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ABSTRACT A macroscopic model is presented to quantitatively describe lipid bilayer gel to fluid phase transitions. In this
model, the Gibbs potential of the lipid bilayer is expressed in terms of a single order parameter q, the average chain
orientational order parameter. The Gibbs potential is based on molecular mean-field and statistical mechanical calculations
of inter and intrachain interactions. Chain-length and chain-asymmetry are incorporated into the Gibbs potential so that one
equation provides an accurate description of mixed-chain phosphatidylcholines of a single class. Two general classes of
lipids are studied in this work: lipid bilayers of partially or noninterdigitated gel phases, and bilayers of mixed interdigitated
gel phases. The model parameters are obtained by fitting the transition temperature and enthalpy data of phosphatidylcho-
lines to the model. The proposed model provides estimates for the transition temperature and enthalpy, van der Waals energy,
number of gauche bonds, chain orientational order parameter, and bond rotational and excluded volume entropies, achieving
excellent agreement with existing data obtained with various techniques.

INTRODUCTION

The major structural component of biomembranes is the
lipid bilayer, which not only serves as a permeability bar-
rier, but modulates the activities of embedded proteins and
anchored glycoproteins through its collective physical prop-
erties (Singer and Nicolson, 1972; Biltonen, 1990; Mourit-
sen and Biltonen, 1993). One potentially important property
of the lipid bilayer is the tendency of chemically or struc-
turally similar lipids to cluster (or phase separate) within the
plane of the bilayer (Huang et al., 1993c; Jørgensen and
Mouritsen, 1995; Jerala et al., 1996). This clustering can, in
turn, promote localization or colocalization of reactive com-
ponents altering the potential for protein-protein interaction,
rates of reaction, and diffusion rates (Thompson et al., 1995;
Dibble et al., 1996; Hinderliter et al., 1997; Gil et al., 1998;
Sabra and Mouritsen, 1998). The physical basis of this type
of functional modulation can be traced, in part, to differ-
ences in the energetics of interactions between chemically
or structurally distinct lipids (Hønger et al., 1996; Hinder-
liter et al., 1998; Suga´r et al., 1999). Thus the development
of an understanding of the relationship between lipid struc-
ture and membrane function requires knowledge of the
magnitude of these interactions and their structural conse-
quences. The purpose of this study is to establish a macro-
scopic description of the gel-fluid phase transition in ther-
modynamic and structural terms of two general classes of
lipids as a step in that direction.

Model systems consisting of a few natural or synthetic
phospholipids are well defined and can be conveniently
studied by physical techniques and theories to gain infor-
mation on bilayer properties (Melchior and Stein, 1976;
Mabrey and Sturtevant, 1978; Seelig and Seelig, 1980;
Jørgensen and Mouritsen, 1995; McMullen et al., 1999;
Korlach et al., 1999). The gel to fluid or main phase tran-
sition has been a major focus of lipid research for decades
(Cevc and Marsh, 1987). Since phosphatidylcholines (PCs)
are the most abundant lipids in biomembranes and widely
used in model membrane studies, there is a large body of
information available (Koynova and Caffrey, 1998). In the
past two decades, considerable experimental work has been
performed on mixed-chain PCs with different acyl chains at
the sn-1 andsn-2 positions (Huang and Li, 1999).

It was suggested (Mason et al., 1981; Huang et al., 1983)
that when the chain mismatch of the two chains exceeds;3
methylene units, the bilayer forms a partially interdigitated
gel phase (shown schematically in Fig. 1A). In such a phase
the mismatched region of one leaflet is matched with that of
the other leaflet, so that the bilayer thickness is approxi-
mately the sum of the lengths of the two acyl chains and the
area/lipid is about twice the area/chain. As the chain asym-
metry increases to the point that the length of the longer
chain is about twice that of the shorter one, the bilayer forms
a mixed interdigitated gel phase (shown schematically in
Fig. 1B). In this phase the mismatched region of one leaflet
is matched with the shorter chain of the other leaflet so that
the bilayer thickness is approximately the length of the
longer chain, and the area/lipid is about three times the
area/chain (McIntosh et al., 1984; Hui et al., 1984). Other
studies (Shah et al., 1990; Halladay et al., 1990; Lewis et al.,
1994b; Zhu and Caffrey, 1994) further suggested that the
mixed interdigitated gel phase undergoes a transformation
to the partially interdigitated fluid phase at the phase tran-
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sition temperature. Huang and co-workers have developed
empirical equations to correlate the transition temperatures
to chain properties for lipid bilayers existing in non, par-
tially, and mixed interdigitated gel states (Huang, 1991;
Huang et al., 1993a, b; Li et al., 1994). Marsh (1992, 1999)
attempted to provide some thermodynamic understanding of
the work of Huang and co-workers by analyzing the tran-
sition temperature data assuming the transition enthalpy and
entropy changes to be linear functions of chain-length and
chain-asymmetry.

A number of theoretical models have been proposed to
gain insight into the mechanism of lipid bilayer gel-fluid
phase transitions and to interpret experiments (Nagle, 1980;
Caillé et al., 1980; Pink, 1982; Cevc and Marsh, 1987).
Models that are microscopic in nature include lattice models
(Nagle, 1973; Doniach, 1978; Pink et al., 1980), molecular
mean-field models (Marcˇelja, 1974; Meraldi and Schlitter,
1981a, b), Monte Carlo simulations (Mouritsen et al., 1983,
1992; Suga´r et al., 1999), and molecular dynamics simula-
tions (van der Ploeg and Berendsen, 1982; Tu et al., 1995).
Models that are macroscopic in nature include variations of
Landau theory (Owicki et al., 1978; Priest, 1980; Ja¨hnig,
1981), assuming the Gibbs free energy to be a polynomial of
some order parameter. These theoretical models only pro-
vide descriptions of lipids with identical acyl chains.

The goal of the current work is to present a macroscopic
model to describe the chain-length and chain-asymmetry
dependence of lipid bilayer gel-fluid phase transitions. The
model parameters are obtained by fitting the transition tem-
perature and enthalpy data of selected PCs to the model so
that the model can accurately represent the data. The model
is tested by the comparison of its predictions with the
transition temperature and enthalpy data of other PCs not
used in the fitting procedure. The model also provides
macroscopic estimates of other thermodynamic and struc-
tural quantities such as interchain van der Waals energy,

number of gaucheconformers, chain orientational order
parameter, and bond rotational and excluded volume entro-
pies. The agreement between model calculations and exist-
ing data obtained with various techniques provides a further
test of the accuracy of the model and its parameters. Where
experimental information is not yet available, the model
provides estimates of unknown quantities. The model is
derived from and applied to saturated lipids only, but can be
easily modified to account for biological lipids that are
unsaturated. This work is inspired by the classic van der
Waals theory on liquid-gas phase transitions.

THE THEORETICAL MODEL

A spontaneously formed lipid bilayer in excess water is a complicated
structure, even for a single component system. A large number of intra and
intermolecular interactions of lipid-lipid and lipid-water need to be con-
sidered. These include headgroup electrostatic interactions, hydration, and
steric interactions, van der Waals attraction between chains, hard-core
repulsions between chains and between different segments of chains, and
trans-gaucheisomerization of chain segments. In order to provide a de-
scription of lipid bilayers, it is necessary to approximate the important
interactions and ignore the minor ones, as has been done in a large number
of theoretical models on lipid bilayers. The most important interactions are
the hard-core repulsion or excluded volume interaction, van der Waals
attraction,trans-gaucheisomerization, and headgroup steric interactions.
The thermodynamic quantities describing these interactions in lipid bilay-
ers are assumed to be related to a single-order parameter.

The order parameter

Since the lipid bilayer has a preferred axis, the bilayer normal, the motion
of lipid chains, is anisotropic. Letn denote the unit vector along the bilayer
normal. Following Seelig and coworkers (Seelig and Niederberger, 1974;
Seelig and Seelig, 1974), a vector,v, is assigned to each chain segment,
whose direction is given by the normal to the plane spanned by the two
C–H bonds so that when the chain is in an untilted all-trans crystal state,
v is coincident withn and its length isa (5 1.27 Å), the projection of one
C–C bond on the bilayer normal. When the chain is in motion,v makes an
instantaneous angleu with n. The segmental order parameter,Q, is defined
as the time average of the second Legendre polynomial,Q 5 (3^cos2u& 2
1)/2 and can be calculated from deuterium NMR measurements asQ 5
22SCD, whereSCD is the order parameter of a C–D bond associated with
the segment (Seelig and Niederberger, 1974).Q has been shown to vary
along the lipid chain (Seelig and Seelig, 1974).

