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ABSTRACT A constant-energy molecular dynamics simulation is used to monitor protein motion at zero-total angular
momentum. With a simple protein model, it is shown that overall rotation is possible at zero-total angular momentum as a
result of flexibility. Since the rotational motion is negligible on a time scale of 1000 reduced time units, the essentially
rotation-free portion of the trajectory provides an unbiased test of the common approximate methods for separating overall
rotation from internal motions by optimal superposition. Removing rotation by minimizing the root-mean-square deviation
(RMSD) for the entire system is found to be more appropriate than using the RMSD for only the more rigid part of the system.
The results verify the existence of positive cross-correlation in the motions of atoms separated by large distances.

The biological functions of proteins require internal motions
which can be characterized by the atomic fluctuations and
their cross-correlations (Brooks et al., 1988). The determi-
nation of the atomic fluctuations from molecular dynamics
simulations is complicated by global rotation, which is
difficult to remove since the moments of inertia change with
time for a non-rigid object like a protein. The most common
method for removing rotational motion is to minimize the
root-mean-squared deviation (RMSD) through finite rota-
tions of all configurations with respect to the first configu-
ration (Kabsch, 1976; Brooks et al., 1983). This method,
although exact for a rigid body, is only approximate for a
flexible system. Furthermore, a question has been raised as
to whether the RMSD should be minimized for the most
rigid part of the system (Hu¨nengeberger et al., 1995), or for
the entire system (Ichiye and Karplus, 1991; Karplus and
Ichiye, 1996). Different implementations have been found
to yield significantly different results for long-range cross-
correlations of the internal motions (Hu¨nengeberger et al.,
1995; Ichiye and Karplus, 1991; Karplus and Ichiye, 1996).
Thus, it is of interest to examine the internal motions of
proteins under the constraint of a zero-total angular momen-
tum. One way of achieving this is by doing normal mode
dynamics to determine the internal motions (Brooks and
Karplus, 1983; Ichiye and Karplus, 1991). Here, we perform
molecular dynamics at zero-angular momentum for a pro-
tein model and show that the results can be used to obtain a
well-defined separation of the internal motions and the
overall rotation.

The total angular and linear momentum can be con-
strained to zero by using a constant-energy molecular dy-

namics simulation in which the total angular and linear
momentum are conserved (Allen and Tildesley, 1987). Con-
sequently, if total angular and linear momentum are set to
zero at the beginning of a simulation, a trajectory with zero
total angular and linear momentum will be obtained if
numerical errors do not accumulate. In this paper, we obtain
such a trajectory for a simple model three-helix bundle
protein (Zhou and Karplus, 1997; Zhou and Karplus,
1999a,b).

The model protein (Fig. 1) consists of 46 freely jointed
beads each of which represents an amino acid residue that
can interact with other residues via a square-well potential.
The square-well depth is2e (e . 0) if the interaction pair
are in contact in the global-minimum structure and is20.7e,
otherwise. Details of the model and the discrete molecular
dynamics method used for the simulations can be found in
Zhou and Karplus (1999b). Despite the simplicity of the
model, it possesses many essential features of proteins, such
as the existence of both disordered and ordered globule
states, a two-state folding transition and a low-temperature
frozen state similar in structure to the native state (Zhou and
Karplus, 1997). The folding behavior of the model has been
used to study general aspects of the folding ofa-helical
proteins (Zhou and Karplus, 1999a,b).

The method for obtaining a constant-energy trajectory is
as follows. First, the value for the total energy of the system
is calculated from constant-temperature simulations. Based
on results from the constant-temperature simulations (Zhou
and Karplus, 1997), the model is known to be in its native
state at a reduced temperature ofT* 5 0.25 (T* 5 kBT/e, kB,
the Boltzmann constant andT, the temperature). The cor-
responding average total energy^TE& from a simulation at
that temperature is found to be2212.37e from the equation

^TE& 5 ^KE& 1 ^PE& 5
~3N 2 6!

