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ABSTRACT This paper describes a framework model for proton conduction through gramicidin; a model designed to
incorporate information from molecular dynamics and use this to predict conductance properties. The state diagram
describes both motion of an excess proton within the pore as well as the reorientation of waters within the pore in the absence
of an excess proton. The model is constructed as the diffusion limit of a random walk, allowing control over the boundary
behavior of trajectories. Simple assumptions about the boundary behavior are made, which allow an analytical solution for the
proton current and conductance. This is compared with corresponding expressions from statistical mechanics. The random
walk construction allows diffusing trajectories underlying the model to be simulated in a simple way. Details of the numerical
algorithm are described.

GLOSSARY

Symbols that appear in two or more subsections are given.
When uppercase and lowercase symbols are given together,
lowercase denotes dimensionless quantities. Speciess may
represent eitherH (proton) ord (defect). Roman numeralR
denotes either side I or side II of the channel.

Latin Symbols

a, â Weights of boundary regions. Eqs.
38, 43, and 65.

bR Boundary stateR. See Fig. 2B.
CR, cR Bulk concentration on side R. See

Eqs. 32 and 57.
C0 A concentration introduced by Eq.

38; see also Eq. 72.
C• The unit concentration, e.g. 1M; see

Eq. 44.
$s Diffusion coefficient of dipole

reaction coordinate. See above Eq.
18.

di Defect statei; see Fig. 2C.
E Electric field in pore interior. See

above Eq. 3.
e0 Elementary electrical charge.

f H Proton electrical distance. See Fig.
2 A and Eq. 12.

f A
d , f B

d, f C
d 5 f d Defect electrical distances. See Fig.

2 A and Eqs. 13–15.
gs Integral defined by Eq. 120.
Hi Proton statei; see Fig. 2C.
hs Integral defined by Eq. 114.
is Integral defined by Eq. 121.
Js Flux of species s; see Eq. 31.
I Current through channel; see Eq. 83.

kB Boltzmann’s constant.
Ks Integration constants forPs; see Eq.

34.
L Spatial length of channel. See the

first paragraph in Construction of the
Model.

+s Length of speciess reaction
coordinate interval. See above Eq.
18.

n Number of random walk gridpoints
for each speciess. See Fig. 2C.

Ps, ps Probability density atms. See Eq. 27
and above Eq. 92.

Qi
s Probability that statesi is occupied;

see above Eq. 21.
QR

b Probability thatbR is occupied; see
above Eq. 32.

QFW
H Framework model probability that a

proton occupies the channel; Eq. 68.
QSM

H Statistical mechanical probability of
proton occupation; see Eq. 67.

T Absolute temperature.
ta, ts Access time or characteristic time for

speciess. See Eq. 55 and above.
VI Applied potential on side I; see

above Eq. 3.
Ws, ws Total energies of speciess. See Eqs.

17 and above 92.
z Spatial coordinate coaxial with the

pore. See the first paragraph in
Construction of the Model.
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Greek Symbols

aRCR Entrance transition probability on sideR;
see above Eq. 32.

b (kBT)21.
bR Exit transition probability on sideR; see

above Eq. 32.
gi

s Forward transition probability from statei.
See Fig. 2C and Eq. 18.

Dt Random walk time step; see Eq. 18.
Dt Factor inDt independent ofn, Eq. 20.
di

s Backward transition probability from state
i. See Fig. 2C and Eq. 19.

z Defined by Eq. 44.
hR Transition probability frombR to interior of

defect interval; see above Eq. 32.
ms, mi

s Dipole moment reaction coordinate for
speciess. See Fig. 1 and below Eq. 17.

6mA
s Maximum extent of coordinate interval.

See Fig. 1.
6mB

d Effective electrical coordinates of boundary
regions. See Fig. 2A and above Eq. 16.

6mC
d Maximum extent of interior of defect

interval. See above Eq. 1.
nR Transition probability from interior of

defect interval tobR; see above Eq. 32.
js, ji

s Dimensionless reaction coordinate for
speciess. See Eqs. 90 and 91.

FB
d See below Eq. 44.

FC
d Eq. 2.

FA
H Eq. 1.

Fs, fs Potential of mean force for speciess. See
Fig. 1 and above Eqs. 1 and 92.

DFs, Dfs Relative potentials of mean force. See Eqs.
1 and above Eq. 92.

Cs, cs Applied electrostatic potential energy. See
Fig. 1 and Eq. 3 and above Eq. 92.

CI, cI Energy of an elementary charge in potential
VI. See Eq. 37 and above Eq. 92.

INTRODUCTION

This paper describes the construction of aframeworkmodel
of single proton conduction through the ion channel gram-
icidin. A framework model is a kinetic model, designed to
incorporate potentials of mean force and diffusion coeffi-
cients computed by molecular dynamics simulations on a
very short time scale, and then use this information to
calculate conductances and associated observable quantities
measured on a much longer time scale. The reaction coor-
dinates of molecular dynamics simulations parameterize a
simplified configuration space for the system being mod-
eled. They explicitly parameterize the degrees of freedom
thought to be most important for describing the system. But
they average over fast variables; for example, those that

describe intermolecular vibrations. A framework model that
incorporates information from molecular dynamics is in the
same sense a simplified model of configuration space.

Framework models are somewhat similar to rate theory
models (reviewed by Hille, 1992), which can be regarded as
zero dimensional approximations of configuration space.
Rate theory models consist of states (e.g., the empty chan-
nel, an ion occupying one binding site, an ion occupying a
second binding site, etc.) and transitions between them. As
models of configuration space, they naturally incorporate
restrictions on internal degrees of freedom due to the nature
of condensed phase motion on molecular scales. For exam-
ple, one may easily describe channels whose occupancy is
limited to a single ion (e.g., La¨uger, 1973), or multiply
occupied channels (e.g., Hille and Schwarz, 1978). In this
respect, rate theory models of ion permeation enjoy an
important advantage over mean field models such as Gold-
man–Hodgkin–Katz theory (reviewed by Hille, 1992; re-
cently used by Dieckmann et al., 1999) or Poisson-Nernst-
Planck theory (for example, Chen et al., 1997; also
Kurnikova et al., 1999). In these models, a probability
distribution for ion concentration within the pore corre-
sponds to an average over states of 0, 1, 2, 3, . . . ions in the
pore.

Transitions between states of rate theory models are
exponentially distributed in time. When these transitions
describe ions within the pore, the exponential distributions
can be viewed as asymptotic approximations to diffusion
over energy barriers (Cooper et al., 1985, 1988). When the
transitions describe ions from the bulk solution entering the
pore, the exponential distribution corresponds to the as-
sumption that the ion entry rate into an empty channel does
not depend on the time elapsed since the channel last
became empty (McGill and Schumaker, 1996).

However, rate theory models are not entirely satisfactory
because they do not describe ion transport well when the
conditions for the asymptotic approximation for diffusion
over a barrier are not satisfied (Levitt, 1986; Dani and
Levitt, 1990). A way to overcome this difficulty is found in
the work of Levitt (1986), who showed how occupancy
restrictions can be incorporated into diffusion models.
McGill and Schumaker (1996) demonstrated that Levitt’s
model can be viewed as a diffusion within a state diagram
analogous to rate theory. The diagram is parameterized by a
single continuous reaction coordinate. Those authors further
showed how Levitt’s boundary conditions can be modified
so that diffusers entering the pore are exponentially distrib-
uted in time, corresponding to ions entering an empty chan-
nel at steady state.

The framework model we construct below is designed to
incorporate the molecular dynamics results of Pome`s and
Roux (1996, 1997, and manuscript in preparation), who
show how proton permeation may be dependent on both the
potential of mean force of an excess proton within the
permeation pore and the potential of mean force of water
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reorientation in the empty pore (that is, without an excess
proton). In the first section, we construct the model as the
diffusion limit of a random walk. The purpose of this
construction is to obtain boundary conditions that restrict
pore occupancy to a single excess charge, or a single defect
in water orientation. The diffusion limit of a random walk is
very well known in both the physical (Chandrasekhar,
1943) and mathematical literature (e.g., Karlin and Taylor,
1981). A good introduction can be found in the first chapter
of Zauderer (1989). However, our discussion is self-con-
tained. The boundary conditions we obtain allow the result-
ing model to be solved analytically.

The model is then solved for the special case of thermo-
dynamic equilibrium, showing how the occupation proba-
bility of the pore is related to the corresponding expression
from statistical mechanics. We obtain the general solution
for the current through the framework model and discuss
several of its properties. The solution depends on potentials
of mean force and diffusion coefficients, which can be
obtained from molecular dynamics. We further obtain the
solution for the channel conductance, with the derivative of
current with respect to applied voltage evaluated at thermo-
dynamic equilibrium. Finally, we describe the method of
numerically simulating trajectories underlying the frame-
work model. Schumaker et al. (2000) incorporate into the
framework model the results of the molecular dynamics
simulations of Pome`s and Roux (manuscript in preparation).
They then make a detailed comparison with experiment.

CONSTRUCTION OF THE MODEL

Figure 1A shows a state diagram for the dynamics of proton
permeation through gramicidin based on the results of
Pomès and Roux (manuscript in preparation). The state
diagram consists of two segments. The top segment corre-
sponds to diffusion of an excess proton through the pore.
For simplicity, we will sometimes refer to these states as a
proton occupying the pore.The excess proton cannot be
uniquely identified. Pome`s and Roux used as their reaction
coordinate the axial component of the orientation moment
of the pore contents. Schumaker et al. (2000) show how this
may be rescaled to give the axial component of the dipole
moment of the pore contents computed with respect to an
origin at the center of the channel; we denote this quantity
mH. To illustrate the meaning ofmH, consider a simple
example. Letz be the spatial coordinate co-axial with the
pore, extending over the interval2L/2 # z # L/2. If we
ignore pore waters and consider only an occupying proton,
then2e0L/2 # mH # e0L/2.

