somewhat similar to ours in
derived which pairs are required. Conveniently, one of thes¢hat the analysis of a complex nonuniform synaptic system
pairs consists of the mean unitary amplitude and its variis reduced to consideration of a simpler system, with fewer
ance, which are directly obtainable for the uePSC amplitudelescriptive parameters. However, our analysis shows that
distribution, thus permitting a unique solution when boththe parameteQ,, is in fact dependent on the presynaptic
the ePSC and uePSC distributions can be measured simuydrobability of release and is, therefore, a characteristic of a
taneously in the same synaptic system. mixture of pre and postsynaptic properties. Also, it cannot
The simulations we have presented here provide a criticabe precisely determined by graphical analysis of parabolic
test of the theory. Indeed, the parameters chosen in owariance versus mean plots, as claimed by the authors.
simulations were often more extreme than one would ever The weighted average,,, is introduced by Reid and
expect in a functioning system, with very wide ranges ofClements (1999) aQ,, = X' pJ-pLJ?/EJ-”=1 Py (here with
variation for each possible parameter. Another differenceur notations). They state that the paramedey is inde-
between our nonuniform parameters and those expected pendent of pre-synaptic events, and therefdg /op, = O,
an actual synaptic system is the manner in which they aréor all synapses. Taking the derivative explicitly, we obtain
evenly distributed. We chose our parameters from theithat w2 ; pju; = ZL, pj;ujz, or w; = Q. As the indexi
ranges with uniformly distributed random numbers, whereasvas chosen totally arbitrarily, the same equality can be
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written for other arbitrarily chosen synapses; therefayes Recent results from Liu and Tsien (1995a,b) and from
M = = mp = - = Qu, Where 1= i, k, h = n. Oleskevich et al. (1999) seem to indicate just this result,
Therefore, theQ,, defined by Reid and Clements (1999) is with the similar mean uePSC amplitudes in the same neu-
independent of presynaptic events if and only if all synapseson, even when mean amplitudes vary considerably between
are identical in terms of their mean uePSC amplitudesneurons. Indeed, there was a negative correlation between
Indeed, in their derivation, Reid and Clements (1999) asthe number of synapses on a neuron and the mean uePSC
sumed that the coefficient of variation was identical for all size. This observation may reflect limiting amounts of postsyn-
synapses, i.eCV, = CV. Identical means an@V values in  aptic domain (PDZ) proteins or other proteins involved in
turn will imply identical variances, which essentially meansassembling pre and postsynaptic aspects of the synapse
that all postsynaptic parameters were implicitly assumed t¢Sheng, 1997; van Rossum and Hanisch, 1999). Conversely,
be identical. Therefore, in fact, Reid and Clements (1999}he observed pronounced variability of uePSC amplitudes at
considered only the case of presynaptic nonuniformity andndividual synapsesQV typically around 0.5) assures that
complete postsynaptic uniformity between synapses. amplitude distributions for uePSC and ePSCs are unimodal,
and therefore better defined by an equivalent system. We have
previously discussed the origin of this variability (Uteshev and
Pennefather, 1996) and suggested that it has a structural com-
We showed in the previous section i@y}, is independent of ~ ponent involving off-center release at the synaptic active zone.
presynaptic influences only if the postsynaptic properties of alBeing structural in nature, it will be susceptible to adaptive
synapses are identical. It is interesting that Reid and Clement&uning.” There also is considerable evidence for activity-
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Alternatively, it might imply that pre and postsynaptic param-
eters, and thus pre and postsynaptic contributions to LTP, ag
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