2
kBT 1 ^PE& (1)

where^KE& and ^PE& are the average kinetic and potential
energies, respectively;N 5 46 is the total number of resi-
dues. Note that six global rotational and translational de-
grees of freedom are explicitly removed from the kinetic
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energy in Eq. 1 and they do not contribute to the potential
energy in this isolated system. The instantaneous total an-
gular momentumL of the system about the center of mass
is (Goldstein, 1980)

L 5 M O
i

r i 3 vi (2)

wherer i and vi are the position and velocity of residuei,
respectively andM is the mass of a residue; the same mass
is assigned to all residues. The instantaneous angular veloc-
ity v of the system satisfies the equation

v 5 I21L (3)

whereI is the moment of inertia tensor;Ixx 5 M((r i
2 2 xi

2)
and Ixy 5 2M(xiyi; etc.; principal moments of inertia
correspond to the eigenvalues of the inertia tensorI (Gold-
stein, 1980). In this paper, all quantities are reported in
reduced units; for the total angular momentum and the
inertia tensor, they areL* 5 L /=eMs2 and I* 5 I /Ms2,
respectively. For time,t* 5 t=e/Ms2. Here,s is the hard
core diameter which is equal to 4.27 Å (Zhou and Karplus,
1997).

The initial configuration and velocities are obtained from
a phase point on the equilibrium constant-temperature sim-
ulation atT* 5 0.25. The total linear and angular momenta
are removed by removing the linear ((vi/N) and angular
(v 3 r i) components of the velocities (vi

new 5 vi
old 2

(j vj
old/N 2 v 3 r i) (Brooks et al., 1983). The resulting

velocities are then scaled by a constant multiplication factor
so that the total energy is equal to2212.37e, the average
total energy for the system (see above). The first 100 million
steps (equilibration collisions) are discarded. The equilib-
rium trajectory is sampled every 10 reduced time units
(;10,000 collisions). Each reduced time unit corresponds
approximately to 1 ns (Zhou and Karplus, 1999a) based on
the experimental time of collapse in protein folding (;1 ms)
(Ballew et al., 1996; Mun˜oz et al., 1997).

The equilibrium simulation of the model protein lasts for
105 reduced time units, which corresponds to roughly 102
million collisions. The average reduced temperature is
found to be 0.255 and the average potential energy,^PE&, is
2229.2e. This is in good agreement witĥPE& 5 2227.5e
at the same average temperature obtained from a constant-
temperature simulation. Independent constant-energy simu-
lations (with different initial configurations and velocities
but with the same total energy) yield essentially the same
equilibrium results.

The total angular momentum is found to increase system-
atically from 10216 reduced units (the limit of numerical
precisions) to 10212 reduced units. To avoid possible error
accumulations, the angular and linear momentum are reset
to zero after every collision in the production simulation.
Since the resetting changes only global rigid-body motions,
the equilibrium averages of the thermodynamic properties
(i.e., energy, heat capacity) are essentially unchanged, as
expected. Due to numerical precision, the instantaneous
total angular momentum is not exactly zero even though it

FIGURE 2 An example of the distribution of the reduced total angular
momentumL*x, L*y, andL*z found in a constant-energy simulation during
which the linear and angular momentum are set to zero after every
collision.

FIGURE 1 The global minimum structure of the model with helix I to III
colored light to dark.
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is reset to zero at every collision. Fig. 2 shows a nearly
symmetric essentially Gaussian distribution around zero
with a width at half-height equal to 3.53 10216 reduced
units for the instantaneous total angular momentum. This
indicates that the numerical errors in the value of the angu-
lar momentum are random and of the order expected from
the numerical precision. Thus, there should be no cumula-
tive error that could lead to global rotations.