The proton segment in Fig. 1A is parameterized bymH,
with values ranging over the interval [2mA

H, mA
H]. The value

mH 5 2mA
H corresponds to a proton at the channel entrance

on the left (side I), andmH 5 mA
H corresponds to a proton at

the channel entrance on the right (side II). In general, we
expectmA

H , e0L/2, since the polarization of the pore waters

in response to the excess charge will reduce the dipole
moment (Roux and Karplus, 1993). The cartoons at the
upper right and left hand corners of the diagram depict
states on the proton segment.

Figure 1B shows the intrinsic potential of mean force,
FH, computed for the proton reaction coordinate (Pome`s
and Roux, 1997, and manuscript in preparation). The sim-
ulated system included the channel, pore waters, and a few
waters clustered outside each channel entrance. The mem-
brane lipid and bulk aqueous solution were not simulated.
The word intrinsic (Levitt, 1986) refers to components of
the potential apart from that due to the experimentally
applied transmembrane potential.FH has a shallow poten-
tial minimum near the center of the interval, corresponding
to the excess charge located near the center of the pore.

The bottom segment of Fig. 1A is parameterized by the
dipole moment of the water molecules in the pore in the
absence of an excess proton, denotedmd. For simplicity, we
will sometimes refer to these states as corresponding to an
empty poreor adefect occupying the pore,and we will refer
to the bottom segment as the defect segment. Values ofmd

range over the interval [2mA
d , mA

d ]. The valuemd 5 2mA
d

corresponds to water dipole aligned with oxygens pointing
to the right andmd 5 mA

d corresponds to water dipoles
aligned with oxygens pointing to the left.

The molecular dynamics simulations suggest that diffu-
sion of this reaction coordinate is often associated with an
entrance-initiateddefect in the hydrogen bond chain, with
water dipoles aligned on either side as suggested by the
cartoons below the defect segment. This terminology was
introduced by Phillips et al. (1999), and refers to a defect
that originates on the side of the channel opposite an exiting
proton. Those authors have suggested that defects may be
exit-initiated instead. Formally, the single proton conduc-
tion model that we develop here does not depend on this
choice.

Figure 1C shows the intrinsic potential of mean force,
Fd, computed for the defect reaction coordinate. Note that
values on the abscissa increase from right to left. The
potential minima are reflected in the molecular dynamics
simulations by defects frequently found near one of the
channel entrances, as indicated by the cartoons at the lower
left and lower right of Fig. 1A. These results suggest that a
proton may enter a channel that hasmd in a range of values
concentrated near one of the potential minima. This set of
possible transitions is suggested by the dashed lines be-
tween the segments in Fig. 1A.

Figure 2A again shows the state diagram corresponding
to the dynamics of proton permeation, with the set of
possible transitions between segments denoted by dashed
lines. These divide the defect segment into 3 regions; com-
pare with Fig. 1C. The interior, corresponding to most of
the central barrier, occupies the interval [2mC

d, mC
d]. Sur-

rounding this are boundary region I to the left and boundary
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region II to the right. Region I is the interval of defect
reaction coordinate from which a proton can enter the
channel on side I, and region II is the corresponding interval
on side II.

The gramicidin dimer is physically symmetrical about the
center of the pore, and the intrinsic potentials calculated by
the molecular dynamics simulations are very nearly sym-
metrical about the midpointsms 5 0, s [ { H, d}. We will
assume that these potentials are exactly symmetrical. Fur-
ther, there is an unknown energy difference between the

FIGURE 1 Hypothetical proton conduction mechanism. All energies are
in units of kBT for T 5 298 K. (A) State diagram for proton conduction
mechanism. The top segment is parameterized by the proton reaction coordi-
nate,mH. Cartoons at upper left and upper right depict pore contents at the ends
of the segment. An excess proton may enter from side I, at the left, and pass
through the pore to exit on side II, at the right. Pore waters are depicted as
angles with oxygen at the vertex. Oxygens tend to align toward the proton. The
bottom segment is parameterized by the defect reaction coordinate,md. A
defect in the hydrogen bonding structure between waters must pass through the
channel so that waters are realigned to accept another proton from side I.
Dashed lines indicate that the transition from the proton-occupied state to the
defect state may occur for the defect in a range of locations. (B) Proton
potential of mean force,FH (dots), and applied potential energy,CH (solid).
The proton PMF shown is that calculated by Pome`s and Roux (1997).
Potentials are defined in the interval2mA

H , mH , mA
H. (C) Defect PMF,Fd

(dots), as calculated by Pome`s and Roux (1997, and manuscript in preparation)
and applied potential energy,Cd (solid). Energy minima at either end of the
central barrier correspond to a state with a defect near one end of the pore.
Intervals of reaction coordinate between dashed lines on either side of the
central barrier are the boundary regions. These are lumped together to form the
boundary statesbI andbII, shown in Fig. 2B.

FIGURE 2 State diagrams and random walks. (A) State diagram of
hypothetical proton conduction mechanism; compare with Fig. 1A. 6mA

H

and 6mA
d are the extreme values of the reaction coordinate intervals;

compare with Fig. 1,B andC. The interior of the defect interval is bounded
by coordinates6mC

d. Boundary regions are the subintervalsmC
d , umdu ,

mA
d . In the framework model they have effective electrical coordinates

6mB
d. The symbolsf H and f A

d, f B
d, and f C

d denote the electrical width of
their respective subintervals. (B) State diagram of the framework model.
The boundary regions are lumped into boundary statesbI and bII . (C)
Random walk used to construct the framework model. StatesH1, . . . , Hn

scale to the proton segment in the diffusion limit,n3 `. Statesd1, . . . ,
dn are ordered right to left and scale to the defect segment. StatesbI andbII

scale to the discrete boundary states. (D) Symmetrized random walk used
by the numerical simulations. The notation for transition probabilities is
similar to that shown in panelC.
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proton and defect potentials of mean force shown in Fig. 1,
B andC. For these reasons, we will sometimes find it useful
to refer to the following relative potentials of mean force,

DFH~mH! 5 FH~mH! 2 FA
H , (1)

DFd~md! 5 Fd~md! 2 FC
d , (2)

whereFA
H 5 FH(mA

H) 5 FH(2mA
H), andFC

d 5 Fd(mC
d) 5

Fd(2mC
d).

Applied Field

Let V(z) denote the component of the electrostatic potential
due to an applied transmembrane potential,VI, on side I. It
is independent of the charge distribution of the channel and
the pore waters (Roux, 1997).V(z) is assumed to drop
linearly over the length of the channel, corresponding to a
constant electric fieldE 5 VI/L in the positivez direction.
This form for the potential is appropriate for the simple
cylindrical geometry of gramicidin (Jordan et al., 1989;
Roux, 1999). Some feathering of the potential does occur
near the channel entrances in these calculations, but, for
simplicity, we will use the linear approximation.

When the applied electric field is constant, the resulting
contribution to the potential energy of the pore contents
depends only on its net charge and dipole moment (e.g.,
Jackson, 1975). This is seen by considering the electrical
potential energy,Cs, as a function of the charge density,
rs(z), associated with speciess and the electrical potential
V(z),

Cs 5 E
2L/2

L/2

rs~z!V~z! dz, (3)

where the electrical potential is given by the linear drop

V~z! 5 VI/2 2 zE (4)

over the interval2L/2 , z , L/2. For the cases of the
proton occupied and empty pores, the applied potential
energy can be written in the forms,

CH 5 e0VI/2 2 mHE, (5)

Cd 5 2mdE, (6)

wheree0 is the elementary electronic charge, andms is the
dipole moment reaction coordinate. Electrical potential en-
ergies corresponding toVI 5 0.1 V are shown in Fig. 1,B
andC.

The potential energy drop around the cycle of the state
diagram in Fig. 2A must be zero. To compute the drop,
consider the following energy differences:

CH~ 2 mA
H! 2 CH~mA

H! 5 2mA
HE, (7)

CH~mA
H! 2 Cd~ 2 mA

d ! 5 0, (8)

Cd~ 2 mA
d ! 2 Cd~mA

d ! 5 2mA
dE, (9)

Cd~mA
d ! 2 CH~ 2 mA

H! 5 2 e0VI , (10)

Eqs. 7 and 9 follow directly from Eqs. 5 and 6. To verify
Eq. 8, consider a proton leaving the channel atmH 5 mA

H on
side II. We assume that the orientation of the water dipoles
in this state and the statemd 5 2mA

d are the same. Because
the electrical potential energy of the proton on side II is
zero, it then follows thatCH(mA

H) andCd(2mA
d ) are equal.

Similarly, Eq. 10 is obtained by considering that a proton
leaving the channel from side I carries with it a potential
energye0VI. Adding Eqs. 7–10 and dividing byE gives

2mA
H 1 2mA

d 5 e0L. (11)

This equation relates the physical length of the pore with the
maximum values of the proton and defect reaction coordi-
nates. When the valuesmA

H and mA
d obtained from the

molecular dynamics simulations of Pome`s and Roux (manu-
script in preparation) are used, we obtain the resultL 5 22.9
Å (Schumaker et al., 2000). This is slightly shorter than the
physical length of the pore. The discrepancy may be due to
the confinement of the excess proton in the molecular
dynamics simulations (Schumaker et al., 2000).

