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ABSTRACT A simple and very efficient protein design strategy is proposed by developing some recently introduced
theoretical tools which have been successfully applied to exactly solvable protein models. The design approach is imple-
mented by using three amino acid classes and it is based on the minimization of an appropriate energy function. For a given
native state the results of the design procedure are compared, through a statistical analysis, with the properties of an
ensemble of sequences folding in the same conformation. If the success rate is computed on those sites designed with high
confidence, it can be as high as 80%. The method is also able to identify key sites for the folding process: results for 2ci2
and barnase are in very good agreement with experimental results.

INTRODUCTION

Two of the most investigated problems in molecular biology
are protein folding and design. Both problems stem from
Anfinsen’s discovery (Anfinsen, 1973) that the sequence of
amino acids of a naturally occurring protein uniquely spec-
ifies its thermodynamically stable native structure. The pro-
tein folding challenge consists of predicting the native state
of a protein from its sequence of amino acids, while in
protein design one is concerned with identifying the amino
acid sequences folding into a pre-assigned native conforma-
tion. The protein design problem asks which and how many
amino acid sequences fold into a given native structure. This
last issue, having obvious practical and evolutionary signif-
icance, has attracted considerable attention and effort from
experimentalists and theorists (Pabo, 1983; Quinn et
al., 1994; Shakhnovich, 1994; Seno et al., 1996, 1998b;
Deutsch and Kurosky, 1996; Morrisey and Shakhnovich,
1996; Dahiyat and Mayo, 1997; Micheletti et al., 1998a,b,
1999c; Street and Mayo, 1999; West et al., 1999; Zou and
Saven, 2000). The difficulty of the protein design problem
is enormous because, in principle, a rigorous approach
(Seno et al., 1996; Micheletti et al., 1999c) would entail a
simultaneous exploration of both the family of viable se-
quences and the family of physical conformations. By doing
so, it would be possible to find the sequences having lower free
energy in the target structure than in any other conformation.
Stated mathematically, to design a target structureG, one needs
to identify the sequence of amino acids,s, that maximizes the
“occupation probability” according to Boltzmann statistics:

Ps~G! 5
exp~ 2 bHs~G!!

O$G9%exp~ 2 bHs~G9!!
5

exp~ 2 bHs~G!!

Zs
(1)

evaluated at a suitable physiological temperature, 1/b 5
kBT. {G9} denotes the family of conformations that can

house the sequences, and Hs(G9) is the energy of the
sequence in the conformationG9. A first obstacle in using
Eq. 1 is the difficulty of determiningHs(G). However, even
assuming the correct knowledge ofH, it would be impos-
sible to carry out an exhaustive search of the sequence
maximizing Ps(G), due to the computational difficulty of
accurately determiningZs. Several attempts and approxima-
tions have been recently proposed to simplify Eq. 1 (Seno et
al., 1996; Shakhnovich, 1994; Deutsch and Kurosky, 1996;
Morrisey and Shakhnovich, 1996; Seno et al., 1998a;
Micheletti et al., 1998a,b; Micheletti et al., 1996; Rossi et
al., 2000; Zou and Saven, 2000) and make it tractable at
least within a numerical scheme. These attempts range from
neglecting (Shakhnovich, 1994) thes-dependence ofZs to
assuming it depends only on the concentration of amino
acids (Micheletti et al., 1998a,b; Zou and Saven, 2000) or to
using a cumulant (high-temperature) expansion (Deutsch
and Kurosky, 1996). A simple and convenient way to test
the efficiency of these approximations consists of using
models (Micheletti et al., 1999c; Dill et al., 1995) that are
amenable to complete enumeration and hence to a rigorous
and unbiased check of the design procedure. Several prom-
ising results have been obtained in such frameworks show-
ing how the developed theoretical tools have reached a very
high degree of reliability (Lau and Dill, 1989; Chan and
Dill, 1993; Dill et al., 1995; Micheletti et al., 1999b; Shakh-
novich, 1994). However, despite several efforts (Shakhnov-
ich and Gutin, 1993; Sun et al., 1995; Micheletti et al.,
1998a), the extension of this machinery to the design of
natural proteins has not yet reached maturity. The reasons
are mainly two: 1) the difficulty in giving a reasonable
functional form ofHs(G) (Vendruscolo and Domany, 1999);
and 2) the impossibility of verifying whether the predicted
sequence really folds in the desired conformation, without
performing an expensive real experiment.

These two obstacles are absent in simplified lattice mod-
els whereHs(G) is assigned a priori and the exact solution
can be rigorously found. In this paper we investigate the
degree of accuracy one can reach when designing natural
structures (taken from the Protein Data Bank (PDB)) by
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using a simple functional form ofHs(G) and a limited
number of classes of amino acids. The unknown parameters
defining Hs(G) are determined with a strategy (Crippen,
1991; Seno et al., 1998b) based on the observation that
physical forms of the energy ought to guarantee that any
amino acid sequence should recognize its native state as the
conformation with minimum energy score and maximum
thermodynamic stability. We use such optimized energy
functions to design PDB protein conformations by applying
some of the above-mentioned theoretical techniques. Fi-
nally, we check the quality of our predicted sequences not
only through a mere comparison with the naturally folding
amino acid sequences (retrieved from the PDB), but per-
forming a statistical analysis of our results with respect to
the full set of homologous sequences (e.g., sequences fold-
ing to the selected protein or in homologous conformations)
(Fersht, 1999). In this way we try to establish which amino
acids are important to stabilizing the sequence in the target
structure, and we compare these sites with sites important
for the folding process, i.e., sites belonging to the folding
nucleus (Shakhnovich et al., 1996). Furthermore, we show
how it is possible to give a degree of reliability to any
design attempt.