Fig. 3 shows six instantaneous structures obtained from
the constant-energy simulation under the constraint of zero-
total angular and linear momentum. As time increases, the
structure of the model protein appears to gradually “rotate”
in a counter-clockwise direction away from the starting
structure; no translational motion is observed. The various
structures differ from thet* 5 0 structure by only a very
small (0.15s 2 0.21s) root-mean-square deviation after

FIGURE 3 The instantaneous structures of the
constant-energy simulation at (a) t* 5 0, (b) 2 3 104,
(c) 4 3 104, (d) 6 3 104, (e) 8 3 104, and (f ) 105,
respectively. The three helices (I–III) are colored
light to dark.
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optimal superposition. Thus, the observed rotation is ap-
proximately “rigid-body” rotation, even though the system
has essentially zero total angular momentum (see below).
The rotational matrix elements used to minimize the RMSD
with respect to the starting structure are shown as a function
of time in Fig. 4. The overall rotational matrix elements are
small for the first 1000 reduced time units and increase in a
nonuniform manner.

Where does the long-time-scale rotation come from? The
principal moments of inertia (I*xx, I*yy, and I*zz) for the
starting configuration are 91.77, 96.12, and 60.38, respec-
tively. To estimate the maximum amount of rotation caused
by error accumulation, we consider a rigid system that
rotates with the reduced angular momentumL*x 5 0, L*y 5
0, andL*z 5 10213 for t* 5 105. The value 10213, which is
two orders of magnitude larger than the maximum value of
angular momentum shown in Fig. 2, is used to estimate an
upper bound for the accumulated error. Such a rigid system
would rotate overL*zt*/ I*zz ; 1028 degrees during the entire
simulation. This is to be compared with the actual rotation of
42° (the Euler angleu) at t* 5 105. Thus, small numerical
errors in angular momentum cannot explain the large rotation
found in the simulation, even if they were to accumulate.

Another possibility is that the rotation arises from the
presence of systematic errors in the program. To ensure that

this is not the case, we simulated a rigid three-helix model
using the same program. The rigid three-helix model cor-
responds tot* 5 0 structure used in the equilibrium con-
stant-energy simulation. The interaction between the pair of
residuesi and j is given by an infinitely deep square-well
potential,

ui, j~r! 5 5
`, r , ~1 2 d!Rij ,

0, ~1 2 d!Rij , r , ~1 1 d!Rij ,

`, r . ~1 1 d!Rij .

(4)

whereRij is the distance between residuesi andj in thet* 5
0 structure andd is the bond flexibility parameter. All
residues are connected via a nearly rigid bond. Ford 5 0,
we have a rigid three-helix bundle with fixed distances
between all pairs of residues. Over the time period used for
the flexible protein model (105 reduced time units), the rigid
model with d 5 0.01 rotates very little (Fig. 5a); the
rotation is only 2° in terms of the Euler angleu. This is
reflected by the fact that the elements of the rotational
matrix for optimal superposition is either very close to 1
(uii ) or 0 (uij ) during the entire 105 reduced time unit period.
As the flexibility of the model increases (d increases from
0.01 to 0.1), relative rotation between different instanta-
neous structures starts to appear (Fig. 5b). Sinced 5 0.1 is
used for bond constraint in the actual model for the protein,

FIGURE 4 The nine rotational matrix elements,uij , that are obtained
when the structure is rotated to minimize the RMSD with respect to the
starting structure. The results oft* from 0 to 5000 reduced units are shown
at the top. The results for the entire simulation are shown on the bottom.

FIGURE 5 As in Fig. 4 but for the rigid model with the flexibility
parameter (a) d 5 0.01 and (b) d 5 0.1, respectively.
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this points to protein flexibility as the source of the time-
dependent rotation shown in Figs. 3 and 4.

That a flexible system can rotate with zero total angular
momentum is well established and has been used to explain
such everyday observations as that divers, gymnasts, and
cats can rotate under overall zero-angular momentum con-
ditions (Frohlich, 1980). For proteins, the movement of this
flexible system at each time step can be decomposed con-
ceptually into a rigid rotational motion in which the distance
between all pairs of residues are unchanged and the indi-
vidual translational motion of each residue that moves the
residues from the rigidly rotated positions to their final
positions. A rigid rotation under zero-total angular momen-
tum is possible when the angular momentum associated
with the rigid rotation is cancelled by the angular momen-
tum associated with the individual atomic motions.