It is convenient to introduce dimensionless electrical dis-
tances, analogous to those encountered in rate theory (e.g.,
Hille, 1992).

f H 5 2m A
H/~e0L!, (12)

f A
d 5 ~m A

d 2 m B
d!/~e0L!, (13)

f B
d 5 ~m B

d 2 m C
d!/~e0L!, (14)

f d 5 f C
d 5 2m C

d/~e0L!, (15)

where the notationf d is used in the appendices. These
electrical distances are proportional to widths of subinter-
vals of reaction coordinate as shown in Fig. 2A. Eqs. 13 and
14 refer to the valuemB

d. The pointsmd 5 6 mB
d are shown

in Fig. 2A and will be the effective electrical coordinates of
the boundary regions. Expressing Eq. 11 in terms of the
electrical distances, we have

2f A
d 1 2f B

d 1 f C
d 1 f H 5 1. (16)

The total energy,W, of the pore contents is the sum of the
intrinsic and applied potentials,

Ws~ms! 5 Fs~ms! 1 ms~ms!. (17)

Random walk limit to a diffusion process

In this section, we construct the framework model for pro-
ton diffusion through gramicidin, whose state diagram is
shown in Fig. 2B. The random walk construction that we
use obtains the Smoluchowski equations (or their first inte-
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grals, the Nernst–Planck equations), which describe diffu-
sion of the reaction coordinatesmH and md in the proton-
occupied or proton-empty channels, respectively. Most
significantly, the construction also obtains the boundary
conditions that make possible a description of diffusion on
the state diagram, which is a simplified configuration space
for proton conduction through gramicidin. That is, by the
structure of the random walk, we describe either the diffu-
sion of a single excess charge through the channel or the
diffusion of the axial component of the dipole moment of
the pore waters in the absence of an excess charge.

The difference between the state diagram of Fig. 2B and
that of Fig. 2A lies in the description of the boundary
regionsmC

d , umdu , mA
d . The framework model lumps these

into discrete boundary statesbI andbII in the lumped state
approximation.These states are constructed so that their
probabilities are equal to the integral of the Boltzmann
factor over the boundary regions under conditions of sym-
metrical equilibrium; see Eq. 64 below. This approximation
greatly simplifies the mathematical description of entrance
and exit. Instead of a continuum of possible transitions
between the boundary regions on the defect segment and the
endpoints of the proton segment, as suggested by Fig. 2A,
we have a pair of transitions between the lumped statesbI

and bII and the proton segment, shown in Fig. 2B. The
lumped states surround the interior of the defect segment,
which contains the central barrier shown in Fig. 1C. Trans-
port of the defect reaction coordinatemd in the interior is
described diffusively, by a Nernst–Planck equation. This
lumped-state approximation gives an accurate description of
transport over the barrier (Schumaker et al., 2000; Mapes
and Schumaker, submitted) while leading to a model that is
analytically solvable.

The state diagram of the random walk is shown in Fig.
2 C. It is discrete in both space and time. StateHi, i [ {1,
2, . . . ,n}, denotes a proton at coordinatemi

H 5 mA
H(2i/n 2

1), and statedi, i [ {1, 2, . . . , n}, denotes a defect at
coordinatemi

d 5 mC
d(2i/n 2 1). Statesi will refer to eitherHi

or di. The two additional statesbI andbII will be taken to the
boundary states of Fig. 2B by the random walk construc-
tion. There are altogether 2n 1 2 states in the random walk.
We will define transition probabilities appropriately and
take the limitn3 ` to obtain the framework model.

Nernst–Planck equation for channel interior

Let +H 5 2mA
H and+d 5 2mC

d be the lengths of the reaction
coordinate intervals over which transport will be described
by a diffusion process. The distance between the statessi of
Fig. 2C is D+s 5 +s/n. Diffusion over the reaction coor-
dinate intervals is described by diffusion coefficients,$s,
having units of (dipole moment)2/time; for simplicity, we
assume that these are constants, independent ofms.

The probabilities,gi
s, for a transition from statesi to si11,

anddi
s, for a transition fromsi to si21, are given by

gi
s 5 Dt

$s

~D+s!2 expS12 b@Ws~mi
s! 2 Ws~mi11

s !#D, (18)

di
s 5 Dt

$s

~D+s!2 expS12 b@Ws~mi
s! 2 Ws~mi21

s !#D , (19)

whereb 5 (kBT)21 andDt is the time interval between steps
of this discrete-time random walk. We scaleDt with n so
that the leading order ofn in the expressions forgi

s anddi
s

is n0; transition probabilities then remain positive and finite
in the limit n3 `. Let

Dt 5 Dt/n2, (20)

whereDt is independent ofn. Dt must be chosen so that the
probability of leaving a state at each time step is no greater
than 1. This choice is made explicitly by the algorithm
described in Numerical Solution below.

The transition probabilitiesgi
s and di

s lead to the Boltz-
mann distribution at equilibrium. To see this, letQi

s be the
probability that statesi of the random walk is occupied. At
equilibrium, the system is in detailed balance with zero net
flux between any two states. This means

Qi
sgi

s 5 Qi11
s di11

s . (21)

Inserting the definitions for the transition probabilities gives
the result expected from the Boltzmann distribution,

Qi
s/Qi11

s 5 expb@Ws~mi11
s ! 2 Ws~mi

s!#. (22)

The transition probabilities may be expanded in the small
parameter 1/n to give a useful expression in preparation for
taking the limitn3 `. The expansion gives

gi
s 5 Dt

$s

~D+s!2 H1 2
1

2
bD+sWs9~mi

s!

1 ~D+s!2ei
s 1 2~n23!J , (23)

di
s 5 Dt

$s

~D+s!2 H1 1
1

2
bD+sWs9~mi

s!

1 ~D+s!2ei
s 1 2~n23!J , (24)

where

ei
s 5 2bWs0~mi

s!/4 1 b2Ws9~mi
s!2/8, (25)

and primes denote derivatives with respect to the argument.
We assumeWs0 is continuous. The transition probabilities
used by McGill and Schumaker (1996) are obtained from
Eqs. 23 and 24 by truncating after the first-order terms.

We now construct a limit of the random walk that leads
to the Nernst–Planck equation at steady state. Consider the
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statessi, 2 # i # n 2 1. At steady state, the total probability
flowing into si at each time step equals the total probability
flowing out. Equating these flows, we have the expression
for probability balance,

Qi
s~gi

s 1 di
s! 5 Qi11

s di11
s 1 Qi21

s gi21
s . (26)

Each state,si, represents a segment of thes interval of
lengthD+s 5 +s/n. While taking the limitn3 `, we wish
to consider the density,Ps, related to the state probabilities
by

Qi
s 5 Pi

sD+s, where Pi
s 5 Ps~mi

s!. (27)

Substitute Eqs. 23, 24, and 27 into 26, simplify, and use the
following finite difference expressions for first and second
derivatives:

~Ws9~ms!Ps~ms!!9 5 lim
n3`

(Wi11
s 9 Pi11

s 2 Wi21
s 9 Pi21

s )/~2D+s!,

(28)

Ps0~ms! 5 lim
n3`

(Pi11
s 2 2Pi

s 1 Pi21
s )/~D+s!2, (29)

whereWi
s9 5 Ws9(mi

s) andmi
s3 ms asn3 `. Note from Eq.

25 thatei
s tends to a continuous function ofms in this limit.

We obtain the Smoluchowski equation,

0 5
d2Ps

d~ms!2 1
d

dms bW9~ms!Ps. (30)

This is a diffusion equation with the second term corre-
sponding to a systematic force on the diffuser whose mag-
nitude is proportional to the gradient of the potential energy
W9. Integrating once, we obtain the Nernst–Planck equation,

Js 5 2$sSdPs

dms 1 bW9~ms!PsD , (31)

where Js is the flux of speciess. The first term on the
right-hand side is Fick’s law, and the second term corre-
sponds to the systematic force.

Note thatJs is positive when it is in the direction of
increasingms. That means that the flux of protons is positive
when directed from left to right in Fig. 2A, whereas the flux
of defects is positive when directed from right to left. In
both cases, positive flux corresponds to progress in the
clockwise direction around the diagram.

Entrance and exit transition probabilities

In this subsection, we obtain expressions for the entrance
and exit transition probabilities that connect the following
states in Fig. 2C: H1, bI, anddn on side I of the pore andHn,
bII , andd1 on side II. In particular, these probabilities are
scaled withn to obtain, in the limitn3 `, the state diagram
of Fig. 2B. In this figure, the interior of the defect segment
supports a probability density and the endpoints,bI andbII ,

have positive probability. The limit onn is taken in the
Boundary conditions subsection, following this one.

We begin the formal development by considering proton
transitions into and out of the channel for the random walk
state diagram shown in Fig. 2C. At equilibrium, there is no
net flow of ions into the channel at either entrance. On side
I, we form the detailed balance relationships betweenH1

andbI and betweenbI anddn and use these to eliminateQI
b;

the probability that boundary statebI is occupied. Similarly,
we eliminateQII

b on side II. This leads to

Q1
H

Qn
d 5

aICI

bI

nI

hI
, (32)

Qn
H

Q1
d 5

aIICII

bII

nII

hII
, (33)

where theCR are the excess proton concentrations on sideR.
We use concentrations instead of activities because diffu-
sion coefficients are defined in terms of concentration gra-
dients (Robinson and Stokes, 1965; see also McGill and
Schumaker, 1996).

We require that the detailed balance equations remain
satisfied in the limitn 3 `. In this limit, Q1

H and Qn
H

converge to values proportional to the probability density
PH on the proton segment at the endpoints2mA

H and1mA
H,

respectively. Similarly,Q1
d andQn

d converge to values pro-
portional toPd(2mC

d) and Pd(mC
d), respectively. The equi-

librium densities on the proton and defect segments are
obtained by solving Eq. 31 withJs 5 0, giving the Boltz-
mann distribution,

Ps~ms! 5 Kse2bWs(ms), (34)

where theKs are constants. Take the limit of Eqs. 32 and 33
asn3 `, using Eqs. 27 and 34. We obtain

lim
n3`

aICI

bI

nI

hI
5

KH

Kd exp~b@Wd~mC
d! 2 WH~ 2 mA

H!#!, (35)

lim
n3`

aIICII

bII

nII

hII
5

KH

Kd exp~b@Wd~ 2 mC
d! 2 WH~mA

H!#!. (36)

From the left-hand side of these equations, we see that the
constantKH/Kd must be proportional toCI in the first of
these equations and toCII in the second. This may be
understood by considering the Nernst equation,

CII 5 CIe
bCI, (37)

whereCI 5 eVI. We will set

KH

Kd 5
âCI

âC0

ebCI 5
âCII

âC0

, (38)

where the dimensionless quantity,â, and the concentration,
C0, have been introduced. We assume these do not depend
onCI, CII , or CI. Below,â is determined by the requirement
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that occupation probabilities of the framework model agree
with statistical mechanics in the case of a symmetrical
equilibrium (VI 5 0). We discussC0 further in Equilibrium
Probability for Proton Occupation.

