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Models of Motor-Assisted Transport of Intracellular Particles
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ABSTRACT One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by
molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a
diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in
detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a
bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin
motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on
microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A
symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same
characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point
source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor
velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of
more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks
of actin filaments and microtubules coexist and motors for both types of filament are implicated.

INTRODUCTION

The aim of this paper is to provide a simple macroscopimnet movement is described by partial differential equations
theory of intracellular transport of cell organelles and vesawhich we have solved for a number of boundary conditions.
icles, here termed “particles.” Numerous experimental stud- Unidirectional motor transport along a single filament
ies have established that these particles are equipped wilystem is the simplest case found in nature. However, motor
bound motor proteins, which move them along microtu-transport along microtubules has been shown in some cases
bules and actin filaments (reviewed by Kelleher and Titusto be bidirectional, that is, particles can be transported in
1998; Langford, 1995; Lambert et al., 1999). For examplegijther direction, and individual particles sometimes appear
anterograde transport of particles along microtubules ifo switch direction at random (Cooper and Smith, 1974).
nerve axons is mediated by the motor protein kinesin (Valegjdirectional motion occurs (Schnapp et al., 1985) either
etal., 1985a, b). In this system the motion of particles is nohecause microtubules of both polarity are present, or be-
continuous, but saltatory (Adams and Bray, 1983; Allen etcayse of the presence on the same particle of two motor
al., 1982; Rebhun, 1963; Weiss et al., 1986): particles arBroteins (kinesin and dynein) with opposite polarity
transported for distances of typicaliyl0 um ata more or (schnapp and Reese, 1989; Schroer et al., 1989). At first
less steady velocity of-1 um - s, but there are pauses gjgnt pidirectional motor action would seem to be an inef-
lasting for upward b1 s in which a given particle iS o tiye mechanism for net transport, but in the presence of
apparently undergoing Brownian motion and has presums . centration gradient it could nevertheless accelerate the

Yate of material transport compared with diffusion. There is

ably detached from the microtubule, or is stuck. There i
apparently no published theoretical treatment of the kinetic{lerl analogy with the process of “facilitated diffusion,” in
which the diffusion of a solute is aided by binding to a

motion of particles moving under the combined action of
diffusion and motor transport, and no treatment at all for . . : .
protein (e.g., @to myoglobin), thus increasing the amount

b|d|rect|(2nal motor transport. Asaf'r,,St step \_Ne have Qevel-in solution (Wittenberg, 1966; Wittenberg et al., 1975;
oped a “reaction-diffusion-transport” model: using simple

- . . : . . . Wyman, 1966). Facilitated diffusion has also been reported
kinetics to describe the interaction of particles with mlcro-f the faster-than-diffusi t by which DNA
tubules or actin filaments, and allowing free diffusion of or the faster-than-ditiusion movement by whic i

unattached particles and steady motion of attached particlegi,nqing proteins find their target sequence, by hopping or
sliding along the DNA (Hannon et al., 1986). We compare

the results for unidirectional and bidirectional transport for
a number of boundary conditions.

Received for publication 17 April 2000 and in final form 12 September A further (and perhaps more genera|) Comp"cation in
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1997 and refs. therein) and at the tips of melanocyte den- also calculated as a function of the length of the arm and
drites (Wu et al., 1998), but elsewhere actin-based transport fitted to a formula based on random walks;

coexists with microtubular transport. The actin cytoskeletor3. Dispersion of particles from their starting position within

can be considered to be bidirectional because in general it a long arm, after injection or pulse-labeling at the mid-

consists of a network of cross-linked randomly polarized point of a long arm, corresponding to diffusion along an
filaments (although there is at least one unidirectional ex- infinite tube. The results also apply to particles injected
ception in the case dNitella; Sheetz and Spudich, 1983). or pulse-labeled at a particular location.

Bidirectional particle transport on the actin network has

been observed by depolymerizing the microtubules in axon§9me of t.hesc_a situations have ar_lalogs In the classical the-
(Bridgman, 1999; Morris and Hollenbeck, 1995) melano-°res of diffusion or heat conduction (Carslaw and Jaeger,

cytes (Wu et al., 1998), and melanophores (Rodionov et al}959) but, as indicated above, the phenomena are generally

1998; Rogers and Gelfand, 1998). We have not attempted fgore complex. For example, diffusion of free particles and
include actin-based and microtubule-based transport in thE0tOF transport cannot be considered as separate pathways,

same model, but we show that bidirectional motor transpor?XCGpt wheq attachments to filaments are irreversible. Al-
may reduce to a type of diffusion: in the one-dimensionalthough the literature suggests that cellular organelles may

case in which a particle detaches and re-attaches many timB8" q|ffuse readll_y n cytoplasm, it IS mp_ortant to be aple to
from the filament system in the period of observation, bulkpred|ct the contribution of free-particle diffusion for a given

movement is equivalent to diffusion with a modified diffu- value of the diffusion constaid. Free diffusion adds sig-

sion constant. This is readily accommodated in our modelr]ificantly to motor transport over short distances when

Melanin-producing cells are a particularly attractive pros—p"’llrt'ctlr(]ES g_nd wegkly to I!Iam?rr]lts. bilitv of th idi
pect for quantitative analysis and theoretical modeling. In. n he biscussion section, the abiiity of tnese unidirec-
the melanophores of fish and frogs, rapid darkening of th(_{(lonal and bidirectional models to describe specific cellular

skin is achieved by the dispersion of pigment granules fron%ransport systems is assessed after reviewing the experimen-

a band near the nucleus to the cytoplasm, with pigmen&al literature, and ways are suggested of overcoming some
' bvious deficiencies of the models. For example, motor

granules being retained in the cytoplasm by a myosin-acti ) . .
filament system. The distribution of pigment can be re_transport is treated phenomenologically by assuming a
steady motor velocityy, which should be viewed as a

versed, presumably via control of the functionally active 2o - :
constitutive coefficient for a law of active transport (flux

motor protein type by a signaling pathway. In mammals, the ) . .
. . : . density of bound particles) analogous to the diffusion con-
melanacyte s responsible for producing pigment granules ant for Fick’s law of free diffusion (fluxx density gradient

the melanosomes, which are transported down to the ends 8t

dendritic processes, where they are engulfed by keratino2 free particles). Because the models work with particle

cytes, and thus lend the skin its coloration (Jimbow anqdensities, they predict. only the macroscopic pehavior Of. a
Sugiyama, 1998). Transport is again mixed: the bidirec-> 9¢ nu_mber of particles viewed as a con_t|_nuous fluid
tional microtubular system transports melanosomes to thgoving In th(_e_cytoplasm. Howeyer, the densities as quc—
tips of dendrites, where they are captured by an actin systerlrllonS of position can also be interpreted as probability

(Wu et al., 1998). The motor for actin-based melanosoméistributions for the location of a single particle. The mean-
transport |s myos.in V, for which motor speeds of 0.3-0.4N9S of mathematical symbols used in this paper are defined

um/s have been observed (Cheney et al., 1993; Evans et a'lr.‘, Table 1.

1998; Wolenski et al., 1995; Mehta et al., 1999).

With transport in axons and dendrites particularly inATHEORY OF MOTOR-ASSISTED TRANSPORT
mind, we have found one-dimensional solutions of a reac-
tion-diffusion-transport model that give the flux of particles General equations

and their spatlal distribution in various situations: If attention is restricted to a single filament system (microtubules or actin),

a macroscopic transport theory of particles can be formulated in terms of

1. Steady-state transport of particles from the cell bodythe laws of diffusion and kinetics. For simplicity, all motions are restricted
along an axon or dendrite (“arm”) of finite Iength, when to one space dimension, but generalizations to particle motions in three
the concentrations of free particles at each end of the a”ﬂimensions and two- or three-dimensional filament networks are straight-

are held constant. The results include several experimenc 2 . . _
' The basic assumptions are 1) a “particle” consists of a complex between

tally relevant boundary conditions at the tip of the arm, an organelle or vesicle and motor proteins (permanently attached to the
for example when the arm is closed and stationary Okurface membrane); 2) particles either diffuse freely in solution or move on
growing longitudinally, or when particles are trapped by a filament at a steady velocity(the “motor velocity"), which may depend
a cold block. The problem of Ioading onto microtubules " the number of motors on the particle; 3) binding to and detachment from
. . . filaments are kinetic processes specified by first-order rate constants,
IS Con_SIder,ed’ . . . which include factors as appropriate for lateral diffusion and the density of
2. The rise time for transporting a step increase in thénotor proteins and filaments; and 4) in the general case of bidirectional
concentration of particles at one end (the cell body) isrransport, binding is followed by motion in either direction, as a result of
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TABLE 1 Glossary of mathematical symbols. Alternative
formulas apply to unidirectional and bidirectional

models, respectively A

D Free diffusion constant of the particle

D, Effective diffusion constant for free and bound motions Ao

. I, 3

F Flux facilitation factor over free diffusion

Gy(x, t)  Green's function for displacement from point source with e
initial and final states, j _ L

J Particle flux (no/s/unit area) in the arm

Jo(x, 1) Flux of free particles cossasmen s

32 Flux on *-directed flaments s ,

k, K’ Binding/detachment rates to/from filaments of one polarity K

K Equilibrium constant with filaments of one polarity k/k’ 7 ;

logt Mean free path lengtk= (D/K)*? or (D/2k)*?

lon Mean path length on a filament vik’

L Arm length

A A Loading parameters for particles in cell body and tip regions

n, fi Particle concentrations in cell body and tip B

Ny(X, t) Free particle concentration

n,(x, t) Concentration on filaments of polarity = +1
M), () N, (¥) = n_(x), n.(x) + n_(x)

| lor/L

p(x, t) Probability of displacement after timet

[ Initial probability of particle in statg,

p Initial bound fraction

r Equilibrium bound fraction (duty ratioy} K/(K + 1) or
2K/(2K + 1).

St) Displacement variance at tinte

t Elapsed time

Toft Mean lifetimes of free particless 1/k or 1/

Ton Mean lifetime of bound particles 1/k’

v Motor speed of particle on filaments

v Mean particle velocity= rv

X Particle displacement or position in an arm CELL BODY

g |oJloff

FIGURE 1 () Geometry of the one-dimensional bidirectional model.
Diffusion and transport occur in a medium between planes0 andx =
L at fixed temperature and pressure. A fixed fraction of this medium is

the presence of filaments and/or motors with both polarities. For convefiled with a homogeneous mixture of right-directed (“outward") and
nience it is assumed that it is the polarity of the filaments that determinedeft-directed (‘inward”) filaments in known proportions, on which particles
the direction in which particles are transported. (not shown) are moved right or left by motor transport at velocitigs_.

The one-dimensional case describes transport between two plandie remaining space allows diffusion of unbound particles irxtdeec-
boundaries, say at= 0 andx = L, all particle concentrations varying only tion, whlle.lateral cﬁffusmn is assurr_1ed to have homogenized any lateral
along thex-axis (Fig. 1A). A fraction of the space between the boundary concentration gradients of free particles. First-order rate conskante.
planes is homogeneously occupied with filaments oriented alongahes. determine binding to outward _and inward fllgments. The medlu_m |§ open
The remaining space allows diffusion of unbound particles intdgec- ~ 8tX = 0 andx = L to reservoirs of free particles at concentrationsi.
tion. “Outward” filaments transport particles toward the right-hand end _Outvvard f||amer_1ts project |nto. the reservoinat: 0 and mward flle_iments
(x = L) and “inward” filaments toward the left-hand eng € 0). All into the reservoir ax = L by distances,,, ., along which *loading” of
filaments are assumed to span the intervening space. This model may @@ftldes qnto the prOJe_Ctlng filaments occurB) @ ca.rtoon of. bidirec-
interpreted as a simplified description of axial transport in an axon orlional particle transport in a cell “arm” (axon or dendrite), equivaler.to
cellular dendrite (“arm”) between the cell body and the tip of the arm (Fig. "€ cell body and the tip of the arm act as reservoirs. Particle fluxes
1 B), which motivates various boundary conditions at each end of the arnfnumber/second/unit area) in the arm are assumed to be axial, homoge-
(discussed in the following sections). For convenience we use the term@€0US throughout the arm, and equal to those obtainéd in
related to the cell biology (“arm,” “cell body,” “tip”) in most of what
follows.

