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ABSTRACT One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by
molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a
diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in
detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a
bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin
motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on
microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A
symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same
characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point
source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor
velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of
more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks
of actin filaments and microtubules coexist and motors for both types of filament are implicated.

INTRODUCTION

The aim of this paper is to provide a simple macroscopic
theory of intracellular transport of cell organelles and ves-
icles, here termed “particles.” Numerous experimental stud-
ies have established that these particles are equipped with
bound motor proteins, which move them along microtu-
bules and actin filaments (reviewed by Kelleher and Titus,
1998; Langford, 1995; Lambert et al., 1999). For example,
anterograde transport of particles along microtubules in
nerve axons is mediated by the motor protein kinesin (Vale
et al., 1985a, b). In this system the motion of particles is not
continuous, but saltatory (Adams and Bray, 1983; Allen et
al., 1982; Rebhun, 1963; Weiss et al., 1986): particles are
transported for distances of typically;10 mm at a more or
less steady velocity of;1 mm z s21, but there are pauses
lasting for upward of 1 s in which a given particle is
apparently undergoing Brownian motion and has presum-
ably detached from the microtubule, or is stuck. There is
apparently no published theoretical treatment of the kinetic
motion of particles moving under the combined action of
diffusion and motor transport, and no treatment at all for
bidirectional motor transport. As a first step we have devel-
oped a “reaction-diffusion-transport” model: using simple
kinetics to describe the interaction of particles with micro-
tubules or actin filaments, and allowing free diffusion of
unattached particles and steady motion of attached particles,

net movement is described by partial differential equations
which we have solved for a number of boundary conditions.

Unidirectional motor transport along a single filament
system is the simplest case found in nature. However, motor
transport along microtubules has been shown in some cases
to be bidirectional, that is, particles can be transported in
either direction, and individual particles sometimes appear
to switch direction at random (Cooper and Smith, 1974).
Bidirectional motion occurs (Schnapp et al., 1985) either
because microtubules of both polarity are present, or be-
cause of the presence on the same particle of two motor
proteins (kinesin and dynein) with opposite polarity
(Schnapp and Reese, 1989; Schroer et al., 1989). At first
sight bidirectional motor action would seem to be an inef-
fective mechanism for net transport, but in the presence of
a concentration gradient it could nevertheless accelerate the
rate of material transport compared with diffusion. There is
an analogy with the process of “facilitated diffusion,” in
which the diffusion of a solute is aided by binding to a
protein (e.g., O2 to myoglobin), thus increasing the amount
in solution (Wittenberg, 1966; Wittenberg et al., 1975;
Wyman, 1966). Facilitated diffusion has also been reported
for the faster-than-diffusion movement by which DNA-
binding proteins find their target sequence, by hopping or
sliding along the DNA (Hannon et al., 1986). We compare
the results for unidirectional and bidirectional transport for
a number of boundary conditions.

A further (and perhaps more general) complication in
transport studies is the coexistence of a myosin-mediated
transport system (Bridgman, 1999; Tabb et al., 1998; Wu et
al., 1997) which transports particles along the actin cy-
toskeletal network (Schliwa et al., 1981). Actin-based trans-
port is the sole system in the leading edge and filopodia of
nerve growth cones (Evans and Bridgman, 1995; Cramer,
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1997 and refs. therein) and at the tips of melanocyte den-
drites (Wu et al., 1998), but elsewhere actin-based transport
coexists with microtubular transport. The actin cytoskeleton
can be considered to be bidirectional because in general it
consists of a network of cross-linked randomly polarized
filaments (although there is at least one unidirectional ex-
ception in the case ofNitella; Sheetz and Spudich, 1983).
Bidirectional particle transport on the actin network has
been observed by depolymerizing the microtubules in axons
(Bridgman, 1999; Morris and Hollenbeck, 1995), melano-
cytes (Wu et al., 1998), and melanophores (Rodionov et al.,
1998; Rogers and Gelfand, 1998). We have not attempted to
include actin-based and microtubule-based transport in the
same model, but we show that bidirectional motor transport
may reduce to a type of diffusion: in the one-dimensional
case in which a particle detaches and re-attaches many times
from the filament system in the period of observation, bulk
movement is equivalent to diffusion with a modified diffu-
sion constant. This is readily accommodated in our model.

Melanin-producing cells are a particularly attractive pros-
pect for quantitative analysis and theoretical modeling. In
the melanophores of fish and frogs, rapid darkening of the
skin is achieved by the dispersion of pigment granules from
a band near the nucleus to the cytoplasm, with pigment
granules being retained in the cytoplasm by a myosin-actin
filament system. The distribution of pigment can be re-
versed, presumably via control of the functionally active
motor protein type by a signaling pathway. In mammals, the
melanocyte is responsible for producing pigment granules,
the melanosomes, which are transported down to the ends of
dendritic processes, where they are engulfed by keratino-
cytes, and thus lend the skin its coloration (Jimbow and
Sugiyama, 1998). Transport is again mixed: the bidirec-
tional microtubular system transports melanosomes to the
tips of dendrites, where they are captured by an actin system
(Wu et al., 1998). The motor for actin-based melanosome
transport is myosin V, for which motor speeds of 0.3–0.4
mm/s have been observed (Cheney et al., 1993; Evans et al.,
1998; Wolenski et al., 1995; Mehta et al., 1999).

With transport in axons and dendrites particularly in
mind, we have found one-dimensional solutions of a reac-
tion-diffusion-transport model that give the flux of particles
and their spatial distribution in various situations:

1. Steady-state transport of particles from the cell body
along an axon or dendrite (“arm”) of finite length, when
the concentrations of free particles at each end of the arm
are held constant. The results include several experimen-
tally relevant boundary conditions at the tip of the arm,
for example when the arm is closed and stationary or
growing longitudinally, or when particles are trapped by
a cold block. The problem of loading onto microtubules
is considered;

2. The rise time for transporting a step increase in the
concentration of particles at one end (the cell body) is

also calculated as a function of the length of the arm and
fitted to a formula based on random walks;

3. Dispersion of particles from their starting position within
a long arm, after injection or pulse-labeling at the mid-
point of a long arm, corresponding to diffusion along an
infinite tube. The results also apply to particles injected
or pulse-labeled at a particular location.

Some of these situations have analogs in the classical the-
ories of diffusion or heat conduction (Carslaw and Jaeger,
1959) but, as indicated above, the phenomena are generally
more complex. For example, diffusion of free particles and
motor transport cannot be considered as separate pathways,
except when attachments to filaments are irreversible. Al-
though the literature suggests that cellular organelles may
not diffuse readily in cytoplasm, it is important to be able to
predict the contribution of free-particle diffusion for a given
value of the diffusion constantD. Free diffusion adds sig-
nificantly to motor transport over short distances when
particles bind weakly to filaments.

In the Discussion section, the ability of these unidirec-
tional and bidirectional models to describe specific cellular
transport systems is assessed after reviewing the experimen-
tal literature, and ways are suggested of overcoming some
obvious deficiencies of the models. For example, motor
transport is treated phenomenologically by assuming a
steady motor velocityv, which should be viewed as a
constitutive coefficient for a law of active transport (fluxa
density of bound particles) analogous to the diffusion con-
stant for Fick’s law of free diffusion (fluxa density gradient
of free particles). Because the models work with particle
densities, they predict only the macroscopic behavior of a
large number of particles viewed as a continuous fluid
moving in the cytoplasm. However, the densities as func-
tions of position can also be interpreted as probability
distributions for the location of a single particle. The mean-
ings of mathematical symbols used in this paper are defined
in Table 1.

A THEORY OF MOTOR-ASSISTED TRANSPORT

General equations

If attention is restricted to a single filament system (microtubules or actin),
a macroscopic transport theory of particles can be formulated in terms of
the laws of diffusion and kinetics. For simplicity, all motions are restricted
to one space dimension, but generalizations to particle motions in three
dimensions and two- or three-dimensional filament networks are straight-
forward.

The basic assumptions are 1) a “particle” consists of a complex between
an organelle or vesicle and motor proteins (permanently attached to the
surface membrane); 2) particles either diffuse freely in solution or move on
a filament at a steady velocityv (the “motor velocity”), which may depend
on the number of motors on the particle; 3) binding to and detachment from
filaments are kinetic processes specified by first-order rate constants,
which include factors as appropriate for lateral diffusion and the density of
motor proteins and filaments; and 4) in the general case of bidirectional
transport, binding is followed by motion in either direction, as a result of
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the presence of filaments and/or motors with both polarities. For conve-
nience it is assumed that it is the polarity of the filaments that determines
the direction in which particles are transported.

The one-dimensional case describes transport between two planar
boundaries, say atx 5 0 andx 5 L, all particle concentrations varying only
along thex-axis (Fig. 1A). A fraction of the space between the boundary
planes is homogeneously occupied with filaments oriented along thex-axis.
The remaining space allows diffusion of unbound particles in thex-direc-
tion. “Outward” filaments transport particles toward the right-hand end
(x 5 L) and “inward” filaments toward the left-hand end (x 5 0). All
filaments are assumed to span the intervening space. This model may be
interpreted as a simplified description of axial transport in an axon or
cellular dendrite (“arm”) between the cell body and the tip of the arm (Fig.
1 B), which motivates various boundary conditions at each end of the arm
(discussed in the following sections). For convenience we use the terms
related to the cell biology (“arm,” “cell body,” “tip”) in most of what
follows.

We first derive particle equations of motion for the most general
bidirectional transport model. Letv1 . 0 and v2 , 0 be the motor
velocities in the direction of increasingx for particles traveling on outward
and inward filaments, respectively. Letk1 and k2 be the corresponding
first-order rate constants for binding to filaments, andk91 andk92 the rate
constants for detachment. The final parameter is the diffusion constantD
of the free particle.

Let no(x, t) be the number density (per unit volume) of free particles at
distancex along the arm at timet, andn6(x, t) the densities on right- and

left-directed filaments.no(x, t) andn6(x, t) satisfy reaction-diffusion-trans-
port equations

­no~x, t!

­t
2 D

­2no~x, t!

­x2

5 2~k1 1 k2!no 1 k91n1 1 k92n2 , (1a)

TABLE 1 Glossary of mathematical symbols. Alternative
formulas apply to unidirectional and bidirectional
models, respectively

D Free diffusion constant of the particle
D* Effective diffusion constant for free and bound motions
« l/lon

F Flux facilitation factor over free diffusion
Gij (x, t) Green’s function for displacement from point source with

initial and final statesi, j
J Particle flux (no/s/unit area) in the arm
Jo(x, t) Flux of free particles
J6(x, t) Flux on 6-directed filaments
k, k9 Binding/detachment rates to/from filaments of one polarity
K Equilibrium constant with filaments of one polarity5 k/k9
loff Mean free path length5 (D/k)1/2 or (D/2k)1/2

lon Mean path length on a filament5 v/k9
L Arm length
l, l̃ Loading parameters for particles in cell body and tip regions
n, ñ Particle concentrations in cell body and tip
no(x, t) Free particle concentration
ns(x, t) Concentration on filaments of polaritys 5 61
m(x), n1(x) n1(x) 2 n2(x), n1(x) 1 n2(x)
h lon/L
p(x, t) Probability of displacementx after timet
pj, Initial probability of particle in statej,
p Initial bound fraction
r Equilibrium bound fraction (duty ratio)5 K/(K 1 1) or

2K/(2K 1 1).
S(t) Displacement variance at timet
t Elapsed time
toff Mean lifetimes of free particles5 1/k or 1/2k
ton Mean lifetime of bound particles5 1/k9
v Motor speed of particle on filaments
v# Mean particle velocity5 rv
x Particle displacement or position in an arm
j lon/loff

FIGURE 1 (A) Geometry of the one-dimensional bidirectional model.
Diffusion and transport occur in a medium between planesx 5 0 andx 5
L at fixed temperature and pressure. A fixed fraction of this medium is
filled with a homogeneous mixture of right-directed (“outward”) and
left-directed (“inward”) filaments in known proportions, on which particles
(not shown) are moved right or left by motor transport at velocitiesv1, v2.
The remaining space allows diffusion of unbound particles in thex-direc-
tion, while lateral diffusion is assumed to have homogenized any lateral
concentration gradients of free particles. First-order rate constantsk1, k2

determine binding to outward and inward filaments. The medium is open
at x 5 0 andx 5 L to reservoirs of free particles at concentrationsn, ñ.
Outward filaments project into the reservoir atx 5 0 and inward filaments
into the reservoir atx 5 L by distanceslpu, l̃pu, along which “loading” of
particles onto the projecting filaments occurs. (B) A cartoon of bidirec-
tional particle transport in a cell “arm” (axon or dendrite), equivalent toA.
The cell body and the tip of the arm act as reservoirs. Particle fluxes
(number/second/unit area) in the arm are assumed to be axial, homoge-
neous throughout the arm, and equal to those obtained inA.
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­n6~x, t!