Insert the second expression of Eq. 38 into the right-hand
side of Eq. 35 and the third expression of Eq. 38 into the
right-hand side of Eq. 36. The resulting detailed balance
relationships are satisfied by the following decomposition

lim
n3`

naICI

bI
5

1

â

CI

C0
exp~b@Wd~mB

d! 2 WH~ 2 mA
H! 1 CI#!,

(39)

lim
n3`

nI

nhI
5 â exp~b@Wd~mC

d! 2 Wd~mB
d!#!, (40)

lim
n3`

naIICII

bII
5

1

â

CII

C0
exp~b@Wd~ 2 mB

d! 2 WH~mA
H!#!, (41)

lim
n3`

nII

nhII
5 â exp~b@Wd~ 2 mC

d! 2 Wd~ 2 mB
d!#!. (42)

In making this decomposition, the boundary pointsbI and
bII are formally assigned defect reaction coordinates6mB

d.
The additional termCI in the exponent on the right-hand
side of Eq. 39 represents the electrostatic energy of an ion
entering on side I. The distribution of factors ofn on the
left-hand side of Eqs. 39–42 reflects the fact that the rates
of transitions from the proton and defect segments into the
boundary statesbI andbII must scale with one power ofn
higher than the rates of transitions from the boundary states
back to the segments. This is because the boundary state
probabilitiesQI

b andQII
b remain positive in the limitn3 `

while the statess1 andsn, s [ { H, d}, scale to the endpoints
of probability densities.

We next introduce the new quantities

a 5 â exp~b@FC
d 2 FB

d#!, (43)

z 5 FC
d 2 FA

H 2 kBT ln C0/C• , (44)

whereFB
d 5 Fd(mB

d) 5 Fd(2mB
d) and C• is the unit con-

centration, e.g.,C• 5 1 M (the argument of the logarithm
must be dimensionless). In the expression forz, the term
FC

d 2 FA
H depends on the absolute energy difference be-

tween the proton and defect potentials of mean force. This
energy difference was not determined by the molecular
dynamics. As a consequence,z will be treated as an adjust-
able parameter in our analysis of the Eisenman et al. (1980)
conductance data using the single proton model (Schumaker
et al., 2000).

We now simplify the exponents of Eqs. 39–42 by replac-
ing â with a, decomposingW according to Eq. 17, express-
ing CH in terms of Cd using Eqs. 8 and 10, using the
definitions for electrical distances, Eqs. 13 and 14, and

finally introducing the definition ofz. The result is

lim
n3`

naICI

bI
5

1

a

CI

C•
exp~b@f A

dCI 1 z#!, (45)

lim
n3`

nI

nhI
5 a exp~bf B

dCI!, (46)

lim
n3`

naIICII

bII
5

1

a

CII

C•
exp~b@2f A

dCI 1 z#!, (47)

lim
n3`

nII

nhII
5 a exp~ 2 bf B

dCI!. (48)

The following definitions are consistent with these con-
straints:

aI 5 aII 5 Dt~ta!21a21C•
21ebz, (49)

bI 5 Dt~ta!21nexp~ 2 bf A
dCI !, (50)

bII 5 Dt~ta!21nexp~bf A
dCI !, (51)

nI 5 Dt~td!21n2aexp~bf B
dCI !, (52)

nII 5 Dt~td!21n2aexp~ 2 bf B
dCI! , (53)

hI 5 hII 5 Dt~t d!21n, (54)

where the access time,ta, is the second free parameter
optimized to fit the Eisenman et al. data set. We also
introduce the proton and defect diffusion times

ts 5 ~+s!2/$s, (55)

wheres [ { H, d}. Eqs. 49–54 complete our description of
the discrete-time, discrete-state random walk whose state
diagram is shown in Fig. 2C. The time step isDt. The
transition probabilitiesaRCR, bR, nR, andhR, R [ {I, II},
are all dimensionless. The rates of transitions into the proton
segment, equal toaRCR/Dt, are independent ofn. The
scaling of thebR with n is then determined by the con-
straints given in Eqs. 45 and 47.

Our scaling of the entrance rate as independent ofn
means that proton entrances are exponentially distributed in
time when the channel is accessible to protons. For exam-
ple, when the system is near boundary statebI of Fig. 2B,
one waits an exponentially distributed length of the accu-
mulated time spent in statebI before a proton enters the
channel. This is very similar to rate theories, where transi-
tions between the discrete states of the system are exponen-
tially distributed in time and, in particular, one waits an
exponentially distributed time in the empty state before an
ion enters the channel. The exponential distribution may be
considered as arising from the assumption that the ion entry
rate into an empty channel does not depend on the time
elapsed since the channel last became empty (McGill and
Schumaker, 1996). This will often be a good approximation
for the entry of distinct ions into the channel, although it
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does not capture the fractal character of the trajectories of
individual ions.

The electrical distance,f A
d , appearing in Eqs. 45 and 47 is

assigned to thebR. This means that the entrance rate is
independent ofCI. Physically, this choice assumes that
entrance is limited by diffusion up to the channel mouth,
and not by a local barrier at the channel entrance. Diffusion
up to the channel mouth should not be very sensitive to an
applied electric field, which would not penetrate far into an
electrically conducting solution. In contrast, an applied field
might well speed transitions over a local barrier near the
membrane surface. The sublinear IV curves observed in the
proton conduction experiments of Eisenman et al. (1980),
Decker and Levitt (1988), and Akeson and Deamer (1991)
at low proton concentrations, where conductance is likely to
be limited by entrance, are consistent with the idea that the
entrance rate is not strongly dependent onCI. Even in the
absence of a local entrance barrier, however, our assignment
of f A

d neglects interfacial polarization (Andersen, 1983),
which becomes significant at low ionic strength and large
applied potentials.

The transition probabilities,nR, are scaled withn in the
same way asgi

s anddi
s (see Eqs. 23 and 24, noteD+s } 1/n).

These latter transition probabilities lead to a diffusion pro-
cess in the limitn 3 `. The scaling of thenR is thus
consistent with modeling motion of defects from the region
of the central barrier to the boundary regions as diffusive.
The scaling of thehR with n is then determined by the
constraints given in Eqs. 46 and 48. The assignment of the
electrical distances,f B

d, to the transition probabilities,nR,
instead of thehR is arbitrary. But we do not expect these
rapid transitions to be rate limiting, so this choice may not
be important.

Boundary conditions

In this subsection, we start from expressions for a steady-
state flux through the entrances I and II of the pore as
described by the random walk in Fig. 2C. Inserting the
definitions for the transition probabilities that we have pre-
viously obtained, and taking the limitn 3 `, we obtain
boundary conditions for the framework model of Fig. 2B.
The calculations are straightforward, but somewhat cum-
bersome. Use of the dimensionless variables described in
Appendix A shortens the intermediate expressions.

On side I, balance probability flux in and out of the state
H1 of Fig. 2C. We have

Q1
H~g1

H 1 bI! 5 QI
baICI 1 Q2

Hd2
H , (56)

Substitute in expressions for transition probabilities, Eqs.
23, 24, 49, and 50, as well as the relationship between state
probability and density, Eq. 27. Divide by a common factor,
rearrange terms, take the limitn3 `, and, finally, use the

definition of JH, Eq. 31, to obtain (see Appendix A)

PH~ 2 mA
H!+H exp~ 2 bf A

dCI! 5 2JHta 1 QI
ba21ebzcI ,

(57)

wherecI 5 CI/C• is the dimensionless concentration.
To complete the analysis of side I, balance flux in and out

of statedn,

Qn
d~dn

d 1 nI! 5 QI
bhI 1 Qn21

d gn21
d . (58)

Make the appropriate substitutions, rearrange terms and
take the limitn3 ` to obtain

QI
b 5 Pd~mC

d!+da exp~bf B
dCI!. (59)

Similarly, on side II, flux in and out of stateHn is balanced
to obtain

PH~mA
H!+H exp~bf A

dCI! 5 JHta 1 Q II
ba21ebzcII , (60)

and balancing flux in and out of the stated1 gives

QII
b 5 Pd~ 2 mC

d!+daexp~ 2 bf B
dCI!. (61)

We can further eliminateQI
b and QII

b from Eqs. 57 and
59–61 to yield

PH~ 2 mA
H)+Hexp~ 2 bf A

dCI!

5 2JHta 1 Pd~m C
d!+dexp~b~f B

dCI 1 z!!cI , (62)

PH~mA
H!+Hexp~bf A

dCI!

5 JHta 1 Pd~ 2 mC
d!+dexp~b~ 2 f B

dCI 1 z!!cII , (63)

Note that these expressions are dimensionless. The density,
Ps, has units of inverse reaction coordinate, and the flux,Js,
has units of inverse time.