The paper is organized as follows: in the next section the
schematic representation of protein structures is illustrated,
together with the energy functions and the classification of
amino acids that have been used. In subsequent sections the
new strategy to estimate interaction potentials is derived, the
design procedure is explained, and results are discussed and
summarized. Technical details are given in the Appendices.

PROTEIN MODELING

Two- and three-body energy functions

As is customary in many numerical approaches to folding and design
strategies, we shall also adopt a simplified protein backbone representation
that neglects amino acid rotameric degrees of freedom. In fact, we shall use
the common coarse-grained model of PDB proteins in which each amino
acid unit is represented by a centroid placed on theb-carbon (for glycine
the coordinates of the centroid can be estimated by the local geometry of
the backbone (Park and Levitt, 1996)). According to this procedure any
protein conformation,G, obtained by a sequence ofN amino acids is
specified through the 3N Cartesian coordinates:

G ; ~rW1
Cb, rW2

Cb, . . . , N
Cb! . (2)

This simplification is mainly dictated by the necessity to deal only with the
main protein degrees of freedom but, as we shall mention, it is also
particularly appropriate in design contexts. Furthermore, we shall also
partition the 20 types of amino acids into a restricted number of classes.
This simplification is not dictated by the numerical convenience of dealing
with a restricted sequence space (in fact, the design strategy outlined below
can be straightforwardly applied to 20 amino acid classes). Rather, the
choice follows from the need to have a sound statistical basis for estimating
the free energy contribution of interacting amino acid classes and also from
the observation that most amino acids in natural proteins can be substituted
without disrupting native folds (Kamtekar et al., 1993). Hence, within the
present design scheme we aim at predicting the classes of amino acids

designing a given structure. As in Street and Mayo (1999), the putative
solution could, in principle, be fine-grained into a 20-amino acid alphabet
by using steric packing and solvation constraints.

Finally, the last ingredient of our strategy is the introduction of a
suitable (free) energy scoring function. The most popular choice adopted in
simplified models is the pairwise interaction form

Hs
(2)~G! 5 O

i,j

Dij
(2)~G!B2~si, sj! , (3)

wherei, j are the positions along the sequence of the amino acids and the
sum is taken over all possible pairs.B2(si, sj) represents the interaction
strength of the amino acid pairsi andsj. However, only amino acids that are
close enough will interact in a non-negligible way. This is enforced with a
suitable weight function, or contact map,Dij

(2)(G) [ f(x 5 urWi 2 rWju), where:

f~x! 5 1
2

tanh~a0 2 x! 1 1
2

(4)

anda0 is a cutoff value that we choose equal to 8 Å.
In addition to this scoring function in Eq. 3, and to assess possible

design improvements, we shall adopt also one including three-body inter-
actions:

Hs
(3)~G! 5 Hs

(2)~G! 1 O
i,j,k

Dijk
(3)~G!B3~si, sj, sk! , (5)

whereDijk
(3)(G) [ Dij

(2)(G)Djk
(2)(G)Dki

(2)(G). The matrixB3 represents the effec-
tive three-body interactions among the different classes of amino acids.
Indeed, it has been recently suggested that pairwise energies (Vendruscolo
and Domany, 1999) may be unsuitable to describe effective amino acid
interactions in proteins. Hence, the introduction of three-body terms might
be regarded as the first correction term to Eq. 3 in an expansion scheme
where all many-body interactions are included.

Partitioning the 20 amino acids into classes

To estimate the interaction-potential matricesB2 or B3 appearing in Eqs. 3
and 5, we introduce a suitable classification of the 20 types of amino acids.
In an attempt to go beyond previous studies (Sun et al., 1995; Micheletti et
al., 1998a) where the two-letter code was used, we decided to subdivide
amino acids into three classes (Table 1).

Although many other subdivisions could be possible, adopting the one
followed here has the advantage that, besides clustering amino acids
according to their chemical similarities, it creates classes which are almost
equally populated. Because theB matrices are symmetric, the number of
entries to be determined is 6 and 10 forB2 andB3, respectively.