The above description is microscopic in nature. Having a preferred axis,
the lipid bilayer may be treated as a uniaxial system from a thermodynamic
point of view. Such a uniaxial system can be characterized by a single-
order parameter (de Gennes, 1971). To macroscopically describe the lipid
bilayer phase transition, we define a chain orientational order parameter,q,
as the arithmetic average of the segmental order parameterQi along the
chain. This is equivalent to assigning a vector to the chain as having an
angle u with n, where cos2u is calculated as the average of segmental
cos2ui, even for a flexible chain, so that we can write

q 5
1

2
~3^cos2u& 2 1! (1a)

^cos2u& 5
1

ns
O
i51

ns

^cos2ui& (1b)

FIGURE 1 Schematic diagram to show two lipid bilayer packing struc-
tures and their associated structural quantities. (A) Partial interdigitation;
(B) mixed interdigitation.
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wherens is the number of segments in the chain (brackets denote the time
average in this work).q 5 0 represents the chain in a completely random
state andq 5 1 in an untilted perfect crystal state, so thatq retains the
meaning of a normalized order parameter.

The thermodynamic potential

Starting with the molecular mean-field theory of Meraldi and Schlitter
(1981a, b) and the statistical mechanical calculation of Priest (1980), the
Gibbs potential of lipid bilayers is:

G 5 H 2 TS5 Ws 1 Ug 1 Uvw 2 T~Sg 1 Spk! (2a)

Ws 5 pA (2b)

Ug 5 Egng 5 Eg~Nc 2 6!fg (2c)

Sg/R5 ~Nc 2 4!sg~fg! (2d)

Uvw 5 2
1

2
~B0 1 B2q

2!s2 (2e)

Spk/R5 2~C0 2 C2q
2!s2 (2f)

whereG, H, S, T, andRare the Gibbs potential, enthalpy, entropy, absolute
temperature, and gas constant;Ws accounts for steric and hydrophobic
interactions imposed on the headgroup packing (originally introduced by
Marčelja, 1974):p is the lateral surface pressure andA the area/lipid;Ug

andSg are the energy and entropy contributions (Priest, 1980), respectively,
due togauchebond formation;Eg is the energy of a singlegauchebond
relative to that of atrans bond, ng the number ofgauchebonds per
molecule,fg the fraction ofgauchebonds,Nc the total number of carbons
of the molecule, andsg the entropy contribution per bond;Uvw and Spk,
respectively, are the energy and entropy contributions of van der Waals
attractions and hard-core repulsions (excluded volume or packing) based
on the work of Meraldi and Schlitter (1981a, b). [In the work of Meraldi
and Schlitter (1981a,b), each segment was treated individually so thatUvw

andSpk were summed over all segments. Meraldi and Schlitter adapted the
work of Cotter (1977) and Gelbart and Baron (1977) on nematic liquid
crystals to flexible lipid chains. It should also be mentioned that in the
calculations to be described, all energy terms are in the units per mole of
lipid. The numerical values of some quantities are given in other units
(rather than in molar units) only for convenience of communication.] The
chain orientational order parameter defined above is indicated byq; B0, B2,
C0, andC2 are chain-length-dependent positive coefficients and are treated
in detail in the section on chain-length and chain-asymmetry dependence;
s is a factor, originally introduced by Marcˇelja (1974) in his molecular
mean-field theory as the ratio of the number oftrans bonds to the total
number of bonds in a chain. Based on Salem’s calculation (1962) of
interchain van der Waals interactions, Pink and co-workers (Pink et al.,
1980; Pink, 1982) pointed out thats2 should be inversely proportional to
the 5th power of interchain distance. The interchain distance is equal to the
chain diameter and is proportional to the square root of the area/lipid,A.
When the untilted all-trans chain in the crystal state is taken as the
reference with area/lipid,A0, one obtainss2 5 (A0/A)5/2. It should be
emphasized that all quantities in Eq. 2 are macroscopic averages (e.g.,q is
averaged over all chains), so that all molecules are treated equally.

To make Eq. 2 useful for the studies of lipid bilayer main phase
transitions, we postulate that lipid bilayer gel-fluid phase transitions can be
characterized by the single-order parameter,q, as previously described. If
the volume is assumed to remain constant,A z l 5 A0 z l0, wherel is the
(time-averaged) chain-length projection on the bilayer normal andl0 that of
the all-trans extended chain in the crystal state.l 5 ^(vi z n& 5

nsa(1/ns)(^cosui& 5 l0(1/ns)(^cosui&, so that

l

l0
5

1

ns
O
i51

ns

^cosui& (3)

which is the arithmetic average of^cosui&. However, Eq. 1b is the average
of ^cos2ui&. Generally, these two averaging processes will give different
results. However, if all̂cosui& $ 0, one expects the square root of Eq. 1b
to be a good approximation to Eq. 3, so that

l

l0
5

A0

A
5 r~q! 5 Î2q 1 1

3
(4)

The assumption that̂cosui& $ 0 means that in the time-averaged sense,
ui # 90°. In other words, we ignore the possibility of loop conformations
in acyl chains, which is probably reasonable except for chain termini. If all
cosui are the same and equal to cosu, Eq. 4 becomeŝcosu& 5 =^cos2u&.
Thus, the angular fluctuations, (^cos2u& 2 ^cosu&2) . 0, are neglected, so
that Eq. 4 is the upper limit of estimates ofl/l0 (see Discussion).

To relatefg to q, we consider the two extreme conditions: atq 5 0, Sg

is maximal and atq 5 1, Sg 5 0. However, whenfg 5 1/2, Sg is maximal
(Priest, 1980) and atfg 5 0, Sg 5 0. The simplest relationship satisfying
these two extreme conditions (see Discussion) is

fg~q! 5 ~1 2 q!/2 (5)

With Eq. 5, the entropy contribution per bond,sg, can be expressed as

sg~q! 5
1

2
~1 1 q!lnS1 2 q 1 Î2q2 1 2

1 1 q D
1

1

2
~1 2 q!lnS1 1 q 1 Î2q2 1 2

1 2 q D (6)

which was obtained by Priest (1980, where a factor of 1/2 was missing)
using a transfer matrix method following Flory (1969). It should be noted
that Eq. 6 is strictly valid only in the limit of infinitely long chains.

Chain-length and chain-asymmetry dependence

First, we would like Eq. 2 to describe a class of saturated lipids that form
partially or noninterdigitated (PI) gel phases. This is inspired by Huang’s
empirical formulation that correlates the transition temperatures of this
class of PCs to chain properties (Huang, 1991; Huang et al., 1993a; 1994).
Two structural quantities for C(X)C(Y)PC, whereX andY are the number
of carbons insn-1 andsn-2 chains, respectively, are defined as:

N 5 X 2 1 1 Y2 1 2 1 5 X 1 Y2 3 (7a)

D 5 X 2 1 2 ~Y2 1 2 d12! 5 X 2 Y1 d12 (7b)

where N is the total number of C–C bonds participating in interchain
interactions,D is the number of mismatched bonds between the two chains,
and d12 the inherent shortening of thesn-2 chain. Being approximately
parallel to the bilayer surface, the first bond of thesn-2 chain is assumed
to make no contribution to interchain interactions and is responsible for the
shortening of thesn-2 chain.

B0 and B2 are related to the van der Waals interaction strength and
assumed to be proportional toN 2 N0 2 a1f(D). N0 is introduced to
account for the minimal chain-length requirement to have the lipid in a
bilayer form;a1f(D) is introduced to account for the reduced interaction in
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the mismatched regionD (0 , a1 , 1) with

f~D! 5 5
1

2SD2

Dth
1 DthD, uDu , Dth

uDu, uDu $ Dth

(8)

HereDth represents the threshold value ofD: when uDu , Dth, the lipid is
assumed to be in a noninterdigitated state and whenuDu $ Dth, in a partially
interdigitated one. In a noninterdigitated state, the mismatched tail of one
lipid molecule may randomly collide with another via thermal motions, so
that the interaction strength should be proportional to the probability of a
two-body collision (} D2). In a partially interdigitated state, the interaction
strength is assumed to be proportional touDu. Imposing continuous and
smooth conditions onf gives Eq. 8. Similarly,C0 and C2 are related to
excluded-volume interactions and assumed to be proportional toN 2
a2f(D) (0 , a2 , 1). We finally obtain

G 5 H 2 TS5 Ws 1 Ug 1 Uvw 2 T~Sg 1 Spk! (9a)

Ws 5 pA0/r~q! (9b)

Ug 5 Egng 5 Eg~N 2 3!
~1 2 q!