Expression for a

The dimensionless quantityâ was originally introduced in
Eq. 38 and then expressed in terms ofa in Eq. 43. To obtain
an expression fora, we set the probability of the boundary
statesbI andbII equal to the integral of the Boltzmann factor
over the respective boundary regions under the condition of
symmetrical equilibrium:CI 5 CII andCI 5 0. For example

QI
b 5 E

mC
d

mA
d

Pd~md! dmd. (64)

At equilibrium, Pd(md) is given by Eq. 34. Substitute in for
QI

b using Eq. 59, withCI 5 0, and then on both sides for
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Pd(md) using Eq. 34. Solving fora, we obtain

a 5 ~+d!21 E
mC

d

mA
d

exp~ 2 bDFd~md!! dmd

5 ~+d!21 E
2mA

d

2mC
d

exp~ 2 bDFd~md!! dmd. (65)

The value ofa is given as an integral over the relative
energy,DF(md) 5 F(md) 2 F(mC

d), and can be evaluated
after a choice is made formC

d. Eq. 65 completes the con-
struction of the single proton model using the lumped state
approximation. We next show that the model is consistent
with statistical mechanics under the condition of symmet-
rical equilibrium.

EQUILIBRIUM PROBABILITY FOR
PROTON OCCUPATION

Insight may be gained into the physical assumptions that lie
behind the framework model by comparing the expression
for the equilibrium probability of proton occupation of the
pore with the analogous expression from statistical mechanics.

Statistical mechanics

For the purpose of constructing a partition function, the total
energy of the empty pore includes the energy of a reference
proton in solution far away from the channel. Assuming that
the reference state is on side I, and approximating activities
by concentrations, the energy of the reference proton may
be written in the form

Wref
H 5 kBT ln CI/CH 1 CI , (66)

whereCH is a constant with units of concentration. Accord-
ing to statistical mechanics, the probability of proton occu-
pation is then equal to

QSM
H 5

*
2mA

H
mA

H exp~ 2 bWH~mH!! dmH

*
2mA

H
mA

H exp~ 2 bWH~mH!! dmH

1 ~CH/CI!exp~ 2 bCI!*2mA
H

mA
H exp~ 2 bWd~md!! dmd.

(67)

Because the intervals [2mA
H, mA

H] and [2mA
d , mA

d ] only in-
clude the pore interior, this expression neglects all interac-
tions between the channel and ions in the aqueous solution
outside.

Framework model

The equilibrium probability for proton occupation in the
framework model is

QFW
H 5 E

2mA
H

mA
H

PH~mH! dmH. (68)

We also have the normalization condition

1 5 E
2mA

H

mA
H

PH~mH!dmH

1 E
2mC

d

mC
d

Pd~md!dmd 1 QI
b 1 QII

b . (69)

We construct an expression comparable to that from
statistical mechanics by dividing the right-hand side of Eq.
68 by the right-hand side of Eq. 69. Form the ratio and
simplify (see Appendix B) to obtain

QFW
H

5
*

2mA
H

mA
H exp~ 2 bWH~mH!! dmH

*
2mA

H
mA

H exp~ 2 bWH~mH!! dmH 1
+H

+d

C0

CI
exp~ 2 bCI!!

,

(70)

where

! 5 E
2mC

d

mC
d

exp~ 2 bWd~md!! dmd

1 exp~ 2 bCd~mB
d!! E

mC
d

mA
d

exp~ 2 bFd~md!! dmd

1 exp~ 2 bCd~ 2 mB
d!!E

2mA
d

2mC
d

exp~ 2 bFd~md!! dmd.

(71)

To make the correspondence betweenQFW
H and QSM

H ,
equate the coefficient of the integral in the second term of
the denominator of Eq. 67 with the coefficient of! in Eq.
70. This leads to

CH 5 ~+H/+d!C0 . (72)

With this identification, the equilibrium expressions for
QSM

H andQFW
H are identical whenCI 5 0. Under the influ-

ence of an applied potential, the framework model makes
the approximation

E
2mA

d

mA
d

exp~ 2 bWd~md!!dmd < !. (73)
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The expression for!, Eq. 71, shows that the boundary
regions of the framework model act electrically like points.

C0 is a free parameter in the framework model theory that
we have developed thus far, and is combined with the
unknown free energy difference,FC

d 2 FA
H, between the

defect and proton potentials of mean force in the expression
for z given by Eq. 44. Our analysis of the data of Eisenman
et al. (Schumaker et al., 2000) only requires a value forz.
However, an expression forC0 can be obtained with the
help of the statistical mechanical theory of selective ion
channels developed by Roux (1999). This givesC0 as the
inverse of an effective pore volume accessible to the excess
proton (Schumaker, manuscript in preparation). This result
may be useful for interpreting temperature dependence stud-
ies of proton conduction.

GENERAL SOLUTION OF FRAMEWORK MODEL

In Appendix C, we find the general solution for the frame-
work model proton current,JH. The method of solution
depends on solving a linear set of equations, and, in this
respect, is similar to that of rate theory. See, for example,
Läuger (1973) or Hille and Schwarz (1978).

A linear system of eight equations and eight unknowns is
obtained. Two of the equations arise by integrating the
Nernst–Planck equations, Eq. 31, fors [ { H, d}. Four
equations come from the boundary conditions, namely Eqs.
57 and 59–61. The seventh equation is the normalization
condition, Eq. 69, and the eighth equation is simply the
equality of the proton and defect fluxes,JH 5 Jd, which
holds at steady state. The eight corresponding unknowns are
the densities at either end of the proton and defect diffusion
intervals, namelyPH(mA

H), PH(2mA
H), Pd(mC

d), andPd(2mC
d),

the probabilitiesQI
b andQII

b of the defect boundary regions,
and the fluxesJH andJd. Three variables are quickly elim-
inated to give a system of five equations in Appendix C,
which is then solved.

The solution for the current has the form

JH~cI , cII , CI! 5
cIe

bCI 2 cII

tHFH 1 tdFd 1 taFa , (74)

where the dimensionless variablescI and cII give the nu-
merical value of the bulk concentrations on either side of the
channel in standard units (e.g., moles), andbCI 5 eVI/kBT
is proportional to the applied electrical potential,VI. tH and
td are the characteristic times for proton and defect diffusion
defined by Eq. 55, and the access time,ta, is a characteristic
time for entrance and exit, processes that were not repre-
sented in the molecular dynamics simulations. The coeffi-
cients of the characteristic times have the form

FH 5 F0
H 1 F1

HcI 1 F2
HcII , (75)

Fd 5 F1
dcI 1 F2

dcII 1 F3
dcIcII , (76)

Fa 5 F0
a 1 F1

acI 1 F2
acII , (77)

where theFi
s are coefficients given in Appendix C.

Note that the coefficientFd in the denominator ofJH

includes a term proportional to the productcIcII . As cI and
cII increase, this term, in principle, gives an eventually
decreasing flux,JH. Single-ion theories that describe the
empty channel by a single indivisible state give rise to
expressions forJH whose forms are similar to Eq. 74, but
without such quadratic terms in the denominator. This is
true for single-ion rate theories (for example, La¨uger, 1973)
and single-ion diffusion theories (Levitt, 1986; McGill and
Schumaker, 1996).

The origin of the quadratic term is reminiscent of the
“clogging” mechanism described by Schumaker and Mac-
Kinnon (1990). When bothcI andcII are sufficiently high,
the system becomes trapped in the proton segment of the
state diagram of Fig. 2B. For example, an ion that exits on
side II will leave the system in statebII , but an ion entry
from side II is likely to occur before the defect reaction
coordinate can cross the central barrier to statebI. This
effect reduces the rate of cycling around the diagram and so
reduces the fluxJH at very highcIcII .

PROPERTIES OF THE GENERAL SOLUTION

Current symmetry

The gramicidin dimer is symmetrical about its center,z5 0,
a property reflected in the symmetry of the potentials of
mean force calculated by Pome`s and Roux (manuscript in
preparation):Fs(ms) 5 Fs(2ms). As a consequence of this
and the symmetry properties of the applied potentialC
about the channel center, the framework model currentJ,
Eq. 74, should have the symmetry

J~c2, c1, 2 C! 5 2J~c1, c2, C! (78)

for all concentrationsc1 andc2, as well as electrical poten-
tial energiesC. Further, the symmetry should hold while the
characteristic times,ts, are varied independently of each
other. Write the coefficientsF i

s in the denominator ofJ,
given by Eqs. 75–77, as functions of the applied potential:
F i

s 5 F i
s (CI). Then the current symmetry holds if and only

if the coefficients have the properties,

F 0
s~2C! 5 e2bCF 0

s~C!, (79)

F 2
s~2C! 5 e2bCF 1

s~C!, (80)

F 3
s~2C! 5 e2bCF 3

s~C!, (81)

In Appendix D, we demonstrate that these coefficient sym-
metries hold.
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Saturating current at high voltage

At very high applied potentials, it is reasonable to expect
that the proton current through gramicidin should saturate at
a finite value. This is because one would not expect the
applied potential to reach far into the aqueous solutions on
either side of the membrane, because these solutions are
electrical conductors. This reasoning is consistent with IV
measurements through gramicidin by Akeson and Deamer
(1991). However, it ignores the effects of interfacial polar-
ization, which were measured by Andersen (1983) for the
conduction of several different cations through gramicidin
at low ionic strength.

The framework model is constructed to give the saturat-
ing behavior; the entrance rate constants,aRCR, are inde-
pendent of the applied potentialCI, see Eq. 49. In Appendix
E, the limiting current is calculated to be

lim
CI3`

J 5 cI~t
aa!21ebz. (82)

This result is easily understood in view of the expression for
aRCR given by Eq. 49. The saturating current is simply the
entrance rate: the transition probability divided by the time
stepDt.