We first derive particle equations of motion for the most general
bidirectional transport model. Let, > 0 andv_ < 0 be the motor left-directed filamentsn,(x, t) andn..(x, t) satisfy reaction-diffusion-trans-
velocities in the direction of increasingfor particles traveling on outward  port equations
and inward filaments, respectively. Lkt andk_ be the corresponding

first-order rate constants for binding to filaments, &idandk’ the rate an (X t) a°n (X t)
. . . . o\ 0\ ™
constants for detachment. The final parameter is the diffusion corBtant — 5
of the free particle. ot X
Let ny(x, t) be the number density (per unit volume) of free particles at , ,
distancex along the arm at timg andn_.(x, t) the densities on right- and = —(k+ + k,)no +Kin, +k.n_, (1a)
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an.(x, t) an.(x, t) the drift velocity
= +v.— =Kk.n, — Kin.. (1b)
ot X _ Ky, +K.v.
V= (4a)
The particle fluxJ(x, t) (the number per second per unit area normal to Ki +Ko+1

filaments at positiorx) arises from diffusion of free particles and convec-

tion of bound ones. so When v # 0, motor-assisted diffusion occurs in a frame of reference

moving with this velocity, with an effective diffusion constant

JX, 1) = Jo(X, 1) + I (X t) + (Xt 2a _ _
00 =3+ 3000 + I 0 (22) DK — 0K+ K (v — WK
where * K, +K_ +1
ang(x, t) ,
J.(x,t) = —D —ax Jo (%, t) = n.(X, V.. (2b) (Ke=k./Ki),  (4b)

) . the equilibrium average of free and bound contributions with binding
Because)(n, + n, + n_)/ot = —3J/ax, Jis a constant of the motion under  constants, for filament systems of opposite polarity. This formula is
steady-state conditions. The sign of bound-state fluxes is determined by thg, 1t in the limit of many attachment cycles, even for unidirectional
polarity of the filament, while the diffusion flux can be of either sign; thus transport K_ = 0) where all displacements are in the same direction. In
particles can be exchanged between the ends of an arm even when the Rgls case a spread of displacements about the mean arises from variable

flux is zero. _ ~ attachment times on filaments.
Motor-assisted transport can be understood in terms of mean lifetimes

Toirs T @nd mean path lengthsy, 1. for free and bound particles, where

2 _ — age -
I3 = Doy andl.. = |v.|r., so Boundary conditions, loading
— -1 — B 4L ) . .
Toir = (K K)o = \/D/(k+ + ko), 3) To describe particle transport in a cell arm (for example, an axon or
dendrite), solutions of Eqgs. 1 require appropriate boundary conditions. In
. = 1K, L= Vol ) s L 1edure approp Y

the first instance, let the boundariesxat 0 andL be open to reservoirs

of free particles at fixed concentrationsandf, respectively. Throughout,

the reservoir ik < 0 is identified as the cell body, which is assumed to be
large enough that is constant. At the tip of the arm, the situation is more
complicated and is dealt with below. If filaments in the arm do not protrude
into these reservoirs, the boundary concentrations for bound particles must
be zero. However, outward filaments are known to extend back into the cell
rl)ody, for example under the plasma membrane (Wu et al., 1998). In that
case, outward filaments emerging from the cell body are already “loaded”
with particles, and the boundary value for(x, t) atx = 0 may be written
asAn, wherex will be called the “degree of loading.”

The tip of a cell arm is, in some cases, closed rather than open to a
Consider a sequence of many particle displacements, each initiated Harticle reservoir, though a store of particles in the tip can be achieved by
binding to a randomly selected filament which determines the direction ofthe presence of an auxiliary filament system (Wu et al., 1998). Moreover,
motion and terminated by detachment. If free diffusion is absent andPutward transport of particles at the tip is often associated with its physical
periods of detachment are negligibly small, these random walks define &rowth, which is compatible with a closed but moving boundary. For the
form of facilitated diffusion with known mean bound path lengths time being, we choose to work with fixed concentrations of free and
However, this effect is generally accompanied by convection of particles afminus-directed particles at the tip erd= L, giving boundary conditions

The average speeg = | /7o = V(k, + k_)D of free diffusion over the
lifetime of the “off” state is also useful. As an example, values for@ani-
diameter particle moving on microtubules might\be= *=1 um/s,k. =

1s %1, =10um, andD = 0.1 um?¥s (Table 2), giving ¢ = 0.224um
andvp = 0.447 um/s. Binding rates reflect the density of filaments and
intracellular structures may reduce the apparent value of the diffusio
constant; thus this estimate fgg may be an upper limit.

Dispersion and drift

N(x=0) =n, ny(x=L)=n,

©)

TABLE 2 Derived parameters for the bidirectional model

n.(x=0)=An, n_(x=L)=An.

kK (s K 3 D./D 7. (S)

5 0.2 0.089 0.72 0.7 The degree of loading in the tip may be smaller thah or even zero.
(0.89) (72) Under steady-state conditions, predictions obtained with these boundary

05 2 0.89 0.36 2.5 conditions may readily be transferred to a closed tip, whether stationary or
(8.9) (36) moving. . AN

0.05 20 8.9 1.98 20.5 The loading coefficients may be calculated kinetically in terms of the
(89) (198) “pick-up” lengths defined in Fig. 1. For outward filaments at= 0

0.005 200 89 19.95 2005 extending back into the reservoir by a distahgesolving the steady-state
(890) (1995) reaction-transport equation dn_ (x)/dx = k,.n — k'.n_(x) for —I,, <x <

- - - 1 0 andn, (—I,,) = 0givesn,(x) = K. n{1l — exp(—K\ (x + I,)/v.}. Hence
Derlveq parameters = k/k’, mean pth ratig = (2kv?/Dk'2)Y2 = | /¢, A=K {1l — expK, I /v,)} < K..

the ratio of compound to free diffusion constaltg/D (Eq. 4), and the

mean cycling timer, = 1/2k + 1/k’ for the symmetric bidirectional model.

The valgesD =0.1um?s,v = O.l;um/s, ank =1s l_deflne a standard ~ Solution of equations, scaling

set of primary parameters for numerical work. The Einstein-Stokes relation

givesD = 0.4 um?/s for a 1.um diameter sphere in water; this value has Solutions of Egs. 1 are first sought for the case of unidirectional motor
been rounded down to allow for an irregular surface topology and a biggetransport where all particles have only one kind of active motor protein and
cytoplasmic viscosity. Derived values for a fast motor-filament systemthe filaments are unipolak( = k, k_ = 0). Bidirectional motor transport,

(v = 1 uwm/s) are shown in parentheses. in which filaments of both polarities exist or different motors of opposite
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polarity exist on the same particle, is studied here only for the symmetricall, which are linear in the concentrations. For these equa-

casek. = k K. = K, andv. = =*v. Algebraic solutions simplify  tjons, stable traveling-wave solutions for a group of parti-
considerably when the arm is longer than the diffusion leihgthwhich is cles are not expected.

expected and assumed throughout. For the bidirectional case, it is conve- - . .
nient to make separate predictions for the case when particles bind irre- A unidirectional model follows from Egs. 1 by setting

versibly to filaments until motor action takes them to the end. In both casek_ = 0, which is true when inward filaments are absent. The
the predicted behavior is a function of the four basic paramé&gvsk, k' polarity subscript for rate constants for outward filaments is
plus loading parameters and the length of the arm. _ ~ now omitted. Steady-state solutions are sought first, then

The required amount of computation is eased by using scaling relationg, jent solutions resulting from a step increase in particle
ships that follow from the existence of scaled dimensionless solutions. L. . L
These may be obtained by choosirlgand 1k as units of length and ime, concentration in the cell body, or a localized pulse injection

which leads to a dimensionless detachment rae=/k'/k and a dimen-  Of particles within a dendritic arm.
sionless diffusion constarbk/v2. In this way, scaling laws for the
concentrations

Steady-state solutions

X
n(x, A®D, Av, k, k') = A Sni<A't|D*V' k, k ) (62)  solutions of the steady-state form of the two remaining

equations of (1), namely
n(x, t|D, AYA, Ak, AK') = A=¥n(AY%x, AtD, v, k, k')

(6b) a2ny(x, t)
Dy = —kn, + K'n., (8a)
in which the four basic parameters are displayed can be derived from Egs. X
1, whereA > O is an arbitrary scaling factor am@ 0, =. Thus the number
of independent parameters is reduced from four to two, say the detachment an+(x, t) —k K b
rate k' and motor velocityv, while D and k can be held fixed. This v ox Mo — KNy (8b)

procedure is adopted throughout the paper, seBirg0.1 um?%s andk =
1 s . Equation 6a shows that the effects of reducing the diffusion constantan be obtained by noticing that the flux= _ano(x)/

by af_actor ofA <__1 are equivalent to those obtained by raising the motordx + n, (X)vis independent of (a first integral), giving the
velocity and positionx along the arm by a factor of A/ so computed . ) . .
single differential equation

solutions should be available for more than one motor velocity. Similarly,
the effect of reducing the binding rate by a factor/ofis equivalent to

keeping the equilibrium constakt unchanged, raising the motor velocity d2n+(x) 4 K % . E n = — ik (9)
by a factor ofA~*2, and reducing the position coordinate h¥/? (Eq. 6b). dx vd« D Dv
Similar results follow for the net outward flukat the tip of a cell arm. In
terms of the mobilityJ/n, for the bound concentration profile. The general solution
J J/L can be written as
H(L,t|A2D, Av, Kk K') = An<A,tD,v, K, k’) ]
(7a) n,(x) = vt Ag %X + Be Kb (10a)
g(L t|D, AYA, Ak, AK') = A (AY2L, AtD, v, k, K) J A q.V
n L) 1l ) ) n 1 1l 1l ) n(x):7+7 1_ eiq*’x
© Kv K k'
(7b)
so results for a range of arm lengths are required to access the effects of B q-v\ ...
variations inD or k in terms of known effects of variations inandk’. + R (1 - K’ )e oD (10b)
where
UNIDIRECTIONAL TRANSPORT
Unidirectional transport occurs when the filament system is Lk K ¢ 1
unipolar and all active particle motors have the same polar- “=2\v v D (11)

ity. The mathematical description of this model is equiva- ) ) )
lent to theories of sedimentation or electrophoresis for £&NdNy(X) is obtained from Eq. 8b. The constants of inte-
unimolecular reaction (Cann, 1970; Gilbert and Jenkinsgration A, B, and J follow by applying the first three
1959; van Holde, 1962). These theories often ignore fre@ou_ndary conditions of Eq. 5 for f|x9d free-.partlcle concen-
diffusion and focus on finding localized propagating solu-trationsn, i atx = 0 andL, respectively (Fig. B).

tions generated by nonlinear reaction kinetics. The binding

of particles to filaments is a simple bimolecular reaction, for
which the binding rate is a product of the concentrations o
free particle and free binding sites and nonlinear in theWhenk’ = 0, thenq. = *q, where 14 = | = VD/k is
above sense. For organelle transport, it can safely be athe mean path length on filaments. Assuming that |,
sumed that particle concentrations are dilute, leading to Eq$he boundary conditions yield = —kn/qv, B = kivqy, and

rreversible attachment
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a net outward flux l,n = V/IK' are similar. Assumindq.L| > 1, the complete
expression for the net flux is
J=n(p+Av) (= kD) (12) K ,
wherev,, is a diffusional velocity, or diffusive displacement J= (1 - K) H&%Zf)z N + Anv
over the mean binding time,; = 1/k. In contrast to V
transport by free diffusion, this flux is independent of the A
length of the arm. Because expgL) << 1, particles cannot ~ (1 - K)HVD +Anv (E€>>1) (14)

diffuse freely down the whole arm without binding, and the

flux is independent of particle concentrati@nin the tip, whereK = kik’ and¢ = Kv/vp = |/l is the mean-path
even although such particles may diffuse back into the armiatio, which is large if the motor speed is high or particles
and bind to filaments. When the tip is closed and stationaryfemain bound for long periods. The corresponding facilita-
there is an accumulation of particles in the tip and steadytion factor is

state conditions do not apply. If the tip is closed but ex-

tending at velocity, thenJ = fiu and Eq. 12 determines the F= L {1 + A(g - 1)} (E>1). (15)

tip concentratioi = n(vp + Av)/u, which will be higher Lot K

than the cell-body concentratiamif the arm is growing  Thege results are very similar to Eqs. 12 and 13, which are
slowly. recovered wherk’ — 0. However, the formulae differ in

