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Bayesian Restoration of lon Channel Records using Hidden
Markov Models

Rafael Rosales,*" J. Alex Stark,™ William J. Fitzgerald,” and Stephen B. Hladky*
*Pharmacology and TEngineering, University of Cambridge, Cambridge CB2 1QJ, United Kingdom

ABSTRACT Hidden Markov models have been used to restore recorded signals of single ion channels buried in background
noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants
of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this
inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and
numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by
using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those
calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the
results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate
clearly the superiority of the new methods.

INTRODUCTION

The statistical analysis of single channel patch clampntroduced hidden Markov models with the initial aim of
records has been the subject of extensive research for ovektracting information about current amplitudes and chan-
two decades. The most common scheme uses filtering amel kinetics at low signal-to-noise ratios. More recently,
thresholding to recover the underlying process that is fol-hidden Markov models have also been considered by Ven-
lowed by the channel (see Colquhoun and Sigworth, 199%ataramanan et al. (1998) and Michalek and Timmer (1999)
for an extensive review). As a consequence, the originatxtending the applicability of the initial framework. Param-
signal is reduced to a sequence of dwell times at a finitester estimation and signal restoration are usually carried out
number of possible conductance levels separated by the an effective way by using variants of Baum’s forward—
thresholds. Empirical density estimates for the time spent abackward procedures and reestimation formulas (Baum et
each level are then constructed as histograms, which ai., 1970). In this case, estimates are represented by points
usually fitted by exponential mixtures. In the second stagen the parameter space that correspond to the coordinates of
of the analysis, the obtained mixtures characterized by a set local maximum of the likelihood.
of weights and rate constants are interpreted by modeling A radically different approach for the treatment of hidden
the channel dynamics as a finite state space aggregatédarkov models is provided by Bayesian statistics. In this
Markov chain which is also homogeneous and has continpaper, the initial restoration problem is addressed by mod-
uous (time) parameter (Colguhoun and Hawkes, 1982eling the observations with hidden Markov models. How-
Fredkin et al., 1985; Ball and Sansom, 1989). The infer-ever, inferences are performed by using Bayesian statistics
ences are directed toward the structure and specific value @nd an extension to a stochastic simulation method first
the infinitesimal generator (the transition rate matrix) of theproposed by Robert et al. (1993). Fredkin and Rice (1992a)
Markov chain. Finally, model selection between variousalso considered Bayesian restoration, but their approach is
alternatives is handled by using traditional penalized like-methodologically closer to Baum’s maximization proce-
lihood ratios. Ball and Rice (1992) provide a critical over- dures. Bayesian inference based on stochastic search meth-
view of the inferential difficulties of these approaches.  ods known as Markov Chain Monte Carlo have also been

With only a few exceptions (Fredkin and Rice, 1992b), considered by Ball et al. (1999, 1997), Hodgson (1999), and
these methods rely heavily on the accuracy of the initialHodgson and Green (1999), however, the parameterization
restoration step and are thus complicated when considerirgnd their inferences are directed toward the transition rate
signal-to-noise ratios that are at the limit of filtering and matrix associated with a gating mechanism. The methods
thresholding. The pioneering work of Chung et al. (1990)developed here, based on simpler procedures, are computa-
tionally efficient and supported by a solid probabilistic
Received for publication 30 March 2000 and in final form 12 Decemberbaﬁqlsthis article, it is shown that the Bayesian methodology
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are shown in the following section, together with thoseThe first term at the right-hand side of Eq. 4 represents the
obtained via standard Baum—Welch maximization. Comparamount of current flowing through the channel associated
isons of the Bayesian Markov Chain Monte Carlo approactwith the ith conductance level, whereag is a normal
against filtering and thresholding clearly demonstrate thelistributed random variable with mean 0 and variance 1,
new methods to be superior. representing the disturbance of the noise inherent in the
recording apparatus. The symbeltogether with iid is used
to denote independent and identically distributed.
ION CHANNEL MODELING The assumption of independent observations, explicitly

Hidden Markov model stated as

This section presents an overview of the hidden Markov POy .. ¥y, 2 =i0,0)=PWZ=i,0, ((5)
model formalism that will be adopted and the notation to be _ o _
used. The parameterization is consistent with the one corfS @n important simplification that leads to the analytical

sidered by Chung et al. (1990) or Venkataramanan et afreatment of the model presented so far. It should be noted
(1998). that the observationg* are indirectly dependent on each