­t
1 v6

­n6~x, t!

­x
5 k6no 2 k96n6 . (1b)

The particle fluxJ(x, t) (the number per second per unit area normal to
filaments at positionx) arises from diffusion of free particles and convec-
tion of bound ones, so

J~x, t! 5 Jo~x, t! 1 J1~x, t! 1 J2~x, t! (2a)

where

Jo~x, t! 5 2D
­no~x, t!

­x
, J6~x, t! 5 n6~x, t!v6 . (2b)

Because­(no 1 n1 1 n2)/­t 5 2­J/­x, J is a constant of the motion under
steady-state conditions. The sign of bound-state fluxes is determined by the
polarity of the filament, while the diffusion flux can be of either sign; thus
particles can be exchanged between the ends of an arm even when the net
flux is zero.

Motor-assisted transport can be understood in terms of mean lifetimes
toff, t6 and mean path lengthsloff, l6 for free and bound particles, where
loff
2 5 Dtoff and l6 5 uv6ut6, so

toff 5 ~k1 1 k2!21, loff 5 ÎD/~k1 1 k2!,

t6 5 1/k96 , l6 5 uv6u/k96 .
(3)

The average speedvD 5 loff/toff 5 =(k1 1 k2)D of free diffusion over the
lifetime of the “off” state is also useful. As an example, values for a 1-mm
diameter particle moving on microtubules might bev6 5 61 mm/s,k6 5
1 s21, l6 5 10 mm, andD 5 0.1 mm2/s (Table 2), givingloff 5 0.224mm
andvD 5 0.447mm/s. Binding rates reflect the density of filaments and
intracellular structures may reduce the apparent value of the diffusion
constant; thus this estimate forvD may be an upper limit.

Dispersion and drift

Consider a sequence of many particle displacements, each initiated by
binding to a randomly selected filament which determines the direction of
motion and terminated by detachment. If free diffusion is absent and
periods of detachment are negligibly small, these random walks define a
form of facilitated diffusion with known mean bound path lengthsl6.
However, this effect is generally accompanied by convection of particles at

the drift velocity

v# 5
K1v1 1 K2v2

K1 1 K2 1 1
. (4a)

When v# Þ 0, motor-assisted diffusion occurs in a frame of reference
moving with this velocity, with an effective diffusion constant

D* 5
D 1 K1~v1 2 v#!2/k91 1 K2~v2 2 v#!2/k92

K1 1 K2 1 1

~K6 ; k6/k96!, (4b)

the equilibrium average of free and bound contributions with binding
constantsK6 for filament systems of opposite polarity. This formula is
exact in the limit of many attachment cycles, even for unidirectional
transport (K2 5 0) where all displacements are in the same direction. In
this case a spread of displacements about the mean arises from variable
attachment times on filaments.

Boundary conditions, loading

To describe particle transport in a cell arm (for example, an axon or
dendrite), solutions of Eqs. 1 require appropriate boundary conditions. In
the first instance, let the boundaries atx 5 0 andL be open to reservoirs
of free particles at fixed concentrationsn andñ, respectively. Throughout,
the reservoir inx , 0 is identified as the cell body, which is assumed to be
large enough thatn is constant. At the tip of the arm, the situation is more
complicated and is dealt with below. If filaments in the arm do not protrude
into these reservoirs, the boundary concentrations for bound particles must
be zero. However, outward filaments are known to extend back into the cell
body, for example under the plasma membrane (Wu et al., 1998). In that
case, outward filaments emerging from the cell body are already “loaded”
with particles, and the boundary value forn1(x, t) at x 5 0 may be written
asln, wherel will be called the “degree of loading.”

The tip of a cell arm is, in some cases, closed rather than open to a
particle reservoir, though a store of particles in the tip can be achieved by
the presence of an auxiliary filament system (Wu et al., 1998). Moreover,
outward transport of particles at the tip is often associated with its physical
growth, which is compatible with a closed but moving boundary. For the
time being, we choose to work with fixed concentrations of free and
minus-directed particles at the tip endx 5 L, giving boundary conditions

no~x 5 0! 5 n, no~x 5 L! 5 ñ,
(5)

n1~x 5 0! 5 ln, n2~x 5 L! 5 l̃ñ.

The degree of loadingl̃ in the tip may be smaller thanl or even zero.
Under steady-state conditions, predictions obtained with these boundary
conditions may readily be transferred to a closed tip, whether stationary or
moving.

The loading coefficients may be calculated kinetically in terms of the
“pick-up” lengths defined in Fig. 1. For outward filaments atx 5 0
extending back into the reservoir by a distancelpu, solving the steady-state
reaction-transport equationv1dn1(x)/dx5 k1n 2 k91n1(x) for 2lpu , x ,
0 andn1(2lpu) 5 0 givesn1(x) 5 K1n{1 2 exp(2k91(x 1 lpu)/v1}. Hence
l 5 K1{1 2 exp(2k91lpu/v1)} , K1.

Solution of equations, scaling

Solutions of Eqs. 1 are first sought for the case of unidirectional motor
transport where all particles have only one kind of active motor protein and
the filaments are unipolar (k1 5 k, k2 5 0). Bidirectional motor transport,
in which filaments of both polarities exist or different motors of opposite

TABLE 2 Derived parameters for the bidirectional model

k9 (s21) K j D* /D tc (s)

5 0.2 0.089 0.72 0.7
(0.89) (72)

0.5 2 0.89 0.36 2.5
(8.9) (36)

0.05 20 8.9 1.98 20.5
(89) (198)

0.005 200 89 19.95 200.5
(890) (1995)

Derived parametersK 5 k/k9, mean path ratioj 5 (2kv2/Dk92)1/2 5 lon/loff,
the ratio of compound to free diffusion constantsD* /D (Eq. 4), and the
mean cycling timetc 5 1/2k 1 1/k9 for the symmetric bidirectional model.
The valuesD 5 0.1mm2/s,v 5 0.1mm/s, andk 5 1 s21 define a standard
set of primary parameters for numerical work. The Einstein-Stokes relation
givesD 5 0.4 mm2/s for a 1-mm diameter sphere in water; this value has
been rounded down to allow for an irregular surface topology and a bigger
cytoplasmic viscosity. Derived values for a fast motor-filament system
(v 5 1 mm/s) are shown in parentheses.
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polarity exist on the same particle, is studied here only for the symmetrical
case k6 5 k, k96 5 k9, and v6 5 6v. Algebraic solutions simplify
considerably when the arm is longer than the diffusion lengthloff, which is
expected and assumed throughout. For the bidirectional case, it is conve-
nient to make separate predictions for the case when particles bind irre-
versibly to filaments until motor action takes them to the end. In both cases
the predicted behavior is a function of the four basic parametersD, v, k, k9
plus loading parameters and the length of the arm.

The required amount of computation is eased by using scaling relation-
ships that follow from the existence of scaled dimensionless solutions.
These may be obtained by choosingv/k and 1/k as units of length and time,
which leads to a dimensionless detachment rate 1/K 5 k9/k and a dimen-
sionless diffusion constantDk/v2. In this way, scaling laws for the
concentrations

ni~x, tuL2D, Lv, k, k9! 5 L23niSx

L
, tuD, v, k, k9D, (6a)

ni~x, tuD, L1/2v, Lk, Lk9! 5 L23/2ni~L
1/2x, LtuD, v, k, k9!

(6b)

in which the four basic parameters are displayed can be derived from Eqs.
1, whereL . 0 is an arbitrary scaling factor andi 5 0, 6. Thus the number
of independent parameters is reduced from four to two, say the detachment
rate k9 and motor velocityv, while D and k can be held fixed. This
procedure is adopted throughout the paper, settingD 5 0.1mm2/s andk 5
1 s21. Equation 6a shows that the effects of reducing the diffusion constant
by a factor ofL2 , 1 are equivalent to those obtained by raising the motor
velocity and positionx along the arm by a factor of 1/L, so computed
solutions should be available for more than one motor velocity. Similarly,
the effect of reducing the binding rate by a factor ofL is equivalent to
keeping the equilibrium constantK unchanged, raising the motor velocity
by a factor ofL21/2, and reducing the position coordinate byL1/2 (Eq. 6b).
Similar results follow for the net outward fluxJ at the tip of a cell arm. In
terms of the mobilityJ/n,

J

n
~L, tuL2D, Lv, k, k9! 5 L

J

n SL

L
, tuD, v, k, k9D

(7a)

J

n
~L, tuD, L1/2v, Lk, Lk9! 5 L1/2

J

n
~L1/2L, LtuD, v, k, k9!

(7b)

so results for a range of arm lengths are required to access the effects of
variations inD or k in terms of known effects of variations inv andk9.

UNIDIRECTIONAL TRANSPORT

Unidirectional transport occurs when the filament system is
unipolar and all active particle motors have the same polar-
ity. The mathematical description of this model is equiva-
lent to theories of sedimentation or electrophoresis for a
unimolecular reaction (Cann, 1970; Gilbert and Jenkins,
1959; van Holde, 1962). These theories often ignore free
diffusion and focus on finding localized propagating solu-
tions generated by nonlinear reaction kinetics. The binding
of particles to filaments is a simple bimolecular reaction, for
which the binding rate is a product of the concentrations of
free particle and free binding sites and nonlinear in the
above sense. For organelle transport, it can safely be as-
sumed that particle concentrations are dilute, leading to Eqs.

1, which are linear in the concentrations. For these equa-
tions, stable traveling-wave solutions for a group of parti-
cles are not expected.

A unidirectional model follows from Eqs. 1 by setting
k2 5 0, which is true when inward filaments are absent. The
polarity subscript for rate constants for outward filaments is
now omitted. Steady-state solutions are sought first, then
transient solutions resulting from a step increase in particle
concentration in the cell body, or a localized pulse injection
of particles within a dendritic arm.

Steady-state solutions

Solutions of the steady-state form of the two remaining
equations of (1), namely

2D
­2no~x, t!

­x2 5 2kno 1 k9n1 , (8a)

v
­n1~x, t!

­x
5 kno 2 k9n1 (8b)

can be obtained by noticing that the fluxJ 5 2Ddno(x)/
dx 1 n1(x)v is independent ofx (a first integral), giving the
single differential equation

d2n1~x!

dx2 1
k9

v

dn1

dx
2

k

D
n1 5 2

Jk

Dv
(9)

for the bound concentration profile. The general solution
can be written as

n1~x! 5
J

v
1 Ae2q1x 1 Be2q2(x2L) (10a)

no~x! 5
J

Kv
1

A

K S1 2
q1v

k9 De2q1x

1
B

K S1 2
q2v

k9 De2q2(x2L) (10b)

where

q6 5
1

2 Hk9

v
6 ÎSk9

vD
2

1
4k

DJ (11)

and no(x) is obtained from Eq. 8b. The constants of inte-
gration A, B, and J follow by applying the first three
boundary conditions of Eq. 5 for fixed free-particle concen-
trationsn, ñ at x 5 0 andL, respectively (Fig. 1A).

Irreversible attachment

Whenk9 5 0, thenq6 5 6q, where 1/q 5 loff 5 =D/k is
the mean path length on filaments. Assuming thatL . loff,
the boundary conditions yieldA 5 2kn/qv, B 5 kñ/qv, and
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a net outward flux

J 5 n~vD 1 lv! ~vD 5 ÎkD! (12)

wherevD is a diffusional velocity, or diffusive displacement
over the mean binding timetoff 5 1/k. In contrast to
transport by free diffusion, this flux is independent of the
length of the arm. Because exp(2qL) ,, 1, particles cannot
diffuse freely down the whole arm without binding, and the
flux is independent of particle concentrationñ in the tip,
even although such particles may diffuse back into the arm
and bind to filaments. When the tip is closed and stationary,
there is an accumulation of particles in the tip and steady-
state conditions do not apply. If the tip is closed but ex-
tending at velocityu, thenJ 5 ñu and Eq. 12 determines the
tip concentrationñ 5 n(vD 1 lv)/u, which will be higher
than the cell-body concentrationn if the arm is growing
slowly.