Equilibrium conductance

The conductance at Nernst equilibrium is defined by

GEq 5
dI

dVI
U

Eq

5 e0
2

dJH

dCI
, (83)

whereI 5 e0J
H is the current through the channel. Appendix

F shows how this quantity is computed from Eq. 74 and that
the denominator can be written in a surprisingly compact
form. The result simplifies even further under the condition
of a symmetrical equilibrium, withcI 5 cII 5 c andCI 5
0. Denoting byG0 the conductance evaluated at symmetri-
cal equilibrium, we find

G0 5
e0

2

kBT

c

@~tHh0
H 1 2ta!e2bz 1 tdh0

dc#~g1
d 1 g0

Hebzc!
, (84)

where

h0
H 5 ~+H!21 E

2mA
H

mA
H

exp~bDFH~m!!dm, (85)

h0
d 5 ~+d!21 E

2mC
d

mC
d

exp~bDFd~m!!dm, (86)

g0
H 5 ~+H!21 E

2mA
H

mA
H

exp~ 2 bDFH~m!!dm, (87)

g1
d 5 ~+d!21E

2mA
d

mA
d

exp~ 2 bDFd(m)) dm. (88)

The first two terms in the expression forz, Eq. 44, give
the free energy difference between the proton and defect
potentials of mean force. The denominator of Eq. 84 con-
tains terms proportional to bothebz ande2bz. Consequently,
the conductance decreases if the free energy difference
between the profiles is either sufficiently large and positive
or sufficiently large and negative.

The conductance also decreases if theDFs have shapes
with high maxima (theh0

s are large) or deep minima (theg0
s

are large). Conductance is maximum when theDFs are
relatively flat and the magnitude of the energy difference,z,
is not too large. Finally, notice that the denominator ofG0

is quadratic inc, reflecting the quadratic dependence of the
denominator ofJ, Eq. 74, on concentration.

NUMERICAL SOLUTION

Numerical simulations of random walks are used by Schu-
maker et al. (2000) to qualitatively demonstrate the nature
of the trajectories underlying the single proton conduction
model. They may also represent an interesting alternative
method for generating Brownian dynamics simulations (for
example, Jakobsson and Chiu, 1987). In this section, we
describe how to construct simulations corresponding to the
analytical theory.

The random walk shown in Fig. 2C is convenient for
construction of the framework model, but less suitable for
numerical simulation. Instead, the numerical simulation
takes place on the symmetrized random walk shown in Fig.
2 D. To account for the additional state, we replacen3 n 1
1 in the formula for the time step, Eq. 20, and in the
formulas for the entrance and exit transition probabilities,
Eqs. 49–54. These formulas then define the simulated ran-
dom walk.

According to Eq. 27, each random walk gridpoint corre-
sponds to a reaction coordinate subinterval of widthD+s.
This is true even for the symmetrized endpointsi 5 0 and
i 5 n corresponding to coordinatesmd 5 6mC

d. The sym-
metrized random walk should then most appropriately be
identified with diffusion on the interval6(1 1 1/n)mC

d. For
this reason, we compare analytical results using the value
for a given by Eq. 65 with numerical results using the
modified value

asim 5 ~+d)21E
(111/n)mC

d

mA
d

exp(2bDFd(md)) dmd. (89)

In the simulations, half of the probabilities associated with
the endpointsi 5 0 and i 5 n are added to the boundary
state probabilitiesQI

b andQII
b, respectively. With our defi-
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nition of the symmetrized random walk, use ofasim and this
treatment of probability is necessary for the good agreement
between the simulated and exact probability densities de-
scribed below. However, this method of simulating the
boundary conditions has an ad hoc character and can un-
doubtedly be improved.

The simulated random walk is discrete in both time and
space, conforming to the theoretical discussion. Because of
the large difference between the proton and defect diffusion
coefficients obtained from molecular dynamics (Schumaker
et al., 2000), transition rates on the proton segment of the
state diagram are much higher than those on the defect
segment. To retain numerical efficiency, different values of
Dt are used to describe proton and defect diffusion. For the
same reason, dwell times in the statesbI andbII are calcu-
lated from geometric distributions directly, without taking
time steps, similar to the method used to calculate exit from
the empty state of the single ion model (McGill and Schu-
maker, 1996).

Proton and defect probability densities are shown in Fig.
3, A andB. These runs use the potentials of mean force and
diffusion coefficients obtained from the molecular dynam-
ics simulations of Pome`s and Roux (manuscript in prepa-
ration), and shown in Fig. 1,B andC. Densities shown in
Fig. 3 represent the average of four simulations of about
2.13 109 time steps each. Each of the four simulations was
given a different seed to initialize the random number
generator (ran2, described by Press et al., 1992) but all other
parameter values were kept the same. In making these
calculations, the intrinsic potentials are interpolated linearly
between grid points where potentials of mean force were
calculated by molecular dynamics. The piecewise smooth
character of the probability densities is due to the piece-wise
linearity of the interpolated potentials.

The simulated and exact proton densities are very similar
in both shape and amplitude. The integrated probability of
the simulated proton density is only about 0.5% greater than
that of the exact solution for the proton density. This excel-
lent agreement is in part fortuitous, because only 896 pro-
tons entered and left the pore in the simulations that pro-
duced Fig. 3. If we estimate the uncertainty in this number
as 8961/2, the corresponding variation in the probability for
proton occupation is about 3.3%. In a second simulation,
made using a different parameter set, the difference between
the simulated and exact proton occupation probability was
slightly larger than the estimate based on the square root of
the number of protons that enter the pore (results not
shown). For the simulation used to make Fig. 3, the defect
density and boundary state probabilitiesQI

b andQII
b are also

in excellent agreement with the exact solution.
Fig. 4 shows the current through the framework model as

a function of applied voltage. The exact solution of the
framework model is compared with simulations at 50, 100,
and 200 mV applied potential. Agreement is very good. We
have also used the numerical simulation method to calculate

mean first passage times across the defect potential barrier
as a function of applied potential, following the protocol
used to construct Fig. 5 in Schumaker et al. (2000). Mean
first passage times obtained by the simulation method are in
excellent agreement with those results (unpublished).

DISCUSSION

We have constructed a framework model for single proton
conductance through gramicidin, a model designed to in-
corporate the results of molecular dynamics simulations
(Pomès and Roux, 1996, 1997, and manuscript in prepara-
tion) and used it to predict conductance properties. Such
models are currently necessary to bridge the gap in time

FIGURE 3 Exact and simulated framework model probability densities.
The analytical solution of the framework model is given by the solid
curves, and results of numerical simulations are given by the dots. Proton
and defect trajectories were simulated on the symmetrized random walk
shown in Fig. 2D with n 5 57. Densities were obtained by averaging
together the results of four runs of about 2.13 109 time steps each.CI 5
CII 5 0.01 M andVI 5 100 mV. Parameter values arexA

H 5 3.35,xA
d 5

8.1, xB
d 5 6.8, andxC

d 5 5.7 with a 5 0.4348 and scalingmd 5 axd (see
Schumaker et al., 2000). In addition,z 5 3.60 andta 5 23.5 ns. (A) Density
on the proton segment for2mA

H , mH , mA
H. (B) Density on the defect

segment for2mC
d , md , mC

d. The analytical solutions for the probabilities
of the boundary regions on either side of the defect interval areQI

b 5 0.440
andQII

b 5 0.188. Numerically estimated values of these probabilities are
QI

b 5 0.438 andQII
b 5 0.184.
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scales between molecular dynamics simulations and elec-
trophysiology. The framework model consists of a coupled
pair of Nernst–Planck equations describing the diffusion of
the axial component of the pore dipole moment in the
presence or in the absence of an excess proton in the chain
of water molecules occupying the gramicidin pore. In the
absence of an excess proton, the dipole moment parameter-
izes the reorientation of the pore waters from a configura-
tion in which the axial component of their dipole moments
point in the2z direction to a configuration in which the
axial component points in the1zdirection. The simulations
suggest that water reorientation is mediated by a defect in
the hydrogen bond structure that passes through the water
chain. Therefore, we also describe the empty or neutral
channel as one in which a defect occupies the pore.

The Nernst–Planck equations and their boundary condi-
tions are obtained as the limit of a sequence of random
walks. By the random walk construction, the boundary
conditions restrict the model to describing a single diffusing
proton or a single diffusing defect. In other words, we
construct a diffusion process on a simplified configuration
space for proton conduction through gramicidin, portrayed
by the state diagram shown in Fig. 2B. This is much
different from Goldman–Hodgkin–Katz theory (Hille,
1992) or Poisson Nernst–Planck theories (for example,
Chen, 1997), which are mean field theories. In these latter
cases, a solution corresponds to a superposition of many
different occupancy states of ions in the pore.

From the simulations, we obtain the potential of mean
force for proton and defect diffusion through the pore as
well as estimates of the proton and defect diffusion coeffi-
cients (Schumaker et al., 2000). The proton potential of
mean force, shown in Fig. 1B, has the form of a shallow
potential well. Transport across such a profile is not de-
scribed well by rate theories, which are based on asymptotic

approximations to diffusion over energy barriers (Cooper et
al., 1985, 1988). The defect potential of mean force has the
form of a high central barrier separating potential minima.
The potentials and diffusion coefficients, obtained from
molecular dynamics, completely determine the description
of transport in the pore interior. By incorporating this in-
formation from the simulation, the framework model can
describe this portion of the permeation process without
adjustable parameters.

However, the simulations of Pome`s and Roux do not
address the processes of ion entrance and exit. Here, it is
necessary for the framework model to introduce some de-
scription. We take a very simple and phenomenological
approach. Proton entrances on a given side are assumed to
be exponentially distributed in time when the channel is
accessible to occupation. The entrance process is then de-
scribed by a single adjustable parameter, the mean time
before a proton enters an empty channel. This is the same
description of ion entrance as is implicit in rate theories. The
exit process must then satisfy detailed balance with entrance
at equilibrium. It also involves a single adjustable parame-
ter, which would be known if the absolute free energy
difference between the proton and defect potentials of mean
force were known. Finally, there is a third adjustable pa-
rameter, which is also concerned with the ion entrance and
exit process. This is due to the fact that the state of the
waters in the empty channel is not precisely known just as
an excess proton leaves or enters; instead, the dipole mo-
ment of the empty channel may be in one of the boundary
regions of Fig. 1C. The width of these regions is the third
parameter. In practice, a reasonable value for this parameter
can be chosen, encompassing the potential minima on either
side of the central barrier (Schumaker, et al. 2000). Only the
two parameters controlling the entrance and exit rates need
be optimized to make a comparison with experiment.