A hidden Markov model is defined by two interrelated other through the Markovian structure induced condition-

stochastic processes. The first of these, representing the iGHY ©n di(y") by the underlying process'
channel, is a first-order finite-state homogeneous Markov

chain, Z: 1 € R,}, on ¢ = {1, 2, ..., n}, with initial . -
: o , X M likelih h
density A and transition rate matriXQ. The continuous aximum likelihood approac
process is approximated by a discrete time versidh,K e LetZ={z 2 =ik E T, i € €} be the space of events

T}, whereT = {8, 25, . . ., 5N}, with N as the total number constituted by the path realizations of the chaif}{and z

of sample points and the sampling period of the acquisi- one of its elements, i.ez constitutes a particular sequence
tion system (hereafter we assufe 1). In these termsZ} of conductance states addhe set of all possible sequences.
is determined by a transition probability matri4 =  Then, following Eq. 1 and the Markov property anthe
exp@d), with elementsy; = P(Z = j|z7* = i),i,j € 6 likelihood, which equals the probability of the observations
(whereP(X]Y) is the probability ofX givenY). The second conditional on the parameters(6) = p(y|6), is given by

rocess is represented by the set= ke of
i%dependent a?nd identical>lly distﬁgutegytandom-r\}/ariabIesL(9) = 2 P(y,26) = 2 P(y6, 2P(Z6)

that constitute the observations. Each observatibris e e
assumed to arise as a functiorzfdefined by a conditional - N
denSIty = E E T E[/\hdil(yl)ahizdiz(yz) t 'aiN—1iNdiN(yN)]’
P2 =i, 0) = d ), (1)
where is possibly a vector used to denote the parameters 6)
associated with a particular famity. Under standard nor- with iy, i, .. ., iy € %. To simplify notation, let
mality assumptions, the function of the process is
hi = Adi(y", hﬁ = ajidi(y'()i (7)
di(y") = expl —(y* — q)%207], )
then

with g, and ¢? as the mean and the variance of titke
possible outcome associated with Assuming the number n nooon
of conductance states, is known a priori, the model is LO)=> - > X hth . (8)
completely specified by =1 inoa=lin=1

0=(\,a,q,0), i,jES. (3)  Statistical inferences concernirsggenerally take the form

] ) of point estimates§*, obtained at a local maximum af(6),
This suggests an equivalence between states and conduc-

tances. However, this correspondence may be relaxed by 6* = argmaxL(6)}, 9
imposing constraints oq such asy; = § for some valué, 90
andj € J C € if 2= j, as will be shown in the section Class .
Dwell Times. with ® usually a compact subset of some Euclidean space
In this setting, each observation arises as the sum of whB more precisely® = R" x R} x [0, 1™ The
terms, notation “argmax{.( )}" refers to the point in® whereL( )
attains a (local) maximum. In the particular case wdes
iid normal (Eq. 2) andis known, the required maximization is
Y=g +an, 7~ N(@O,1. (4)  analytic. However, in patch clamp recordingss unknown
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and inferences are directed toward bathéj. In this case, Markov chain sampling. First, an ergodic Markov ché,

the maximization has to be performed numerically by con-6V, . . ., isconstructed or®, such that its invariant distri-
sideringn™ terms at Eq. 8. Evaluation df(6) becomes a bution corresponds to the hidden Markov model posterior
critical issue, especially in the case of patch clamp recordsr(6|y). It should be made clear that this process represents
suitable for stationary analysis wheié > 10°. In the a different Markov chain than that followed by the channel
general framework, this problem was first considered byon Z.

Baum et al. (1970), who derived an efficient solution re- More precisely, leK,,, = P(6'™ & B|6(™ " = x) denote
ducing the evaluation t®(n?N). Baum’s methods, known the step transition probability frordf™ % to 6™ for any

as the forward—backward algorithm and reestimation form = 1, 2, ..., andr® = P(6© € A) an initial density for
mulas, were first applied to patch clamp records by Chung, B C 0, andx € 0. Under mild regularity conditions that
et al. (1990). ensure ergodicity

BAYESIAN APPROACH lim [K§'7°] - m(0ly), (12)