2
(9c)

Sg/R5 ~N 2 1!sg~q! (9d)

Uvw 5 2
1

2
~N 2 N0 2 a1f~D!!b~1 2 b2 1 b2q

2!r~q!5/2

(9e)

Spk/R5 2~N 2 a2f~D!!c~1 2 g2q
2!r~q!5/2 (9f)

whereb is the sublimation energy of a CH2 monomer;N0, c, a1, a2, b2, g2

are fitting parameters.
Second, similar to the work of Huang and co-workers (Huang et al.,

1993b; Li et al., 1994), another structural quantity is defined for the mixed
interdigitated (MI) gel phase bilayers. This structural quantity,d, is the
number of unmatched bonds between the length of the longer chain plus its
terminal van der Waals radius and the sum of the two shorter chains plus
the van der Waals distance between the two chain termini.d can be
expressed as

d 5 uDu 2 ~N 1 1 2 d12 2 uDu!/2 2 dvw/2 (10)

wheredvw is the van der Waals distance between the two opposing chain
termini; d and dvw, together withD, are shown schematically in Fig. 1.
Consequently, the Gibbs potential of MI bilayers is similar to that of PI
bilayers (Eq. 9), except that Eqs. 9e and 9f are replaced by

Uvw 5 2
1

2
~N 2 N0 2 a3uDu 2 a4f~d!!

3 b~1 2 b2 1 b2q
2!r~q!5/2 (11e)

Spk/R5 2~N 2 a4f~d!!c~1 2 g2q
2!r~q!5/2 (11f)

wherea3 is a parameter similar toa1 for PI model, describing the reduced
van der Waals interactions in the regionuDu; a4 is an MI model-specific
parameter for reduced interchain interactions in the unmatched regiond,
and f is given by Eq. 8 withD being replaced byd.

Model parameters are obtained by a nonlinear least-square fitting pro-
cedure of transition temperature and enthalpy data to Eq. 9 for the PI model
or Eq. 11 for the MI model, as described in the Results section. First,
however, we will describe the equation of state and Gibbs potential curves

for two lipid systems representative of the two kinds of transition processes
considered.

Equation of state

Thermodynamic equilibrium requires that at constant temperature the
partial derivative of the Gibbs free energy with respect to the order
parameter equals zero, i.e.,

G10~q, T! 5
G~q, T!

q
5

H~q!

q
2 T

S~q!

q
5 0 (12)

whereG(q, T) is given by Eq. 9 or Eq. 11 and Eq. 12 is anequation of state,
whereq 5 q(T) at constantp. In Fig. 2 the equation of state curve and the
Gibbs potential at the transition temperature of C(16)C(16)PC are plotted
in panels AandB, respectively. At low (high) temperature, Eq. 12 has only
one solution of a large (small) order parameter, implying that the system is
in a gel (fluid) phase. At a temperature near the phase transition temper-
ature,Tm, Eq. 12 has two stable solutions separated by an unstable one,
indicating that the system can exist in either phase. AtTm, the two stable
solutions have the same Gibbs potential (panel B) and the phase transition
occurs when the lipid bilayer changes from one state to the other. The
dashed line denotes metastable states: betweena and b superheated gel
states exist, whereas betweenc andd super-cooled fluid states exist. The
region betweenb andc (dotted line) represents unstable states. When the
system is at any point,o, betweena andd, the system is inhomogeneous,
the fraction of lipids in fluid phase is determined by the lever rule: section
ao divided by sectionad. The corresponding Gibbs potential that satisfies
the global stability condition is the dotted line inpanel B.This is the pure
first-order phase transition picture for PI lipid bilayers.

For lipids with the length of the longer chain about twice that of the
shorter one, the bilayer undergoes a MI gel to PI fluid phase transition
(McIntosh et al., 1984; Shah et al., 1990; Zhu and Caffrey, 1994), since the
bilayer thickness increases upon the gel to fluid transition. To illustrate this
kind of phase transition, the equations of state and the Gibbs potentials of
the PI and MI models at three temperatures of C(10)C(22)PC are plotted in
Fig. 2, C–F. In panel C, G10(q, T) 5 0 is shown for possible PI and MI
packing arrangements. At temperatures just belowTm (panel E), the bilayer
is in the MI gel phase since its Gibbs potential is lower than that of the PI
fluid phase. AtTm, the MI gel phase and the PI fluid phase have the same
Gibbs potential (panel D) and the phase transition occurs when the lipid
bilayer changes from one phase to the other. At temperatures aboveTm

(panel F), the bilayer exists in the PI fluid phase because its Gibbs potential
is lower than that of the MI fluid phase.

For both the PI gel to fluid and the MI gel to PI fluid phase transitions,
the transition temperature,Tm, is defined as the temperature at which the
gel and fluid phases at equilibrium have the same Gibbs potential, that is,
G10(qf, Tm) 5 G10(qg, Tm) 5 0 andG(qf, Tm) 5 G(qg, Tm), whereqg and
qf are the order parameter values in the gel and fluid states, respectively.
The transition enthalpy or latent heat is calculated asDHm 5 H(qf) 2
H(qg). When D is placed in front of any quantityF, it is viewed as an
operator and defined asDF 5 F(qf) 2 F(qg).

RESULTS

The macroscopic PI model of lipid bilayers (Eq. 9) is used
to describe both gel and fluid states and applied to the
gel-fluid phase transitions of phosphatidylcholines (PCs)
that form PI gel phase bilayers.Tm andDHm values of 39
PCs obtained by differential scanning calorimetry (DSC)
experiments are used to fix six adjustable model parameters
to achieve a good fit of the model to the data. For PCs
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forming MI gel phase bilayers, the fluid state is described by
the PI model (with all parameters fixed) and the gel state by
the MI model (Eqs. 9a–d plus Eqs. 11e, f).Tm and DHm

values of 56 PCs are used to fix four MI model parameters
to achieve a good fit of the MI model to the data. This
provides initial confirmation that the proposed model (PI
and MI) can accurately represent existingTm andDHm data.
The predicting ability of the model is then tested by its
ability to predictTm andDHm values of 17 other PCs not
used in the original fitting procedure. Finally, the model is
used to provide macroscopic estimates of other thermody-
namic and structural quantities. These estimates provide a
further test of the model by comparison with existing ex-
perimental or theoretical values and in other cases provide
predictions of unknown quantities.

Experimental observations, data analyses, and theoretical
considerations yield the estimates of the constant parame-
tersEg, b, A0, p, d12, andDth of the PI model (Eq. 9);Eg 5
0.5 kcal/mol (Nagle, 1980);b 5 1838 cal/mol (Salem,
1962). Since the area/chain in the crystal state is;19.0 Å2

(Pearson and Pascher, 1979),A0 5 38.0 Å2 for PI packing
of two chains per headgroup;p 5 14.7 dyn/cm (Meraldi

and Schlitter, 1981a, b);d12 5 1.3 C–C bonds (Marsh,
1992, 1999). It is expected that in order to form a partially
interdigitated phase,uDu should be at least equal to the van
der Waals distance of chain termini on the opposing leaflets,
dvw, so thatDth 5 2.6 C–C bonds (Li et al., 1993). The
variable parametersN0, a1, a2, c, b2, g2, are left as empir-
ical constants to be obtained by fitting of theTm andDHm

values of 39 PCs obtained by differential scanning calorim-
etry (DSC) experiments. These 39 PCs are thought to be in
PI gel phase bilayers based on previous work (see refer-
ences in Table 2). When there are multiple reports for a
lipid, an average value is calculated and its associated error
estimated. In the case of a single report, that value is used
and a maximal error assigned (forTm, ;1.5°C; for DHm,
;20%). The data with their associated errors are used in a
least-square fitting routine (Johnson and Frasier, 1985),
whereTm andDHm are calculated numerically. It should be
mentioned that in an initial fitting procedure,d12 and Dth

were allowed to vary and the values obtained (d12 5 1.316
0.10;Dth 5 2.756 0.63) were very close to values cited in
the literature. Therefore, the literature values are assumed as
noted above.