Equation 12 expresses the outward steady-state flux igetajl. When\ << K, loading in the cell body is weak and
terms of the concentratiamof free particles in the body, but - yarticles must diffuse into the arm before binding; the flux
this flux is conserved a_long the arm. Away f_rom the cell- s limited by the motor velocity for slow motors ¥ << v;,)
body endx = 0, all particles have bound to filaments and 5 py the diffusional velocityy, in the opposite limit of
the flux is entirely due to motor transport. Thus the concent,st motors. When = K, cell-body loading is optimal and
tration of such particles is(vp + AV)/v, since multiplication e fiux arises entirely from particles that bind before en-
by v yields the predicted flux. This interior concentration is tering the arm (Fig. 2). These differences arise because, with

generally not equal ta; this can be understood as follows. rgyersible detachments, pathways into the arm by diffusion
With no loading in the cell bodyX = 0), the flux in the and cell-body loading are not independent.

entrance to the arm where particles have not yet bound is gqyations 10 show that the concentration profiles for free
entirely diffusional and proportional to the velocitl,,  ang hound particles within the arm are basically flat except
which is usually slower than the motor speeds particles 4 boundary layers of widthsd./ and 14 at the ends. The

bind to filaments and are transported more rapidly at speegdpsence of concentration gradients in the central zone shows
v, their lineal density is decreased if a steady state prevail§pat transport in this unidirectional model is clearly convec-
The disparity between the effective mobilities (flux per unit

particle density) in the entrance and the interior of the arm

is reduced when patrticles are loaded onto filaments in the 20
cell body ¢ > 0), but it should be remembered that the cell

body then contains bound particles and the total density of

such particles is (B A)n. Such loading creates a parallel 15 - 15

A=2.0

transport path in which particles remain bound throughout &
the entire outward journey, with a flux equal tonjv. :EL 10 L 1.0
The particle flux in the presence of motor filaments is T
generally much higher than from diffusion along, = S 05
nD/L by Fick’s law. The degree of facilitation 05 0
J L L lou
F= ‘..T = (VD + )\V)B = |<1 + A I) (13) 0.0 | | L |
D off off 0.0 0.2 0.4 0.6 0.8 1.0

is much greater than unity even with no loading= 0),
except when the arm is shorter thig, which is under 1
um for a lum-diameter particle (Table 2).

v (Lm/s)

FIGURE 2 Unidirectional transport, steady state. The steady-state out-
ward fluxJin a cell arm per unit concentratiarof free particles in the cell
body as a function of motor velocity from Eq. 14, different loading
Multiple attachments parameters\ in the cell body as shown and = 2. With no cell-body

. . . loading, the limiting flux ofJ/n at high motor speeds is the diffusional
With a finite detachment rati€, the expression for the flux velocity v, — VKD, here equal to 0.31@ms. With optimal loadingX —

is more complicated but differs little from Eq. 12 unless 2, ynis twice the motor velocity, reflecting the fact that the concentration
detachment is so rapid that the mean path lengfh®nd  of bound particles in the body isn2
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tive rather than diffusive, even though the flux is limited by 1.0

diffusion into the arm when cell-body loading is ineffective. i3

The concentrations of free and bound particles in the centre __ 1w

zone aren, = JKv, n, = J/v, showing that in this zone & 08 ‘E’

reaction-equilibrium is established with /n, = K, though % 0.4 E -

not in the boundary layers. The fluX can therefore be ™ 3

interpreted in terms of the total concentration of particles e _ =

n, + n. in the central zone, moving at the mean speed 0.0 — e — g b e

0 20 40 60 80 100120 1 10 100

_ K t(s) L(um)
V=iV (16)

FIGURE 3 Unidirectional transport, stepwise increase of concentration
for particles with a duty ratit/(K + 1) (the bound steady- inthe cell body. &) Rise of flux with time in the tip region of a 2@:m arm,
state fraction). Equation 15 shows that free diffusion in thenitially without particles, after introducing unit concentration of particles

free periods increases the central concentrations. in the body at time zero, for the unidir(_ectional model fo_r different rates of
P detachmenk’ = 5 (black ling), 0.5 (ed line), 0.05 @reen ling, and 0.005

s (blue ling. The motor speed is m/s, for which the full-transit time
. . on filaments is 20 s, ankl= 1 s~ %, D = 0.1 um?s. Fluxes are normalized
Transient solutions to their steady-state values calculated at long times, which agreed with the
values predicted by Eq. 15. Numerical calculations were made by direct
integration of Egs. 1, using upwind differencing on the convective term
If the arm is initially free of particles, and particles are (Press et al., 1992) and a smaller time step for the diffusion compoBgnt. (
suddenly introduced at concentratiom the cell body x < Rise times to half the maximum flux as a function of arm length for the

same set of detachment rates, plotted logarithmically gtleenandblue

0), there will be a time delay before particles arrive at thecurvesoverlap). Except at the highest rate of detachment and the second

tip. If _partides _amVing in the tip regipn are prevented from highest rate for the shortest arm, the results fit a linear law, as expected
diffusing back into the arm and rebinding, for example byfrom the empirical formula given in the text.

imposing a cold block or sink, the tip response is measured
by the net outward flux at the end of the arm. If the tip is
closed and stationary, the response is measured by thapid. This difference is due to free diffusion because it
concentration of particles in the tip. Although the latter maydisappears when calculations are made Witk 0. There is
be closer to in vivo conditions, the tip concentration isalso a spread of arrival times arising from pauses, which is
sensitive to the value of, which is raised by mechanisms most significant ifk < 1, when particles are mostly paused.
for storing particles in the tip region, so numerical calcula-The length of each pause is controlled kinetically and obeys
tions were made for the rise of flux in the presence of a sinka Poisson distribution with a mean pause time df. 1/
atx = L. What behavior is expected? Conversely, wherk > 1, a distribution of excursion times
In the unidirectional model, particles binding in the cell for bound particles is expected, but only if the arm is long
body will travel down an arm of length in time L/v when  enough to allow many attachment cycles; this condition was
no detachments occul (<< I, = Vv/k'). Initially free  not fulfilled in calculations presented in the figure. Thus the
particles experience an extra delay of order of the bindinggomputed rise times can be simply understood, but the
time 1k, which will be partially offset if they can diffuse dispersion of arrival times reflected in the shape of the
into the arm. In the opposite limit >> |, the rise time for  flux-time curve requires a deeper analysis. Dispersive as-
flux at the tip should be approximatelyv, wherev is the  pects of motor-assisted transport are considered next in
mean displacement velocity (Eq. 16). These estimates igrelation to a different experimental protocol.
nore diffusion of free particles, which operate between
pauses and should therefore speed up the rise of flux som
what for short arms and weak binding  1). Diffusion
down the entire arm contributes negligibly to transport inDistributionsp(x, t) of particle displacementsas a function
long arms, since the rise time is of orde#/2D, which is  of timet can be studied experimentally by tracking particles
greater tharlL/v for L > 2D/v, typically under 1um for  from their initial positions within the arm, or by injecting
microtubule motors wittv ~ 1 um/s. particles into the arm at one point. The form of these
Fig. 3 shows the rise of flux at the end of a g1 arm,  distributions may depend on whether the particles are ini-
calculated for various rates of detachment that span theally free or bound, but the effects of initial conditions are
limiting cases described above. The time for the flux to riseremoved after several cycles of attachment. For the unidi-
to 50% of its final value is qualitatively described by the rectional model, Fig. 4 shows the spatial distribution of
empirical formulary 5 =~ L/v. The computed rise time in- particles for various motor speeds at a fixed titne 5 s
creases linearly with the length of the arm except for veryafter injection of free particles at = 0. The initial delta-
short arms and rapid detachment, where the flux rise is mortinction distribution is translated by motor action, and

The rise of flux in the tip

B_ispersion from a point distribution
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A 08 displacement from the mean (Fig. 5), which asymptotes to
v=0.1um/s v=0.1pmis the exponential factor in (17). At intermediate times, a

3l truncated form of this distribution may appear because a

significant fraction of displacements arise from full-transit

2 02 events (those in which particles attach in the cell body and

‘ are transported to the tip without detachment) rather than

1 05 multiple attachments, as can be seen in FBj.\Bhere free

- 10 diffusion is absent.
- , . Apart from this truncation effect, it turns out that the
210123 456 0 1 2 3 4 5 persistence of the effects of initial conditions, such as the
X (1m) X (m) proportion of particlgs initially bound, is felt only for_the
time 1/k + k') required to bring free and bound particles

FIGURE 4 Unidirectional transport, dispersion. Computed distributionsiNto reaction equilibrium. No further change in the form of

of particle displacementin the middle of an infinite an 5 s after starting ~ this distribution occurs over the cycling time = 1/k +

atx = 0 with all particles detached from filaments. The two casesAye ( 1/k’, which is much larger than the equilibration time if

with free diffusion O = 0.1 um?s), and B) without free diffusion. The K >> 1. Thus the initial equilibration of free and bound

curves correspond to different motor speeds 0.1 to 1.0um/s as shown. . .

The binding constarit was set at 2.0 and other parameters as in Table 2'part|cles is all that mqtters, _and SUbsequent a‘ttaChm?nF cy-
cles merely produce dispersion about the average velacity
according to Eq. 17. This feature is peculiar to the unidi-
rectional model; very different behavior is found with bidi-

broadened by motor action and free diffusion before bindingectional models.

and during subsequent pauses. The figures show that singleThe persistence of initial conditions is also reflected in

transits occur, producing a sharp right-hand edge in thene time-dependence of low-order moments

distribution of displacements at= vtin Fig. 4B whenD =

0, although in Fig. 4A this edge is broadened by free o >

diffusion. The most probable displacement for each motor X(1)" = f Xp(x, t)dx (19)

speed is close to the mean displacenwnivhereviv = 2/3 —o

asK = 2. o : . —
The asymptotic form of these distributions at large timesOf the distribution, in particular the mean displacerme(t

. _ 2 _ T2 .
was not achieved in Fig. 4, but can be obtained anaIyticaII;?”Ind variances(t) » X X(t)". For the models of this
aper, these functions can be calculated exactly, from the

by Fourier-transform methods. The expected form afte . . . . :
many attachment cycles is the classical diffusion law appropriate differential equations (Appendix A) or by Fou-

5V

1 (x — wt)? 08
p(xv t) -~ \JW[),"[ exp — 4D*t (17) 8 r

about the asymptotic mean displacemgft} ~ vt, which
also appears in theories of electrophoresis (Cann, 1970).
The effective diffusion constant is

D K V2

Dy =k 31T K+ 12k K

(18)

reflecting diffusion of free particles in solution and a Pois-
son distribution of bound periods. This result is also ob-
tained from Eq. 4b by setting_ = 0. The second term
contains the variance of this Poisson distribution, propor-
tional tor(1 — r), wherer = K/(K + 1) is the bound fraction

or duty _ratlo in attachment equilibrium. Diffusion is en- FIGURE 5 Unidirectional transport, dispersion at long times. The ap-
hanced ifD,, > D, whereD,, = V?/(K + 1)k + k') = proach to a Gaussian distribution of scaled deviatioas(x — Vt)/t*2 from

(v — V)K', as expected from Eq. 4. When the duty ratio the mean displacement for particles spreading from a point distribution, as
tends to unity at fixek, D, becomes small and particle inFig. 4 withv =1 um/s. The indicated distribution slowly approaches the

. . . . i —1/2 -
motions approximate to uniform translation at the motorfunction (4mDer) ~= exp( y*/ADey) from Eq. 17 (results shown are for
speedv t =5, 20, 100, and 1000 s). The standard deviation of the last curve (0.341

o . . . wm) is close to the valuelZ, = 0.363 from Eq. 18 witD = 0.1 um?/s,
The distribution (Eq. 17) was confirmed computationally x = 1 s k' = 0.5 5% The first curve shows the truncation effect seen

by plotting a time-scaled distribution against a time-scaledn Fig. 4 and associated with single excursions.