The conduction mechanism of our framework model is
easily grasped by means of a state diagram, which is anal-
ogous to those that describe rate theory permeation models,
see Fig. 2B. As a proton passes through the channel, say
from side I to side II, the proton reaction coordinate follows
its progress on the upper segment of the diagram from left
to right. The proton exits the channel, leaving water mole-
cules partially aligned. This corresponds to the lumped state
bII . The dipole moment of the water chain must then turn to
become receptive to another proton entering on side I. The
molecular dynamics simulations (Pome`s and Roux, 1997,
and manuscript in preparation) suggest that turning is me-
diated by a defect in the hydrogen bond structure that passes
through the water chain. This defect is followed by the
reaction coordinate that parameterizes the lower segment of
the state diagram, from right to left. When the reaction
coordinate is in the lumped statebI, the system is ready to
accept another free proton from side I.

The most problematic feature of this model may be the
treatment of the boundary conditions. An important com-

FIGURE 4 Exact and simulated framework model proton current. The
figure shows currentI as a function of applied voltage under the same
conditions as in Fig. 3. The analytical solution of the framework model, Eq.
74, is shown by the solid curve. Error bars show twice the standard
deviation of the mean for the four runs described in the legend of Fig. 3.
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ponent of the configuration space is missing, which was
pointed out following the statistical mechanical expression
for the probability of proton occupation, Eq. 67. Therefore,
there is no description of the interaction of the channel with
excess protons outside, but close to, the entrance. For ex-
ample, it is plausible that water dipoles are partially oriented
by nearby protons before they enter the channel. In contrast,
our model implicitly assumes that the orientation of channel
waters is independent of excess protons on the outside, and
that proton entrance only becomes possible when the water
dipoles happen to be favorably aligned. To test this assump-
tion and possibly construct a more realistic model, it would
be very useful to have molecular dynamics simulations of
the ion entrance process.

APPENDIX A: DIMENSIONLESS VARIABLES AND
BOUNDARY CONDITIONS

Results in the body of this paper are given in dimensional form, but many
calculations become less cumbersome when dimensionless variables are
used. Reaction coordinate intervals over which proton or defect diffusion
is described are conveniently rescaled to [0, 1]. Let

jH 5 ~1 1 mH/mA
H!/2, (90)

jd 5 ~1 1 md/mC
d!/2. (91)

Then the random walk of Fig. 2C takes place on the grid pointsji
s 5 i/n,

{ i 5 1, 2, . . . ,n}.
Dimensionless energies are defined:fs(js) 5 bFs(ms), Dfs(js) 5

bDFs(ms), cs(js) 5 bFs(ms), andws(js) 5 bWs(ms). For the energy due to
the applied potential, writecI 5 bCI. The dimensionless probability
density isps(js) 5 Ps(ms)+s. Electrical potential energies, corresponding to
Eqs. 5 and 6, can then be written:

cH~jH! 5 cI/2 2 fH~2jH 2 1!cI/2, (92)

cd~jd! 5 2f C
d~2jd 2 1!cI/2. (93)

For the derivation of the boundary conditions, it is helpful to use the
compact notation,wi

s 5 ws(ji
s) andwi

s9 5 ws9(ji
s), where the prime denotes

a derivative with respect to the argument. The transition probabilities can
then be written as

gi
s 5 Dt~ts!21n2H1 2

wi
s9

~2n!
1

êi
s

n2 1 2~n23!J , (94)

di
s 5 Dt~ts!21n2H1 1

wi
s9

~2n!
1

êi
s

n2 1 2~n23!J , (95)

wherets is given by Eq. 55 and

êi
s 5 2ws0~ji

s!/4 1 ws9~ji
s!2/8. (96)

Insert Eqs. 94, 95, 49, and 50 into Eq. 56 and letn3 ` to obtain

0 5 ~tH!21@pH9~0! 1 wH9~0!pH~0!#

2 ~ta!21pH~0!e2fA
d cI 1 ~ta!21QI

ba21ebzcI . (97)

This equation can be simplified by noting that the Nernst–Planck equation,
Eq. 31, can be written in terms of dimensionless variables as

Js 5 2~ts!21@ps9~js! 1 ws9(js!ps~js!]. (98)

Substitution of this expression into Eq. 97 gives Eq. 57.

APPENDIX B: EQUILIBRIUM PROBABILITY FOR
PROTON OCCUPATION

This appendix shows how Eq. 70 is obtained from Eqs. 68 and 69. To
begin, consider the Boltzmann distribution of the densityPH at equilib-
rium, Eq. 34 withs 5 H. From this equation, obtain an expression for
PH(mH) in terms ofPH(2mA

H) by eliminatingKH. Integrate the result to find

E
2mA

H

mA
H

PH~mH! dmH

5 PH~2mA
H!exp~bWH~2mA

H!! E
2mA

H

mA
H

exp~2bWH~mH!! dmH.

(99)

Next, consider the second integral in Eq. 69. Use the Boltzmann distribu-
tion at equilibrium to solve forPd(md) in terms ofPd(mC

d) and integrate to
obtain

E
2mC

d

mC
d

Pd~md! dmd

5 Pd~mC
d!exp~bWd~mC

d!! E
2mC

d

mC
d

exp~2bWd~md!! dmd. (100)

We now considerQI
b. Start with Eq. 59 and substitute the middle

expression fora from Eq. 65. Transform the exponent using, from Eqs. 6
and 14,

f B
dCI 5 Cd~mC

d! 2 Cd~mB
d!, (101)

to obtain

QI
b 5 Pd~mC

d!exp~Wd~mC
d!%exp~2bCd~mB

d!!

E
mC

d

mA
d

exp~2bFd~md!! dmd. (102)

Finally, consider the probabilityQII
b appearing in Eq. 69. Obtain a new

expression by considering Eq. 61. The termPd(2mC
d) can be written in

terms ofPd(mC
d) by using the Boltzmann distribution forPd, Eq. 34, and

eliminating Kd. Substitute the last expression fora from Eq. 65. The
exponent can be simplified using

f B
dCI 5 2Cd~2mC

d! 1 Cd~2mB
d! (103)

yielding

QII
b 5 Pd~mC

d!exp~Wd~mC
d!!exp~2bCd~2mB

d!!

3 E
2mA

d

2mC
d

exp~2bFd~md!! dmd. (104)
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We now divide the right-hand side of Eq. 68 by the right-hand side of
Eq. 69 and substitute the results of Eqs. 99, 100, 102, and 104 to obtain

QFW
H 5

*
2mA

H
mA

H exp~2bWH~m!!dm

*
2mA

H
mA

H exp~2bWH~m!!dm 1 !@
, (105)

where! is given by Eq. 71 and

@ 5 Pd~mC
d!PH~2mA

H!21exp~b@Wd~mC
d! 2 WH~2mA

H!#!.
(106)

@ can be transformed by substituting from Eq. 62 evaluated at equilibrium.
Further, use the definitions associated with the potentialsFs andCs to find

Wd~mC
d! 2 WH~ 2 mA

H! 5 FC
d 2 FA

H 2
CI

2
2

~f H 1 f C
d!CI

2
,

(107)

leading to

@ 5 ~+H/+d!~C•/CI!exp~b@FC
d 2 FA

H 2 CI 2 z#!. (108)

Simplifying the exponent using Eq. 44 finally yields Eq. 70.

APPENDIX C: GENERAL SOLUTION OF THE
FRAMEWORK MODEL

In this section, we find the general solution for the framework model
proton current. We will obtain a system of eight equations for eight
unknowns. Calculations are somewhat less cumbersome when made in
terms of the dimensionless variables defined in Appendix A. Further, many
equations can be written in parallel for the proton and defect species. We
will use the superscripts to denote either protons,s 5 H, or defects,s 5
d. In this notation, the eight unknowns are the densities at either end of the
proton and defect diffusion intervals, namelyps(0) andps(1), the proba-
bilities QI

b andQII
b of the defect boundary regions, and the proton and defect

fluxes,Js.
The first equation is simplyJH 5 Jd, which must hold at steady state.

This is immediately eliminated by introducing a common variable for the
flux, J 5 Js. The boundary conditions, Eqs. 59 and 61–63, give us four
more equations. Written in terms of dimensionless variables, these are

Q I
b 5 pd~1!a exp~f B

dcI!, (109)

Q II
b 5 pd~0!a exp~2f B

dcI!, (110)

pH~0!exp~2f A
dcI! 5 2Jta 1 pd~1!exp~f B

dcI 1 bz!cI ,
(111)

pH~1!exp~f A
dcI! 5 Jta 1 pd~0!exp~2f B

dcI 1 bz!cII , (112)

The sixth and seventh equations are obtained by integrating the Nernst–
Planck equation, Eq. 31, which, in terms of dimensionless variables, is Eq.
98. Multiply by an integrating factor and integrate to get

2JstsE
0

js

exp~ws~h!! dh 5 ps~js!exp~ws~js!!

2 ps~0!exp~ws~0!!. (113)

Note thatws(j) 5 fs(j) 1 cs(j), where thecs(j) are given by Eqs. 92
and 93. It is convenient to define the integrals

hs~j! 5 E
0

j

exp~Dfs~h! 2 f s~2h 2 1!cI/2! dh, (114)

where we usefd 5 fC
d and denotehs 5 hs(1). Then evaluate Eq. 113 atjs 5

1 and divide by a common factor to get

2Jstshs 5 ps~1!exp~2f scI/2! 2 ps~0!exp~f scI/2!. (115)

This is the form of the integrated Nernst–Planck equation to be used for the
general solution.