FIGURE 2 Theoretical curves to illustrate the PI gel to fluid phase transition of C(16)C(16)PC (A and B) and MI gel to PI fluid transition of
C(10)C(22)PC (C–F). (A) The equation of state curve of C(16)C(16)PC. The solid line represents the true equilibrium states. The dashed lines represent
meta-stable states, whereas the dotted line represents unstable states. (B) The Gibbs potential curve atT 5 Tm, where the two minima have the same values.
(C) The equation of state curve of C(10)C(22)PC (solid line), which consists of MI gel and PI fluid phase curves. (D–F) The Gibbs potential curves of
possible PI and MI packing structures atTm, Tm 2 10°C andTm 1 10°C, respectively.
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For PCs forming the MI gel phase bilayers, the fluid state
is described by the PI model with parameters values ob-
tained above and the gel state by the MI model (Eqs. 9 a–d
plus Eqs. 11 e, f). For the MI model, the constant parame-
ters,Eg, b, d12, A0, dvw, dth, c, g2, andN0 are assigned values
as follows:Eg, b, andd12 are the same as for the PI model;
A0 5 57.0 Å2 for MI packing of three chains per headgroup;
dvw 5 2.6 C–C bonds (Li et al., 1993). Reflecting dynamic
effects on chain interactions,dth is assumed to be 2.6 C–C
bonds, the same value asDth. Sincec andg2 are related to
the excluded volume interactions andN0 reflects the mini-
mal chain-length requirement, these three parameters
should be insensitive to the chain packing and their values
are assumed to be the same as for the PI model obtained
above. The variable parameters,p, b2, a3, and a4, are
obtained by fitting ofTm andDHm values of 56 PCs that are
thought to be in MI gel phase bilayers based on previous
work (see references in Table 3). The fitting procedure is
similar to that for the PI model, except thatqf is calculated
from the PI model whileqg is from the MI model, i.e.,
GPI(qf, Tm) 5 GMI(qg, Tm). Reflecting the headgroup steric
interactions,p is allowed to vary for the three chains per
headgroup structure of the MI model;b2 is also allowed to
vary, since the different chain packing structure of the MI
model should alter the interchain van der Waals interaction
strength;a3 anda4 are two MI model specific parameters.

The constant parameters used and the adjustable param-
eters obtained from the fitting procedures for both PI and
MI models are listed in Table 1. The experimentalTm and
DHm values of the 39 PCs used in the parameter fitting of
the PI model are listed in Table 2, while those of the 56 PCs
used in the fitting of MI model are listed in Table 3, along
with values obtained from the PI and MI model calculations
using Eqs. 9 and 11 with parameter values given in Table 1,

respectively. TheTm andDHm data listed in Tables 2 and 3
are plotted as a function ofD/N in the top and bottom panels
of Fig. 3, respectively. The horizontal lines are calculated
for the PI and MI models with varyingD and fixedN (the
value is indicated by the number within the figure). The
vertical lines are obtained by varyingN with fixed D for the
PI model or fixedd for the MI model (theD or d value is
shown by the numbers within the figure). The agreement
between the calculated values and experimental results is
excellent forTm, but less so forDHm. The reason for this
larger discrepancy is likely due to the experimental error of
DHm being large (;625%, Lin et al., 1990), whereasTm is
generally accurate to61% on the absolute temperature
scale. For the 39 PCs in Table 2, the difference between the
experimental values and the PI model calculations ofTm are
within 1.5°C (,61% on the absolute temperature scale).
For the 56 PCs in Table 3, the difference between the
experimental values and the MI model calculations ofTm

exceeds 3.0°C (;61%) only for C(8)C(19)PC,
C(8)C(20)PC, and C(8)C(21)PC. ThoseDHm data with an
associated error bar are plotted and found to agree with the
calculated curves within their error bars, except for one very
short chain lipid, C(8)C(18)PC (see below).

It has been shown above that the calculated values ofTm

andDHm agree well with the experimental values. However,
since the experimental data were used in the parameter
fitting procedures, the comparison was not independent. To
test the predicting abilities of the model, we compared the
model predictions to experimental observations for lipids
whoseTm andDHm values were not used in the parameter
fitting procedure. Seventeen lipids have been synthesized
and their thermodynamic properties determined in the
Huang laboratory. The results are listed in Table 4, along
with the model predictions. Some of the data have been
published (Huang et al., 1993a, 1994; Li et al., 1994), while
the others are unpublished (personal communication). It is
evident that the model predictions agree well with experi-
mental observations for all 17 lipids of quite different chain-
length and chain-asymmetry variations. These 17 lipids are
plotted as diamond symbols in Fig. 3, with 14 belonging to
the group of PI gel phase lipids and 2 belonging to the group
of MI gel phase lipids. The results for C(14)C(24)PC fall on
the boundary distinguishing the PI and MI models. Since the
experimental value ofDHm of C(14)C(24)PC is not avail-
able and both the PI and MI models predict the sameTm, we
cannot assign it to either group.

Chain-length dependence

The results of the PI and MI model calculations for some of
the lipids shown in Tables 2 and 3 are plotted in Fig. 4 to
show the chain-length variations ofTm andDHm. Both PI
and MI models predict an almost linear relation forDHm

and DSm with N, except at short chain-lengths (Fig. 5),

TABLE 1 Model parameter values for PCs

Parameter

Value

UnitPI MI

Eg 500 500 cal/mol
A0 38.0 57.0 Å2

b 1838 1838 cal/mol/bond
d12 1.3 1.3 C–C bonds
Dth 2.6 — C–C bonds
dth — 2.6 C–C bonds
dvw — 2.6 C–C bonds
p 14.7 12.44 (60.85) dyn/cm
Nmin 9.49 (60.10) 9.49 C–C bonds
c 0.934 (60.020) 0.934 per bond
g2 0.398 (60.014) 0.398 —
b2 0.250 (60.022) 0.279 (60.006) —
a1 0.295 (60.013) — —
a2 0.129 (60.038) — —
a3 — 0.072 (60.005) —
a4 — 0.287 (60.026) —

The numbers in parentheses are the confidence intervals for the fitting
parameter in the model.
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indicating that with each CH2 unit increase, the increase of
DHm is almost a constant. TheTm plateaus with increasing
N and its limiting value is estimated to be 147°C (N 5 10100

in a model calculation), consistent with the melting temper-
ature of polyethylene (;138–141°C).

For symmetric chain PCs, especially C(14)C(14)PC and
C(16)C(16)PC, more information is available. Estimates of
DUvw have been provided by Nagle and Wilkinson (1978)
based upon dilatometry measurements;Dng have been esti-
mated directly from Raman spectroscopic studies (Yellin
and Levin, 1977; Pink et al., 1980) and indirectly from the
DUvw. The calculated values are compared with experimen-
tal estimates in Table 5. In Fig. 5, the various calculated
contributions to the transition enthalpy and entropy,ng and

q at Tm with varying N are shown, along with the limited
data in literature for a comparison. The agreement of the PI
model predictions with experimental estimates is very good
for DUvw and quite good forng and q. The ng values
estimated by Pink et al. (1980) from Raman spectroscopy
with their 10-state model agree with ours in the gel state, but
are higher than ours in fluid state. However,DUvw of Nagle
and Wilkinson (1978) plusDUg computed fromDng of Pink
et al. (1980) exceedsDHm of DSC measurements. For
C(16)C(16)PC at aboutTm 1 6°C, our model predicts 8.4
gauchebonds/lipid, which compares favorably to infrared
spectroscopic measured values of 7.8 (Mendelsohn et al.,
1989) and 8.4gauchebonds/lipid (Lewis et al., 1994b). The
model predicts thatDUvw makes the major contribution to

TABLE 2 Comparison of experimental observations with the PI model calculations of 39 PCs

PC D/N D

Tm
obs Tm

cal

Difference

DHm
obs DHm

cal

Difference(°C) (kcal/mol)