(x-vtyt"”?
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rier methods. The former method is more efficient. For theSYMMETRIC BIDIRECTIONAL TRANSPORT

unidirectional model, . e . .
The reaction-diffusion-transport equations (1) define a gen-

. K v ’ eral bidirectional transport model. Here we consider only
Xt = vt + (p - K+l> kpel—e ™) (208)  the symmetric case, takig = k_ =k k, = k_ =k’ and
v, = —v_ = V. This symmetric model describes particles
St) = 2D, t + A(L — e K+ with only one type of motor moving on a bipolar filament
network with an equal mixture of polarities, for example
+ B(1— e 26K 4 Ctg &+t (20p)  Myosin-V on F-actin. The same model could also be used

for a unipolar filament network if particles possess two
wherep is the initial fraction of bound particles aridl, is  kinds of motors with opposite polarity but the same motor
given by Eqg. 18. The constams B, C are given in Egs. A6. speed, and the same attachment and detachment rates,
There is an initial temporal phase reflecting the boundwhich may be approximated by kinesin and dynein motors
fraction that persists for the equilibration time, followed by on microtubules. The relevance of these models is further
a second phase of diffusion about the mean, which lastsonsidered in the Discussion section, but we attempt to
indefinitely (Fig. 6). Endogenous particles are expected t@ddress both systems by presenting computation results for
be in kinetic equilibrium with their filaments p( = a range of motor speeds and detachment rates. The binding
K/(K + 1)), in which case there is no transient in the mearrate and diffusion constant are usually fixed in the following
displacement and the variance-time curve approaches lirexamples at 1's' and 0.1um?/s, but the scaling laws (Egs.
earity with a single exponential functioB (= C = 0); the 7 and 8) are structured in such a way that predictions for
predicted behavior for injected particleg € 0) is more lower values of both these quantities can also be obtained.
complex. These predictions could be tested by fitting ex- As before, steady-state transport properties are investi-
perimental moment-time curves obtained from an ensemblgated first, followed by transient responses and dispersive
of tracked-particle distributions; the same method has beebehavior.
used for bead assays of kinesin motility (Svoboda et al.,

1994). .
Steady-state solutions
Irreversible attachment
0.30 10 Bound particles are likely to proceed down the arm in a
o2s| A bound .. B single pass wheh << |, which is possible with microtu-
020 bound (eq.) bule motors in short arms (under L®n). Here we consider
el equiibrium 6t the limiting casek’ = 0. The steady-state solutions of the
< 015y . o symmetrized form of Egs. 1 are
ol No(X) = ne”® + pedxb
005 | free 2t oV T '
0.00 o — ) N — kn kn
00 02 04 06 08 10 0 2 4 6 8 10 n.(x) = An+—(1— e %) + — b
qv qv
0.20 20 N
~. kn o kn D)
o015 | 15l n,(x)—)\n+a/e Jrq—v(l—eq ) (21)
free (eq.)
Z g10l 10l where 1 = |+ = V' D/2k andgL >=> 1. From Eg. 2, the net
w bound equilibrium .
outward flux is
0.05 | 05t
J (VD+/\) ~(VDJrX) (22)
=nl= +Av| —n{= + Av|.
0.00 0.0 ot — 2 2
00 02 04 06 08 1.0 [¢] 2 4 6 8 10
t(s) t(s) The diffusion velocityy = | /74 IS Now equal tov 2kD,

but only half of the particles entering the arm bind to
FIGURE 6 Unidirectional transport, time-dependence of the mean disfilaments directed into the arm as required; the remainder
placemenix(t), and varianceSt) in the unidirectional model, calculated gre returned by motor action to their starting points.

H o —1 =1 . . .

frgm Egs. 20 WItH.( = 5s (A) and 0.05s .(B), and vglt{gs oD,\{, and With a sink at the tlpiﬁ _ O), Eq. 22 has the same
kin Table 2. The initial transients are functions of the initial particle state, truct E 13 f idirecti |t ¢ d th
either free p = 0), bound p = 1), or an equilibrium mixture g = S_ruc ur? as Eg. or un_' |r_ec lonal transport an e
KI(K + 1)). Memory of the initial state persists over a time of ordek 3/(  discussion underneath applies in equal measure. When the

k') = 0.17 s @) or 0.95 s B). tip concentratiorfi is not held fixed and the arm is closed,
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the “no-flux” condition at the outer end is achieved when concentrations fluxes
the concentration of free particles has risen to its steady-
state value 0.4
n 2t outward | outward
oot AV (23) 0.2 :
Vp + 2\v .
Tee
for which J = 0. Under these conditions, particles are 1 4 00F
exchanged by motor action on both filaments, at a date inward [ inward
obtained from bound-state fluxes in the central zone of the free 0.2 .
arm away from boundary layers, as 0
J (VD +A ) ”(VD + X") (24)
ex — N{ V]| =n|—45 V. 12 4 =
2 2 f outward
' 10 (B outward |
This rate of exchange equals the net rate of outward trans- 0.8 r 7
port with a sink at the tip. The way in which transport is
shared between free diffusion and motor action in the load- 5 L 04 free 7
ing zones is shown in Fig. 7 for both types of boundary nward 00
conditions at the tip. \free ' ﬂnwar 4
0
Multiple attachments > 04t
When L > |, particles detach and rebind many times 4 C outward
before traversing the arm. Steady-state solutions of Egs. 15 || .
can be obtained from the equivalent equations inward outward /I o | e
2+ -
dzno(x) outward inward
D dT = 2kn, — K'ny, (25a) 1 [ inward
free -0.4
dn,(%) 0
l !
dx = —k'm, (25b) 25 ,
20 + D outward j
dm(x) , 1 J
\ dx = 2kn, — k'm (25C) 15 Linward outward k fre
e
0 R
wheren;(X) = n.(X) + n_(x), m(x) = n, (x) — n_(X). From 10 (outward inward
Eq. 2,J = —Ddny/dx + vm(x) is x-independent, sn,(x) can - — :
be eliminated from Eq. 25¢, giving a single second-order free | 2 - inward
equation 0>
0 2 4 6 8 10 0 2 4 6 8 10
d’m(x) 5 2kJ , 2k (K 2
7dx2 —Qm(X)Z—ﬁ, Q :B+ v . (26) X(um) X(“’m)

_ _ _ . FIGURE 7 Bidirectional transport, steady state. Concentration profiles
— 2 _ -2 2
Note thatQ = 1/, wherel - Ioff + lon andl is a mean and the corresponding fluxes of free particles and bound particles on

path length for establishing kinetic equilibrium. Solutions outward/inward filaments with irreversible attachment to filaments, from
satisfying the boundary conditions (Eqgs. 4) also simplifyEgs. 2a and 11, shown for the case of a sink at thefitip 0, rowsA and
whenQL > 1, which is implied by the defining inequality B}Zf_a_”d Wit)f\‘ the tip CFOSTdQ(:tg' tf?hws?la”th)- "}?ha”d(?tge 'Oéldi”? .
; : : efficiency A is zero, implying that the filaments of the arm do not exten
of this subsection. In terms of the ratios back into the cell bodylf, = 0), andA = 10 in B and D. Particle
parameters are as in Table 2 with= 0.1 um/s, sol,, = 2 um wheni =
10. The body concentratiamwas set to unity, and the loading parameter
. . . X in the tip to zero. With a sink at the tip, the net outward flux is 0.224
wheree, n<1, the concentration prof|les are obtained from particlesum? - s in A and 1.224 irB, giving facilitation factors of 22.4 and
122.4 above free diffusion over the same distance girt0 With a closed
tip, the capture ratid/n for particles in the tip was 1.0 in caseand 5.48
in caseD, as determined from Eq. 23.

e=KIQu=1I/l,, mn=vkL=IJL (27)

J
m(x) = Ae" ¥ + BeRH — (1 — sz)g (28a)
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X this diffusion constant becomes very largekais increased
n(x) = n(0) — (1 — & L at fixed k (the duty ratio tends to unity). AK is increased
from zero at fixedk, D, initially decreases to a minimum
+ Ae(l — e ) + Bee b, (28b)  where the high detachment rate ford®g, < D, but then
increases without bound &,,, becomes very large (Table
ny(x) = v amx) nl(x)' (28c)  2)- This behavior is in contrast to the unidirectional model,
’ 2k dx 2K whereD,, tends to zero in the high duty ratio limit.

The flux is still limited by the boundary layer near= 0,
which determines how the free concentration profiléx)
n—n+(1-eHKan— An) D matches onto the cell-body concentration. When the degree
= 1+21-¢) oL (29)  of loading is small, particles must diffuse into the arm to
M € . , o .
bind to filaments, thus establishing a boundary layer with a
and the integration constams B, n,(0) given under Fig. 8. significant drop in free-particle concentration across it.
Equation 2 gives the corresponding fluxes from the concenConversely, the boundary layer almost disappears when
tration profiles. The net flux is inversely proportional to particles are efficiently loaded in the cell body# K). This
arm lengthL, just as for pure diffusion. Terms of order is confirmed by assuming that the boundary layer is absent,
exp(—QL) have been dropped, but those of orde+ |, /L  sodn,(X)/dx = n/L with a sink at the tip and = (2K +
must be retained becauseeflects the differencen(x) in  1)D,n/L. The resulting facilitation factor  (I,/l,¢)> =
particle populations on outward and inward filaments,(l,/I)? is just as predicted by Eq. 30.
which must satisfy the correct boundary conditions. For With a closed tip, the net outward flux in the arm is zero
sink conditions i = 0), the flux facilitation factor can be under steady-state conditions, but particles are still ex-

which, with boundary conditions (Egs. 4), yield the net flux

written as changed between the cell body and the tip. The path of a
) particle in the arm is complicated by binding to filaments of
F~ (1 _ A) lﬁ + f (l"”> (30) random polarity, but a rate of exchange on filaments may be
K/ 1 KA defined as before, giving
neglecting terms of ordef. ThusF > 1 whenl,, > |, where A Vo
the equilibration length is belowl . If particles can load Jex = n{(l — K) N 325 + )\v} (33)

on outward filaments starting within the cell bodly, is
increased again to a maximum valug/{)> when the  which is different from Eq. 24 in much the same way that
loading factorA has its maximum valu&, achieved when Eqs. 12 and 14 for unidirectional transport differ from each
Ipu > |, (EQ. 6). other.

Fig. 8 shows examples of concentration profiles and Table 3 summarizes our predictions for rates of outward
fluxes in the arm. There is a central zone in which free andransport and the corresponding facilitation factor for both
bound particles are in reaction equilibrium with(x)/  unidirectional and bidirectional transport models with a sink
ny(X) = 2K, with boundary layers of width,; at each end. at the tip. The linear nature of the basic transport equations
Multiple attachment cycles produce quasi-diffusive trans<(1) ensures that predictions with a fixed positive concentra-
port characterized by a linear fall in free and bound con-ion in the tip can be obtained by superimposing the inverted
centrations down the arm, while a single irreversible attachsolution in which cell body and tip are interchanged. Hence
ment produces convective transport characterized by a flatick’s law, in the form that the net outward flux is propor-
concentration of bound particles (Fig. 7). The solution de+jonal to the concentration difference— f, applies only to
scribed above can be clearly seen in a central zone where alle completely symmetric model for bidirectional transport,
concentrations fall linearly wit. Hence particle transport namely the model presented in this section but with equal
in this zone can be described by Fick’s law in the form  |oading factors at each end.

dn(x)
—Ds dx

wheren(x) = (2K + 1)n,(X) is the total particle concentra- The rise of flux in the tip
tion at positionx, and

J=

(31) Transient solutions

When particles make a complete transit along the arm
D 2K V2 without detaching, the rise times of flux at the outer end in
oK+ 1 + K+ 1K' (32) the_pre;ence of a sink are of_o_rdﬂ!v_for unidirectional and_
bidirectional models. For bidirectional systems, the sink
the symmetric version of Eq.B, is the compound diffusion prevents particles from reloading onto inward filaments.
constant. Again, diffusion is enhanced whén, > D, However, when multiple detachments occur, the direction
whereD,, = V?/K'. In contrast to the unidirectional case, of motor action can be reversed at random, as determined by

D.
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concentrations fluxes random choices of filament polarity or motor type at the
instant of binding. These shuttling motions may be consid-
0.2 ered as random walks. In the limit of many pauses the
1548 A _ outward distribution of the net displacement can be obtained from
0.1 A the central limit theorem, even though the length of each
| L free excursion on filaments is itself a random variable controlled
0.0 by the kinetics of detachment (Chandrasekhar, 1943). If the
length of each excursion is approximated by the mean path
0.1 _ y lengthl,,, = v/k’, the most probable displacement afiér
inward . 1/2 . . . .
steps is of the order di™q,,, in either direction, sd\ ~
0.2 (L/l,)? Thus the rise time is estimated bit, wherer, =
20 02 1/2k + 1K', or
outward
15 1017 1 ~ <W>2<1 + 1) L | 34
B outward free Tos™ \' k' 2k ( on) ( )
10 inward dooE

neglecting diffusion in the pauses.