LEARNING THE INTERACTION POTENTIALS

A new theoretical approach

An efficient way to estimate the effective potentialsB2 and
B3 was pioneered by Crippen (Maiorov and Crippen, 1992)

TABLE 1 Three-class partition of amino acids

Hydrophobic Neutral Charged

Alanine Asparagine Arginine
Isoleucine Cysteine Histidine
Leucine Glutamine Lysine
Methionine Glycine Aspartic acid
Phenylalanine Serine Glutamic acid
Proline Threonine —
Tryptophan Tyrosine —
Valine — —
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and recently optimized and used (van Mourik et al., 1999;
Dima et al., 2000). This scheme aims at finding a set of
potentials so that, given a protein sequences, its native state
G is recognized as having energy substantially below that of
any other equally long conformationsG9 (assumed to be
outside the native basin ofG (Huang et al., 1998)). For a
generic energy functionHs(G) this requires:

Hs~G! , Hs~G9! (6)

A key difficulty in turning this idea into a powerful
automated scheme is the choice/generation of physically
viable decoy structures,G9. In many instances the decoys
are generated by taking compact “chunks” of suitable length
from a bank of proteins (gapless threading). Such decoys
may not be physical for certain sequences (for example, due
to steric clashes) so that the inequalities (Eq. 6) may enforce
rather loose or unrealistic constraints on the extracted
potentials.

The first goal in this paper is to propose a strategy to
overcome this difficulty. Our idea is based on the fact that
the thermodynamic stability requirement, Eq. 6, should be
simultaneously satisfied as much as possible for a whole set
of conformationGc, which compete significantly with the
native state.

This thermodynamic requirement can be accomplished
by imposing that

Hs~G! ,, ^Hs& , (7)

where the averagê. . . & is carried out over all the setGc. In
a more mathematical spirit, Eq. 7 can be derived as follows:
Eq. 1 gives the statistical probability that a given sequence
s is in a specific conformationG at temperatureT. If G is the
native state ofs, below the folding temperature only the
conformations present inGc give a nonvanishing contribu-
tion to Zs. By writing Zs 5 exp(log Zs) and taking the
first-order term in its cumulant (high-temperature) expan-
sion, the condition of maximizingPs(G) yields Eq. 7.

Due to the linear dependence of the energiesH2 andH3

on the contact maps (the only factors that contain geometric
information about structures), the r.h.s. of Eq. 7 can be
re-cast into the following forms:

^Hs
(2)& 5 O

i,j

^Dij
(2)&B~si, sj! , (8)

and

^Hs
(3)& 5 O

i,j

^Dij
(2)&B2~si, sj! 1 O

i,j,k

^Dijk
(3)&B3~si, sj, sk! . (9)

Notice that botĥHs
(2)& and^Hs

(3)& depend on the sequences
and no more on the structureG. A detailed technical de-
scription of how the averages in Eqs. 8 and 9 are obtained
is presented in Appendix 1. To summarize, the functional
dependence of̂D(2)(i, j)& was determined by inspecting its
behavior as a function ofi, j. The main difficulty was to find

a form suitable to represent the behavior of^D(2)& for a
variety of protein lengths and families. A very satisfactory
“collapse” of data from many structures could be obtained
by assuming thatD(2)(i, j) merely depends oni and j,
irrespective of the chain lengths, forui 2 ju , 16, as shown
in Fig. 1.

This is reasonable because the frequency of “local” con-
tacts is not expected to be influenced by the overall protein
shape or length. Contacts between residues with sequence
separation larger than 16 are rather rare, hence were mod-
eled by assuming a constant frequency of occurrence,D2

(0).
The value ofD2

(0) is regarded as a free parameter that is to
be tuned separately for each protein length so that the
average number of overall contacts,¥i,jDi,j

(2) , matches the
number observed in nature. An analogous procedure was
followed for the three-body weight function, whose func-
tional form is shown in Fig. 2. For determining the poten-
tials we consider a set of 31 nonredundant proteins listed in
Table 2.

Hence, through Eq. 7 and Eqs. 3, 8 (or 5, 9) we obtained
one inequality for each protein in the set (that we shall term
training set). The determination of the potentials,B, was
done by using an efficient algorithm, called perceptron, that
is guaranteed to provide the best solution for a whole set of
inequalities. The method is outlined in Appendix 2. In our
case, we have one inequality for each of the training pro-
teins. Clearly, by suitably choosing theB values, it is
possible to make each individual inequality arbitrarily large.
The perceptron procedure allows finding the bestB values
that make all inequalities as large as possible simulta-
neously. There is no guarantee, however, that the inequali-
ties can all be satisfied. Indeed, as a rule of thumb, when the
number of inequalities greatly exceeds the number of pa-
rameters, no solution can be found if the functional form of
it and/or the approximations involved are not satisfactory.

FIGURE 1 ^Dij
(2)& for small values ofk 5 ui 2 ju. For k 5 3, four long

error bars are due to the presence ofa and non-a proteins in our protein set.
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In our case we dealt with 5 (or 15) parameters and suc-
ceeded in finding physical solutions to the problem. This
suggests that the adopted form of the energies was reason-
able, otherwise the problem would have been unlearnable.
A further proof of this is that, by using a different set of
training proteins, nearly the same optimal parameters were
obtained, a fact that corroborates the robustness of the
potential extraction procedure.