C(13)C(13) 0.057 1.3 13.7 13.3 20.4 4.4 4.5 0.1
C(11)C(17) 20.188 24.7 13.9 13.4 20.5 4.0 4.0 0
C(12)C(16) 20.108 22.7 21.7 20.6 21.1 5.7 5.2 20.5
C(13)C(15) 20.028 20.7 25.5 25.2 20.3 6.0 5.9 20.1
C(14)C(14) 0.052 1.3 24.0 24.4 0.4 5.8 5.8 0
C(15)C(13) 0.132 3.3 18.8 18.4 20.4 5.3 4.8 20.5
C(16)C(12) 0.212 5.3 11.3 11.2 20.1 4.5 3.5 21.0
C(11)C(19) 20.248 26.7 17.3 17.0 20.3 4.4 4.0 20.4
C(12)C(18) 20.174 24.7 23.5 23.7 0.2 5.8 5.3 20.5
C(13)C(17) 20.100 22.7 30.5 30.3 20.2 6.9 6.4 20.5
C(14)C(16) 20.026 20.7 35.0 34.6 20.4 7.4 7.1 20.3
C(15)C(15) 0.048 1.3 34.4 33.8 20.6 7.0 6.9 20.1
C(16)C(14) 0.122 3.3 28.0 28.3 0.3 6.2 6.1 20.1
C(17)C(13) 0.196 5.3 21.2 21.7 0.5 5.2 4.9 20.3
C(12)C(20) 20.231 26.7 25.6 26.4 0.8 5.2 5.4 0.2
C(13)C(19) 20.162 24.7 32.6 32.5 20.1 6.7 6.6 20.1
C(14)C(18) 20.093 22.7 38.8 38.6 20.2 7.9 7.6 20.3
C(15)C(17) 20.024 20.7 41.7 42.6 0.9 10.1 8.2 21.9
C(16)C(16) 0.045 1.3 41.4 41.9 0.5 8.3 8.1 20.2
C(17)C(15) 0.114 3.3 37.7 36.8 20.9 7.4 7.3 20.1
C(18)C(14) 0.183 5.3 30.5 30.7 0.2 5.9 6.2 0.3
C(13)C(21) 20.216 26.7 34.1 34.5 0.4 5.5 6.7 1.2
C(14)C(20) 20.152 24.7 39.8 40.2 0.4 7.6 7.7 0.1
C(15)C(19) 20.087 22.7 44.8 45.9 1.1 8.7 8.7 0
C(16)C(18) 20.023 20.7 49.0 49.6 0.6 9.0 9.3 0.3
C(17)C(17) 0.042 1.3 49.4 48.9 20.5 9.2 9.2 0
C(18)C(16) 0.106 3.3 44.4 44.2 20.2 8.1 8.4 0.3
C(19)C(15) 0.171 5.3 39.0 38.5 20.5 6.4 7.4 1.0
C(20)C(14) 0.235 7.3 33.2 32.8 20.4 4.7 6.3 1.6
C(15)C(21) 20.142 24.7 46.1 46.9 0.8 11.0 8.9 22.1
C(18)C(18) 0.039 1.3 55.0 55.1 0.1 10.5 10.3 20.2
C(16)C(22) 20.134 24.7 52.8 52.8 0 12.7 10.0 22.7
C(19)C(19) 0.037 1.3 61.8 60.5 21.3 10.7 11.4 0.7
C(17)C(23) 20.127 24.7 57.9 58.1 0.2 14.0 11.1 22.9
C(20)C(20) 0.035 1.3 66.4 65.3 21.1 11.4 12.5 1.1
C(18)C(24) 20.121 24.7 62.7 62.8 0.1 15.6 12.2 23.4
C(21)C(21) 0.033 1.3 71.1 69.6 21.5 12.2 13.6 1.4
C(22)C(22) 0.032 1.3 74.8 73.5 21.3 14.9 14.7 20.2
C(20)C(26) 20.109 24.7 70.7 70.8 0.1 18.6 14.4 24.2

Tm
obs andDHm

obs are DSC experiment values taken from Huang (1990); Lin et al. (1990, 1991); Wang et al. (1990); Bultmann et al. (1991); Lewis et al.
(1987); Mattai et al. (1987); Mabrey and Sturtevant (1978); Chen and Sturtevant (1981); Boggs and Mason (1986); and Stu¨mpel et al. (1983).Tm

cal andDHm
cal

are model calculations of this work.
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TABLE 3 Comparison of experimental observations with the MI model calculations of 56 PCs

PC D/N d

Tm
obs Tm

cal

Difference

DHm
obs DHm

cal

Difference(°C) (kcal/mol)

C(16)C(9) 0.377 0.3 3.6 2.0 21.6 6.1 7.3 1.2
C(16)C(10) 0.317 21.7 5.4 5.3 20.1 6.6 7.6 1.0
C(17)C(9) 0.404 1.3 7.4 7.4 0.0 4.4 7.8 3.4
C(8)C(18) 20.378 0.4 10.1 8.3 21.8 7.2 8.0 0.8
C(17)C(10) 0.346 20.7 13.6 13.5 20.1 8.4 8.6 0.2
C(18)C(9) 0.429 2.3 11.6 11.1 20.5 8.2 8.0 20.2
C(8)C(19) 20.404 1.4 17.1 13.1 24.0 10.2 8.4 21.8
C(9)C(18) 20.321 21.6 10.9 11.6 0.7 8.3 8.3 0.0
C(17)C(11) 0.292 22.7 12.8 13.1 0.3 6.9 8.1 1.2
C(18)C(10) 0.372 0.3 18.8 19.4 0.6 9.0 9.3 0.3
C(19)C(9) 0.452 3.3 14.2 13.4 20.8 8.3 8.0 20.3
C(8)C(20) 20.428 2.4 21.3 16.2 25.1 12.2 8.6 23.6
C(9)C(19) 20.348 20.6 19.6 19.0 20.6 11.3 9.2 22.1
C(10)C(18) 0.268 23.6 11.4 8.4 23.0 6.2 6.8 0.6
C(18)C(11) 0.319 21.7 21.4 21.9 0.5 9.1 9.5 0.4
C(19)C(10) 0.396 1.3 22.7 23.5 0.8 8.3 9.8 1.5
C(8)C(21) 20.450 3.4 24.3 18.3 26.0 10.7 8.6 22.1
C(9)C(20) 20.373 0.4 24.9 24.2 20.7 10.9 9.9 21.0
C(10)C(19) 20.296 22.6 19.9 18.9 21.0 7.1 8.9 1.8
C(18)C(12) 0.270 23.7 17.6 19.1 1.5 8.4 8.3 20.1
C(19)C(11) 0.344 20.7 28.7 28.3 20.4 10.6 10.5 20.1
C(20)C(10) 0.419 2.3 25.8 26.1 0.3 10.7 10.0 20.7
C(9)C(21) 20.396 1.4 29.3 27.9 21.4 11.1 10.4 20.7
C(10)C(20) 20.322 21.6 27.2 26.8 20.4 9.5 10.2 0.7
C(19)C(12) 0.296 22.7 27.7 27.9 0.2 9.6 10.1 0.5
C(20)C(11) 0.368 0.3 32.8 33.0 0.2 11.1 11.2 0.1
C(21)C(10) 0.439 3.3 27.0 27.7 0.7 11.5 10.0 21.5
C(9)C(22) 20.418 2.4 32.0 30.1 21.9 11.5 10.6 20.9
C(10)C(21) 20.346 20.6 32.7 32.6 20.1 11.3 11.2 20.1
C(11)C(20) 20.275 23.6 25.7 24.4 21.3 8.4 9.2 0.8
C(20)C(12) 0.321 21.7 33.8 34.9 1.1 11.8 11.4 20.4
C(21)C(11) 0.390 1.3 35.4 36.1 0.7 12.2 11.7 20.5
C(22)C(10) 0.459 4.3 28.8 29.2 0.4 12.3 10.0 22.3
C(9)C(23) 20.438 3.4 33.7 31.5 22.2 11.4 10.6 20.8
C(10)C(22) 20.369 0.4 37.5 36.8 20.7 12.4 11.9 20.5
C(11)C(21) 20.300 22.6 32.6 32.4 20.2 9.4 10.8 1.4
C(20)C(13) 0.277 23.7 30.2 32.5 2.3 11.6 10.5 21.1
C(21)C(12) 0.343 20.7 39.6 40.1 0.5 11.8 12.4 0.6
C(22)C(11) 0.410 2.3 37.5 38.1 0.6 12.2 12.0 20.2
C(10)C(23) 20.390 1.4 40.0 39.6 20.4 13.2 12.3 20.9
C(11)C(22) 20.323 21.6 38.6 38.8 0.2 12.6 12.1 20.5
C(21)C(13) 0.300 22.7 39.4 39.6 0.2 12.0 12.1 0.1
C(22)C(12) 0.365 0.3 43.0 43.8 0.8 13.3 13.2 20.1
C(10)C(24) 20.410 2.4 42.2 41.3 20.9 13.3 12.6 20.7
C(11)C(23) 20.345 20.6 43.5 43.6 0.1 12.4 13.1 0.7
C(12)C(22) 20.281 23.6 37.9 36.7 21.2 12.2 11.2 21.0
C(22)C(13) 0.322 21.7 44.3 45.4 1.1 14.1 13.3 20.8
C(10)C(25) 20.428 3.4 43.1 42.3 20.8 13.1 12.6 20.5
C(11)C(24) 20.366 0.4 47.7 46.9 20.8 13.4 13.8 0.4
C(12)C(23) 20.303 22.6 44.0 43.3 20.7 13.4 12.8 20.6
C(22)C(14) 0.282 23.7 41.6 43.3 1.7 12.4 12.5 0.1
C(11)C(25) 20.385 1.4 49.5 49.2 20.3 13.7 14.3 0.6
C(12)C(24) 20.324 21.6 48.7 48.6 20.1 13.8 14.0 0.2
C(12)C(26) 20.363 0.4 55.2 55.3 0.1 14.7 15.7 1.0
C(13)C(25) 20.306 22.6 53.3 52.1 21.2 14.7 14.7 0.0
C(14)C(26) 20.289 23.6 55.5 54.9 20.6 15.1 15.2 0.1