Equation 12 expresses the outward steady-state flux in
terms of the concentrationn of free particles in the body, but
this flux is conserved along the arm. Away from the cell-
body endx 5 0, all particles have bound to filaments and
the flux is entirely due to motor transport. Thus the concen-
tration of such particles isn(vD 1 lv)/v, since multiplication
by v yields the predicted flux. This interior concentration is
generally not equal ton; this can be understood as follows.
With no loading in the cell body (l 5 0), the flux in the
entrance to the arm where particles have not yet bound is
entirely diffusional and proportional to the velocityvD,
which is usually slower than the motor speedv; as particles
bind to filaments and are transported more rapidly at speed
v, their lineal density is decreased if a steady state prevails.
The disparity between the effective mobilities (flux per unit
particle density) in the entrance and the interior of the arm
is reduced when particles are loaded onto filaments in the
cell body (l . 0), but it should be remembered that the cell
body then contains bound particles and the total density of
such particles is (11 l)n. Such loading creates a parallel
transport path in which particles remain bound throughout
the entire outward journey, with a flux equal to (ln)v.

The particle flux in the presence of motor filaments is
generally much higher than from diffusion alone,JD 5
nD/L by Fick’s law. The degree of facilitation

F ;
J

JD
5 ~vD 1 lv!

L

D
;

L

loff
S1 1 l

lpu

loff
D (13)

is much greater than unity even with no loading (l 5 0),
except when the arm is shorter thanloff, which is under 1
mm for a 1-mm-diameter particle (Table 2).

Multiple attachments

With a finite detachment ratek9, the expression for the flux
is more complicated but differs little from Eq. 12 unless
detachment is so rapid that the mean path lengthsloff and

lon [ v/k9 are similar. Assuminguq6Lu . 1, the complete
expression for the net flux is

J 5 S1 2
l

KD 2j

1 1 Î1 1 ~2j!2 nvD 1 lnv

< S1 2
l

KDnvD 1 lnv ~j .. 1! (14)

whereK 5 k/k9 andj [ Kv/vD 5 lon/loff is the mean-path
ratio, which is large if the motor speed is high or particles
remain bound for long periods. The corresponding facilita-
tion factor is

F 5
L

loff
H1 1

l

K
~j 2 1!J ~j .. 1!. (15)

These results are very similar to Eqs. 12 and 13, which are
recovered whenk9 3 0. However, the formulae differ in
detail. Whenl ,, K, loading in the cell body is weak and
particles must diffuse into the arm before binding; the flux
is limited by the motor velocityv for slow motors (v ,, vD)
and by the diffusional velocityvD in the opposite limit of
fast motors. Whenl 5 K, cell-body loading is optimal and
the flux arises entirely from particles that bind before en-
tering the arm (Fig. 2). These differences arise because, with
reversible detachments, pathways into the arm by diffusion
and cell-body loading are not independent.

Equations 10 show that the concentration profiles for free
and bound particles within the arm are basically flat except
at boundary layers of widths 1/q1 and 1/q2 at the ends. The
absence of concentration gradients in the central zone shows
that transport in this unidirectional model is clearly convec-

FIGURE 2 Unidirectional transport, steady state. The steady-state out-
ward fluxJ in a cell arm per unit concentrationn of free particles in the cell
body as a function of motor velocity from Eq. 14, different loading
parametersl in the cell body as shown andK 5 2. With no cell-body
loading, the limiting flux ofJ/n at high motor speeds is the diffusional
velocity vD 5 =kD, here equal to 0.316mm/s. With optimal loading (l 5
2), J/n is twice the motor velocity, reflecting the fact that the concentration
of bound particles in the body is 2n.
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tive rather than diffusive, even though the flux is limited by
diffusion into the arm when cell-body loading is ineffective.
The concentrations of free and bound particles in the central
zone areno 5 J/Kv, n1 5 J/v, showing that in this zone
reaction-equilibrium is established withn1/no 5 K, though
not in the boundary layers. The fluxJ can therefore be
interpreted in terms of the total concentration of particles
no 1 n1 in the central zone, moving at the mean speed

v# 5
K

K 1 1
v (16)

for particles with a duty ratioK/(K 1 1) (the bound steady-
state fraction). Equation 15 shows that free diffusion in the
free periods increases the central concentrations.

Transient solutions

The rise of flux in the tip

If the arm is initially free of particles, and particles are
suddenly introduced at concentrationn in the cell body (x ,
0), there will be a time delay before particles arrive at the
tip. If particles arriving in the tip region are prevented from
diffusing back into the arm and rebinding, for example by
imposing a cold block or sink, the tip response is measured
by the net outward flux at the end of the arm. If the tip is
closed and stationary, the response is measured by the
concentration of particles in the tip. Although the latter may
be closer to in vivo conditions, the tip concentration is
sensitive to the value ofl̃, which is raised by mechanisms
for storing particles in the tip region, so numerical calcula-
tions were made for the rise of flux in the presence of a sink
at x 5 L. What behavior is expected?

In the unidirectional model, particles binding in the cell
body will travel down an arm of lengthL in time L/v when
no detachments occur (L ,, lon [ v/k9). Initially free
particles experience an extra delay of order of the binding
time 1/k, which will be partially offset if they can diffuse
into the arm. In the opposite limitL .. lon, the rise time for
flux at the tip should be approximatelyL/v#, wherev# is the
mean displacement velocity (Eq. 16). These estimates ig-
nore diffusion of free particles, which operate between
pauses and should therefore speed up the rise of flux some-
what for short arms and weak binding (K , 1). Diffusion
down the entire arm contributes negligibly to transport in
long arms, since the rise time is of orderL2/2D, which is
greater thanL/v# for L . 2D/v#, typically under 1mm for
microtubule motors withv# ; 1 mm/s.

Fig. 3 shows the rise of flux at the end of a 20-mm arm,
calculated for various rates of detachment that span the
limiting cases described above. The time for the flux to rise
to 50% of its final value is qualitatively described by the
empirical formulat0.5 ' L/v#. The computed rise time in-
creases linearly with the length of the arm except for very
short arms and rapid detachment, where the flux rise is more

rapid. This difference is due to free diffusion because it
disappears when calculations are made withD 5 0. There is
also a spread of arrival times arising from pauses, which is
most significant ifK , 1, when particles are mostly paused.
The length of each pause is controlled kinetically and obeys
a Poisson distribution with a mean pause time of 1/k.
Conversely, whenK . 1, a distribution of excursion times
for bound particles is expected, but only if the arm is long
enough to allow many attachment cycles; this condition was
not fulfilled in calculations presented in the figure. Thus the
computed rise times can be simply understood, but the
dispersion of arrival times reflected in the shape of the
flux-time curve requires a deeper analysis. Dispersive as-
pects of motor-assisted transport are considered next in
relation to a different experimental protocol.

Dispersion from a point distribution

Distributionsp(x, t) of particle displacementsx as a function
of time t can be studied experimentally by tracking particles
from their initial positions within the arm, or by injecting
particles into the arm at one point. The form of these
distributions may depend on whether the particles are ini-
tially free or bound, but the effects of initial conditions are
removed after several cycles of attachment. For the unidi-
rectional model, Fig. 4 shows the spatial distribution of
particles for various motor speeds at a fixed timet 5 5 s
after injection of free particles atx 5 0. The initial delta-
function distribution is translated by motor action, and

FIGURE 3 Unidirectional transport, stepwise increase of concentration
in the cell body. (A) Rise of flux with time in the tip region of a 20-mm arm,
initially without particles, after introducing unit concentration of particles
in the body at time zero, for the unidirectional model for different rates of
detachmentk9 5 5 (black line), 0.5 (red line), 0.05 (green line), and 0.005
s21 (blue line). The motor speed is 1mm/s, for which the full-transit time
on filaments is 20 s, andk 5 1 s21, D 5 0.1mm2/s. Fluxes are normalized
to their steady-state values calculated at long times, which agreed with the
values predicted by Eq. 15. Numerical calculations were made by direct
integration of Eqs. 1, using upwind differencing on the convective term
(Press et al., 1992) and a smaller time step for the diffusion component. (B)
Rise times to half the maximum flux as a function of arm length for the
same set of detachment rates, plotted logarithmically (thegreenandblue
curvesoverlap). Except at the highest rate of detachment and the second
highest rate for the shortest arm, the results fit a linear law, as expected
from the empirical formula given in the text.
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broadened by motor action and free diffusion before binding
and during subsequent pauses. The figures show that single
transits occur, producing a sharp right-hand edge in the
distribution of displacements atx 5 vt in Fig. 4B whenD 5
0, although in Fig. 4A this edge is broadened by free
diffusion. The most probable displacement for each motor
speed is close to the mean displacementv#t, wherev#/v 5 2/3
asK 5 2.

The asymptotic form of these distributions at large times
was not achieved in Fig. 4, but can be obtained analytically
by Fourier-transform methods. The expected form after
many attachment cycles is the classical diffusion law

p~x, t! ,
1

Î4pD* t
expS2 ~x 2 v#t!2

4D* t D (17)

about the asymptotic mean displacementx(t) ; v#t, which
also appears in theories of electrophoresis (Cann, 1970).
The effective diffusion constant is

D* 5
D

K 1 1
1

K

~K 1 1!2

v2

k 1 k9
(18)

reflecting diffusion of free particles in solution and a Pois-
son distribution of bound periods. This result is also ob-
tained from Eq. 4b by settingK2 5 0. The second term
contains the variance of this Poisson distribution, propor-
tional tor(1 2 r), wherer 5 K/(K 1 1) is the bound fraction
or duty ratio in attachment equilibrium. Diffusion is en-
hanced ifDon . D, whereDon 5 v2/(K 1 1)(k 1 k9) [
(v 2 v#)2/k9, as expected from Eq. 4. When the duty ratio
tends to unity at fixedk, Don becomes small and particle
motions approximate to uniform translation at the motor
speedv.

The distribution (Eq. 17) was confirmed computationally
by plotting a time-scaled distribution against a time-scaled

displacement from the mean (Fig. 5), which asymptotes to
the exponential factor in (17). At intermediate times, a
truncated form of this distribution may appear because a
significant fraction of displacements arise from full-transit
events (those in which particles attach in the cell body and
are transported to the tip without detachment) rather than
multiple attachments, as can be seen in Fig. 5B, where free
diffusion is absent.

Apart from this truncation effect, it turns out that the
persistence of the effects of initial conditions, such as the
proportion of particles initially bound, is felt only for the
time 1/(k 1 k9) required to bring free and bound particles
into reaction equilibrium. No further change in the form of
this distribution occurs over the cycling timetc 5 1/k 1
1/k9, which is much larger than the equilibration time if
K .. 1. Thus the initial equilibration of free and bound
particles is all that matters, and subsequent attachment cy-
cles merely produce dispersion about the average velocityv#
according to Eq. 17. This feature is peculiar to the unidi-
rectional model; very different behavior is found with bidi-
rectional models.

The persistence of initial conditions is also reflected in
the time-dependence of low-order moments

x~t!n#5 E
2`

`

xnp~x, t!dx (19)

of the distribution, in particular the mean displacementx(t)
and varianceS(t) 5 x(t)2 2 x(t)2. For the models of this
paper, these functions can be calculated exactly, from the
appropriate differential equations (Appendix A) or by Fou-

FIGURE 4 Unidirectional transport, dispersion. Computed distributions
of particle displacementx in the middle of an infinite arm 5 s after starting
at x 5 0 with all particles detached from filaments. The two cases are (A)
with free diffusion (D 5 0.1 mm2/s), and (B) without free diffusion. The
curves correspond to different motor speedsv 5 0.1 to 1.0mm/s as shown.
The binding constantK was set at 2.0 and other parameters as in Table 2.