Computer solutions of the symmetric case of Egs. 1 for a
step rise in particle concentration in the cell body give
flux-time curves (Fig. 9) similar to those found for the
unidirectional model (Fig. 3), but with certain characteristic
0.4 differences. In agreement with Eq. 34, calculated rise times
. vary quadratically rather than linearly with arm length in

0.2 outward . .

. most cases, the exceptions being for lower rates of detach-
free ment and/or short arms, where it can be seen that multiple
0.0 - attachments are not expected. For the same detachment rate,
this effect is more pronounced at the higher motor velocity
(1.0 against 0.Jum/s) where the mean excursion length is
longer. In most cases the rise time is a decreasing function
of the detachment rate, but at the lower motor velocity the
20 2 rise time increases wheki is changed from 5 to 0.5°¢
outward (blackto red linesin Fig. 9A) and this effect persists over
the range of arm lengths used with a quadratic variation of
rise time with length. This effect appears to arise from free
10 - _ J free diffusion in the pauses, which operate to maximum effect in
inward 0 . . . .. .

shortening the rise time when the duty ratio is below unity
51 > and the motor speed is low, and is not present in parallel
free -1k ard . calculations made wittD = 0. This conclusion is also
0 supported by Eq. 7a, which predicts that the flux-time curve

0 2 4 6 8 10 0 2 4 6 8 10 with a 100-fold reduction irD has the same shape as that
with the original diffusion constant, and a 10-fold increase

in motor velocity and arm length (sét = 0.1 and replace
v with V/A).

05 - free 4-01+ ]

inward

0.0 -0.2

outward

02 inward

15 L D outward -

X (pm) x (pm)

FIGURE 8 Bidirectional transport, steady state. Concentration profile
and fluxes along the cellular arm of length in when particles detach
frequently within the arm, allowing multiple excursions on filaments of
either polarity. The tip concentration is held at zero, and the rate constanDjspersion from a point distribution

k' for detachment is 0.5°$ in A andB and 0.05 s* in C andD. Other

fixed parameters are as in Fig. 7. The loading parameiszero inAand ~ The symmetric bidirectional model produces, as would be
C, otherwise set to its maximum vale= kik’, givingA = 2.0 (,, = 1.52  expected, a symmetric distribution of particle displacements
um) inBandA = 20 (,, = 20 um) in D. The flux facilitation factors are moving away from an initial point distribution (Fig. 10).

1.33, 1.78, 6.64, and 59.8 for casksD, respectively. All concentrations Th distributi IV sh h f
fall linearly with position over most of the arm, since the mean path length ese distributions generally show more structure than for

lon (0.2 2m in AandB, 2 um in C andD) is less than the length of the arm.  Unidirectional transport, and are shown to evolve through
All profiles were calculated from Egs. 2, 28, and 29, where the coefficientsthree distinct phases with characteristic profiles. If the par-

in Eq. 28 safisfyA = —2¢(K — M/(1 + ¢) — e(1 = e)JV, A+ B = tjcles are initially free, they may disperse by diffusion in the
—2eK(n — A)/(1 — &) + edimv, andn,(0) = 2(sK + A)n/(1 + &) — e(1 — cytoplasm before binding, followed by an intermediate
e)J/v. Terms containing the flud may be small, of orddg, /L, but must be ytop : L g, y .

retained to satisfy the boundary conditions (Eq. 5). phase after the first binding event, where particles can motor
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TABLE 3 Summary of formulae

A=0 A=K
Jin F Jn E
Free diffusion D/L 1 D/L 1
Unidirectionalk’ << viL VkD Lot VKD + Kv (o) + (o flor)
Unidirectionalk’ > viL 2Kv Lor Kv Ly /12
N b (L) Lo
DK \a,) 2,
Bidirectionalk’ << viL kD72 L/2l D2 + Kv (L2 ) + (o flo)
Bidirectionalk’ > viL (DIL) 1 + (2KV?IDK') o) (DIL)(L + (2KV/DK')) (/1?2

Formulae for the steady-state flixdown an arm of length. with end concentrations and zero, and the corresponding facilitation factérs JL/nD
over free diffusion, for minimum and maximum loading onto filaments at the centraberd@ andK, respectively). Predictions for intermediate values
of A are correctly given by linear interpolation. The mean path lengthg are vik', |72 = 1,2 + 1,2, wherel 4 = (D/k)Y2 for the unidirectional model
and O/2k)? for the bidirectional model. Other symbols are defined in Table 1. Note that filament density and its effect on the ¥amayoheed to
be taken into account in direct comparison of the uni and bidirectional cases.

in either direction out of the diffusive peak §§ > 1. In  phase sets in after the equilibration time k/(2 k') and the
contrast to unidirectional transport, the following cycles offinal “compound-diffusion” phase after times in excess of
attachment produce excursions of random direction anthe cycle timer, = 1/2k + 1/k’. The gap between these
random magnitude, producing a third and final phase thatharacteristic time scales defines the persistence of the
asymptotes to a classical diffusion law when the number ofntermediate phase, which can be very prolonged #< k.
cycles becomes large. Following the discussion of the uniwyith these estimates, the distributions shown in Fig. 10 lie
directional model, one can expect that the intermediatgetyeen the second and third phases, but the time elapsed is
clearly insufficient to establish the Gaussian distribution
that describes compound-diffusion behavior because the

1.0 1.0 LT
e shape of the distribution depends on motor speed.
a8 s | B A full discussion of this behavior requires specific initial
S 06" 06 - and final particle statels j = 0, = (free or bound to either
= 04l 04 filament). The corresponding distributions are the Green’s
€ o g
0.2 0.2}
0.0 = 1 ——J 00 1 .__..--r"“"
0 1000 2000 o0 50 100 150 200
t(s) t(s)
104 - 104 - /. ‘
g |
2100+ 100 |
£ " '
= 02| 102
wn
=
10" -
10 g : :
1 10 100 10 100 > 4 P
L (pm) L (um) x (Lm)

FIGURE 9 Bidirectional transport, stepwise increase of concentration inFIGURE 10 Bidirectional transport, dispersion. Computed distributions
the cell body. The rise of flux at the tip of a 20m arm (pper boxesand of particle displacementin the middle of an infinite arnb s after starting

the corresponding rise times over a range of arm lendtheef boxe} with all particles ak = 0 and detached from filaments, showing the effects
computed for motor speeds of 0.A)(and 1.0um/s B). The curves  of different motor speeds = 0 (black ling, 0.1 (ed ling), 0.25 @reen
correspond to different detachment rates, as in Fig. 3. The correspondinigne), 0.5 plue ling, and 1.0um/s haki ling. Other parameter values are
rise times are seen to vary quadratically with arm length whenever manyws given in Fig. 4. At the highest motor speed, the distribution shows
attachment cycles occur within the arm, as discussed in the main text. shallow twin peaks close to the single-excursion displacemetrisum).
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functions or propagator§;(x, t) of the problem, and binding and detachment is necessary to reach the interme-
diate phase as defined above, and the probability of one
p(x, t) = > Gy(x, t)p (35)  kinetic cycle grows in time over the interval (g). Increas-

b ing the motor speed and henégroduces similar effects to

wherep; is the probability of the initial state Fort > 0 they the same increase K (results not shown).
satisfy the same reaction-diffusion-convection equations (1), 1 N€ transition from the intermediate phase to compound
as the concentrations (McQuarrie, 1962). For the initialdiiTusion can also be studied analytically by expanding the
phase, the displacement distributions are given by th&©0Pagators in powers of the number of attachment cycles
functions (Appendix B). Thus the rounded plateau distribution found
with K = 2 and particles initially bound (Fig. 1B) is

X2 characteristic of particles starting on a track of one polarity

p( - 2kt>, and finishing on a track of opposite polarity; the probability

1
Oo(X, 1) = ——=ex

VamDt bt (36)  of doing this rather than remaining on the same track is high
g.(x 1) = 8(x T viexp(—K'1). if the duty ratio is not too large. The distribution for this
N process actually turns out to be symmetricxieven when
wherei = j so only one state label is required. The proba-the starting track has given polarity; this results from equal

bilities exp(—2kt), exp(—k't) of surviving binding or de- divisions of the time interval (@) spent on plus- and
tachment respectively define the lifetimes of the initial minus-directed tracks. Appendix B also shows that the
states. For distributions after the initial binding or detach-lifetime of the intermediate phase also depends on the initial
ment event, numerical calculations are required. We usedtate.

three separate computational approaches, namely full nu- After many attachment cycles, any initial bias in the net
merical solution of Egs. 1 using smaller time steps for freedirection of transport is removed and the displacement
diffusion than for kinetics and upwind differencing (Press etdistribution tends to the classical diffusion law

al., 1992) for motor action, a Fourier transform method with

2
numerical inversion of the time transform, and a partial p(x, t) = ;ex _ X (37)
perturbation expansion for the intermediate phase in powers \"47T D,t 4D, t
of the rate constants k', reducing to simple closed formu-
lae whenD = 0 (Appendix B). whereD,, is the compound diffusion constant in Eq. 32. The

Fig. 11 shows a representative set of distribution funcfinal phase is not apparent in Fig. 11 except perhaps at very
tions calculated foD = 0.1 um%s,v = 0.1 um/s,k = 1 low duty ratio (caseA), where the intermediate phase is

s, various detachment rates, and particles either free grbsent and compound diffusion is not markedly different
equally bound to filaments of both polarity. The initial from the initial phase of free diffusion. To demonstrate the
bound-state distribution is equal tg.( + g_)/2, which existence of compound diffusion, distribution functions
comprises propagating functions of zero width not shown irfvere again computed out to many cycle times and the
the figure. All other contributions are continuous functionsfunctiont™p(x, t) plotted againsy = x“/t for various times.

in which the particle has changed its attachment state difter many cycles, these functions converge to a universal
least once. Gaussian function independent of the initial state (Fig. 12).