Tm
obs andDHm

obs are DSC experiment values taken from Huang et al. (1993b); Lin et al. (1991); Lewis et al. (1994a); Xu and Huang (1987); Bultmann et
al. (1991); Shah et al. (1990); Mattai et al. (1987); Huang and Mason (1986); Boggs and Mason (1986); and Li et al. (1994).Tm

cal andDHm
cal are model

calculations of this work.
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the transition enthalpyDHm, while the entropy from intra-
chain trans-gaucheisomerization,DSg, makes the major
contribution to the transition entropy,DSm, as expected.

It is observed (Fig. 5D) from the PI model calculation
that, at the phase transition temperature,q increases in the
gel state but decreases in the fluid state asN increases. The
increased order in the gel phase is apparently due to a
stronger van der Waals interaction per bond. To overcome
this stronger force requires a higherTm. The decreased order
in the fluid phase is likely the result of the increased thermal
motions at elevatedTm, which more than compensate the
slightly stronger van der Waals interaction per bond. There-
fore, a larger change in the order parameter at its phase
transition is observed for a lipid with largerN (see Fig. 5D).
This difference is observed in deuterium NMR experiments
with C(14)C(14)PC, C(16)C(16)PC, and C(18)C(18)PC
(Morrow et al., 1992). The vertex of the curve in Fig. 5D

is the critical point predicted by the PI model, where the
difference in order parameter between gel phase and fluid
phase vanishes. Direct experimental confirmation of this
critical point is not feasible because it lies between
C(11)C(11)PC and C(10)C(10)PC, whoseTm is far below
the freezing point of aqueous dispersions of lipids. It is well
known that when a system is close to a critical point,
fluctuations of the system become large. Therefore, it is
expected from the model that lipid systems with shorter
chains will have larger fluctuations. This is consistent with
results of the Monte Carlo simulations (Ipsen et al., 1990;
Hønger et al., 1996). It should be emphasized that we do not
expect the model to provide an accurate description of short
chain lipids for which the chain-chain interactions described
by the model become less dominant (also recall that Eq. 6 is
strictly valid only in the long chain limit). In Fig. 4,B and
D, we see that the enthalpy results of the model calculations

FIGURE 3 Tm (top) andDHm (bottom) vari-
ation with chain-lengthN and chain-asymme-
try D. The circles are DSC data listed in Tables
2 and 3. The diamonds are data from Table 4
that have not been used in the model parame-
ter-fitting procedures. The open symbols rep-
resent PCs with one chain having an odd num-
ber of carbons and the other an even number of
carbons. The lines are our model calculations:
the horizontal lines are calculated from fixedN
(value indicated), whereas the vertical lines are
from fixedD for the PI model or fixedd for the
MI model (value indicated). The dashed lines
are for odd/even PC series.
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tend to deviate from experimental observations at short
chain-lengths.

Chain-asymmetry dependence

In Fig. 6, theTm of C(15)C(15)PC series (N 5 27) and
C(16)C(16)PC series (N 5 29) andDHm of C(15)C(15)PC
series are plotted in the top and bottom panels, respectively.
Variation of Tm with chain-asymmetry of these two series
and some others have been extensively studied by Huang
and co-workers (Lin et al., 1991; Huang et al., 1993a).
Recall thatD is a measure of mismatched bonds between
sn-1 andsn-2 chains andd is a measure of the unmatched
bonds in the MI packing structure. For a lipid series with
constantN, asuDu increases fromuDu 5 0, bothTm andDHm

decrease due to decreased van der Waals interactions in the
mismatched region in the gel state. AsuDu increases beyond
a certain point, lipids such as C(18)C(12)PC prefer the MI
gel phase because of its lower Gibbs potential. TheTm and
DHm begin to increase due to favored van der Waals inter-
actions in the MI gel phase until the maximal values are
reached atudu 5 0. It is noted that there is a large discon-
tinuous change ofDHm at the boundary distinguishing PI and
MI packing (indicated by the dotted lines in the bottom panel
of Fig. 6), whileTm is continuous across this boundary.

Based on their extensive synthetic and DSC studies, and
molecular mechanics study of the C(14)C(14)PC series,
Huang and co-workers suggested that lipids withDC/CL ,
0.41 prefer the PI gel phase, while those withDC/CL . 0.41
prefer the MI gel phase (Lin et al., 1991; Li et al., 1994),
whereDC 5 uDu, andCL is the effective length of the longer
chain. TheuDu/N boundary value between PI and MI packing
can be estimated by our model in terms of the two structural

quantities,D andN. The results from C(13)C(13)PC series
to C(26)C(26)PC series are listed in Table 6, along with the
equivalentDC/CL values and the discontinuous changes in
DHm. Generally speaking, whenuDu/N is less than the
boundary value, the lipid is anticipated to exist in the PI gel
phase and whenuDu/N is greater than the boundary value, in
the MI gel phase. But whenuDu/N value of a lipid is very
close to the corresponding boundary value, its gel phase
structure cannot be predicted by the values ofD and N
alone. However, comparison of the experimentally mea-
suredDHm with the model values allows such a distinction
to be made. For an illustration, see C(11)C(19)PC and
C(18)C(12)PC in Fig. 6. Both lipids lie close to the bound-
ary with their Tm values close to each other and model
predictions. However, theirDHm values differ by;4 kcal/
mol. Based upon the model calculations, one would antic-
ipate that C(11)C(19)PC is in the PI gel phase, while
C(18)C(12)PC is in the MI gel phase. It is noted that the
boundary value decreases monotonously with increasingN,
while the change ofDHm initially increases and then de-
creases slightly, remaining essentially constant.

For the C(16)C(16)PC series (N 5 29), the various con-
tributions to the excess enthalpy and entropy,ng andq, have
been calculated at the transition temperature and are shown
in Fig. 7, along with limited data from the literature for a
comparison. It is apparent that both the PI and MI model
calculations agree well with the limited experimental mea-
surements available. Both the PI and MI models predict that
DUvw makes the dominate contribution toDHm, while DSg

makes the dominate contribution toDSm. As uDu increases
from zero,q decreases in the gel phase and increases in the
fluid phase at theTm. As uDu increases further,q increases
discontinuously in the gel phase as the lipids shift from PI

TABLE 4 Comparison of model predictions with experimental observations of 17 PCs

PC D/N D d

Tm
obs Tm

cal

dTm

DHm
obs DHm

cal dDHm

Model(°C) (kcal/mol)

C(14)C(15) 0.012 0.3 — 30.7 30.4 20.3 6.1 6.5 0.4 PI
C(13)C(20) 20.190 25.7 — 33.1 33.7 0.6 — 6.7 — PI
C(16)C(17) 0.010 0.3 — 46.2 46.5 0.3 8.4 8.8 0.4 PI
C(17)C(16) 0.077 2.3 — 43.2 43.6 0.4 7.8 8.4 0.6 PI
C(18)C(15) 0.143 4.3 — 38.1 37.8 20.3 7.5 7.4 20.1 PI
C(19)C(14) 0.210 6.3 — 31.8 31.9 0.1 6.3 6.3 0.0 PI
C(18)C(17) 0.072 2.3 — 50.4 50.3 20.1 9.1 9.5 0.4 PI
C(18)C(20) 20.020 20.7 — 59.7 61.1 1.4 10.7 11.6 0.9 PI
C(20)C(18) 0.094 3.3 — 56.8 56.4 20.4 10.1 10.7 0.6 PI
C(16)C(24) 20.181 26.7 — 53.2 53.5 0.3 — 10.2 — PI
C(18)C(22) 20.073 22.7 — 62.2 62.8 0.6 11.2 12.1 0.9 PI
C(16)C(26) 20.223 28.7 — 53.3 54.0 0.7 — 10.4 — PI
C(18)C(26) 20.163 26.7 — 63.9 62.9 21.0 13.1 12.5 20.6 PI
C(22)C(26) 20.060 22.7 — 77.8 78.2 0.4 15.8 16.4 0.6 PI
C(14)C(24) 20.249 28.7 25.6 43.3 43.5 0.2 — — — Unknown
C(21)C(14) 0.259 — 24.7 34.0 36.5 2.5 — 10.5 — MI
C(13)C(23) 20.264 — 24.6 43.7 40.4 23.3 13.8 11.4 22.4 MI

Some experimental data are from Huang et al. (1993b, 1994) and Li et al. (1994), the others are the unpublished data from the Huang laboratory. The model
calculations are this work. dTm 5 Tm

cal 2 Tm
obs; dDHm 5 DHm

cal 2 DHm
obs.
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FIGURE 4 Tm andDHm variation with chain-lengthN of PI series (A and
B) and MI series (C andD). The symbols are experimental observations
from DSC:F, the average value in the original data set listed in Tables 2
and 3;E, not used in the fitting procedure (in Table 4);Œ, Ichimori et al.
(1998);�, Lewis et al. (1987). The lines are model calculations. A short
notation is used for C(X)C(Y)PC as X/Y, which is also used in Figs. 5–7.