FIGURE 5 Unidirectional transport, dispersion at long times. The ap-
proach to a Gaussian distribution of scaled deviationsy 5 (x 2 v#t)/t1/2 from
the mean displacement for particles spreading from a point distribution, as
in Fig. 4 withv 5 1 mm/s. The indicated distribution slowly approaches the
function (4pDeff)

21/2 exp(2y2/4Deff) from Eq. 17 (results shown are for
t 5 5, 20, 100, and 1000 s). The standard deviation of the last curve (0.341
mm) is close to the value 2Deff 5 0.363 from Eq. 18 withD 5 0.1 mm2/s,
k 5 1 s21, k9 5 0.5 s21. The first curve shows the truncation effect seen
in Fig. 4 and associated with single excursions.
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rier methods. The former method is more efficient. For the
unidirectional model,

x~t!#5 v#t 1 Sp 2
K

K 1 1D v

k 1 k9
~1 2 e2(k1k9)t! (20a)

S~t! 5 2D* t 1 A~1 2 e2(k1k9)t!

1 B~1 2 e22(k1k9)t! 1 Cte2(k1k9)t (20b)

wherep is the initial fraction of bound particles andD* is
given by Eq. 18. The constantsA, B, C are given in Eqs. A6.
There is an initial temporal phase reflecting the bound
fraction that persists for the equilibration time, followed by
a second phase of diffusion about the mean, which lasts
indefinitely (Fig. 6). Endogenous particles are expected to
be in kinetic equilibrium with their filaments (p 5
K/(K 1 1)), in which case there is no transient in the mean
displacement and the variance-time curve approaches lin-
earity with a single exponential function (B 5 C 5 0); the
predicted behavior for injected particles (p 5 0) is more
complex. These predictions could be tested by fitting ex-
perimental moment-time curves obtained from an ensemble
of tracked-particle distributions; the same method has been
used for bead assays of kinesin motility (Svoboda et al.,
1994).

SYMMETRIC BIDIRECTIONAL TRANSPORT

The reaction-diffusion-transport equations (1) define a gen-
eral bidirectional transport model. Here we consider only
the symmetric case, takingk1 5 k2 [ k, k91 5 k92 [ k9 and
v1 5 2v2 [ v. This symmetric model describes particles
with only one type of motor moving on a bipolar filament
network with an equal mixture of polarities, for example
myosin-V on F-actin. The same model could also be used
for a unipolar filament network if particles possess two
kinds of motors with opposite polarity but the same motor
speed, and the same attachment and detachment rates,
which may be approximated by kinesin and dynein motors
on microtubules. The relevance of these models is further
considered in the Discussion section, but we attempt to
address both systems by presenting computation results for
a range of motor speeds and detachment rates. The binding
rate and diffusion constant are usually fixed in the following
examples at 1 s21 and 0.1mm2/s, but the scaling laws (Eqs.
7 and 8) are structured in such a way that predictions for
lower values of both these quantities can also be obtained.

As before, steady-state transport properties are investi-
gated first, followed by transient responses and dispersive
behavior.

Steady-state solutions

Irreversible attachment

Bound particles are likely to proceed down the arm in a
single pass whenL ,, lon, which is possible with microtu-
bule motors in short arms (under 10mm). Here we consider
the limiting casek9 5 0. The steady-state solutions of the
symmetrized form of Eqs. 1 are

no~x! 5 ne2qx 1 ñeq(x2L),

n1~x! 5 ln 1
kn

qv
~1 2 e2qx! 1

kñ

qv
eq(x2L)

n2~x! 5 l̃ñ 1
kn

qv
e2qx 1

kñ

qv
~1 2 eq(x2L)! (21)

where 1/q 5 loff 5 =D/2k andqL .. 1. From Eq. 2, the net
outward flux is

J 5 nSvD

2
1 lvD 2 ñSvD

2
1 l̃vD. (22)

The diffusion velocityvD [ loff/toff is now equal to=2kD,
but only half of the particles entering the arm bind to
filaments directed into the arm as required; the remainder
are returned by motor action to their starting points.

With a sink at the tip (ñ 5 0), Eq. 22 has the same
structure as Eq. 13 for unidirectional transport and the
discussion underneath applies in equal measure. When the
tip concentrationñ is not held fixed and the arm is closed,

FIGURE 6 Unidirectional transport, time-dependence of the mean dis-
placementx(t), and varianceS(t) in the unidirectional model, calculated
from Eqs. 20 withk9 5 5 s21 (A) and 0.05 s21 (B), and values ofD, v, and
k in Table 2. The initial transients are functions of the initial particle state,
either free (p 5 0), bound (p 5 1), or an equilibrium mixture (p 5
K/(K 1 1)). Memory of the initial state persists over a time of order 1/(k 1
k9) 5 0.17 s (A) or 0.95 s (B).
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the “no-flux” condition at the outer end is achieved when
the concentration of free particles has risen to its steady-
state value

ñ 5
vD 1 2lv

vD 1 2l̃v
n (23)

for which J 5 0. Under these conditions, particles are
exchanged by motor action on both filaments, at a rateJex

obtained from bound-state fluxes in the central zone of the
arm away from boundary layers, as

Jex 5 nSvD

2
1 lvD 5 ñSvD

2
1 l̃ṽD. (24)

This rate of exchange equals the net rate of outward trans-
port with a sink at the tip. The way in which transport is
shared between free diffusion and motor action in the load-
ing zones is shown in Fig. 7 for both types of boundary
conditions at the tip.

Multiple attachments

When L . lon, particles detach and rebind many times
before traversing the arm. Steady-state solutions of Eqs. 1
can be obtained from the equivalent equations

D
d2no~x!

dx2 5 2kno 2 k9n1, (25a)

v
dn1~x!

dx
5 2k9m, (25b)

v
dm~x!

dx
5 2kno 2 k9m (25c)

wheren1(x) 5 n1(x) 1 n2(x), m(x) 5 n1(x) 2 n2(x). From
Eq. 2,J 5 2Ddno/dx1 vm(x) is x-independent, sono(x) can
be eliminated from Eq. 25c, giving a single second-order
equation

d2m~x!

dx2 2 Q2m~x! 5 2
2kJ

vD
, SQ2 5

2k

D
1 Sk9

vD
2D. (26)

Note thatQ 5 1/l, wherel22 5 loff
22 1 lon

22 and l is a mean
path length for establishing kinetic equilibrium. Solutions
satisfying the boundary conditions (Eqs. 4) also simplify
whenQL . 1, which is implied by the defining inequality
of this subsection. In terms of the ratios

« 5 k9/Qv; l/lon, h 5 v/k9L ; lon/L (27)

where«, h , 1, the concentration profiles are obtained from

m~x! 5 Ae2Qx 1 BeQ(x2L) 2 ~1 2 «2!
J

v
(28a)

FIGURE 7 Bidirectional transport, steady state. Concentration profiles
and the corresponding fluxes of free particles and bound particles on
outward/inward filaments with irreversible attachment to filaments, from
Eqs. 2a and 11, shown for the case of a sink at the tip (ñ 5 0, rowsA and
B) and with the tip closed (J 5 0, rowsC andD). In A andC the loading
efficiency l is zero, implying that the filaments of the arm do not extend
back into the cell body (lpu 5 0), and l 5 10 in B and D. Particle
parameters are as in Table 2 withv 5 0.1 mm/s, solpu 5 2 mm whenl 5
10. The body concentrationn was set to unity, and the loading parameter
l̃ in the tip to zero. With a sink at the tip, the net outward flux is 0.224
particles/mm2 z s in A and 1.224 inB, giving facilitation factors of 22.4 and
122.4 above free diffusion over the same distance of 10mm. With a closed
tip, the capture ratioñ/n for particles in the tip was 1.0 in caseC and 5.48
in caseD, as determined from Eq. 23.
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n1~x! 5 n1~0! 2 ~1 2 «2!
Jx

hvL

1 A«~1 2 e2Qx! 1 B«eQ(x2L), (28b)

no~x! 5
v

2k

dm~x!

dx
1

n1~x!

2K
. (28c)

which, with boundary conditions (Eqs. 4), yield the net flux

J 5
n 2 ñ 1 ~1 2 «21!K21~ln 2 l̃ñ!

1 1 2~1 2 «!h

D

«L
(29)

and the integration constantsA, B, n1(0) given under Fig. 8.
Equation 2 gives the corresponding fluxes from the concen-
tration profiles. The net fluxJ is inversely proportional to
arm lengthL, just as for pure diffusion. Terms of order
exp(2QL) have been dropped, but those of orderh 5 lon/L
must be retained becauseJ reflects the differencem(x) in
particle populations on outward and inward filaments,
which must satisfy the correct boundary conditions. For
sink conditions (ñ 5 0), the flux facilitation factor can be
written as

F < S1 2
l

KD lon

l
1

l

K Slon

l D
2

(30)

neglecting terms of orderh. ThusF . 1 whenlon . l, where
the equilibration lengthl is below loff. If particles can load
on outward filaments starting within the cell body,F is
increased again to a maximum value (lon/loff)

2 when the
loading factorl has its maximum valueK, achieved when
lpu .. lon (Eq. 6).

Fig. 8 shows examples of concentration profiles and
fluxes in the arm. There is a central zone in which free and
bound particles are in reaction equilibrium withn1(x)/
no(x) 5 2K, with boundary layers of widthloff at each end.
Multiple attachment cycles produce quasi-diffusive trans-
port characterized by a linear fall in free and bound con-
centrations down the arm, while a single irreversible attach-
ment produces convective transport characterized by a flat
concentration of bound particles (Fig. 7). The solution de-
scribed above can be clearly seen in a central zone where all
concentrations fall linearly withx. Hence particle transport
in this zone can be described by Fick’s law in the form

J 5 2D*
dn~x!

dx
(31)

wheren(x) 5 (2K 1 1)no(x) is the total particle concentra-
tion at positionx, and

D* 5
D

2K 1 1
1

2K

2K 1 1

v2

k9
, (32)

the symmetric version of Eq. 4B, is the compound diffusion
constant. Again, diffusion is enhanced whenDon . D,
whereDon 5 v2/k9. In contrast to the unidirectional case,

this diffusion constant becomes very large asK is increased
at fixed k (the duty ratio tends to unity). AsK is increased
from zero at fixedk, D* initially decreases to a minimum
where the high detachment rate forcesDon , D, but then
increases without bound asDon becomes very large (Table
2). This behavior is in contrast to the unidirectional model,
whereDon tends to zero in the high duty ratio limit.

The flux is still limited by the boundary layer nearx 5 0,
which determines how the free concentration profileno(x)
matches onto the cell-body concentration. When the degree
of loading is small, particles must diffuse into the arm to
bind to filaments, thus establishing a boundary layer with a
significant drop in free-particle concentration across it.
Conversely, the boundary layer almost disappears when
particles are efficiently loaded in the cell body (l ' K). This
is confirmed by assuming that the boundary layer is absent,
so dno(x)/dx 5 n/L with a sink at the tip andJ 5 (2K 1
1)D*n/L. The resulting facilitation factor 11 (lon/loff)

2 [
(lon/l)

2 is just as predicted by Eq. 30.
With a closed tip, the net outward flux in the arm is zero

under steady-state conditions, but particles are still ex-
changed between the cell body and the tip. The path of a
particle in the arm is complicated by binding to filaments of
random polarity, but a rate of exchange on filaments may be
defined as before, giving

Jex 5 nHS1 2
l

KDÎ1 2 «2
vD

2
1 lvJ (33)

which is different from Eq. 24 in much the same way that
Eqs. 12 and 14 for unidirectional transport differ from each
other.

Table 3 summarizes our predictions for rates of outward
transport and the corresponding facilitation factor for both
unidirectional and bidirectional transport models with a sink
at the tip. The linear nature of the basic transport equations
(1) ensures that predictions with a fixed positive concentra-
tion in the tip can be obtained by superimposing the inverted
solution in which cell body and tip are interchanged. Hence
Fick’s law, in the form that the net outward flux is propor-
tional to the concentration differencen 2 ñ, applies only to
the completely symmetric model for bidirectional transport,
namely the model presented in this section but with equal
loading factors at each end.