When K < 1, the bound fraction or duty ratio = There is no characteristic onset time (in the sense of an

2K/(2K + 1) is small and the distribution appears to main-€xponential process) for compound diffusion. A particle
tain its diffusion-like character at all times (Fig. 8. A  initially on an outward filament will typically move by
distinct intermediate phase showing the presence of a “mc@bout one mean free palf), over timer,, The additional
toring” population appears fdt > 1, first as a plateau with time At required for this displacement to be obliterated by
discontinuous borders (Fig. B) and then as sharply compound diffusion is that the standard deviation exceed
peaked but continuous distributions ngar= vt for K >~  the initial displacement, or
1 (Fig. 11C). The change in shape from a plateau to distinct D. At > |2 (38)

. . * on*
peaks ax increases reflects the shift from free to bound
particles during the major _par_t of_ the time interval. WhenThis condition can be rewritten g => (1 — &)z, where
K > 1, the forms of these d|str_|but|ons_depend on the |n|t|aI7_ is the mean cycle time and = I/l,, Fore << 1, many
state (free_ or bognd)_ and d(_—:-flne the |ntermed|ate phase %f;/cles of detachment and rebinding are required.
motor—ass_|stgd diffusion, which lasts for approxmgtely ONé " A5 pefore, moments of the distribution provide some
cycle of binding/detachment. The average cycle e ¢ rmation about the underlying processes. For symmetric

1/.2k * .1/k’ becqmes large s is decreased( = .1)' ”? bidirectional transport, the first moment is identically zero,
this limit, the heights of the peaks decrease with time if th hile the second moment or variance is given by

particle is initially free, representing the first detachment
event. If the particle is initially bound, then one cycle of S(t) = 2D,t + A(1 — e ") + B(1 — e k) (39)
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FIGURE 11 Bidirectional trans-
port, dispersion. The computed
space-time behavior of particle dis-
placement distributiong;(x, t) in an
arm, starting ak = 0 and either de-
tached ( = 0) or equally bound to
filaments of each polarityi(= 1),
showing the effect of different de-
tachment rate&’ = 5 (A), 0.5 B),
and 0.05 s* (C). The motor velocity
is set at 0.lum/s, with other param-
eters as in Table 2.
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The long-time behavior obeys the expected diffusion law Fig. 13 shows that the variance first rises linearly B 2
with the compound diffusion constant of Eq. 32, and theif particles are initially detached, or quadratically a)q
coefficientsA, B depend on the initial state (Egs. A8). This from motor action of initially bound particles, the initial
result differs from Eq. 20b for unidirectional transport; there slope being zero. For particles initially in equilibrium, there

is a slower exponential process at the detachmentk‘ate is only one exponential decay and insufficient information
which terminates the intermediate phase. If observed disto determine the four basic parameters; thus injection of free
placement distributions of tracked particles can be fitted tgoarticles or tracking of initially bound particles is required.
Eq. 39 by adjusting the five parameters involved, the initialFor highly processive motork’(<< k), the two exponen-
bound fraction and the four basic parametersy, k, k' of  tials are well separated in time and long-lived motor action
the symmetric bidirectional model could be obtained. appears as an extended quasi-quadratic curve before detach-
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FIGURE 12 Bidirectional transport, dispersion. The approach to compounded diffusive behavior. Plots of the scaled distt{Butfrrty againsty =
t~Y2x for 25 equally spaced time intervals out to timg, = 5, 20, and 200 s i®—C for k' = 5, 0.5, and 0.05S', respectively, and other parameters
as in Fig. 11. After many attachment cycles, the curves coalesce to the universal GaussianmDgye(a exp(—y%/4D,.) with values ofD, in Table 2
as determined by Eq. 32. The average number of cyglgér. is equal to 7.1, 8.0, and 9.8 for casksC, respectively.

ment produces the asymptotic linear behaviortfor 1/k'. 20, usingD = 0.1 um?s as discussed in Table 2. At this
In this case, binding of initially free particles also producesjuncture, we revert to the terminology of cell biology: the
a knee in the curve much earlier on, at time&/2k. The  cell body and a tip are proximal and distal ends, respec-
linear law applies at times greater than the cycle time andively, of a cell axon or dendritic arm; outward and inward
permits the compound diffusion constant to be determinedransport are respectively anterograde and retrograde.
Thus the variance-time curve displays the three predicted First, in the unidirectional model with an anterograde
phases, which should be useful indicators of motor kineticsfilament-motor system, the flux of particles in an arm is
driven by the particle concentration in the cell body, inde-
pendent of the tip concentration. The steady-state flux per
COMPARISONS WITH EXPERIMENT particle is equal to the motor velocity if the duty ratio is high
It may be useful to start by summarizing the main predic-and particles are efficiently loaded onto filaments in the cell
tions of the unidirectional and symmetric bidirectional mod-body. If the duty ratio or the motor velocity is low, the flux
els. For numerical illustrations, consider a microtubule-likeis increased if the particles can diffuse freely in the pauses.
example withL. = 50 um,v = 0.5um/s,k’ =0.05s* K = In the symmetric bidirectional model, the net anterograde
flux is a decreasing function of particle concentration in a
distal region; however, this region must be accessible to the

0.15 1.0 ends of filaments in the arm and the flux is enhanced if an

auxiliary filament system is present. In that case, a net flux

os; B proportional to the concentration difference between the

0-10¢ 06l ree ends (Fick’s law) applies only if the loading factors at each

:05 end of the arm are equal. With equal loadings and end

005 | 041 concentrations there is no net flux, but particles are ex-
02l changed between the ends at a rate that can approach the

bound (eq.) motor velocity.
000 02 o4 06 o8 10 0 2 4 & s 10 Second, with a distal sink, the relative transport capacities

of the two models can be gauged from Table 3. As might be
expected, anterograde fluxes for the two systems are very

similar for short arms, where most particles can be trans-

FIGURE 13 Bidirectional transport, dispersion. Time-dependence of the . . . i)/ q(uni) — .
displacement variancg(t), calculated from Egs. 39 and A8, for motor- ported ina Smgle excursion, theff/) =1 the precise

assisted diffusion in the limits of low and high duty rati¢¢ € 0.2 in A Valu_e depending on pre—Ioading. FO.I’ longer arms _allOWing
and 2000 inB) and values oD, v, andk in Table 1. The initial transients mMultiple attachments, the unidirectional system is faster
are functions of the initial state, either frep € 0), bound equally to  pecause the bidirectional flux is inversely proportional to

filaments of both polaritiesp(= 1), or an equilibrium mixture of the first the Iength of the arm. For example for microtubule-like

two casesif = 2K/(2K + 1)). The linear lawS(t) = 2D,t is achieved . (bi)/ 1(uni) _
asymptotically after many attachment cyclesBlrthe cycling time is very filaments Wherdo” = lOff' I - IOH/L <1 namely

large and the quadratic law seen for initially bound vesicles reflects théd-2 in the above example. As a general rule, optimal pre-
intermediate phase, where bound particles stay on one filament. loading of particles in the cell body can increase the flux by

t(s) t(s)
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the ratiol /4 of the free path lengths, equal to 45 for the sion constant of organelles detached from motor-filaments
“microtubule” parameters. is much smaller than expected from free diffusion, and the
Third, if there is a step increase of particle concentratiorspeed of organelles motoring on filaments appears to fluc-
in the cell body, the concentration at the end of an arm otuate within each period of motor action. These problems
length L equilibrates in a time of orddr/v (103 s) for the are evaluated in the concluding discussion: in general terms,
unidirectional model when the duty ratias near unity, and they are connected with the origins of pauses between
L%2D, (510 s) for the bidirectional model where the diffu- periods of motor action.
sion constanD,, (4.9 um?s in the present example) in-
cludes the effects of many motor displacements of randonl\x
sign. A smaller step increase may occur at tiohe where onal transport
v is the motor velocity. Since = rv, the main peak will be In nerve axons, bidirectional transport of various intracel-
much delayed if the duty ratio is low, but in that case thelular organelles, including vesicles, mitochondria, and the
equilibration time in short arms may be smaller if unboundendoplasmic reticulum, occurs on microtubules that may be
particles can diffuse freely. A comparison of these formulaeup to 100 um in length (see Breuer et al., 1988). The
for the unidirectional and bidirectional cases in arms of themicrotubule system is unipolar, or almost completely so,
same length suggests that the latter equilibrates more slowlyith “plus” ends directed outward (Baas and Yu, 1998;
whenL > 2D, v, or 4.7um in the above example. However, Heidemann et al., 1981, 1984), and bidirectional transport is
this estimate is correct only if > |, here equal to 1@m,  produced by plus-end and minus-end motors (kinesin and
so the first estimate must be revised upward. dynein, respectively) on each organelle. It is important to
Fourth, in the bidirectional model, tracked particles dis-establish whether only one kind of motor on each organelle
perse from their initial positions with a variance that growsis activated at the same time. If kinesin is switched on by a
quadratically in time over the first period of motor action if regulatory agent in the cell body and dynein switched on in
the duty ratio is high, moving to a linear law only after many the nerve terminals, then organelles in the axon showing
attachment cycles. The diffusion of free particles produceanterograde and retrograde motions can be considered sep-
a linear law at all times, apparent if the duty ratio is low. In arately, using the unidirectional model in which every pause
contrast, the unidirectional model also gives a net flux ofis followed by motion in the same direction. Conversely,
tracked particles, moving initially at the motor velocitput ~ both kinds of motor could be simultaneously active but
falling to the average velocity after kinetic equilibrium is bound to different parts of the organelle, leading to coherent
established. If the duty ratio is high, this equilibration time motor action in a direction chosen at random by its current
is much less than the mean lifetime of particles bound tarientation, which is seen to change for nonspherical or-
filaments. Distributions of displacements make correspondganelles (Koles et al., 1982; see also Hayden et al., 1983).
ing changes in form with elapsed time, reaching a diffusionlf pauses produced by detachment and rebinding generate
law about the mean position only after many cycles offairly frequent reversals, the bidirectional model would be
attachment. indicated. In axonal transport, there are reports of pauses
Although flux rates are generally inferior with bidirec- occasionally followed by intermittent reversals, but never
tional transport, it has to be borne in mind that there may b@ver distances above a few microns (Cooper and Smith,
a wider functional significance of bidirectionality, for ex- 1974), on the whole supporting the unidirectional model.
ample in retaining particles or achieving a uniform distri- However, the coupling effects of motion on actin filaments
bution. In some cases this may be a consequence of aiso need to be considered.
effective diffusion constanb, that is lower in value than Displacement-time plots(t), typically collected at time
the free diffusion constant for the particle, namely whenintervalsét = 0.2-1 s, are commonly analyzed to give the
V?/k' < D, which is possible for slow motors and/or a low distribution of coarse-grained velocitiés/st. For endoge-
duty ratio. nous particles, these distributions typically show a broad
Comparisons with experimental data should be made imange of velocities heavily biased in one direction, a nar-
light of a number of factors reflecting the complex nature ofrower peak centered about zero, and a peak at zero velocity,
the interactions between particles, filaments, and the cytorepresenting particles bound and motoring on filaments,
plasmic environment generally. To this end, we briefly particles diffusing freely or attached to moving structures,
review existing motility data for axons, melanocytes, andand particles trapped on static structures, which could also
melanophores, keeping in mind the present models. Whenlae motor-filaments (Adams and Bray, 1983; Allen et al.,
single one-dimensional filament system is dominant, therd982; Bridgman, 1999; Breuer et al., 1988; Cooper and
is usually no difficulty in fitting either the unidirectional Smith, 1974; Koles et al., 1982; Morris and Hollenbeck,
model or a symmetric bidirectional model to displacement-1995). Similar distributions have been observed for injected
time data in the sense of assigning values of the four basiproteins (Buchner et al., 1987; Galbraith et al., 1999 and
parameters/, k, k', andD. However, the data reveal two references therein). The mean velocity during bound
possible inadequacies with the models; the apparent diffuperiods can provisionally be interpreted as a lower estimate
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for the motor speed of the particle. The two may not be p,va/kay, Where p, is the equilibrium probability of the
equal because, even if the particle travels at constant speetganelle-actin complex ang, andk, are the organelle’s

v on a motor-filament, short periods of detachment andmotor speed and detachment rate on actin. The binding rate
rebinding may be hidden by the finite sampling time. Thek to microtubules would also be reduced by a fa@okvith
maximum velocity or leading edge of the distribution is anrespect to the axon in which actin has been removed.
upper bound to the motor velocity, but may arise from rare Coupling effects between the two filament systems have
events such as elastic recoil of filaments (Allen et al., 1982)peen studied by Morris and Hollenbeck (1995), using nor-
so may not be a reliable estimate wfSome authors also mal axons and axons in which microtubules or actin fila-
give the mean path length, traveled over bound periods or ments had been depolymerized. With no microtubules, re-
the maximum path length observed, which may be muctversals of the motions of particles on the actin network were
greater (a Poisson distribution is expected). Then lower andbserved. Motor velocities estimated from bound periods
upper bounds for the mean detachmentkate v/l ,,canbe sampled every second were similar in both directions,
obtained, which validate such measurements of motor veramely 0.3—0.4um/s in normal axons, 0.2m/s on actin
locity if k'6t << 1, takingk < K'. alone, and 0.Gum/s on microtubules only. That the motor

Data for anterograde transport and particle diameters ofelocity in the dual-filament system is smaller than that on
0.2-0.7 wm from the above sources give mean boundmicrotubules alone suggests either that not all particles
speed¥y = 0.30-2.5um/s andv,,,, = 1-5um/s. To some analyzed were on microtubules, or that the mean excursion
extent, these variations correlate with particle size. Fotength on microtubules was shortened by contacts with actin
particles above and below 0/&m diameter, respectively, filaments. Mean excursion lengths were not given, while the
Breuer et al. (1988) finlg = 0.3 and 0.7um/s,V,.x = 1.0  maximum values reported in each direction are not corre-
and 2.7um/s,l,, = 2.11 and 3.14wm, and duty ratios = lated with removal of microtubules. For all three systems
0.24 and 0.21. These values are sufficient to bracket ththe motor speeds in each direction are nearly equal, sug-
motor velocities, the detachment ratesbetween (0.15— gesting that the net direction of transport is sensitive to
0.5) and (0.2-0.8) S, respectively, and binding ratds differences in the corresponding duty ratios, giving net
between (0.05-0.15) and (0.06—0.23} sisingr = k/(k +  anterograde transport in wild-type axons and retrograde
k’). In this investigation the sampling tinééwas 0.11-0.25 transport in the actin-only system, although the microtu-
s, so thatk’st << 1 and detachment and rebinding during bule-only system is almost symmetric with respect to motor
one sampling period is rare and can be ignored. Thuselocity and duty ratio.
fluctuations in motor speed in each interval between pauses
appear to be present.