Mmsco
Bayesian analysis proceeds by considering the paranteter
as random variables o® C RY Inferences in this case
require the definition of a joint densifyy, 6), which can be
decomposed dg(0)p(6), simply by following the definition
of conditional probability. The densitg(6), known as the
prior, represents our previous knowledge or belief about th

Yor almost all initial values of@. HereKT = P(6™ &
B|6® = x) denotes thenth iterate ofKj, that is, K§' =
KoK~ 1, and— is used to denote convergence in distri-
bution (see Billingsley, 1968). Thus, after an initial relax-
ation periodb, successive iterations generate a sequence of
ampless®™, ... 6™ that are approximately distributed
eé\%cording tom(ly). This sequence may then be used to
calculate averages that approximate the desired expectations
under the posterior target density

examined. Oncg is available, the uncertainties ghare
represented by a posterior density0]y), which follows
from p(y, 0) and the application of Bayes Theorem as

1 M
(6ly) = LOP(O) / f LopO) do.  (10) Flo®)]~j—p 2 9E™), (13)

m=b+1
Let [,. denote mathematical expectation with respect to th constituting a Monte Carlo estimate of the integrals in
. . - g. 11.
posterior and any (square integrable) function éfFormal

T ) . The combination of these techniques has been used to
statistical inferences in this context often take the form of, . . .
integrals tackle complex multidimensional problems, proving to be

an effective tool where standard frequentist methods have

failed. The theoretical background needed for the use of

Eg9(0)] = JQ(G)W(QM de, (11) these general state ghains is described in l\_lummglin '(1984)
or Meyn and Tweedie (1993); whereas their application to

Bayesian statistics is presented among others by Tierney

and are thus based on the supportr0fly) rather than on a  (1994), Besag et al. (1995), or Robert and Casella (1999).
single point estimate. This ensures the use of probabilitieg A Stark, R. Rosales, W. J. Fitzgerald, and S. B. Hladky
for eventsé € C (C C 0), in contrast to classical confi- (manyscript in preparation) also present a different Markov
dence procedures. An account of Bayesian theory can bghain Monte Carlo approach for the single channel restora-
found in Bernardo and Smith (1994). tion problem in terms of a change point model. The partic-

Although there are clear theoretical advantages of theyar chain that will be used to generate approximate samples

Bayesian approach, there are difficulties that must be ovefyom the posterior in Eq. 10 is presented in detail in the next
come before they can be realized in practice. The integralgection.

in Egs. 10 and 11 are not analytical for the current model.
This fact arises as a consequence of the structure imposed
by the likelihood in Eq. 8, regardless of the specific form of Gibbs sampler

9(6) andp(6). Letp(6;|6_,, y) be the (full) conditional densities for each of
the component®,, given values of the other components
6_; = {6;: ] # i}. These densities are uniquely determined
by a particular posterior (Besag, 1974) and constitute the
building blocks of a Markov chain Monte Carlo method
A solution to the integration task posed by Egs. 10 and 1known as the Gibbs sampler (Gelfand and Smith, 1990).
is provided by Monte Carlo approximation together with This sampler proceeds as follows. Given an arbitrary set of

Markov chain Monte Carlo for hidden
Markov models

Biophysical Journal 80(3) 1088-1103
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starting value®©® = (6, ..., 699), draw a sample 06"  This strategy update®,(2) by following the decomposition
from p(6,/6©), y), i.e., given by Eq. 15. A second option follows by considering the
full conditional densities
6 ~ p(6,l65”, ... 67, y)
pEZ(z*y, 6) = p(Z(Z27H 2y, 6), (19)

then
. Lo . which follow from the Markov property ore. For k =
65" ~p(66, 69, ...,69,y) 2,...,N - 1and for any, j, r € 6, these densities are
. (14) '
00 ~p(6]62, ..., 60, y). p(zt =ily, 0) = hi,
This completes one iteration of the sampling scheime p(Z =it =], 2" =r,y, 0) « hig,,

{p(6]6_;, )}, and also a transition from#® to 6. The
sampling of a high dimensional vectérhas been replaced and, fork = N,
by the sampling of lower dimensional components, which is CNel N
one of the key features of this algorithm. p' =il2"t =], 6,y) = hj. (20)