DESIGNING PDB STRUCTURES

The design strategy

Once the potentials are determined, the energy scoring
function of any desired conformation can be computed
within the energies defined in Eq. 3 or 5. To tackle our
ultimate goal, the design of protein conformations, it is
necessary to define the design procedure. It has been dis-
cussed in the Introduction that a rigorous, but unpractical,
way of pursuing this objective consists of finding, for a
given conformationG*, the sequence (or sequences)s*

maximizing the occupation probabilityPsp(G*) defined in
Eq. 1. In the previous section we have, however, shown that
for the correct energy parameters, the desired sequence
should satisfy the inequality:

W~s, G* ! 5 Hs~G* ! 2 ^Hs& ,, 0 , (10)

Therefore, since we have obtained a reliable estimate of
^Hs&, we can use Eq. 10 to perform protein design. In
practice, given the target conformation, we search for the
sequence that minimizes the functionW(s, G*) where all the
quantities are calculated with the above-determined poten-
tials. The optimal solution is identified by a stochastic
procedure (simulated annealing) in sequence space, the el-
ementary move being the random mutation of a fraction of
residues from one class to another. Generally, the most
stringent way to test the reliability/validity of the extracted
parameters would be to apply them to design proteins un-
related to the training set. However, as shown in Fig. 12, the
extracted potentials varied very little when the training sets
1 or 2 of Table 2 were used (a result that reflects the benefit
of the coarse-graining into three amino acid classes). For
this reason, to improve statistics on the potentials instead of
learning them on set 1 and testing them on set 2, we learned
them on the joint set, where the test was carried out.

As in Micheletti et al. (1998a) and Sun et al. (1995), the
success rate of the design procedure is defined as the frac-
tion of correctly predicted amino acid classes with respect to
those of naturally occurring sequences (as found in the
PDB) for the chosen configuration. The success rate for a
randomly designed sequence where each residue is assigned
randomly to one of the three classes would be 33%. For all
the considered conformations (see Fig. 3) we obtained a
success rate between 40% and 55%.

This success rate can be compared with optimized suc-
cess rates for two amino acid classes (Micheletti et al.,
1998a) which is, on average,;75%. Clearly, increasing the
number of classes makes the problem more difficult, hence
a reduced success rate. It is interesting, however, to note that
the success rate of the optimal design strategy remains
above the random-guessing threshold by;20%, as for the
two-letter case. It is also interesting to notice that this rate
does not improve (see Fig. 3) by working with the concen-
tration of amino acid biased toward the composition of the
wild-type sequence or even by using the three-body energy.
This possibly suggests that important features of real pro-
teins have been equally neglected by all these kinds of
energy function.

However, the one-to-one comparison between the de-
signed sequence (defined as the one that minimizesW(s))
and naturally occurring ones could not be the best check to
do. The reasons are twofold:

• Homologous sequences, e.g., sequences that roughly fold
in the same native state, can differ by up to 70% (simi-
larity) of their amino acidic composition. A one-to-one

FIGURE 2 ^Dijk
(3)& for small values ofk1 5 ui 2 ju and k2 5 uj 2 ku.

Fluctuations are of the same order as Fig. 1.

TABLE 2 List of protein structures

PDB Length PDB Length PDB Length

Set 1

1acp 77 1beo 98 1cei 94
1coo 81 1cty 107 1erv 105
1fd2 106 1fkb 107 1fna 91
1fow 76 1kum 108 1mit 69
1opd 85 1pdr 99 1rro 108

Set 2

1shg 57 1tul 108 1who 96
1yat 113 1yeb 108 2c2c 112
2fxb 81 2imm 114 2mcm 112
2mhr 118 2rhe 114 351c 82
3b5c 93 3ssi 113 3wrp 108
9rnt 104 — —
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comparison (although averaged over many sequences)
could not be sufficient to verify whether our wrong
predictions are involving the most important amino acids
or only the marginal ones;

• Naturally occurring proteins may not have necessarily
evolved to maximize the occupation probability but also
to ensure a fast folding process (Shakhnovich et al.,
1996; Maritan et al., 2000a; Hoang and Cieplak, 2000) or
maximize uniform compactness (Maritan et al., 2000b).
Therefore, to select only the sequences that minimize
W(s) could be a too drastic selection criterion, especially
considering that we are working with unperfectly param-
etrized energy-scoring functions.

To estimate the importance and the effects of these two
arguments we performed the analysis discussed below.

Homologous sequences and
comparison of similarities

It has been shown by Chothia and Lesk (1986) that naturally
occurring sequences with a very low degree of similarity,
;30% (but this rate is very dependent on the length of the
alignment (Sander and Schneider, 1991)) can be homolo-
gous; that is, they adopt almost the same three-dimensional
structure (Fersht, 1999). The original study of Chothia and
Lesk was performed using the full repertoire of 20 types of
amino acids. In the context of the present study, it is
important to estimate how the homology threshold men-
tioned above changes when the three-letter classification is
used. Hence, we re-analyzed the set of protein sequences in

the HSSP database (Sander and Schneider, 1991), perform-
ing the coarse-graining into H, N, and C classes. The degree
of similarity is measured as the percentage of matches
between aligned classes rather than individual amino acid
types. By definition, the coarse-grained alignment cannot be
smaller than the 20-letter one.