Transient solutions

The rise of flux in the tip

When particles make a complete transit along the arm
without detaching, the rise times of flux at the outer end in
the presence of a sink are of orderL/v for unidirectional and
bidirectional models. For bidirectional systems, the sink
prevents particles from reloading onto inward filaments.
However, when multiple detachments occur, the direction
of motor action can be reversed at random, as determined by
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random choices of filament polarity or motor type at the
instant of binding. These shuttling motions may be consid-
ered as random walks. In the limit of many pauses the
distribution of the net displacement can be obtained from
the central limit theorem, even though the length of each
excursion on filaments is itself a random variable controlled
by the kinetics of detachment (Chandrasekhar, 1943). If the
length of each excursion is approximated by the mean path
length lon 5 v/k9, the most probable displacement afterN
steps is of the order ofN1/2lon in either direction, soN ;
(L/lon)

2. Thus the rise time is estimated byNtc wheretc 5
1/2k 1 1/k9, or

t0.5 < SLk9

v D2S1

k9
1

1

2kD ~L .. lon! (34)

neglecting diffusion in the pauses.
Computer solutions of the symmetric case of Eqs. 1 for a

step rise in particle concentration in the cell body give
flux-time curves (Fig. 9) similar to those found for the
unidirectional model (Fig. 3), but with certain characteristic
differences. In agreement with Eq. 34, calculated rise times
vary quadratically rather than linearly with arm length in
most cases, the exceptions being for lower rates of detach-
ment and/or short arms, where it can be seen that multiple
attachments are not expected. For the same detachment rate,
this effect is more pronounced at the higher motor velocity
(1.0 against 0.1mm/s) where the mean excursion length is
longer. In most cases the rise time is a decreasing function
of the detachment rate, but at the lower motor velocity the
rise time increases whenk9 is changed from 5 to 0.5 s21

(black to red linesin Fig. 9A) and this effect persists over
the range of arm lengths used with a quadratic variation of
rise time with length. This effect appears to arise from free
diffusion in the pauses, which operate to maximum effect in
shortening the rise time when the duty ratio is below unity
and the motor speed is low, and is not present in parallel
calculations made withD 5 0. This conclusion is also
supported by Eq. 7a, which predicts that the flux-time curve
with a 100-fold reduction inD has the same shape as that
with the original diffusion constant, and a 10-fold increase
in motor velocity and arm length (setL 5 0.1 and replace
v with v/L).

Dispersion from a point distribution

The symmetric bidirectional model produces, as would be
expected, a symmetric distribution of particle displacements
moving away from an initial point distribution (Fig. 10).
These distributions generally show more structure than for
unidirectional transport, and are shown to evolve through
three distinct phases with characteristic profiles. If the par-
ticles are initially free, they may disperse by diffusion in the
cytoplasm before binding, followed by an intermediate
phase after the first binding event, where particles can motor

FIGURE 8 Bidirectional transport, steady state. Concentration profiles
and fluxes along the cellular arm of length 10mm when particles detach
frequently within the arm, allowing multiple excursions on filaments of
either polarity. The tip concentration is held at zero, and the rate constant
k9 for detachment is 0.5 s21 in A andB and 0.05 s21 in C andD. Other
fixed parameters are as in Fig. 7. The loading parameterl is zero inA and
C, otherwise set to its maximum valueK 5 k/k9, giving l 5 2.0 (lpu 5 1.52
mm) in B andl 5 20 (lpu 5 20 mm) in D. The flux facilitation factors are
1.33, 1.78, 6.64, and 59.8 for casesA–D, respectively. All concentrations
fall linearly with position over most of the arm, since the mean path length
lon (0.2mm in A andB, 2 mm in C andD) is less than the length of the arm.
All profiles were calculated from Eqs. 2, 28, and 29, where the coefficients
in Eq. 28 satisfyA 5 22«(K 2 l)n/(1 1 «) 2 «(1 2 «)J/v, A 1 B 5
22«K(n 2 ñ)/(1 2 «2) 1 «J/hv, andn1(0) 5 2(«K 1 l)n/(1 1 «) 2 «(1 2
«)J/v. Terms containing the fluxJ may be small, of orderlon/L, but must be
retained to satisfy the boundary conditions (Eq. 5).
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in either direction out of the diffusive peak ifj . 1. In
contrast to unidirectional transport, the following cycles of
attachment produce excursions of random direction and
random magnitude, producing a third and final phase that
asymptotes to a classical diffusion law when the number of
cycles becomes large. Following the discussion of the uni-
directional model, one can expect that the intermediate

phase sets in after the equilibration time 1/(2k 1 k9) and the
final “compound-diffusion” phase after times in excess of
the cycle timetc 5 1/2k 1 1/k9. The gap between these
characteristic time scales defines the persistence of the
intermediate phase, which can be very prolonged ifk9 ,, k.
With these estimates, the distributions shown in Fig. 10 lie
between the second and third phases, but the time elapsed is
clearly insufficient to establish the Gaussian distribution
that describes compound-diffusion behavior because the
shape of the distribution depends on motor speed.

A full discussion of this behavior requires specific initial
and final particle statesi, j 5 0, 6 (free or bound to either
filament). The corresponding distributions are the Green’s

TABLE 3 Summary of formulae

l 5 0 l 5 K

J/n F J/n F

Free diffusion D/L 1 D/L 1
Unidirectionalk9 ,, v/L =kD L/loff

=kD 1 Kv (L/loff)(1 1 (lon/loff))

Unidirectionalk9 . v/L 2Kv

1 1 Î1 1
4Kv2

Dk9

L/loff

Î1 1 S loff

2lon
D2

1
loff

2lon

Kv Llon/loff
2

Bidirectionalk9 ,, v/L ÎkD/2 L/2loff ÎkD/2 1 Kv (L/2loff)(1 1 (lon/loff))

Bidirectionalk9 . v/L ~D/L!Î1 1 ~2Kv2/Dk9! lon/l (D/L)(1 1 (2Kv2/Dk9)) (lon/l)
2

Formulae for the steady-state fluxJ down an arm of lengthL with end concentrationsn and zero, and the corresponding facilitation factorsF 5 JL/nD
over free diffusion, for minimum and maximum loading onto filaments at the central end (l 5 0 andK, respectively). Predictions for intermediate values
of l are correctly given by linear interpolation. The mean path lengths arelon 5 v/k9, l22 5 loff

22 1 lon
22, whereloff 5 (D/k)1/2 for the unidirectional model

and (D/2k)1/2 for the bidirectional model. Other symbols are defined in Table 1. Note that filament density and its effect on the value ofK may need to
be taken into account in direct comparison of the uni and bidirectional cases.

FIGURE 9 Bidirectional transport, stepwise increase of concentration in
the cell body. The rise of flux at the tip of a 20mm arm (upper boxes) and
the corresponding rise times over a range of arm lengths (lower boxes),
computed for motor speeds of 0.1 (A) and 1.0 mm/s (B). The curves
correspond to different detachment rates, as in Fig. 3. The corresponding
rise times are seen to vary quadratically with arm length whenever many
attachment cycles occur within the arm, as discussed in the main text.

FIGURE 10 Bidirectional transport, dispersion. Computed distributions
of particle displacementx in the middle of an infinite arm, 5 s after starting
with all particles atx 5 0 and detached from filaments, showing the effects
of different motor speedsv 5 0 (black line), 0.1 (red line), 0.25 (green
line), 0.5 (blue line), and 1.0mm/s (khaki line). Other parameter values are
as given in Fig. 4. At the highest motor speed, the distribution shows
shallow twin peaks close to the single-excursion displacements (65 mm).
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functions or propagatorsGij (x, t) of the problem, and

p~x, t! 5 O
i, j

Gij~x, t!pj (35)

wherepj is the probability of the initial statej. Fort . 0 they
satisfy the same reaction-diffusion-convection equations (1)
as the concentrations (McQuarrie, 1962). For the initial
phase, the displacement distributions are given by the
functions

go~x, t! 5
1

Î4pDt
expS2 x2

4Dt
2 2ktD,

(36)

g6~x, t! 5 d~x 7 vt!exp~2k9t!.

wherei 5 j so only one state label is required. The proba-
bilities exp(22kt), exp(2k9t) of surviving binding or de-
tachment respectively define the lifetimes of the initial
states. For distributions after the initial binding or detach-
ment event, numerical calculations are required. We used
three separate computational approaches, namely full nu-
merical solution of Eqs. 1 using smaller time steps for free
diffusion than for kinetics and upwind differencing (Press et
al., 1992) for motor action, a Fourier transform method with
numerical inversion of the time transform, and a partial
perturbation expansion for the intermediate phase in powers
of the rate constantsk, k9, reducing to simple closed formu-
lae whenD 5 0 (Appendix B).

Fig. 11 shows a representative set of distribution func-
tions calculated forD 5 0.1 mm2/s, v 5 0.1 mm/s, k 5 1
s21, various detachment rates, and particles either free or
equally bound to filaments of both polarity. The initial
bound-state distribution is equal to (g1 1 g2)/2, which
comprises propagating functions of zero width not shown in
the figure. All other contributions are continuous functions
in which the particle has changed its attachment state at
least once.

When K , 1, the bound fraction or duty ratior 5
2K/(2K 1 1) is small and the distribution appears to main-
tain its diffusion-like character at all times (Fig. 11A). A
distinct intermediate phase showing the presence of a “mo-
toring” population appears forK . 1, first as a plateau with
discontinuous borders (Fig. 11B) and then as sharply
peaked but continuous distributions nearuxu 5 vt for K ..
1 (Fig. 11C). The change in shape from a plateau to distinct
peaks asK increases reflects the shift from free to bound
particles during the major part of the time interval. When
K . 1, the forms of these distributions depend on the initial
state (free or bound) and define the intermediate phase of
motor-assisted diffusion, which lasts for approximately one
cycle of binding/detachment. The average cycle timetc 5
1/2k 1 1/k9 becomes large ask9 is decreased (K .. 1). In
this limit, the heights of the peaks decrease with time if the
particle is initially free, representing the first detachment
event. If the particle is initially bound, then one cycle of

binding and detachment is necessary to reach the interme-
diate phase as defined above, and the probability of one
kinetic cycle grows in time over the interval (0,tc). Increas-
ing the motor speed and hencej produces similar effects to
the same increase inK (results not shown).

The transition from the intermediate phase to compound
diffusion can also be studied analytically by expanding the
propagators in powers of the number of attachment cycles
(Appendix B). Thus the rounded plateau distribution found
with K 5 2 and particles initially bound (Fig. 11B) is
characteristic of particles starting on a track of one polarity
and finishing on a track of opposite polarity; the probability
of doing this rather than remaining on the same track is high
if the duty ratio is not too large. The distribution for this
process actually turns out to be symmetric inx even when
the starting track has given polarity; this results from equal
divisions of the time interval (0,t) spent on plus- and
minus-directed tracks. Appendix B also shows that the
lifetime of the intermediate phase also depends on the initial
state.

After many attachment cycles, any initial bias in the net
direction of transport is removed and the displacement
distribution tends to the classical diffusion law

p~x, t! 5
1

Î4pD* t
expS2 x2

4D* tD (37)

whereD* is the compound diffusion constant in Eq. 32. The
final phase is not apparent in Fig. 11 except perhaps at very
low duty ratio (caseA), where the intermediate phase is
absent and compound diffusion is not markedly different
from the initial phase of free diffusion. To demonstrate the
existence of compound diffusion, distribution functions
were again computed out to many cycle times and the
functiont1/2p(x, t) plotted againsty 5 x2/t for various times.
After many cycles, these functions converge to a universal
Gaussian function independent of the initial state (Fig. 12).

There is no characteristic onset time (in the sense of an
exponential process) for compound diffusion. A particle
initially on an outward filament will typically move by
about one mean free pathlon over timeton. The additional
time Dt required for this displacement to be obliterated by
compound diffusion is that the standard deviation exceed
the initial displacement, or

D*Dt .. lon
2 . (38)

This condition can be rewritten asDt .. (1 2 «)2tc, where
tc is the mean cycle time and« 5 l/lon. For « ,, 1, many
cycles of detachment and rebinding are required.

As before, moments of the distribution provide some
information about the underlying processes. For symmetric
bidirectional transport, the first moment is identically zero,
while the second moment or variance is given by

S~t! 5 2D* t 1 A~1 2 e2k9t! 1 B~1 2 e2(2k1k9)t! (39)
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The long-time behavior obeys the expected diffusion law
with the compound diffusion constant of Eq. 32, and the
coefficientsA, B depend on the initial state (Eqs. A8). This
result differs from Eq. 20b for unidirectional transport; there
is a slower exponential process at the detachment ratek9,
which terminates the intermediate phase. If observed dis-
placement distributions of tracked particles can be fitted to
Eq. 39 by adjusting the five parameters involved, the initial
bound fraction and the four basic parametersD, v, k, k9 of
the symmetric bidirectional model could be obtained.