The zero-angular momentum trajectory from the protein
model permits us to analyze how overall (rigid) rotations
affect the cross-correlation,cij , of the internal motions. The
cross-correlation of the internal motions for residues (at-
oms) i and j (Ichiye and Karplus, 1991) is defined by the
equation

cij 5
^~r i 2 ^r i&! z ~r j 2 ^r j&!&

Î^~r i 2 ^r i&!
2& Î^~r j 2 ^r j&!

2&
(5)

where^ & denotes configurational averages. Fig. 6 showscij

as a function of the average distance between residuesi, j,
^r ij&, obtained via two different methods for removing rota-
tional motions from the trajectory. When the rotational
motion is removed by rotating each coordinate to minimize
the RMSD for the entire molecule from the initial coordi-
nate set (Fig. 6a), thecij values show positive correlations
at small and large separations and negative correlations at
intermediate separations. This is in agreement with all-atom
molecular dynamics simulations of bovine pancreatic tryp-
sin inhibitor (BPTI) as well as normal mode results (Ichiye
and Karplus, 1991). The use of rigidly packed residues (core
residues here) as the reference frame for minimizing the
RMSD changes the long range correlation to nearly zero
(Fig. 6 b), a result similar to that obtained in all-atom
simulations of BPTI and lysozyme by Hu¨nengeberger et al.
(1995).

In Fig. 7, the cross-correlation matrixcij is calculated
directly from the zero-total angular momentum trajectory.
The trajectory is analyzed for eight different time intervals:
0–1000, 0–2000, 0–3000, 0–4000, 0–5000, 0–10000,
0–50000 and 0–100000. The matrix elements for each time
interval are calculated from the configurations obtained in
that length of time. On the short time scale (up to 4000
reduced time units,;4,000,000 collisions), the overall
shape of thecij versus distance curve is essentially the same
as that obtained by minimizing the RMSD for all 46 resi-
dues. As time increases, the correlation ofcij at long dis-
tance changes from positive to negative and the distribution

of cij at a specific distance becomes broader. A “pure” rigid
rotational motion has large negative correlation between the
parts that move in opposite directions. This leads to signif-
icant increases of negative correlations as the protein rotates
away from its original position (Fig. 3). This overall rotation
is “random” and, thus, it is expected to average to zero, if
the system is simulated long enough to explore fully its
rotational degrees of freedom. The similarity betweencij in
Fig. 6a and the “short” time behavior ofcij in Fig. 7
suggests that removing rotational motions by minimizing
the RMSD for the entire system is more appropriate than
doing it by minimizing the RMSD only for the more rigid
part of the system, in accord with the conclusions of Karplus
and Ichiye (1996) and Abseher and Nilges (1998).

We have shown that it is impossible to eliminate overall
global rotation exactly in molecular dynamics simulations
of a flexible protein-like model and by inference for a
protein. Such behavior has been observed in a zero angular
momentum simulation of BPTI (B. Brooks, unpublished).
This is a consequence of the fact that even under the
constraint of zero total angular momentum, global rotation

FIGURE 6 The cross-correlation of residue motions as a function of the
average distance between a pair of residues average over entire equilibrium
simulation (t* 5 0 to 105). Overall rotations are removed (a) via minimiz-
ing RMSD for all 46 residues and (b) via removing RMSD for the 9
residues that are closest to the center of mass on average.
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still occurs over a long time period due to the flexibility of
the protein. The short-time behavior of the zero total mo-
mentum trajectory, which is essentially rotation-free, sug-

gests that removing rotations by minimizing the RMSD for
the entire system is more appropriate than minimizing the
RMSD for the more rigid part of the system.

FIGURE 7 The cross-correlation of residue motions
as a function of the average distance between a pair of
residues average over entire equilibrium simulation.
The zero-angular momentum trajectory was used di-
rectly. The trajectory was analyzed for eight different
lengths of time intervals: 0–1000, 0–2000, 0–3000,
0–4000, 0–5000, 0–10000, 0–50000 and 0–100000,
as labeled.
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