The results for a specific protein, 1acp, are given in Fig.
4. It turns out that, on average, the homology threshold of
30% for the full amino acid alphabet corresponds to 55%
when the three-letter code is used. This value is remarkably
close to the best design scores achieved with our procedure.
This does not automatically imply that our solutions are
viable. Site-directed mutagenesis experiments have shown
that a small fraction of protein sites do not tolerate any
substitutive mutation at all (otherwise, the native state
would be destabilized). It should then be checked whether
such key residues, which are conserved in homologous
proteins, are also conserved by our design strategy. In one
of following subsections we shall examine this issue in
connection with heavily investigated proteins, such as bar-
nase and ci2, and we will show that, as a by-product of the
design procedure, the location of such sites can be easily
predicted with high reliability. This is not a proof that our
design solutions, although different from the native one, are
correct, too, but it sheds new light on their validity.

Are extremized sequences the best?

The design analysis we have described so far was based on
the selection of sequences that minimizeW(s), i.e., on the
maximization of the gap between the energy of the sequence
in the target conformation and the average energy^Hs&.

FIGURE 3 The success is here defined as the similarity between the
designed sequence and the wild-type sequence as retrieved from the PDB
file. The designed sequence has been obtained by a minimization ofW
(simulated annealing) and the success has been obtained as an average over
10 independent minimizations. The three curves refer to the design using
Eqs. 3, 7, and 8 with arbitrary or fixed composition, i.e., exploring only
sequences with composition not too different with respect to the compo-
sition of the wild-type sequence, and using Eqs. 5, 7, and 9.

FIGURE 4 Three-letter similarity evaluated for two different classifica-
tions versus 20-letter similarity. Filled circles correspond to the classifica-
tion of amino acids adopted in our design procedure (see Table 1), while
open circles correspond to a random repartition of amino acids in classes.
The figure refers to a comparison between protein sequence 1acp with 51
sequences of homologous protein.
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However, it is presumable that the evolutionary pressure
toward rapid and reliable folding (Micheletti et al., 1999a)
has not taken the maximization of inequality 10 to the
extreme, but to a lower threshold sufficient for biological
purposes. For this reason we chose to test the success rate
not only for the minimum value ofW(s), but also for other
sequences. In particular, it is interesting to compare all the
sequencess with W(s) , W(s*), where s* is the wild-type
sequence. For each annealing temperature we extract 100
decorrelated sequences and make a statistical analysis on
this sequence set. We evaluate the average ofW(s) for this
set and a “super-sequence” by applying a pointwise major-
ity rule to this set. In other words, for each site we assign the
most frequent amino acid class observed in this sequence set
at the given location. Fig. 5 shows the data pertaining to
such design attempts on five different proteins. It appears
that, indeed, the highest matching with the native sequence
is not obtained for the lowest value ofW, but for higher
ones.

This fact suggests a powerful way to improve the reli-
ability of the design strategy: we can select as putative
solutions a wider range of protein sequences and then pro-
cess the statistical information contained in them to yield a
single “super-sequence.” Furthermore, one can decide to
make a prediction only for those sites where a class has an
occurrence frequency larger than some suitable thresholdf0.
The number of sitesNs for which we make such a prediction
is a decreasing function off0, and for a givenf0 depends on
the fictitious temperature (at low temperature all the sites
are locked). Fig. 6 shows success rates over theNs betted
sites for different valuesf0 (data pertain to protein 1erv,
other proteins produce analogous plots).

It is evident that whenNs is small, the design procedure
is very reliable: retaining the first 40 sites gives the impres-

sive success rate of 80%. It is tempting to conjecture that the
residues that are assigned with very little uncertainty by our
design procedure (conserved design residues) could also
correspond to conserved residues in nature. In the next
section we shall examine in detail this possibility, and
conclude that there is a significant correlation between the
two sets of residues.

Homologous sequences and conserved sites

It is well known (Sander and Schneider, 1991) that homol-
ogous sequences present conserved sites, e.g., sites where
the type of the amino acid remains unalterated throughout
the full set of sequences. In Fig. 7 this fact is graphically
elucidated (and even enforced) by analyzing the homolo-
gous sequences of protein 1erv with our tripartite classifi-
cation of amino acids. To each site we assign a color
reflecting the conservation of the most frequent class ob-
served in that position. A full conservation of H, N, and C
types is denoted with a saturated green, red, and blue color,
respectively; the lowest possible conservation of the most
frequent class, 1/3, is associated with the white color. Ac-
cording to this scheme, sites with high variability will
correspond to lighter nuances.

A visual inspection of the colors assigned to protein 1erv
(top panelof Fig. 7) reveals that;30% of the sites are
highly conserved. We want to elucidate whether there exists
a connection between such conservation of amino acids
found in nature and the one emerging in the putative solu-
tion obtained from our design procedure.

To do this we performed a simple analysis of the design
solutions at different values of the conservation threshold,
W. In each batch of 100 design runs, the target value ofW
was fixed (in a stochastic way) by varying a suitable control

FIGURE 5 The success as a function of the cost functionW(s, Gt) 5 Hs

(Gt) 2 ^Hs& per site. Success is defined here by majority rule on a sampling
of 100 (decorrelated) sequences. The value of the cost function for the
respective wild-type sequences is between20.48 and20.78.