Fig. 13 shows that the variance first rises linearly as 2Dt
if particles are initially detached, or quadratically as (vt)2

from motor action of initially bound particles, the initial
slope being zero. For particles initially in equilibrium, there
is only one exponential decay and insufficient information
to determine the four basic parameters; thus injection of free
particles or tracking of initially bound particles is required.
For highly processive motors (k9 ,, k), the two exponen-
tials are well separated in time and long-lived motor action
appears as an extended quasi-quadratic curve before detach-

FIGURE 11 Bidirectional trans-
port, dispersion. The computed
space-time behavior of particle dis-
placement distributionspi(x, t) in an
arm, starting atx 5 0 and either de-
tached (i 5 0) or equally bound to
filaments of each polarity (i 5 1),
showing the effect of different de-
tachment ratesk9 5 5 (A), 0.5 (B),
and 0.05 s21 (C). The motor velocity
is set at 0.1mm/s, with other param-
eters as in Table 2.
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ment produces the asymptotic linear behavior fort .. 1/k9.
In this case, binding of initially free particles also produces
a knee in the curve much earlier on, at times;1/2k. The
linear law applies at times greater than the cycle time and
permits the compound diffusion constant to be determined.
Thus the variance-time curve displays the three predicted
phases, which should be useful indicators of motor kinetics.

COMPARISONS WITH EXPERIMENT

It may be useful to start by summarizing the main predic-
tions of the unidirectional and symmetric bidirectional mod-
els. For numerical illustrations, consider a microtubule-like
example withL 5 50mm, v 5 0.5mm/s,k9 5 0.05 s21, K 5

20, usingD 5 0.1 mm2/s as discussed in Table 2. At this
juncture, we revert to the terminology of cell biology: the
cell body and a tip are proximal and distal ends, respec-
tively, of a cell axon or dendritic arm; outward and inward
transport are respectively anterograde and retrograde.

First, in the unidirectional model with an anterograde
filament-motor system, the flux of particles in an arm is
driven by the particle concentration in the cell body, inde-
pendent of the tip concentration. The steady-state flux per
particle is equal to the motor velocity if the duty ratio is high
and particles are efficiently loaded onto filaments in the cell
body. If the duty ratio or the motor velocity is low, the flux
is increased if the particles can diffuse freely in the pauses.
In the symmetric bidirectional model, the net anterograde
flux is a decreasing function of particle concentration in a
distal region; however, this region must be accessible to the
ends of filaments in the arm and the flux is enhanced if an
auxiliary filament system is present. In that case, a net flux
proportional to the concentration difference between the
ends (Fick’s law) applies only if the loading factors at each
end of the arm are equal. With equal loadings and end
concentrations there is no net flux, but particles are ex-
changed between the ends at a rate that can approach the
motor velocity.

Second, with a distal sink, the relative transport capacities
of the two models can be gauged from Table 3. As might be
expected, anterograde fluxes for the two systems are very
similar for short arms, where most particles can be trans-
ported in a single excursion; thenJ(bi)/J(uni) # 1, the precise
value depending on pre-loading. For longer arms allowing
multiple attachments, the unidirectional system is faster
because the bidirectional flux is inversely proportional to
the length of the arm. For example, for microtubule-like
filaments wherelon .. loff, J(bi)/J(uni) ' lon/L , 1, namely
0.2 in the above example. As a general rule, optimal pre-
loading of particles in the cell body can increase the flux by

FIGURE 12 Bidirectional transport, dispersion. The approach to compounded diffusive behavior. Plots of the scaled distributionst1/2p1(x, t) againsty 5
t21/2x for 25 equally spaced time intervals out to timetmax 5 5, 20, and 200 s inA–C for k9 5 5, 0.5, and 0.05 s21, respectively, and other parameters
as in Fig. 11. After many attachment cycles, the curves coalesce to the universal Gaussian curve (4pD* )21/2 exp(2y2/4D* ) with values ofD* in Table 2
as determined by Eq. 32. The average number of cyclestmax/tc is equal to 7.1, 8.0, and 9.8 for casesA–C, respectively.

FIGURE 13 Bidirectional transport, dispersion. Time-dependence of the
displacement varianceS(t), calculated from Eqs. 39 and A8, for motor-
assisted diffusion in the limits of low and high duty ratios (K 5 0.2 in A
and 2000 inB) and values ofD, v, andk in Table 1. The initial transients
are functions of the initial state, either free (p 5 0), bound equally to
filaments of both polarities (p 5 1), or an equilibrium mixture of the first
two cases (p 5 2K/(2K 1 1)). The linear lawS(t) 5 2D* t is achieved
asymptotically after many attachment cycles. InB, the cycling time is very
large and the quadratic law seen for initially bound vesicles reflects the
intermediate phase, where bound particles stay on one filament.
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the ratiolon/loff of the free path lengths, equal to 45 for the
“microtubule” parameters.

Third, if there is a step increase of particle concentration
in the cell body, the concentration at the end of an arm of
lengthL equilibrates in a time of orderL/v# (103 s) for the
unidirectional model when the duty ratior is near unity, and
L2/2D* (510 s) for the bidirectional model where the diffu-
sion constantD* (4.9 mm2/s in the present example) in-
cludes the effects of many motor displacements of random
sign. A smaller step increase may occur at timeL/v, where
v is the motor velocity. Sincev# 5 rv, the main peak will be
much delayed if the duty ratio is low, but in that case the
equilibration time in short arms may be smaller if unbound
particles can diffuse freely. A comparison of these formulae
for the unidirectional and bidirectional cases in arms of the
same length suggests that the latter equilibrates more slowly
whenL . 2D*v#, or 4.7mm in the above example. However,
this estimate is correct only ifL . lon, here equal to 10mm,
so the first estimate must be revised upward.

Fourth, in the bidirectional model, tracked particles dis-
perse from their initial positions with a variance that grows
quadratically in time over the first period of motor action if
the duty ratio is high, moving to a linear law only after many
attachment cycles. The diffusion of free particles produces
a linear law at all times, apparent if the duty ratio is low. In
contrast, the unidirectional model also gives a net flux of
tracked particles, moving initially at the motor velocityv but
falling to the average velocity after kinetic equilibrium is
established. If the duty ratio is high, this equilibration time
is much less than the mean lifetime of particles bound to
filaments. Distributions of displacements make correspond-
ing changes in form with elapsed time, reaching a diffusion
law about the mean position only after many cycles of
attachment.

Although flux rates are generally inferior with bidirec-
tional transport, it has to be borne in mind that there may be
a wider functional significance of bidirectionality, for ex-
ample in retaining particles or achieving a uniform distri-
bution. In some cases this may be a consequence of an
effective diffusion constantD* that is lower in value than
the free diffusion constant for the particle, namely when
v2/k9 , D, which is possible for slow motors and/or a low
duty ratio.

Comparisons with experimental data should be made in
light of a number of factors reflecting the complex nature of
the interactions between particles, filaments, and the cyto-
plasmic environment generally. To this end, we briefly
review existing motility data for axons, melanocytes, and
melanophores, keeping in mind the present models. When a
single one-dimensional filament system is dominant, there
is usually no difficulty in fitting either the unidirectional
model or a symmetric bidirectional model to displacement-
time data in the sense of assigning values of the four basic
parametersv, k, k9, and D. However, the data reveal two
possible inadequacies with the models; the apparent diffu-

sion constant of organelles detached from motor-filaments
is much smaller than expected from free diffusion, and the
speed of organelles motoring on filaments appears to fluc-
tuate within each period of motor action. These problems
are evaluated in the concluding discussion: in general terms,
they are connected with the origins of pauses between
periods of motor action.

Axonal transport

In nerve axons, bidirectional transport of various intracel-
lular organelles, including vesicles, mitochondria, and the
endoplasmic reticulum, occurs on microtubules that may be
up to 100 mm in length (see Breuer et al., 1988). The
microtubule system is unipolar, or almost completely so,
with “plus” ends directed outward (Baas and Yu, 1998;
Heidemann et al., 1981, 1984), and bidirectional transport is
produced by plus-end and minus-end motors (kinesin and
dynein, respectively) on each organelle. It is important to
establish whether only one kind of motor on each organelle
is activated at the same time. If kinesin is switched on by a
regulatory agent in the cell body and dynein switched on in
the nerve terminals, then organelles in the axon showing
anterograde and retrograde motions can be considered sep-
arately, using the unidirectional model in which every pause
is followed by motion in the same direction. Conversely,
both kinds of motor could be simultaneously active but
bound to different parts of the organelle, leading to coherent
motor action in a direction chosen at random by its current
orientation, which is seen to change for nonspherical or-
ganelles (Koles et al., 1982; see also Hayden et al., 1983).
If pauses produced by detachment and rebinding generate
fairly frequent reversals, the bidirectional model would be
indicated. In axonal transport, there are reports of pauses
occasionally followed by intermittent reversals, but never
over distances above a few microns (Cooper and Smith,
1974), on the whole supporting the unidirectional model.
However, the coupling effects of motion on actin filaments
also need to be considered.

Displacement-time plotsx(t), typically collected at time
intervalsdt 5 0.2–1 s, are commonly analyzed to give the
distribution of coarse-grained velocitiesdx/dt. For endoge-
nous particles, these distributions typically show a broad
range of velocities heavily biased in one direction, a nar-
rower peak centered about zero, and a peak at zero velocity,
representing particles bound and motoring on filaments,
particles diffusing freely or attached to moving structures,
and particles trapped on static structures, which could also
be motor-filaments (Adams and Bray, 1983; Allen et al.,
1982; Bridgman, 1999; Breuer et al., 1988; Cooper and
Smith, 1974; Koles et al., 1982; Morris and Hollenbeck,
1995). Similar distributions have been observed for injected
proteins (Buchner et al., 1987; Galbraith et al., 1999 and
references therein). The mean velocityv#B during bound
periods can provisionally be interpreted as a lower estimate
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for the motor speedv of the particle. The two may not be
equal because, even if the particle travels at constant speed
v on a motor-filament, short periods of detachment and
rebinding may be hidden by the finite sampling time. The
maximum velocity or leading edge of the distribution is an
upper bound to the motor velocity, but may arise from rare
events such as elastic recoil of filaments (Allen et al., 1982),
so may not be a reliable estimate ofv. Some authors also
give the mean path lengthlon traveled over bound periods or
the maximum path length observed, which may be much
greater (a Poisson distribution is expected). Then lower and
upper bounds for the mean detachment ratek9 5 v/lon can be
obtained, which validate such measurements of motor ve-
locity if k9dt ,, 1, takingk , k9.

Data for anterograde transport and particle diameters of
0.2–0.7 mm from the above sources give mean bound
speedsv#B 5 0.30–2.5mm/s andvmax 5 1–5mm/s. To some
extent, these variations correlate with particle size. For
particles above and below 0.5mm diameter, respectively,
Breuer et al. (1988) findv#B 5 0.3 and 0.7mm/s,vmax 5 1.0
and 2.7mm/s, lon 5 2.11 and 3.14mm, and duty ratiosr 5
0.24 and 0.21. These values are sufficient to bracket the
motor velocities, the detachment ratesk9 between (0.15–
0.5) and (0.2–0.8) s21, respectively, and binding ratesk
between (0.05–0.15) and (0.06–0.23) s21 usingr 5 k/(k 1
k9). In this investigation the sampling timedt was 0.11–0.25
s, so thatk9dt ,, 1 and detachment and rebinding during
one sampling period is rare and can be ignored. Thus
fluctuations in motor speed in each interval between pauses
appear to be present.