FIGURE 5 Model calculations of symmetric PC series with varying
chain-lengthN at Tm: A, various contributions to the excess enthalpy;B,
contributions to the excess entropy;C, the number ofgauchebonds; andD,
the order parameter. For comparison, the experimental data ofDHm, DUvw,
ng, andq (listed in Tables 2 or 5) are included as symbols:F, DSC average
values;}, dilatometry of Nagle and Wilkinson (1978);Œ, Raman spec-
troscopy of Pink et al. (1980);�, deuterium NMR of Seelig and Seelig
(1974) and Marsh et al. (1983).
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to MI packing, but decreases continuously in the fluid
phase, resulting in a larger change ofq. This discontinuous
change ofq is due to the structural change from PI to MI
packing in the gel phase, resulting in a 2.7 kcal/mol discon-
tinuous change inDHm. With further increase ofuDu/N until
udu 5 0, q decreases rapidly in the fluid phase due to the
increase ofTm.

Temperature effect on chain order and
gauche conformers

Above Tm, the chain order decreases andgaucheconform-
ers increase with increasing temperature due to increased
thermal motions. The chain order is usually studied by
deuterium NMR (Seelig and Seelig, 1974). Recently,
gaucheconformers have been studied by FTIR (Mendel-
sohn et al., 1989; Lewis et al., 1994b) and by NMR with the
kink and jog model (Douliez et al., 1995, 1996). Some
results are listed in Table 7 and compared to our results.
Douliez et al. studied separately thesn-1 andsn-2 chains of
C(14)C(14)PC with and without 30% cholesterol at various
temperatures. Since the first bond of thesn-2 chain is
approximately parallel to the bilayer surface, we feel that
the results of thesn-1 chain represent the bilayer interior
more accurately and is thus used for comparison in Table 7.
The difference between experimental and calculated values
are within611% for the order parameter and64% for the
total gaucheconformers.

FIGURE 6 Chain-asymmetry dependence ofTm (top) of C(15)C(15)PC
and C(16)C(16)PC series andDHm (bottom) of C(15)C(15)PC series.F is
the DSC average value listed in Tables 2 or 3, mainly from Huang and
co-workers (Lin et al., 1991; Bultmann et al., 1991; Huang et al., 1993b).
The lines are model calculations from this work.

TABLE 6 Variation of boundary values of zDz/N, DC/CL, and
the changes in DHm with the chain-length for lipids from
C(13)C(13)PC series (N 5 23) to C(26)C(26)PC series (N 5 49)
predicted by the model

N uDu/N DC/CL DDHm (kcal/mol)

23 0.266 0.425 —
25 0.262 0.419 2.91
27 0.258 0.414 2.76
29 0.255 0.409 2.70
31 0.252 0.405 2.68
33 0.249 0.402 2.70
35 0.247 0.399 2.73
37 0.245 0.396 2.76
39 0.243 0.393 2.80
41 0.241 0.391 2.85
43 0.239 0.389 2.89
45 0.238 0.387 2.95
47 0.237 0.385 3.00
49 0.236 0.383 3.05

DDHm 5 DHm
MI 2 DHm

PI at the boundary.

TABLE 5 Comparison of experiments and theoretical models on transition changes of gauche bonds, van der Waals energy,
and order parameter of C(14)C(14)PC, C(16)C(16)PC, and C(18)C(18)PC at transition temperature Tm

PC

Dng DUvw (kcal/mol) qf

Experiment Model Experiment Model Experiment Model

C(14)C(14) 4.6* 3.2† 3.5‡ —§ 4.1† 3.9‡ —§ 0.410¶ 0.455‡ —§

C(16)C(16) 6.6* 5.6† 4.8‡ 4.9§ 5.5† 5.6‡ 5.6§ 0.386¶ 0.426‡ 0.39§

C(18)C(18) 10.0* 5.6† 5.9‡ —§ 7.3† 7.2‡ —§ —¶ 0.408‡ —§

* Source: Pink et al., 1980.
† Source: Nagle and Wilkinson, 1978.
‡ Source: This work.
§ Source: Meraldi and Schlitter, 1981a, b.
¶ Source: Seelig and Seelig, 1974; Marsh et al., 1983; Marsh, 1990.
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DISCUSSION

In this work, a macroscopic representation for the gel-fluid
transition is proposed for mixed-chain saturated PCs. The
model parameters are obtained by fittingTm and DHm

values of DSC measurements to the model. The proposed
model (both PI and MI) indicates that interchain van der
Waals interaction energy makes the major contribution to
DHm, and the entropy from intrachaintrans-gaucheisomer-
ization makes the major contribution toDSm, as expected
(Figs. 5 and 7). This is consistent with the general consensus
that the lipid bilayer gel to fluid phase transition is mainly
entropy-driven due totrans-gaucheisomerization at the
expense of van der Waals interactions (Nagle, 1980). The
excellent agreement between experimental and predicted
values ofTm andDHm indicates that the model provides an
accurate description of the thermodynamic changes associ-
ated with lipid bilayer phase transitions. The model is fur-
ther justified by the good agreement between the model
estimates and experimental observations ofDUvw, ng, andq
using various techniques. It is noted that no experimental
information relatingDUvw, ng, andq has been used in the
fitting procedure.

Among the six adjustable parameters of the PI model
listed in Table 1,c, b2, and g2 are highly correlated (the
absolute values of their cross-correlation coefficients are
0.99). However, ifc is fixed, the cross-correlation between
b2 andg2 is significantly reduced. The physical meanings of
b2 andg2 are not very clear, but are thought to reflect chain
conformations (Meraldi and Schlitter, 1981a, b). The phys-
ical meaning ofc may be that it is related to the maximal
excluded volume interaction in the high temperature limit
(q3 0).

In our calculation of the area/lipid, Eq. 4 tends to under-
estimateA, since it overestimateŝcosu&. The conventional
relationship (Schindler and Seelig, 1975; Nagle, 1993) can
be written in our notation as

r~q! 5 ~1 1 q!/2 (13)

Equations 13 and 4 have been investigated with molecular
dynamics simulation by Berger et al. (1997) and by Petrache
et al. (1999), who derived an alternative formula, which in
our notation is

r~q! 5
1

2 S1 1 Î4q 2 1

3 D (14)

When Eqs. 13 and 14 are used instead of Eq. 4 in the PI
model to fit the 39 PC data listed in Table 2, all fitting
parameters obtained, exceptb2 andg2, fall within the con-
fidence intervals listed in Table 1. The calculated results are
essentially identical to the calculated values listed in Table
2 (within 60.1°C forTm and60.1 kcal/mol forDHm) with
similar statistics, indicating Eqs. 4, 13, and 14 all work
equivalently well in the model. The reasons may be that we

FIGURE 7 Model calculation of C(16)C(16)PC series with varying
chain-asymmetryD at Tm: A, various contributions to excess enthalpy;B,
contributions to excess entropy;C, the number ofgauchebonds; andD, the
order parameter. For comparison, the experimental data ofDHm, DUvw, ng,
andq (listed in Tables 2, 3, 5, or 7) are included as symbols:F, DSC data;
}, dilatometry of Nagle and Wilkinson (1978);Œ, Raman spectroscopy of
Pink et al. (1980);�, deuterium NMR of Seelig and Seelig (1974) and
Lewis et al. (1994b). The DSC data with an error bar are averages and
those without an error bar are from a single experimental report, and tend
to have large errors.
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only use average quantities (for which Eqs. 13 and 14 give
similar values due to compensations of errors as shown by
Petrache et al., 1999) and that the adjustable parameters,b2

andg2, are able to accommodate any differences. However,
all three equations result in essentially the same estimates of
the other fitting parameters that have clearer physical meaning.