FIGURE 6 Success as a function of the number of betted sites for the
protein 1erv. Betting the 40 most locked sites, it is possible to obtain an
almost 80% success rate. Note that success is almost independent on the
frequency thresholdf0.
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parameter,T (by analogy, if we identifyWas an energy cost
function, T plays the role of the temperature). Finally, for
each value ofT we analyze the conservation of residues in
the designed sequences and color them with the same
scheme described above. The results are shown in the large
box of Fig. 7.

For high values ofT (high W) all the color intensities are
very low, indicating a uniform (random) distribution of the
classes, but upon decreasing the temperature some of them
start to be selected with higher and higher frequency. At
very low temperature all the sites are locked in a particular
class. This trivial situation is not shown in Fig. 7 which,
instead, concentrates on the more relevant range of inter-
mediate temperatures.

The comparison of the native colored panel and the
designed one strongly confirms the hypothesis that sites
locking early (at high values ofT) are related to the natu-
rally conserved ones. This connection is examined in a more
circumstantial context in the next section, where we con-
sider two specific protein instances: barnase and chymo-
trypsin inhibitor.

It is interesting to note that locking occurs first for hy-
drophobic residues and later for charged ones, a fact reflect-
ing the strength of interactions. Neutral residues, however,

appear to have interactions that are relatively small in mod-
ulus, and hence contribute much less to the minimization of
expression 10. In fact, the locking of neutral residues is
observed for temperatures much lower than the ones shown
in the plots.

An even more quantitative analysis of the correlation
between designed and homologous sequences can be ob-
tained by a simple geometrical construction. For each amino
acid located at sitei in a given protein, a three-dimensional
vector is constructed whose components are the frequencies
with which the three classes appear: in the design sequences
(we term the vectorsfWi

D) or in the homologous sequences
(fWi

N). To make the comparison meaningful, the design pro-
cedure was carried out at a value ofT chosen so that the
fraction of conserved residues was similar to the one ob-
served in nature. The vector of a site conserved in a specific
class of amino acids is aligned with the associated axis,
whereas the vector of a nonconserved site has at least two
nonvanishing components.

The angleui formed by the two vectorsfWi
D and fWi

N pro-
vides a quantitative measure of the correlation between
residue conservation in the natural and design contexts. This
angle is zero if the agreement is perfect, while it attains the
maximum value ofp/2 ' 1.5 if a residue is maximally

FIGURE 7 Color-coded conservation of res-
idues in protein 1erv (thioredoxin) in natural
context (top) and in putative solutions obtained
with our design procedure. The color code,
described in the text, assigns lighter colors to
highly variable sites. The conservation in the
natural context was obtained from the analysis
of the HSSP database (Sander and Schneider,
1991).
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conserved in nature and minimally conserved in design (or
the other way around).

In Fig. 8 we plot (for four different proteins) the histo-
gram of these correlation angles (light gray). Remarkably,
for all the proteins the highest entries correspond to small
angles, and they represent a considerable fraction (1erv5
24, 2imm5 18, 2ci25 12, and 1a2p5 20) of all sites, thus
highlighting a highly significant agreement. To validate the
design scheme it is then crucial to verify whether the highest
agreement (small angles) is observed in correspondence of
sites highly conserved in nature. This is indeed the case: in
the same figure we plot, for each angle bin, the number of
sites that are naturally highly conserved (dark gray), i.e.,
that have a conservation entropy, evaluated as in the HSSP
data bank (Sander and Schneider, 1991) lower than ln(1.5)
(ln(1) and ln(3) correspond respectively to the minimum
and the maximum values for the entropy when only one
class is assigned or all three classes are assigned with equal
probability). Almost all the sites with a vanishing correla-
tion angle satisfy this property!

We can then conclude that amino acids which, in our
design scheme, are designed with a higher confidence,
strongly correlate with those that are conserved in natural
sequences.

Data for barnase and chymotrypsin inhibitor

In this last section we shall apply the design strategy to two
proteins whose folding process has been heavily investi-
gated experimentally. With a series of key measurements

(Fersht, 1995; Itzhaki et al., 1995), Fersht and co-workers
have identified a restricted set of residues, the folding nu-
cleus, which play a key role in the folding process in
proteins such as barnase (1a2p) and chymotrypsin inhibitor
(2ci2). Although, generally speaking, naturally occurring
proteins can tolerate a fair degree of amino acid substitu-
tions without disrupting the native state, random mutations
of sites in the folding nucleus will impair the folding pro-
cess dramatically. Indeed, recent theoretical studies
(Micheletti et al., 1999a) have shown that key sites in the
folding process nucleus are part of a bottleneck in the
folding kinetic, which is mainly dictated by the native state
topology. Overcoming such a bottleneck can occur only
through a careful selection of the type of involved amino
acids (Cecconi et al., 2000). This novel argument confirms
and explains the observation already present in the literature
(Shakhnovich et al., 1996) that sites involved in folding
nuclei should have been conserved during the evolutionary
process. Hence, our goal in this section is to design the
backbone of 1a2p and 2ci2 and compare the set of residues,
which are conserved in our design strategy with those in the
folding nucleus. As already seen in the previous section, we
identify the conserved residues by monitoring the frequency
with which a given residue is assigned to one of the three
classes during the lowering ofW controlled by suitably
changing the temperature-like parameter,T, introduced in
the previous section. As we said before, the tendency of one
site to prefer one class over the others grows stronger asT
is reduced (e.g., minimizingW). However, not all sites show
this preference at the same value ofT, as shown in Fig. 9,
where we have shown the intensity with which protein sites
in barnase are locked in the H, N, and C classes. The most
conserved residues are those for which the class-locking
occurs at very high temperature. It turns out that the sites
involved in the locking process occupy buried positions and