The effects of the actin network on axonal transport are
now well known: the motor involved is myosin V (Tabb et
al., 1998). This network supports long-range axonal trans-
port in the absence of microtubules, but although all parti-
cles on the same actin track move in the same direction,
over all filaments this mechanism is inherently bidirec-
tional. Estimated motor velocities again vary widely, from
0.07 to 3.0mm/s. Values above 0.4mm/s (the motor veloc-
ity for myosin Va from in vitro motility assays) are ob-
served in extruded axoplasm (Allen et al., 1982; Kuznetsov
et al., 1992, 1994), where the filament network may not be
stationary. Reported mean excursion lengths range from 0.5
to 4 mm (Kuznetsov et al., 1992; Bruer et al., 1988; see also
Rodionov et al., 1998) and are generally shorter than on
microtubules (3–10mm). In the absence of obstructions, the
detachment rate should be faster than from microtubules,
suggesting that organelles reaching the actin network un-
dergo many cycles of detachment and rebinding to actin
before they are re-captured by a microtubule. Over one
cycle of microtubule motor action, the detached organelle
may be considered to be in kinetic equilibrium with actin, so
that free organelles and organelles undergoing motor-as-
sisted diffusion on F-actin may be lumped together. Then
the unidirectional model with microtubules is valid if the
free diffusion constantD is replaced by (12 pA)D 1

pAvA
2 /k9A, where pA is the equilibrium probability of the

organelle-actin complex andvA andk9A are the organelle’s
motor speed and detachment rate on actin. The binding rate
k to microtubules would also be reduced by a factorpA with
respect to the axon in which actin has been removed.

Coupling effects between the two filament systems have
been studied by Morris and Hollenbeck (1995), using nor-
mal axons and axons in which microtubules or actin fila-
ments had been depolymerized. With no microtubules, re-
versals of the motions of particles on the actin network were
observed. Motor velocities estimated from bound periods
sampled every second were similar in both directions,
namely 0.3–0.4mm/s in normal axons, 0.2mm/s on actin
alone, and 0.6mm/s on microtubules only. That the motor
velocity in the dual-filament system is smaller than that on
microtubules alone suggests either that not all particles
analyzed were on microtubules, or that the mean excursion
length on microtubules was shortened by contacts with actin
filaments. Mean excursion lengths were not given, while the
maximum values reported in each direction are not corre-
lated with removal of microtubules. For all three systems
the motor speeds in each direction are nearly equal, sug-
gesting that the net direction of transport is sensitive to
differences in the corresponding duty ratios, giving net
anterograde transport in wild-type axons and retrograde
transport in the actin-only system, although the microtu-
bule-only system is almost symmetric with respect to motor
velocity and duty ratio.

Melanocytic dendrites

Axial transport of melanosomes in the dendritic arms of
melanocytes is now recognized as another bidirectional dual
transport system, containing microtubules near the central
axis and subcortical actin filaments (Wu et al., 1998). Bi-
directional long-range transport is observed in the presence
of myosin V and also in its absence (as in the “dilute”
mouse mutation, Wei et al., 1997), indicating that at least
one microtubule motor must be present. Whether this bidi-
rectionality arises from plus- and minus-end motors or from
microtubules of opposite polarity is still an open question;
microtubule bundles in axonal dendrites are equipolar (Baas
and Yu, 1998) so we tentatively assume that this is the case
in melanodendrites. Bidirectional transport also occurs on
the actin network alone. Apparent motor velocities for the
dual system, the dilute mutation (motor action on microtu-
bules only), and the actin-only system, namely 0.7, 1.0–1.1,
and 0.14mm/s, respectively, are again similar in both di-
rections. Mean path lengths on microtubules were 12–13
mm; those on actin were not reported, but appear to be
above 0.3mm. Thus, in most respects this dual transport
system appear similar to that in axons. There are similar
reservations about the low value of the velocity on actin.

The accumulation of a high concentration of melano-
somes in dendritic tips is required physiologically for trans-
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fer to keratinocytes in the epidermis, which occurs only
when the actin-(myosin V) system is active (Wu et al.,
1998). In the “dilute” mutation, most melanosomes remain
in the central cell body; some travel back and forth in
dendrites but almost none are captured in the tip (Provance
et al., 1996; Wei et al., 1997). These observations can be
understood in terms of filament geometries in the cell body
and the tip, which serve to load melanosomes on to the fast
transport system in the arm (microtubules). A high concen-
tration of particles in the tip relative to the central cell body
can be achieved if loading is efficient in the cell body but
inefficient in the tip, as exemplified in the bidirectional
model withl . l̃ from Eq. 23 for short arms or a similar
equation derived from Eq. 33 for long arms. In the central
cytoplasm, Wu et al. have found that melanosomes load
onto short microtubules (average length;3 mm) feeding
those in the arm, which is the mechanism considered in Fig.
1. In the tips of dendrites, a somewhat different argument is
required.

In the absence of a cortical actin network under the tip, it
is reasonable to expect that a particle arriving at the end of
an anterograde microtubule would detach and bind to a
retrograde microtubule rather than diffuse into the tip space.
In this case loading is efficient, but the effective capture
volume in the tip is much smaller than its actual volume,
however defined, being limited by the diffusion length of
melanosomes in the close vicinity of retrograde microtu-
bules. Whatever the concentration of melanosomes in this
capture volume, the concentration averaged over the whole
tip volume would be very small. The presence of actin
filaments in the tip, mainly localized under the membrane
but with projections toward microtubule termini, should
therefore act to capture a much higher number of particles in
the tip volume, as suggested by Wu et al. For the tip volume,
the situation is as envisaged in Fig. 1 with no projecting
microtubules, and hence inefficient loading (l̃ 5 0). The
purpose of the submembrane actin system in the tip is to
spread, and thereby store, melanosomes throughout the tip
region. It would be useful to model this system directly.

If dendrites contain an equipolar mixture of microtubules,
then bidirectional transport could be produced by microtu-
bule motors of only one polarity on melanosomes, and the
symmetric bidirectional model would presumably apply to
transport on each filament system, giving motor-assisted
diffusion. This could be tested by an analog of the classical
diffusion experiment, in which the net anterograde particle
flux is proportional to the difference in concentrations be-
tween the central body and the tip region.

Melanophores

Particle tracking experiments on higher-dimensional actin
networks have been carried out in melanophores, notably by
Rodionov et al. (1998) who measured the distribution of net
displacements in any direction after 30 s. Their observations

can be qualitatively described by the radial distribution
function for two-dimensional diffusion

p~r, t! 5
G~d!rd21

~4pD* t!d/2 expS2 r2

4D* tD (40)

(Carslaw and Jaeger, 1959) ford 5 2, although the tail of
the observed distribution is broader. Setting the most prob-
able distance=2(d 2 1)D* t after timet to 0.5mm with t 5
30 s yieldsD* 5 0.0042mm2/s. Can this value be under-
stood in terms of motor-assisted diffusion on a randomly
polarized two-dimensional filament system?

Equation 40 is valid only if many attachment cycles occur
over the observation period. The authors observe tortuous
particle tracks, suggestinglon , 0.5mm as required andv 5
0.07mm/s, givingk9 5 v/lon . 0.14 s21 and more than four
attachment cycles over 30 s. The generalization of Eqs. 1 to
arbitrary dimensions predicts that

D* 5 ~1 2 r!D 1 r
v2

k9d Sr 5
GK

1 1 GKD, (41)

wherer is the duty ratio andG(d) 5 2, 2p, 4p for d 5 1, 2,
3. The observed diffusion constant can be accounted for if
k9 5 0.59 s21 andk .. k9 (r ; 1). It would be interesting
to know if the spread of displacements is bigger at longer
times, or whether there is a time-independent component of
the distribution which reflects the presence of short actin
filaments.

The apparent diffusion constant is so small that it could
also arise from hindered diffusion of free particles in the
cytoplasm, were it not for the near absence of such motions
when the actin system was removed. If the first explanation
is basically correct, the observed diffusion constant must be
compatible with Eq. 40 for duty ratios just below unity,
which mix in a small proportion of free-diffusion behavior.
When viewed in this way, the observed value ofD* con-
strains the free diffusion constantD to similar values or
less, about two orders or magnitude smaller than expected
from Stokes’ law (Table 2). Presumably, many free particles
are intermittently trapped by static components of the
cytoskeleton.

Melanophores are also a dual filament system, with bi-
ased bidirectional transport on a microtubule network pro-
jecting radially from the cell nucleus (Rogers et al., 1997).
Centrifugal transport on this system acts to move pigment
bodies from the center to the semi-cortical actin system,
where they are dispersed to approximate a uniform distri-
bution of dark matter (Rodionov et al., 1998; Rogers and
Gelfand, 1998). The conditions for achieving a uniform
steady-state distribution should reflect the spatial distribu-
tion of filament density in the cell, and two-dimensional
models could be investigated.
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CONCLUDING DISCUSSION

The previous section shows that many features of organelle
transport in axons, melanocytes, and melanophores are
compatible with the reaction-diffusion-transport models
presented, in which particle convection occurs on a filament
system and is due to the action of molecular motors. This
mechanism, rather than mechanisms based on cytoplasmic
streaming, is also indicated by the identification of or-
ganelle motors specific to the dual filament systems ob-
served in many types of cell motility (Langford, 1995;
Kelleher and Titus, 1998). For some applications, the mod-
els should clearly be generalized to include a dual filament
system and/or actin networks of higher dimensionality.
There are many aspects of organelle movements not de-
scribed by the basic models (Weiss et al., 1986), which
raises the question of what features should be added without
destroying their simplicity, and hence their utility. Two
particular deficiencies suggest specific improvements: 1)
there is evidence that the motor speed of the organelle
fluctuates while remaining bound to a filament, and 2)
diffusion of organelles not bound to motor filaments is
absent or is much slower than expected from the Einstein-
Stokes formula. It is necessary to show that these features
are compatible with the kind of organelle movements ex-
pected from motor action when attached to a filament, and
from the laws of diffusion when they are not. If this can be
done, then the way is open for the development of better
models, perhaps allied to more detailed observations.

Regarding 1) above, fluctuations in the speed of an or-
ganelle apparently remaining bound to a motor filament
could be due to many undetected short pauses or fluctua-
tions in the number of motor molecules in strong interaction
with the filament. The second explanation seems more
probable, as it does not require all motors to detach simul-
taneously. In motility assays where a filament moves on a
field of tethered motor molecules, the steady velocity is
observed to decrease as the surface density of motors is
reduced (Winkelmann et al., 1995). Steady motion may also
be replaced by fluctuating motion if the motors are inse-
curely tethered, particularly at low densities. Assays where
a single motor molecule moves an attached bead (Svoboda
et al., 1993) suggest that kinetic fluctuations in the number
of motors bound to a filament should be less severe for
highly processive motors such as kinesin or myosin V,
where a single dimeric motor may stay within a zone of
weak interaction around the microtubule for many cycles of
ATP hydrolysis (Hackney, 1995; de la Cruz et al., 1999). It
seems unlikely that all motors on a many-motor organelle
will be simultaneously detached unless the organelle is
physically removed from the interaction zone by Brownian
forces or otherwise. Organelle translocation speeds would
fluctuate if the organelle changes orientation or moves
momentarily away from the filament, thereby changing the
number of motors in instantaneous interaction with the

filament. This hypothesis could be tested from high-resolu-
tion images that track one particle on an unencumbered
filament.

Koles et al. (1982) have suggested that velocity fluctua-
tions arise from spatial variations in cytoplasmic viscosity.
However, motor speeds on an isolated filament are expected
to be load-independent for micron-sized particles and nor-
mal cytoplasm; the tension/velocity coefficient for viscous
drag is two orders of magnitude smaller than the slope of the
load-velocity line, namely 5 pNz s/mm for kinesin (Svoboda
and Block, 1994).

Regarding 2) above, organelles diffusing in the cyto-
plasm are observed to remain stationary for long periods,
perhaps because they become trapped on secondary cy-
toskeletal structures such as intermediate filaments. Clearly,
free diffusion at rates compatible with formulae based on
the Einstein-Stokes relation can occur when the particle is
clear of size-excluding compartments (Provance et al.,
1993) and trapping structures. The model could be extended
to include trapped states, but the kinetics of transitions
between free and trapped states would need to be dictated
by the system studied. Organelles may also be blocked if the
filament on which they move is entangled.

Before returning to macroscopic models, it would be
useful to have a reasonably comprehensive model for the
trajectory of a single organelle. Such a model would nec-
essarily be stochastic, but would need to describe more
random events than the models of this paper, which require
a stochastic interpretation of attachment events when ap-
plied to a single particle. A general aim of this kind of
model would be to relate the observed trajectory to the
architecture of the cytoskeleton, so that the state of motion
at each instant can be correlated with local cytoskeletal
structures. Automatic methods for analyzing trajectories in
this way are desirable to identify trapped or blocked periods
and any intrinsic fluctuations in motor speed within periods
of unblocked motor action. For example, spatial fluctuations
in a two-dimensional trajectory could be analyzed for com-
ponents parallel and perpendicular to a smoothed trajectory,
to distinguish motoring states from freely diffusing states. If
fluctuations in motor speed are seen to be intrinsic to the
interaction between organelle and motor filament, the inter-
action could be modeled as a stochastic process, possibly
specified by the velocity autocorrelation function. Such a
model would predict the distribution of displacements, or at
least their mean and variance, as a function of time for an
ensemble of trajectories, or individual trajectories on a
Monte Carlo basis.