The effects of the actin network on axonal transport ar
now well known: the motor involved is myosin V (Tabb et Axial transport of melanosomes in the dendritic arms of
al., 1998). This network supports long-range axonal transmelanocytes is now recognized as another bidirectional dual
port in the absence of microtubules, but although all partitransport system, containing microtubules near the central
cles on the same actin track move in the same directioraxis and subcortical actin filaments (Wu et al., 1998). Bi-
over all filaments this mechanism is inherently bidirec-directional long-range transport is observed in the presence
tional. Estimated motor velocities again vary widely, from of myosin V and also in its absence (as in the “dilute”
0.07 to 3.0um/s. Values above 0.4m/s (the motor veloc- mouse mutation, Wei et al., 1997), indicating that at least
ity for myosin Va from in vitro motility assays) are ob- one microtubule motor must be present. Whether this bidi-
served in extruded axoplasm (Allen et al., 1982; Kuznetsovectionality arises from plus- and minus-end motors or from
et al., 1992, 1994), where the filament network may not bemicrotubules of opposite polarity is still an open question;
stationary. Reported mean excursion lengths range from O.icrotubule bundles in axonal dendrites are equipolar (Baas
to 4 um (Kuznetsov et al., 1992; Bruer et al., 1988; see als@nd Yu, 1998) so we tentatively assume that this is the case
Rodionov et al., 1998) and are generally shorter than ofin melanodendrites. Bidirectional transport also occurs on
microtubules (3—1@wm). In the absence of obstructions, the the actin network alone. Apparent motor velocities for the
detachment rate should be faster than from microtubulesjual system, the dilute mutation (motor action on microtu-
suggesting that organelles reaching the actin network urbules only), and the actin-only system, namely 0.7, 1.0-1.1,
dergo many cycles of detachment and rebinding to actirand 0.14um/s, respectively, are again similar in both di-
before they are re-captured by a microtubule. Over oneections. Mean path lengths on microtubules were 12-13
cycle of microtubule motor action, the detached organelleum; those on actin were not reported, but appear to be
may be considered to be in kinetic equilibrium with actin, soabove 0.3um. Thus, in most respects this dual transport
that free organelles and organelles undergoing motor-asystem appear similar to that in axons. There are similar
sisted diffusion on F-actin may be lumped together. Theneservations about the low value of the velocity on actin.
the unidirectional model with microtubules is valid if the  The accumulation of a high concentration of melano-
free diffusion constanD is replaced by (1— p,)D + somes in dendritic tips is required physiologically for trans-

eMelanocytic dendrites
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fer to keratinocytes in the epidermis, which occurs onlycan be qualitatively described by the radial distribution
when the actin-(myosin V) system is active (Wu et al.,function for two-dimensional diffusion
1998). In the “dilute” mutation, most melanosomes remain

in the central cell body; some travel back and forth in I(dyrd-t r2
dendrites but almost none are captured in the tip (Provance p(r,t) = (@mD, 12 exp(— D t) (40)
et al., 1996; Wei et al., 1997). These observations can be * *

understood in terms of flament geometries in the cell body
and the tip, which serve to load melanosomes on to the fagfarslaw and Jaeger, 1959) fdr= 2, although the tail of
transport system in the arm (microtubules). A high concenthe observed distribution is broader. Setting the most prob-
tration of particles in the tip relative to the central cell body able distancév2(d — 1)D,t after timet to 0.5um with t =
can be achieved if loading is efficient in the cell body but30 s yieldsD, = 0.0042um?s. Can this value be under-
inefficient in the tip, as exemplified in the bidirectional stood in terms of motor-assisted diffusion on a randomly
model withA > A from Eq. 23 for short arms or a similar polarized two-dimensional filament system?
equation derived from Eq. 33 for long arms. In the central Equation 40 is valid only if many attachment cycles occur
cytoplasm, Wu et al. have found that melanosomes loadver the observation period. The authors observe tortuous
onto short microtubules (average lengt#8 um) feeding particle tracks, suggesting, < 0.5um as required and =
those in the arm, which is the mechanism considered in Figd.07 um/s, givingk’ = v/l,,> 0.14 s * and more than four
1. In the tips of dendrites, a somewhat different argument imttachment cycles over 30 s. The generalization of Egs. 1 to
required. arbitrary dimensions predicts that

In the absence of a cortical actin network under the tip, it
is reasonable to expect that a particle arriving at the end of Y
an anterograde microtubule would detach and bind to a Dy =1 =D +riy (f :1+FK>' (41)
retrograde microtubule rather than diffuse into the tip space.

In this case loading is efficient, but the effective captureWherer is the duty ratio and'(d) = 2, 2, 4w ford = 1, 2,

volume in the tip is much smaller than its actual volume, e .
however defined. beina limited by the diffusion lenath of 3. The observed diffusion constant can be accounted for if
' 9 y 9 k' = 0.59 s*andk > k' (r ~ 1). It would be interesting

melanosomes in the close vicinity of retrograde microtu- . . C
Y 9 to know if the spread of displacements is bigger at longer

bules. Whatever the concentration of melanosomes in th'?mes or whether there is a time-independent component of
capture volume, the concentration averaged over the whol ! P P

tip volume would be very small. The presence of actint e distribution which reflects the presence of short actin

filaments in the tip, mainly localized under the membrane'l2ments.

but with projections toward microtubule termini, should The apparent diffusion constant is so small that it could

therefore act to capture a much higher number of particles if/SC &rse from hindered diffusion of free particles in the

the tip volume, as suggested by Wu et al. For the tip V0|ume(’:ytoplasm, were it not for the near absence of such motions

the situation is as envisaged in Fig. 1 with no projectingWhen the actin system was removed. If the first explanation

microtubules, and hence inefficient loading € 0). The IS basic_ally co_rrect, the observed diffl_Jsio_n constant mu_st be
purpose of the submembrane actin system in the tip is t§ompatible with Eq. 40 for duty ratios just below unity,
spread, and thereby store, melanosomes throughout the ich mix in a small proportion of free-diffusion behavior.
region. It would be useful to model this system directly. hen viewed in this way, the observed valuef con-

If dendrites contain an equipolar mixture of microtubules,strains the free diffusion constabtto similar values or
then bidirectional transport could be produced by microtul€ss, about two orders or magnitude smaller than expected
bule motors of only one polarity on melanosomes, and thérom Stokes’ law (Table 2). Presumably, many free particles
symmetric bidirectional model would presumably apply toare intermittently trapped by static components of the
transport on each filament system, giving motor-assistegytoskeleton.
diffusion. This could be tested by an analog of the classical Melanophores are also a dual filament system, with bi-
diffusion experiment, in which the net anterograde particleased bidirectional transport on a microtubule network pro-
flux is proportional to the difference in concentrations be-jecting radially from the cell nucleus (Rogers et al., 1997).
tween the central body and the tip region. Centrifugal transport on this system acts to move pigment
bodies from the center to the semi-cortical actin system,
where they are dispersed to approximate a uniform distri-
bution of dark matter (Rodionov et al., 1998; Rogers and
Particle tracking experiments on higher-dimensional actirGelfand, 1998). The conditions for achieving a uniform
networks have been carried out in melanophores, notably bsteady-state distribution should reflect the spatial distribu-
Rodionov et al. (1998) who measured the distribution of netion of filament density in the cell, and two-dimensional
displacements in any direction after 30 s. Their observationsodels could be investigated.

Melanophores
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CONCLUDING DISCUSSION filament. This hypothesis could be tested from high-resolu-
: . tion images that track one particle on an unencumbered
The previous section shows that many features of organe"ﬁlament

transpo'rt In axons, melanpcytgs, a}nd melanophores are Koles et al. (1982) have suggested that velocity fluctua-
compatlble. W'th. the re_actlon-d|ffu§|on-transport mOdelstions arise from spatial variations in cytoplasmic viscosity.
presented, n which particle cqnvectlon occursona f'lamer,lﬁowever, motor speeds on an isolated filament are expected
system gnd Is due to the action .Of molecular motors. Th'st_o be load-independent for micron-sized particles and nor-
mechamsm,. rather t.hap mechanisms .base'd' on'cytoplasnmal cytoplasm; the tension/velocity coefficient for viscous
streaming, is also indicated by the identification of or- yroqis two orders of magnitude smaller than the slope of the

ganelle motors specific to the dual filament systems Ob]oad-velocityline, namely 5 pNs/um for kinesin (Svoboda
served in many types of cell motility (Langford, 1995; ;.4 Block 1994).

Kelleher and Titus, 1998). For some applications, the mod- Regarding 2) above, organelles diffusing in the cyto-
els should clearly be generalized to include a dual filamenblasm are observed to remain stationary for long periods,
system and/or actin networks of higher dimensionality.perhaps because they become trapped on secondary cy-
There are many aspects of organelle movements not dgggyeletal structures such as intermediate filaments. Clearly,

scribed by the basic models (Weiss et al., 1986), whicheq giffusion at rates compatible with formulae based on
raises the question of what features should be added withoyte Einstein-Stokes relation can occur when the particle is

destroying their simplicity, and hence their utility. TWO ¢jear of size-excluding compartments (Provance et al.,
particular deficiencies suggest specific improvements: 1&993) and trapping structures. The model could be extended
there is evidence that the motor speed of the organellgy include trapped states, but the kinetics of transitions
fluctuates while remaining bound to a filament, and 2)pepween free and trapped states would need to be dictated

diffusion of organelles not bound to motor filaments is py the system studied. Organelles may also be blocked if the
absent or is much slower than expected from the Einsteintjiament on which they move is entangled.

Stokes formula. It is necessary to show that these features gefore returning to macroscopic models, it would be

are compatible with the kind of organelle movements exyseful to have a reasonably comprehensive model for the
pected from motor action when attached to a filament, a”‘i{rajectory of a single organelle. Such a model would nec-
from the laws of diffusion when they are not. If this can be essarily be stochastic, but would need to describe more
done, then the way is open for the development of bettefandom events than the models of this paper, which require
models, perhaps allied to more detailed observations. g stochastic interpretation of attachment events when ap-
Regarding 1) above, fluctuations in the speed of an orpjied to a single particle. A general aim of this kind of

ganelle apparently remaining bound to a motor filamentmodel would be to relate the observed trajectory to the
could be due to many undetected short pauses or fluctugrchitecture of the cytoskeleton, so that the state of motion
tions in the number of motor molecules in strong interactiongt each instant can be correlated with local cytoskeletal
with the filament. The second explanation seems mor&tryctures. Automatic methods for analyzing trajectories in
probable, as it does not require all motors to detach simulthis way are desirable to identify trapped or blocked periods
taneously. In motility assays where a filament moves on and any intrinsic fluctuations in motor speed within periods
field of tethered motor molecules, the steady velocity isof unblocked motor action. For example, spatial fluctuations
observed to decrease as the surface density of motors jig a two-dimensional trajectory could be analyzed for com-
reduced (Winkelmann et al., 1995). Steady motion may als@onents parallel and perpendicular to a smoothed trajectory,
be replaced by fluctuating motion if the motors are inse-to distinguish motoring states from freely diffusing states. If
curely tethered, particularly at low densities. Assays wheréluctuations in motor speed are seen to be intrinsic to the
a single motor molecule moves an attached bead (Svobodateraction between organelle and motor filament, the inter-
et al., 1993) suggest that kinetic fluctuations in the numbegction could be modeled as a stochastic process, possibly
of motors bound to a filament should be less severe fogpecified by the velocity autocorrelation function. Such a
highly processive motors such as kinesin or myosin V,model would predict the distribution of displacements, or at
where a single dimeric motor may stay within a zone ofleast their mean and variance, as a function of time for an
weak interaction around the microtubule for many cycles ofensemble of trajectories, or individual trajectories on a
ATP hydrolysis (Hackney, 1995; de la Cruz et al., 1999). ItMonte Carlo basis.