FIGURE 8 Distribution of the angles (in radians) between amino acid
frequency vectors for designed sequences and aligned sequences for all the
sites (light gray) and for conserved sites (dark gray). For this plot we
considered conserved sites with entropy,ln(1.5).

FIGURE 9 Quenched index versus sequence index for barnase.
Quenched index is defined here as the first index for which the relative
frequency for the hydrophobic class is.0.5. Circled dots represent sites
belonging tocore1, core2,or core3 (Serrano et al., 1992).
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are consistently assigned to the hydrophobic class. A visual
inspection of Fig. 9 reveals that sites that are first locked in
barnase correlate well with the hydrophobiccore1,which
Fersht identified as the initiator of the folding transition.

An excellent agreement with experimental findings is
also observed for 2ci2, where key sites have been pin-
pointed through mutagenesis experiments and measure-
ments off-values (Itzhaki et al., 1995). The key sites have
been identified as those positions which are the highest rank
in order of early locking. As visible in Fig. 10, the most
conserved sites in our design scheme include those found to
be crucial in the folding process. Again, these striking
results serve a twofold purpose. On one hand, they confirm
the validity of the present design approach; on the other,
they also show some of its possible applications in connec-
tion with the prediction of folding nucleus.

SUMMARY

To summarize, we carried out automated protein design
attempts over some PDB conformations by introducing
several novel strategies to identify optimal energy-cost
functions and select putative design solutions. A mere com-
parison of designed sequences with the PDB ones gives a
success rate between 40% and 55% when working with
three classes of amino acids: a value well above the random-
guessing threshold. This success rate is not improving by
introducing more sophisticated energy functions, suggesting
that important features of real proteins are neglected by
short-range Hamiltonians. Nevertheless, a statistical analy-
sis of a wider set (nonextremal) of possible solutions shows
how the design procedure could be used to correctly predict,
with a high confidence, at least a subset of protein sites.

These residues can be related to the conserved sites obtained
by a statistical analysis of naturally occurring homologous
sequences. Moreover, for two specific proteins (barnase and
chymotrypsin inhibitor), these highly predictable sites cor-
respond, with very good precision, to the folding nucleus,
which is crucial for the folding process.

APPENDIX 1:
DETERMINATION OF THE WEIGHT FUNCTIONS

Two-body energy

We estimated the average contact maps^Dij
(2)& and^Dijk

(3)& by considering as
a set of possible competing configurations an ensemble of structures
extracted from the PDB. We analyzedN 5 116 proteins (with length
ranging from 36 to 296) and for each conformation,Gn, we computed the
corresponding value of the contact matrixDij

(2)(Gn). If the structures had the
same length,̂Dij

(2)& could be estimated by simple averaging:

^Dij
(2)& 5

1

N O
n51

N

Dij
(2)~Gn! . (11)

However, because we are working with proteins of different length, we can
expect a dependence of^Dij

(2)(Gn)& on the length of the chains. To investi-
gate this possibility we first notice that^Dij

(2)(Gn)& mainly depends on the
sequence separationk 5 uj 2 iu (at least for smallk) between the amino
acids along the chain more than from the position along the chain and from
the length of the protein (see Fig. 11).

Let us now compute the average^Dk
(2)& value of this contact frequencies

according to

^Dk
(2)& 5

1

N O
n51

N

^Di,j
(2)~Gn!&i2j5k , (12)

FIGURE 10 Backbone for the CI2 with the six most conserved residues
in our design attempts. Three of them (Ala-35, Ile-76, Leu-68) are indi-
cated by Itzhaki et al. (1995) as the most important in the folding process.

FIGURE 11 Contact frequency for different values of the amino acid
separationk as a function of the length the protein. Fork 5 3 andk 5 4
the fluctuations are large and depend on the protein family (a or b)
considereda-protein orb-protein. For all thek values there is no signifi-
cant dependence on the protein length.
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where^ . . . &i2j5k represents the arithmetic average over all the contacts
with a given sequence separationk for a given protein. Then, we notice that
it is a rapidly decaying function of the chemical distance,k (see Fig. 1).

We can then estimatêDij
(2)& according to the rules:

^Dij
(2)& 5 H ^Dk

(2)& k , k0

D0
~2! k $ k0.