The decomposition of(ly) into its conditionals is rather : : L .
involved because of the" terms in Eq. 8. Consider instead ;Eng]S sampling scheme leads to the conditional decomposi
the joint (6, zly), which leads to the following decompo- '

sition and sampling scheme: (6,2) ~ {p(6]6_:, Y, 2), p(z*

Y, 0,279}, (21)

(6,2 ~1{p(6]6-i,y, 2, p(Z6, y)}- (15)  wherei denotes the index over the components ¢Eq. 3).
?Note that the first option generates a realization directly
. : rom the conditionap(Z, y) by using a single Gibbs com-
densitiesp(6|6_,, ¥, ) are analytical because they only ponent. The second usékdifferent components and pre-

involve one of the possible realizations4n This simplifi- sents a more complicated correlation structure, since Zach
cation was first considered by Robert et al. (1993), and by P '

-1 +1 ;
Diebolt and Robert (1994) in the general mixture distribu-def‘p.ends on botz" : and 2%, which leads to a slower
; . " ... mixing chain (see Liu et al., 1995, for the effects of corre-
tion context. The key of this conditional decomposition, . .
. ; o : . lations among sampled components). However, by adopting
resides in considering as a random variable, much in the

. . S . the latter option, it is possible to avoid any part of the

same way a9, instead of integrating it out. This scheme o :
: . forward—backward filtering procedures used in the other
leads to rigorous theoretical facts on the convergence of thg

; . : : two cases. This fact is particularly useful in the treatment of
sampler to be discussed in the section entitled Convergence, ;
. ependent observations (R. Rosales, J. A. Stark, W. J.
Following Eq. 15, draws have to be produced from the

full conditional for the hidden process Fitzgerald, and S. B. Hladky, manuscript in preparation).

Priors

for any iy, ..., in—1 iy € 6. This can be achieved in |, this paper, we consider proper conjugate priors that
different ways. A first alternative consists of the method attempt to be weakly informative o@. A prior p(d) that

proposed by Carter and Kohn (1994), which constitutes §gjongs to a parametric famill is conjugate to a given
stochastic version of the forward—backward algorithm. Thisjikelihood if the resulting posterior is also from this family.
follows by noting thatp(zy, 6) can be decomposed as In this case, the required conditionals fbalso belong tQ¥
(see, for example, Bernardo and Smith, 1994). This prior
has been chosen for tractability. It should be noted that
p(@y, 6) = p('ly, 0) I P (2", i, 0), @ hidden Markov models do not allow the use of improper
Kt (noninformative) priors fon or for each row ofA (Diebolt

N-1

with v, = y% ...,y Given Z*%, p(Z(Z*?, v, 6) is a  and Robert, 1994). _
discrete distribution, which suggests the following sampling L€t & denote theith row of A. Then, by assuming
strategy. Fok = 2, . .. ,Nandi € €, compute and store the independence between priors over states and conditional
optimal filter p(ZX = ily,, 6), then sample" from p(2\]y, 6), independence between priors over parameters,
and, fork =N — 1, ..., 1,samplez* from p(ZZ"%, y,, 6),
where, if2t = |, fori € &, p(o) = 1} p(\, &, G, o)
IS4
. ayp(Z* = ilyx, 6)

Z=ilZ"t=1y, 6 = : . 18 =p) [ p@)p(ap)p(a?). (22)

P | Y Eje‘é ajlp(i( = jlyc, 0) (18) =3

Biophysical Journal 80(3) 1088-1103
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In the case of a univariate normal likelihood fgf and a  marginal of 7(6, Zly), that is,

multinomial forz, the conjugate families fo# are given by

the following densitiesa ~ D(b,, . . . ,b,), a ~ D(e,, . . . , m(6ly) = > (6, Zy), (25)
&), G ~ N(m,s’) ando? ~ IG(u;, ). IG is used for an ez

inverted gamma density with shape and saalew; and  gnq7m(gly) the density generated at theh Gibbs step. Let

hence with ;neavwi/(ui.— 1) whenevew; > 1 and variance  g150f(zly) andf™(ly), be the corresponding densities for
WA/[(u, — 1)%(u; — 2)] if u; > 2. The symboD is used for Then

a Dirichlet density with parameter vectemwith eitherx =
b or x = g. In this casex > 0, and thejth mean and a(0ly) = >, m(6
variance for thejth component areg/x, and x(X, — %)/ €7
[X5(%o + 1)] wherex, = 3 x;.