The eighth equation is obtained from the normalization condition,
which we write in terms of dimensionless variables

E
0

1

pH~j!dj 1 E
0

1

pd~j!dj 1 QI
b 1 QII

b 5 1. (116)

We proceed to express the integrals in terms ofJ andps(0). Solve Eq. 113
for ps(js) and integrate to get

E
0

1

ps~j!dj 5 2JstsE
0

1

exp~2ws~j!! E
0

j

exp~ws~h!!dhdj

1 ps~0!exp~ws~0!! E
0

1

exp~2ws~j!!dj.

(117)

The following difference of energies will be useful,

ws~h! 2 ws~j! 5 Dfs~h! 2
f s~2h 2 1!cI

2
2 Df s~j!

1
fs~2j 2 1!cI

2
. (118)

Then, the second term on the right-hand side of Eq. 117 can be rewritten
using

exp~ws~0!! E
0

1

exp~2ws~j!! dj 5 exp~f scI/2!gs, (119)

where we define the integral

gs 5 E
0

1

exp~2Dfs~j! 1 f s~2j 2 1!cI/2!dj. (120)

Further, define

is 5 E
0

1

exp~2ws~j!!E
0

j

exp~ws~h!!dhdj

5 E
0

1

exp~2Dfs~j! 1 f s~2j 2 1!cI/2!hs~j!dj, (121)
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where Eq. 118 and the definition, Eq. 114, are used to obtain the second
expression. Use this result and Eq. 119 to rewrite Eq. 117 as

E
0

1

ps~j!dj 5 2Jstsis 1 ps~0!exp~f scI/2!gs. (122)

Substituting this expression and the boundary conditions, Eqs. 109 and
110, into the normalization condition, Eq. 116, we have the final form for
the eighth equation,

2JtHiH 1 pH~0!exp~fHcI/2!gH2Jtdid 1 pd~0!exp~f C
dcI/2!gd

1 pd~1!aexp~f B
dcI! 1 pd~0!aexp~2f B

dcI! 5 1. (123)

We now have a system of five equations and five unknowns. The
equations include the boundary conditions, Eqs. 111 and 112, the inte-
grated Nernst–Planck Eqs. 115, and the normalization condition, Eq. 123.
The unknowns are the proton and defect densities at the ends of their
intervals,ps(0) andps(1), and the common currentJ.

These equations may be solved by straightforward algebra. For exam-
ple, eliminatepH(0) andpH(1) by substituting from Eqs. 111 and 112 into
Eq. 115 (fors 5 H) and Eq. 123. Then solve forpd(0) in Eq. 115 (fors 5
d) and use this to eliminatepd(0) in the two remaining equations. This
leaves a system of two equations for the unknownspd(1) andJ. These can
be finally solved forJ to obtain Eq. 74. In these calculations, there are
several points where Eq. 16 may be used to simplify an exponent.

In the denominator ofJ, the coefficientFH is given by Eq. 75, where

F0
H 5 hH@gd 1 2a cosh~f B

d 1 f C
d/2!cI#e

cI/22bz,
(124)

F1
H 5 ~2iH 1 hHgH!ecI, (125)

F2
H 5 iH. (126)

The coefficientFd is given by Eq. 76, where

F1
d 5 @2id 1 hdgd 1 hda exp~f B

d 1 f C
d/2!cI!]exp~cI, (127)

F2
d 5 id 1 hdaexp~f B

d 1 f C
d/2!cI, (128)

F3
d 5 gHhdexp~cI/2 1 bz!. (129)

Finally, the coefficientFa is given by Eq. 77, where

F0
a 5 2exp~cI/2 2 bz!@gd 1 2a cosh~f B

d 1 f C
d/2!cI#

3 cosh~f A
d 1 f H/2!cI , (130)

F 1
a 5 gHexp~1 2 f A

d 2 f H/2!cI , (131)

F 2
a 5 gHexp~~f A

d 1 f H/2!cI!. (132)

APPENDIX D: CURRENT SYMMETRY

In this appendix, we describe how the coefficient symmetries, Eqs. 79–81,
are obtained. These guarantee the current symmetry, Eq. 78, which must
hold by the symmetry of the gramicidin channel potential of mean force.
We work with the dimensionless variables described in Appendix A.

The coefficientsFi
s depend on the integralshs, gs, andis, defined by Eqs.

114, 120, and 121, respectively. For this appendix, we define these inte-
grals as functions ofj andc as follows:

hs~j, c! 5 E
0

j

exp~Dfs~h! 2 f s~2h 2 1!c/2!dh, (133)

gs~c! 5 E
0

1

exp~2Dfs~h! 1 f s~2h 2 1!c/2!dh, (134)

is~c! 5 E
0

1

exp~2Dfs~j! 1 f s~2j 2 1!c/2!hs~j, c!dj.

(135)

As a special case, notehs(c) 5 hs(1, c). In the following, we make use of
the symmetries of the potentials of mean force,Dfs(j) 5 Dfs(1 2 j), and
change variables,j9 5 1 2 j or h9 5 1 2 h, in the integrands. We find
immediately

hs~2c! 5 hs~c!, (136)

gs~2c! 5 gs~c!, (137)

By the same method, it follows that

hs~j, 2c! 5 hs~1, c! 2 hs~1 2 j, c!, (138)

which is used to obtain

is~2c! 5 gs~c!hs~c! 2 is~c!. (139)

Using these results, it is straightforward to show that the coefficientsFi
s,

given by Eqs. 124–132, have the symmetries of Eqs. 79–81.

APPENDIX E: SATURATING CURRENT AT
HIGH VOLTAGE

In this section, we obtain the asymptotic formula for the framework model
current ascI 3 `, Eq. 82. Dimensionless variables are again used, see
Appendix A. We must first obtain asymptotic expressions for certain
integrals. The following calculations are intuitively reasonable and can be
justified rigorously by use of Watson’s lemma (Keener, 1988).

The integralhs(j) is defined by Eq. 114, wherehs 5 hs(1). As cI 3 `,
the integrand becomes sharply peaked nearh 5 0, and it is therefore
reasonable to write

hs~j! , exp~Dfs~0!! E
0

j

exp~2f s~2h 2 1!cI/2!dh

, ~f scI!
21exp~f scI/2!, (140)

where; means (f scI)
21exp(f scI/2) is asymptotic tohs(j) ascI3 `, in the

sense of asymptotic expansions. In particular, this result holds forhs 5
hs(1). The integralgs is defined by Eq. 120. By an argument similar to the
one just given, we have

gs , ~f scI!
21exp~f scI/2!, (141)

ascI3 `. The integralis is defined by Eq. 121, depending onhs(j) whose

28 Schumaker et al.

Biophysical Journal 80(1) 12–30



asymptotic behavior is given by Eq. 140. AscI 3 `, we have

is , ~f scI!
21exp~f scI/2!

3 E
0

1

exp~2Dfs~j! 1 f s~2j 2 1!cI/2!dj

, ~f scI!
22exp~f scI!. (142)

Finally, we must consider, as a special case, the combinationgshs 2 is.
From the definitions, Eqs. 114, 120, and 121, we have

gshs 2 is 5 E
0

1

dj E
j

1

dh exp~Dfs~h! 2 Dfs~j!

1 f s~j 2 h!cI!. (143)

Making the substitutionx 5 h 2 j, this becomes

gshs 2 is 5 E
0

1

dx exp~2f sxcI!F~x!, (144)

where

F~x! 5 E
0

12x

dj exp~Dfs~j 1 x! 2 Dfs~j!!. (145)

The integrand of Eq. 144 is sharply peaked nearx 5 0, leading to

gshs 2 is , ~f scI!
21 (146)

ascI 3 `.
We are now ready to obtain the asymptotic form of the framework

model currentJ in the limit cI 3 `. The exact expression forJ is Eq. 74,
where the terms in the denominator have the form given in Eqs. 75–77. The
numerator ofJ grows like ecI as cI 3 `. The coefficientsFi

s in the
denominator are given by Eqs. 124–132. Using the asymptotic expressions
for hs, gs, is, andgshs 2 is, we find that the only coefficient that grows as
fast asecI is F0

a, whose expression is given by Eq. 130. We find

F0
a , aecI2bz. (147)

Then, from the expression forJ, Eqs. 74–77, we obtain the result expressed
by Eq. 82.

APPENDIX F: EQUILIBRIUM CONDUCTANCE

In this section, we obtain the expression, Eq. 84, for the framework model
conductance at a symmetrical equilibrium. Begin by substituting the ex-
pression for the currentJ, Eq. 74, into formula 83 for conductance. Taking
the derivative and then evaluating the resultant expression at equilibrium,
find that

dJ

dCI
U

Eq
5

bcIe
bCI

tHFH1tdFd1taFauEq
. (148)

WhenFH andFd are written out, using Eqs. 75–77 and Eqs. 124–132,
they contain terms proportional tocIe

cI 2 cII , which vanish at equilibrium.
Introducing the definitions

A~cI! 5 tHhH 1 2ta cosh~f A
d 1 f H/2!cI , (149)

B~cI! 5 gd 1 2a cosh~f B
d 1 f C

d/2!cI . (150)

we can then write

tHFH 1 tdFd 1 taF auEq 5 exp~2bz 1 cI/2!A~cI!B~cI!

1 @gHA~cI! 1 t dhdB~cI!#cII 1 tdhdgHexp~bz 1 cI/2!cIcII .

(151)

In the case of a symmetrical equilibrium,cI 5 cII 5 c and cI 5 0, the
denominator can be written in the factored form

tHFH 1 tdFd 1 taFauEq 5 @A~0!e2bcI 1 tdh0
dc#@B~0! 1 g0

Hebzc#.
(152)

Note thatB(0) 5 gd 1 2a, wheregd is defined by Eq. 120 anda by Eq. 65.
Whengd is written in dimensional form,gd 1 2a 5 g1

d, as defined by Eq.
88. Inserting the result of Eq. 152 into Eq. 148 then leads to Eq. 84.
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