(13)

wherek0 is a cutoff distance that we fixed equal to 16. The value^Dk
(2)& can

be estimated numerically from the data bank through Eq. 12, whereasD0
(2)

should be determined according to the length of the chain.
Indeed, the dependence of the total number of contacts,¥i,jDij

(2)(Gn), is
well approximated by a linear function of the length, or number of amino
acids,Ln, of Gn. Thus, using this linear dependence onLn and Eq. 13 we are
able to determineD0

(2).

Three-body energy

The average contact map^Dijk
(3)& can be determined in an analogous way.

For a conformationG we define the total number of three-body contacts as

Nc
3~G! 5 O

i,j,k

Dijk
(3)~G! . (14)

Similarly to the former case, this number of contacts can be fitted by a
linear relation. In this larger parameter space^Dijk

(3)& will depend on two
indexes,k1 5 uj 2 iu andk2 5 uk 2 ju:

^Dijk
(3)& 5 D~3!~k1, k2! . (15)

For k1, k2 , k0 (that we choose on the basis of the statistical analysis to be
k0 5 6)

D~3!~k1, k2! 5
1

N O
n51

N

^Dijk
(3)~Gn!&j2k5k2,i2j5k1 (16)

while for k1 $ k0 or k2 $ k0 we assume a constant value. Here,
^ . . . &j2k5k2,i2j5k1

represents the arithmetic average over all the contacts
with given sequence separationk1, k2.

The average contact map for a generic protein will be

^Dijk
(3)& 5 H D~3!~k1, k2! k1, k2 , k0

D0
~3! otherwise. (17)

Using, again, that¥i,j,k^Dijk
(3)& is well interpolated by a linear function

of Ln, we can determineD0
(3) in Eq. 17 afterD(3) (k1, k2) for k1, k2 , k0 have

been evaluated.

APPENDIX 2: PERCEPTRON LEARNING OF THE
OPTIMAL POTENTIALS

A convenient way to find the optimal potentials that satisfy inequality
constraints such as those of Eq. 7 is the use of the perceptron algorithm for
the optimization of a set of linear inequalities (Krauth and Mezard, 1987;
van Mourik et al., 1999).

For instance, in the case of the two-body Hamiltonian, Eq. 7 can be
written, using the result of Eq. 8, as:

O
i.j51

L

~^Dij
(2)& 2 Dij

(2)~G!!B2~si, sj! . 0 (18)

where L is the length of the protein. Ifnkl(G) denotes the number of
contacts in the conformationG involving amino acids of typesk andl, and
^nkl

(2)& the corresponding average computed on the set of competing con-
figurations by using Eq. 13, Eq. 18 can be rewritten as:

O
k.l51

3

~^nkl
(2)& 2 nkl~G!!B2~k, l! 5 O

k.l51

3

akl~G!B2~k, l! 5 ^G~BW !

(19)

where the vectorBW2 is defined as:

BW ; ~B~1, 1!, B~1, 2!, B~1, C!,

B~2, 2!, B~2, 3!, B~3, 3!! (20)

Given the native stateG and the sequences, the six entries ofakl depend
only on the average properties of the decoy structures.

For a given set ofM inequalities to be satisfied simultaneously, it is
convenient to identify the one (related to the conformationGs) that, with a
given set of trial potentials, is the least satisfied one, e.g.:

^Gs~BW ! , ^k~BW ! k 5 1, . . . ,M k Þ s (21)

OnceGs has been determined, one updates the trial potentials adding a
quantity proportional toakl(Gs), where the proportionality constant is
chosen to be much smaller than one. With this new choice of the potentials,
each inequality is re-evaluated and the updating cycle is repeated until
^Gs

(BW ) (stability) reaches the maximum possible value. One is allowed to
fix the scale ofB values by requiringuBW u 5 1, where theu z u is the usual
Euclidean norm. This method can be shown to converge to an optimal
solution,^*, which can be of either sign. If it is negative, it means that no
set of potentials can be found that consistently satisfied all inequalities in
the set. Otherwise, the problem is learnable and the optimal potentials are
identified with those giving the highest stability.

We have extracted potentials by using the perceptron scheme withM 5
31 globular proteins. The related set of inequalities has turned out to be
learnable in all cases, with two- or three-body energy terms.

FIGURE 12 The potentialsBW determined using a set of 15 proteins and
another set of 16 proteins (see Table 2) are plotted versus the same
potentials determined by the whole set of 31 proteins. The correlation
between the potentials obtained with the two sets and the largest one is
nearly perfect (ideally, points should lie on the diagonal). Using the whole
set of Table 2 we foundBW 5 (0.12, 0.22, 0.36,20.76, 0.35, 0.32).
Potentials are here sorted as in Eq. 20, where 1, 2, 3 refer respectively to
classes P, H, C.
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For the two-body energy we have extracted a first set of potentials using
the 15 proteins and a second one with the remaining 16. The two sets of
potentials are plotted one versus the other in Fig. 12, showing a extremely
good correlations.

This validates the conclusion that an interaction matrixB depending
only on six parameters can be determined with a dozen nonredundant
globular proteins. Similar results have been obtained with the three-body
energy (Serrano et al., 1992).

We thank Marco Punta for many useful discussions. This work was
supported by INFM (PAIS project) and MURST (COFIN99).
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