The parametensy, 7, u; andw; are regarded as constants
that may be calculated according to the observed data rang
Let the range extend from 0 tB, with R measured in
physical units of current. Then, setting

z,y)f"(2ly) (26)

represents a relation between the marginals at each step that

nables transfer of the convergence propertiesZ3P) to

6(M}. This fact, first elicited in Diebolt and Robert (1994)
and Robert (1995), is known under the term “duality prin-
ciple.” Because £™} is a regular discrete state space

_ _ Markov chain, then it is stationary and its equilibrium

m=R2, §=F (23) distribution f(zly) is unique, that is, £™} is ergodic. Al-
though {#™} is not a Markov chain, it is straightforward to
show that its stationary distribution is the margingbly).
Iap this case, due to Eq. 26, the following results hold:

for alli € €, tends to produce a prior fof that is relatively

flat over the interval specified bR. The constants; andw,

may be specified by setting the mean of the inverse gamm

density equal to the observed variamrﬁa(if available), and a. For any starting valué®©, the process ™} converges

also the variance equal to some reasonable multiple of the uniformly to m(6|y) at a geometric rate.

data rangeR (i.e., R = 4R). Solving the resulting system for b. For any real functiog, providedE_[|g(6)|] < e, and for

u, andw; gives any stating poin®©@, E_-[g(6)] converges uniformly at a
geometric rate td . [g(6)].

u=[(02?+2RIR w=[(c)*+ o?R/R (24) c. Because 4™} is a stationary Markov chain, it is also

¢-mixing, and hence, so is9f™}. In this case a Central

Noninformative priors for the initial density and for the  limit Theorem for any real functiog(6) holds, provided

transition probabilities are obtained at the limit wHen— E.[lg(6)7] < .

0 ande; — 0. However, care must be taken becabise

g; = O foranyi, j € 6 results in an improper prior. Sensible Proofs for a and b can be found in Theorem 1, (i)—(ii) in

choices representing weak prior information c Robert et al. (1993). A proof for ¢ is provided by Theorem
P g P &g 1 (iii) in Robert et al. (1993) and Theorem 20.1 in Billings-

[0.1, 1] andb; = 10" . In terms of the single channel record, . LI
: ley (1968). An expression for the rate of convergence in a is
the value forg; constitutes a statement about the frequency

of the transition — j, whereas the choice fdx represents outined in the Appendix.

the prior belief that the channel will start at tith level.

Due to the structure induced by the Dirichlet density forRESULTS

each row, informative priors foA obeying reversibility . _ ] _ ]

constraints imposed by Kolmogorov's criteria could also beThis section presents results obtained with the Gibbs sam-

used as those suggested @iy Ball et al. (1999). pler_ on synthetic signals o_f known characteristics. The fol-
The full conditionals necessary to implement the Gibbs/OWing example was designed to present a challenge by

sampler follow immediately once the priors have been spedPfoviding a combination of brief events together with

ified. Samples for all these densities where generated bl0sely located subconductance levels. A four-state Markov

implementing Egs. 14, 18, and 20, and following the meth-chain with reversible cyclic mechanism

ods described in Fishman (1996) and Gelman et al. (1995).

The explicit form forp(6,]6_;, vy, 2) is derived in the Ap- k, k,
pendix. ks k;
O G

wl k

k, ks
Convergence G,
Successive iterations from the sampling scheme at Eq. 15 SCHEME 1
(or Eq. 21) produce the sequene& 2V, ..., 0™, Z™),  was considered. The symbdisi = 1, ..., 8 are used to

which is a Markov chain or® X Z. Let w(6ly) be the denote the transition rate constants among the states. By

Biophysical Journal 80(3) 1088-1103
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settingk, = 6.183,k, = 0.454,k; = 2.697,k, = 1.665,
ks = 0.446,ks = 13.163,k; = 0.182, anckg = 11.812 and
the sampling period t6 = 0.005, the transition probability
matrix, A = exp(@Qé), becomes

1093

tion, Z?, was obtained by sampling from the valuesa§?
andA(©.