In relating fg to q, we used the two extreme conditions
(q 5 0, 1) to propose Eq. 5. There are many other relation-
ships that also satisfy the two extreme conditions, for example,

fg~q! 5 ~1 2 qa!/2 (15)

with a in the interval (0,1`). Equation 15 reduces to Eq.
5 for a 5 1. When Eq. 15 witha 5 1/2 or 2 is used to
replace Eq. 5 in the PI model to fit the 39 PC data listed in
Table 2, no adequate fitting parameters can be found to
describe the main transitions (no sharp transition is pro-
duced for any lipid). Only whena is very close to 1 does the
model work reasonably well, indicating Eq. 5 may be a very
good approximation. To further test the validity of Eq. 5,
experimental data listed in Table 7 are plotted in Fig. 8,
wherefg is ng divided by the total number of carbon bonds.
The data of C(14)C(14)PC with 30% cholesterol are also
included, since Eq. 5 is proposed as a general relationship
betweenq and fg regardless of lipid bilayer phases or
experimental conditions. The experimental data indicate an
almost linear relationship betweenq and fg, in accordance
with Eq. 5. The experimental data are somewhat lower than
the straight line of Eq. 5, but can be accommodated by
adding;0.4 gauchebonds/chain. Experimental values of
the number ofgauche conformers were obtained using
assumptions that only certaingaucheconformations exist,
thus these values can be underestimates of the actual values.

Equation 8 is an empirical equation to phenomenologi-
cally describe the interchain interaction dependence on
chain mismatch. The functional form seems to be successful
in accounting for the chain-asymmetry dependence of tran-

sition properties (see Figs. 3, 6, and 7). For the PI model, the
values ofa1 and a2 obtained from fitting are 0.295 and
0.129, respectively, meaning that the interchain van der
Waals and excluded volume interaction strengths are re-
duced by;30% and 13%, respectively, in the mismatched
region compared to the well-matched region of the chain
pairs. The value ofa3 of the MI model is;0.07 compared
to 0.295 fora1 of the PI model, indicating that interchain
van der Waals interactions of the MI packing mode are
much stronger than those of PI packing. This is consistent
with the observation thatDHm of the MI gel to PI fluid
transition is much larger than that of the PI gel to fluid phase
transition (compare Tables 2 and 3, also see Figs. 3, 4, 6,
and 7 for lipids with the sameN). We found it necessary to

FIGURE 8 Comparison of the proposed Eq. 5 and experimental data
listed in Table 7 to show the relationship between the fraction ofgauche
conformers and the order parameter. The line is calculated from Eq. 5. The
symbols are:F, Douliez et al. (1996);E, Lewis et al. (1994b).

TABLE 7 Comparisons of our calculations with experimental values of the order parameter and total gauche conformers
per molecule

Lipid

T q ng q ng

(°C) (1 30% cholesterol) Experiment Model Experiment Model

C(14)C(14)PC (sn-1 chain) 20 0.775 2.1
25 0.741 2.4 0.404 0.442 6.2 6.1
30 0.706 2.8 0.346 0.371 7.1 6.9
35 0.676 3.2 0.315 0.328 7.6 7.4
40 0.645 3.6 0.291 0.296 8.0 7.8
45 0.621 3.9 0.276 0.270 8.2 8.0
50 0.601 4.1 0.262 0.247 8.3 8.3
55 0.246 0.228 8.5 8.5
60 0.235 0.210 8.7 8.7

C(16)C(16)PC Tm 1 6 0.354 0.351 8.4 8.4
C(20)C(12)PC Tm 1 6 0.284 0.282 9.0 9.3
C(10)C(22)PC Tm 1 6 0.268 0.259 9.4 9.6

The experimental data of C(14)C(14)PC are estimated from Douliez et al. (1996) and the rest from Lewis et al. (1994b), except thatq of C(16)C(16)PC
is from Seelig and Seelig (1974). The calculated values are from this work.
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lower the value ofp from 14.7 dyn/cm for PI model to
;12.4 dyn/cm for the MI model. This is consistent with the
fact that MI packing is three acyl chains per headgroup, so
that the headgroup steric interactions should be reduced
compared to PI packing of two chains per headgroup. The
fact that both PI and MI models share a number of common
empirical constants (Eg, b, d12, N0, c, andg2) indicates that
the proposed model provides a satisfactory general descrip-
tion of the gel-fluid phase transitions of saturated lipid
bilayers.

Our calculations indicate that the change inq for the MI
gel to PI fluid transitions at theTm is larger than the change
in q for the PI gel to fluid transitions, primarily because the
MI bilayer is more ordered in the gel phase, thus resulting
in a much largerDHm. However,Tm is continuous across
the PI and MI boundary as a function ofuDu/N and remains
the same order of magnitude for both transitions. BothTm

andDHm reach maximal values atD 5 0 for the PI gel-fluid
transition and atd 5 0 for the MI gel to PI fluid transition,
but minimal values at the boundary between the PI and MI
lipid classes, where the mismatch (uDu or udu) is largest. The
uDu/N boundary value that separates PI and MI packing
predicted by the model is;0.25, indicating that when the
effective chain mismatch exceeds about a quarter of the
total chain length, lipids prefer the MI gel phase packing
structure. This value corresponds to;DC/CL 5 0.41, a
result in accordance with that of Huang and co-workers (Lin
et al., 1991; Li et al., 1993). However, our calculations
reveal that this boundary value is not a constant as implied
(Lin et al., 1991), but varies with total effective chain-
length,N.

In summary, a macroscopic model has been developed
and applied to two classes of mixed-chain saturated PCs.
The basic postulate is that lipid bilayer gel-fluid phase
transitions can be characterized by a single-order parameter.
Incorporation of chain-length and chain-asymmetry depen-
dence into the Gibbs potential of lipid bilayers in this model
describes all lipids in one class with one equation and its
associated parameters. The input into the model is the
experimental results ofTm andDHm of 39 lipids for PI and
56 lipids for the MI model, and the output (predictions)
include not onlyTm andDHm, but van der Waals interaction
energy, bond rotational entropy, packing entropy (excluded
volume interaction), number ofgauchebonds, and the order
parameter. The model shows excellent agreement with ex-
isting experimental measurements obtained using various
techniques and appears to have very good predicting power.
The model can also serve as a transformation of thermody-
namic results (Tm, DHm) into structural information (ng, q)
and provide access to information on quantities not easily
accessible from experiment (Uvw, Sg, Spk).

It may be mentioned that the calculated data presented so
far are only part of all possible lipids (427 from the
C(13)C(13)PC series to the C(26)C(26)PC series) in two
general classes. Although the model developed here is for

only saturated PCs, only the fitting parameters are specific
to them. It is straightforward to apply the model (Eqs. 9 and
11) with adjustment of only a few parameter values to other
saturated lipids such as phosphatidylethanolamines (PEs),
for which there also is a relatively abundant experimental
information base (Huang et al., 1994). It is also expected
that with some modifications, the model can be applied to
PCs and PEs with a saturatedsn-1 chain and one double
bond on ansn-2 chain (Huang et al., 1996). In addition, it is
expected that with reliable estimates of the Gibbs potential
using this model, phase diagrams of binary mixtures can be
predicted following Priest (1980) and Suga´r and Monticelli
(1985).

The application of this approach to more complex mix-
tures could lead to a better general understanding of the
phase behavior of bilayers in general. This will be particu-
larly true if used in conjunction with other experimental and
theoretical tools such as x-ray diffraction, NMR, Monte
Carlo simulations, and molecular dynamics calculations.
Mixing (demixing) behavior of complex lipids can play an
important role in protein localization or colocalization on
and within the membrane leading to altered reaction rates,
diffusion, and protein association (Thompson et al., 1995;
Dibble et al., 1996; Hinderliter et al., 1997; Gil et al., 1998;
Sabra and Mouritsen, 1998). For example, to what extent is
“raft” formation in the plasma membrane (Simons and
Ikonen, 1997) modulated by the thermodynamics of lipid-
lipid interactions? Knowledge of the magnitude of such
interactions is crucial to the development of an understand-
ing of modulation of membrane function by membrane
composition and structure.
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