seems unlikely that all motors on a many-motor organelle Finally, classical macroscopic models that generalize
will be simultaneously detached unless the organelle ishose presented in this paper can be reconstructed from
physically removed from the interaction zone by Brownianmodels of a single trajectory, perhaps as above, that detect
forces or otherwise. Organelle translocation speeds woulthe positions of trapping and blocking structures in the
fluctuate if the organelle changes orientation or movesprocess of analyzing the observed motion. These models
momentarily away from the filament, thereby changing therequire a second level of averaging over details of spatial
number of motors in instantaneous interaction with thestructures such as the actin network and trapping or exclud-
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ing objects. For size-excluding compartments, transport dx(0)2
throughout the whole intracellular volume is still described at 2(DMy, + VoM, +V_M;_) (A3b)

by Fick’s law, but with a reduced diffusion constant; various
models exist which relate this constant to compartmentvhen the first moment is non-zero, it is convenient to work directly with
structure (Dayel et al., 1999; Hou et al., 1990; Janson et althe equation of motion for the varian&), namely

1996; Olveczky and Verkman, 1998). However, this de- dsit)
scription lumps free and trapped states together, and there gt - 2DMg, + 2 D V(M — X(DM,.)  (A4)
may be cases in which it is better to recognize a trapped +

state explicitly, with a kinetic description of transitions _ _ _ _
between the two states. If blocked states also exist. then which shows which moments are required. Solutions for the two special-
' ’ i?ed forms of the model are summarized below.

comprehensive classical theory of organelle motion, with all

spatial averaging in place, would require four kinds of

organelle states (¥ free, 2= motoring, 3= trapped, 4= Unidirectional model

blocked), with non-zero rate constants fortrar_lsitions 2, e k. = kandv, — v, k. = 0, oM. = 0, giving M.(t) —

1 < 3, and 2« 4, and a stochastic description of fluctu- 1 — pie=st+ (1 - )@ — =Y, M,, () = pe = + r(L — e %), where
ating speeds in the motor state. As stated, the free and= K/(K + 1) ands = k + K, giving Eq. 20a of the main text for the mean
trapped states might be combined by renormalizing thelisplacement. An equation of motion fbf, , can then be found by using
diffusion constant downward. The blocked state might alsd=d- A2 to eliminateM,,, giving

be lumped with the motoring state by renormalizing the My, (t) = vt + (p — 2n)(VIr)(1 — &)
mean motor velocity downward, but this procedure is some-
what dangerous unless the correct interpretation is kept + @A —=n(p—rvte’™ (AS5)

clearly in mind.
y Integration of Eq. A4 gives the variance function in Eq. 20b with coefficients

2D 22
APPENDIX A A= —p—o+ gPd-p —2rL—n

The equation-of-motion method for 2
displacement moments B=(p-— r)2?,
Differential equations of motion for the displacement moments (Eq. 19) (AG)
can be derived from the reaction-diffusion-transport equations. These equa- 2
tions are closed because the rate constants are independent of particle C= —(1 - 2r)(p - r)f-
position. The method is general, and in this context gives an efficient way
of calculating low-order moments.

Let M,,(t) be thenth displacement moment of the joint distribution . L )
p(x, ) which also predicts the probability of particle statat timet. Its ~ SYymmetric bidirectional model
time derivative is obtained by taking tmth moment with respect t of With k. = k K. = K, andv. = +v, these symmetries forcdvi,. (t) =

Egi ;&;g:}gfggﬂigf:g'ﬂagﬁéo remove the space derivatives in dlﬁ‘uﬂ/lc,l(t), which behaves as do@4, . (t) in the unidirectional case, but with

r = 2K/(2K + 1). For the same reasongf) = M, (t) = M,(t) = 0. Hence
dM,. (t)/dt = £vM,. — k'M,.., for which

M = 5 fon - e - P Ve eyl qan)

dM,o(t)
dt = n(n - 1)DMn72,o - (k+ + k7)Mno

+ KM, + KM, (Ala)
wheres = 2k + k'. These moments are an odd function of filament/motor

dMnt(t) polarity. The second moment or variance satisfi&t)/dt = 2DM,, +

——=nv.M ;. + KMy, — kKiM,.  (Alb)  4vM,,, leading to Eq. 39 of the main text with coefficients

dt
2r r—p\Vv r—p V2
are valid forn = 0, 1, 2, ... ifM,, = 0 forn < 0. Then A=—|—w+—]7, B=——[2D++ (A8)
k k /k S k
X(1)" = Mpo(t) + My, (1) + M (D) (A2)  The second term is zero when the particles are initially in equilibripm €).
includingn = 0, where the moments are state probabilities which sum to
unity and obey purely kinetic equations. The initial valuesat0 are zero  APPENDIX B
except forn = 0, andp = M, (0) + M, _(0) is the initial bound fraction.
Hence An expansion in powers of the number of cycles
T The Green'’s functions of the infinite one-dimensional case satisfy integral
dx(t) equations that generate an expansion in powers of the number of kinetic
—— =V,M,, + V_-M,_ (A3a) a g P p

dt

cycles over timd. This solution defines the intermediate phase in the time
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evolution of the distributions, particularly in the liniit — 0, where simple  kdt’ to either track, motor transport on that track fré¢hto t’, detachment
closed formulae can be obtained. The technique is described below for theith probability k'dt” and free diffusion front’ to t, summed over inter-

symmetric bidirectional model. mediate times and positions. The next term (not shown) involves two
The integral equations cycles of binding and detachment. For the off-diagonal propagators, the
leading term requires a single binding or detachment event between times
t 0 andt.
GooX, 1) = Qo(X, 1) + k' >, | dt’ | dx This expansion is not simply a Taylor serieskki because the lifetimes
o==Jg of the states are built into the “unperturbed” propagatgrs).. ; successive

terms describe only transitions into the final state, but transitions out of the
RV I final state are already included. The leading terms can be identified with
GolX = X', 1= 1)GyelX', 1), (B1a) the intermediate phase of vesicle propagation, which must be preceded
) either by one cycle of attachment if the initial and final states are equal,
. , , otherwise by one binding/detachment event. These considerations deter-
GUO(X' t) o kj dt jdx mine the onset time of the intermediate phase in terms of the rate constants
0 k, k'. The same rate constants also determine the lifetime of this phase, so
it is appropriate to build them into the unperturbed propagators. Higher-

g,(X — X', t — t")Gy(X', 1), (B1b)  order terms in the expansion can be neglected when the duty ratio is large
and cycling is slowK' << kandr,, >> 7.4). However, higher-order terms
t must become important at long times, where repeated cycling produces
GOM(X. t) =k E jdt'fdx’ compound diffusion; thus the above expansion is expected to converge
- only for the intermediate phase.

0 In the limit of large vesiclesD — 0 andg,(x, t) — &(x)exp(—2kt), so

all propagators in the intermediate phase defined above can be calculated
exactly from Eqg. B2. Including initial terms, we find that

t o 2kK IX]
Gou(X, 1) = g (X, 1)3,, + K | dt’ [dx Goox, D) = €754 8(x) +— —{t—

(X = X', t = t')G, (X', t'), (Blc)

)e(zkk’)|x|/v 9Vt — |X|)},

0
K oo
QU(X _ X,, t— t,)GO,J,(X,! tr) (Bld) G+0(X, t) ~ \7 e(2k7k )xlv 2kt1<}(vt _ ’XD!

where ¢, n = =) are the solutions of the symmetric version of Egs. 1 for ,

t > 0. The functiong;(x, t) in Eg. 36 can be used to construct an iterative —~ —K't(1 _ A2k—K)(xv—1) _
solution of which the leading terms are G-.(x1) 2(2k — K')v er1-¢ )9t — [X),
i v —k't kk'x 2k—K")|x|lv—2kt
GooX 1) — Qox, ) = Kk > [ dt’ | dt’| [dxdx’ G .(x 0 =d(x)e " + 5 ¢ Hvt—X)
o=xJg Jg (B3)
go(X - X, t— t’)g,,(x’ - Xt - t”)go(>(’, t") + O(kk’)z, where6(x) = 1 for x > 0, and O otherwise. Spatial distributions in this

(B2a) phase are determined by the interplay between motor transport at velocities
+v and the Poisson statistics of kinetically determined detachment and
X rebinding.
dt’fdx’g X=X, t—t) In the intermediate phase, all propagators are confined to the region
o ! |x| < vt of motor transport as expected, but each propagator has a charac-
teristic spatial distribution (Fig. 14). The following statements derive from
Egs. B3, and can be checked against the distributions in Fig. 11 by
go(X', t') + O(k%k’), (B2b)  summing over final states. For duty ratios0.5, the second term of
Go(X, t) shows two peaks, at = *V[t — 1/(2k — k)], which move out
t from the origin at the motor speadafter a time delay. The sharpness of
GOM(x, t) = k’J dt,JdX,QO(X —-x,t—1t) these peaks increaseskass reduced but their height, equal tckg/(2k —
k')vlexp(—k't — 1), decreases. As a function of time, the peaks are highest
at the time of onseiG_ , is confined to positive displacements and peaks
;g ’2 atx = vt with height (/v)exp(—k't), the sharpness of the peak behaving in
g“(x L ) + O(kk )’ (BSC) the same way; in this case there is no delay time as binding proceeds from
the outsetG_, is a symmetric function ok; the kinetics of detachment

tdt’Jt’dt”dex’dX’ and rebinding give the vesicle an equal chance of spending longer time on

G,ox, t) =k J

0

0

either track. This distribution is peaked»at 0, but the maximum is very
shallow wherK >> 1, giving a flat plateau within the propagation region.
The height ax = 0 is equal to

Ga'p,(x! t) - go-(X, t)Sa'H = kk’f

0 0

g, (X — X', t = 1)go(X' — X', ' — ), (X', ') + O(KK')2. »
(BZd) (e—k’l _ —2kt) (B4)

o o . 2(2k — K')v
Each term in the right-hand side is derived from its predecessor by an extra
cycle of attachment that introduces an extra powedafFor G, the first which takes its maximum value wherr In(2K)/(2k — k'). WhenK > 1,
such term describes free diffusion from 0tto binding with probability this time can be somewhat longer than the onset times for other propaga-
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FIGURE 14 Sequences of the propagatGg(X, t)(A), G, (% t)(B), G_ ,(x, t)(C), andG, , (X, t)(D) against displacement after 5 s, computed for
decreasing value® = 0.1 (black lineg, 0.01 ¢ed lineg, 0.001 green liney, and 10 *° um?s ([lue lineg of the diffusion constant, to be compared with
“first-cycle” formulae (B3) valid forD = 0 (khaki lineg. The distributions converge correctly for< 0.01um?s, except foiG_, , where the distribution
does not decay during the intermediate phase, and higher-order terms in the expansion in cycles are required.

tors.G, . is also confined to positivie because the restriction to one cycle Cheney, R. E., M. K. O’'Shea, J. E. Heuser, M. V. Coelho, J. S. Wolenski,
forbids binding to the negative track; the distribution is localized near the E. M. Espreafico, P. Forscher, R. E. Larsen, and M. S. Mooseker. 1993.

motor edgex = vt with a peak valuekk t/v)exp(=Kk't), which is maximal Brain myosin-V is a two-headed unconventional myosin with motor
in time whent = 1K'. In this case the intermediate phase is much activity. Cell. 75:13-23.
prolonged wherk’ << k. Cooper, P. D., and R. S. Smith. 1974. The movement of optically detect-

The distributions (B3) are qualitatively reproduced by numerical solu- able_organelles in myelinated axons Xenopus laevis. J. Physiol.
tion of Egs. 1 using direct integration or Fourier methods Do 0.01 42:77-97.
wm?/s, with other parameters as in Table 1. Fig. 14 shows the extent oframer, L. P. 1997. Molecular mechanism of actin-dependent retrograde
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