Finally, classical macroscopic models that generalize
those presented in this paper can be reconstructed from
models of a single trajectory, perhaps as above, that detect
the positions of trapping and blocking structures in the
process of analyzing the observed motion. These models
require a second level of averaging over details of spatial
structures such as the actin network and trapping or exclud-

64 Smith and Simmons

Biophysical Journal 80(1) 45–68



ing objects. For size-excluding compartments, transport
throughout the whole intracellular volume is still described
by Fick’s law, but with a reduced diffusion constant; various
models exist which relate this constant to compartment
structure (Dayel et al., 1999; Hou et al., 1990; Janson et al.,
1996; Olveczky and Verkman, 1998). However, this de-
scription lumps free and trapped states together, and there
may be cases in which it is better to recognize a trapped
state explicitly, with a kinetic description of transitions
between the two states. If blocked states also exist, then a
comprehensive classical theory of organelle motion, with all
spatial averaging in place, would require four kinds of
organelle states (15 free, 25 motoring, 35 trapped, 45
blocked), with non-zero rate constants for transitions 17 2,
1 7 3, and 27 4, and a stochastic description of fluctu-
ating speeds in the motor state. As stated, the free and
trapped states might be combined by renormalizing the
diffusion constant downward. The blocked state might also
be lumped with the motoring state by renormalizing the
mean motor velocity downward, but this procedure is some-
what dangerous unless the correct interpretation is kept
clearly in mind.

APPENDIX A

The equation-of-motion method for
displacement moments

Differential equations of motion for the displacement moments (Eq. 19)
can be derived from the reaction-diffusion-transport equations. These equa-
tions are closed because the rate constants are independent of particle
position. The method is general, and in this context gives an efficient way
of calculating low-order moments.

Let Mni(t) be thenth displacement moment of the joint distribution
pi(x, t) which also predicts the probability of particle statei at time t. Its
time derivative is obtained by taking thenth moment with respect tox of
Eqs. 1, and integrations-by-parts to remove the space derivatives in diffu-
sion and convection terms. Hence

dMno~t!

dt
5 n~n 2 1!DMn22,o 2 ~k1 1 k2!Mno

1 k91Mn1 1 k92Mn2 (A1a)

dMn6~t!

dt
5 nv6Mn21,6 1 k6Mno 2 k96Mn6 (A1b)

are valid forn 5 0, 1, 2, . . . ifMno [ 0 for n , 0. Then

x~t!n#5 Mno~t! 1 Mn1~t! 1 Mn2~t! (A2)

including n 5 0, where the moments are state probabilities which sum to
unity and obey purely kinetic equations. The initial values att 5 0 are zero
except forn 5 0, andp 5 Mn1(0) 1 Mn2(0) is the initial bound fraction.
Hence

dx~t!#

dt
5 v1Mo1 1 v2Mo2 (A3a)

dx~t!2#

dt
5 2~DMoo 1 v1M11 1 v2M12! (A3b)

When the first moment is non-zero, it is convenient to work directly with
the equation of motion for the varianceS(t), namely

dS~t!

dt
5 2DMoo 1 2 O

6

v6~M16 2 x~t!#Mo6! (A4)

which shows which moments are required. Solutions for the two special-
ized forms of the model are summarized below.

Unidirectional model

Here k1 5 k and v1 5 v, k2 5 0, so Mn2 [ 0, giving Moo(t) 5
(1 2 p)e2st 1 (1 2 r)(1 2 e2st), Mo1(t) 5 pe2st 1 r(1 2 e2st), where
r 5 K/(K 1 1) ands5 k 1 k9, giving Eq. 20a of the main text for the mean
displacement. An equation of motion forM11 can then be found by using
Eq. A2 to eliminateM1o, giving

M11~t! 5 rvt 1 ~p 2 2r!~v/r!~1 2 e2st!

1 ~1 2 r!~p 2 r!vte2st (A5)

Integration of Eq. A4 gives the variance function in Eq. 20b with coefficients

A 5 ~r 2 p!
2D

s
1

2v2

s2 $p~1 2 p! 2 2r~1 2 r!%,

B 5 ~p 2 r!2
v2

s2,
(A6)

C 5 2~1 2 2r!~p 2 r!
2v2

s
.

Symmetric bidirectional model

With k6 5 k, k96 5 k9, andv6 5 6v, these symmetries force 2Mo6(t) 5
Mo1(t), which behaves as doesMo1(t) in the unidirectional case, but with
r 5 2K/(2K 1 1). For the same reasons,x(t) 5 M1o(t) 5 M11(t) 5 0. Hence
dM16(t)/dt 5 6vMo6 2 k9M16, for which

M16~t! 5 6
v

2 H r

k9
~1 2 e2k9t! 2

~p 2 r!

2k
~e2st 2 e2k9t!J (A7)

wheres 5 2k 1 k9. These moments are an odd function of filament/motor
polarity. The second moment or variance satisfiesdS(t)/dt 5 2DMoo 1
4vM11, leading to Eq. 39 of the main text with coefficients

A 5 2S2r

k9
1

r 2 p

k D v2

k9
, B 5

r 2 p

s S2D 1
v2

kD (A8)

The second term is zero when the particles are initially in equilibrium (p 5 r).

APPENDIX B

An expansion in powers of the number of cycles

The Green’s functions of the infinite one-dimensional case satisfy integral
equations that generate an expansion in powers of the number of kinetic
cycles over timet. This solution defines the intermediate phase in the time
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evolution of the distributions, particularly in the limitD3 0, where simple
closed formulae can be obtained. The technique is described below for the
symmetric bidirectional model.

The integral equations

Goo~x, t! 5 go~x, t! 1 k9 O
s56

E
0

t

dt9Edx9

go~x 2 x9, t 2 t9!Gso~x9, t9!, (B1a)

Gso~x, t! 5 kE
0

t

dt9Edx9

gs~x 2 x9, t 2 t9!Goo~x9, t9!, (B1b)

Gom~x, t! 5 k9 O
s56

E
0

t

dt9Edx9

go~x 2 x9, t 2 t9!Gsm~x9, t9!, (B1c)

Gsm~x, t! 5 gs~x, t!dsm 1 k9E
0

t

dt9Edx9

gs~x 2 x9, t 2 t9!Gom~x9, t9! (B1d)

where (s, m 5 6) are the solutions of the symmetric version of Eqs. 1 for
t . 0. The functionsgi(x, t) in Eq. 36 can be used to construct an iterative
solution of which the leading terms are

Goo~x, t! 2 go~x, t! 5 kk9 O
s56

E
0

t

dt9E
0

t9

dt0EEdx9dx0

go~x 2 x9, t 2 t9!gs~x9 2 x0, t9 2 t0!go~x0, t0! 1 O~kk9!2,
(B2a)

Gso~x, t! 5 kE
0

t

dt9Edx9gs~x 2 x9, t 2 t9!

go~x9, t9! 1 O~k2k9!, (B2b)

Gom~x, t! 5 k9E
0

t

dt9Edx9go~x 2 x9, t 2 t9!

gm~x9, t9! 1 O~kk92!, (B3c)

Gsm~x, t! 2 gs~x, t!dsm 5 kk9E
0

t

dt9E
0

t9

dt0EEdx9dx0

gs~x 2 x9, t 2 t9!go~x9 2 x0, t9 2 t0!gm~x0, t0! 1 O~kk9!2.
(B2d)

Each term in the right-hand side is derived from its predecessor by an extra
cycle of attachment that introduces an extra power ofkk9. ForGoo, the first
such term describes free diffusion from 0 tot0, binding with probability

kdt0 to either track, motor transport on that track fromt0 to t9, detachment
with probability k9dt9 and free diffusion fromt9 to t, summed over inter-
mediate times and positions. The next term (not shown) involves two
cycles of binding and detachment. For the off-diagonal propagators, the
leading term requires a single binding or detachment event between times
0 andt.

This expansion is not simply a Taylor series inkk9 because the lifetimes
of the states are built into the “unperturbed” propagatorsgo, g6; successive
terms describe only transitions into the final state, but transitions out of the
final state are already included. The leading terms can be identified with
the intermediate phase of vesicle propagation, which must be preceded
either by one cycle of attachment if the initial and final states are equal,
otherwise by one binding/detachment event. These considerations deter-
mine the onset time of the intermediate phase in terms of the rate constants
k, k9. The same rate constants also determine the lifetime of this phase, so
it is appropriate to build them into the unperturbed propagators. Higher-
order terms in the expansion can be neglected when the duty ratio is large
and cycling is slow (k9 ,, k andton .. toff). However, higher-order terms
must become important at long times, where repeated cycling produces
compound diffusion; thus the above expansion is expected to converge
only for the intermediate phase.

In the limit of large vesicles,D 3 0 andgo(x, t) 3 d(x)exp(22kt), so
all propagators in the intermediate phase defined above can be calculated
exactly from Eq. B2. Including initial terms, we find that

Goo~x, t! < e22ktHd~x! 1
2kk9

v St 2
uxu
vDe(2k2k9)uxu/vq~vt 2 uxu!J,

G1o~x, t! <
k

v
e(2k2k9)uxu/v22ktq~vt 2 uxu!,

G21~x, t! <
kk9

2~2k 2 k9!v
e2k9t~1 2 e(2k2k9)(uxu/v2t)!q~vt 2 uxu!,

G11~x, t! < d~x!e2k9t 1
kk9x

v2 e(2k2k9)uxu/v22ktq~vt 2 x!

(B3)

whereu(x) 5 1 for x . 0, and 0 otherwise. Spatial distributions in this
phase are determined by the interplay between motor transport at velocities
6v and the Poisson statistics of kinetically determined detachment and
rebinding.

In the intermediate phase, all propagators are confined to the region
uxu , vt of motor transport as expected, but each propagator has a charac-
teristic spatial distribution (Fig. 14). The following statements derive from
Eqs. B3, and can be checked against the distributions in Fig. 11 by
summing over final states. For duty ratios.0.5, the second term of
Goo(x, t) shows two peaks, atx 5 6v[t 2 1/(2k 2 k9)], which move out
from the origin at the motor speedv after a time delay. The sharpness of
these peaks increases ask9 is reduced but their height, equal to [2kk9/(2k 2
k9)v]exp(2k9t 2 1), decreases. As a function of time, the peaks are highest
at the time of onset.G1o is confined to positive displacements and peaks
at x 5 vt with height (k/v)exp(2k9t), the sharpness of the peak behaving in
the same way; in this case there is no delay time as binding proceeds from
the outset.G21 is a symmetric function ofx; the kinetics of detachment
and rebinding give the vesicle an equal chance of spending longer time on
either track. This distribution is peaked atx 5 0, but the maximum is very
shallow whenK .. 1, giving a flat plateau within the propagation region.
The height atx 5 0 is equal to

kk9

2~2k 2 k9!v
~e2k9t 2 e22kt! (B4)

which takes its maximum value whent 5 ln(2K)/(2k 2 k9). WhenK .. 1,
this time can be somewhat longer than the onset times for other propaga-
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tors.G11 is also confined to positivex because the restriction to one cycle
forbids binding to the negative track; the distribution is localized near the
motor edgex 5 vt with a peak value (kk9t/v)exp(2k9t), which is maximal
in time when t 5 1/k9. In this case the intermediate phase is much
prolonged whenk9 ,, k.

The distributions (B3) are qualitatively reproduced by numerical solu-
tion of Eqs. 1 using direct integration or Fourier methods forD , 0.01
mm2/s, with other parameters as in Table 1. Fig. 14 shows the extent of
agreement at a fixed time within the intermediate phase; the only serious
discrepancy is forG21, where the height of the plateau from Eq. B4 is 20%
smaller than the true distribution, the discrepancy becoming bigger with
time. However, the spatial shapes of all distributions in the intermediate
time domain are remarkably well-predicted by the one-cycle terms in the
expansion of Eqs. B1.
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