General output for z and 6

= C 0, O, The traces at Fig. B show detail of a few of the sampled
C, 0.924 0.0129 0.063  0.000122 realizations forz. Long-lived sojourns with high signal-to-
C, 0.000870 0.991 0.000153 0.00793 noise ratios are usually well located, whereas brief instances
0O, 0.00218 0.785—4  0.996 0.0021 with poor resolution present some degree of uncertainty. An
O, |0584—-4 0.0562 0.0295 0.914 example of the latter is given by the short sojourn<at

arising from transitions fron©, such as the one near the

and the expected life times at each state are spread over tvgample 447 in Fig. B. Rather than showing all the samples
orders of magnitude, i.er, = 0.0551,7, = 1.351,7, = for z, it is desirable to present a summary of their statistical
0.0629, andr,, = 0.5519. This mechanism generates longproperties. Figure D presents the most frequently visited
sojourns in an “open” state or in a “closed” state, which arestate at each time point. The actual location of the levels is
then interrupted by brief transitions to a state of the oppositassigned by taking the ergodic average for the sampled
type, that is,C, - O, — C, or O, - C; — O,. The values ofq, i.e., by settingg(6;) = g; in Eg. 13. Different
conductances were setgp = 0.07,q., = 0.0,q,, = 0.14,  summaries forZ™, such as the Monte Carlo meah
andq,, = 0.21, and white noise of mean 0.0 and standardstandard deviation or their Rao-Blackwellized versions
deviation 0.1 was added to a million-point realizationzof (Robert and Casella, 1999) are also possible. The proportion
The allowed set of transitions, together with the labelsof misclassified points computed from the most frequently
assumed for the conductances, can be seen in FigThe  visited state is 0.0315, with a large majority of these ac-
corresponding noisy segment is presented in Fig. 1 counted for by fitted transitions that slightly precede or

These data were analyzed with the Gibbs sampler spedellow the corresponding transition in the ideal record.
ified by Eq. 15, more precisely by using stochastic forward— The plots in Fig. 2 show samples of few components of
backward updates (Eq. 18) with four conductance levels and against the number of iterations. It appears that the sam-
2000 iterations. The priors where specified as:= 0.36, pler reaches a stationary state within approximately 100
s =0.25u=2w =1, =0.5,andy = 1 X 107° for  iterations. Further iterations (see FigdD2and further>10F,
all i,j € 6. The sampler was started at arbitrary initial not shown) do not seem to diverge from these values. The
values forg andz, namely:® = 0.36,07® = 0.5,a%, =  ergodic averages for some components) @btained from
0.99, anca{?, = 0.003, anch® = 0.25. The initial realiza- the last 1000 iterations are (standard deviation in parenthe-

B T T T T
0.2 p = -
0.1
: AR ' 0 —
0.4 1 I 1 I 1 ) 1 1
410 420 430 440 450 460 445 447 449 451 453
C T T T T O D T T T T
0.2 H 2 o2F
0.1 | 0.1 |
¢
o 1 1 1 1 C2 O C 1 1 L 1

410 420 430 440 450 460 410 420 430 440 450 460

FIGURE 1 @) A segment of the synthetic data generated by the mechanism in the Results sBjtiam.epsemble of few sampled realizatioaS?,

for m: 22, 24, 25, 47, 49% 107, for the range marked ir]. (C) The ideal (noiseless, unfiltered) trace underlying the data segment shodnindicating
the labeling of the state§;, C,, O,, O,. (D) The most frequently visited state during the last 1000 iterations of the Gibbs sampler.
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A T T T T B 0.013 T T T
02 H 3
0.012 H 4
0.15 H - “ .
()
T o1 H i 0011 H 4
oosH . 0.01 _»MWWWM_
FIGURE 2 Samples for some components 6f 0
against iteration number:Af samples for the level (') 5{';0 10'00 15'00 pro L R 5"’0 1' 1'
positionsg; (B) samples for the varianoeél; (C) sam- iterations iterac:io:ns 500 2000
ples forac,c, (cente), ag,c, (top), ac,c, (botton); (D)
samples forag,c, (top), ao,0, (cente), ac,o, (botton).
The total number of iterations if\j, (B), and C) were C o F o s ] D o I wt T I
2000, whereas[}) presents a longer run (90that A PO - o
suggests stationarity fac, o, ” : w 00TE .
2 { o ]
= 001 B = J
2 i % “ﬁw‘?\ﬁ Wﬁwm{ 8 o001 i .
o e [ i
s =
B _i 1 2 o000
2 000 Y '
. ”MW M
0.0001 . 1 L— L 1e-06 -
0 500 1000 1500 2000 0 2000 4000 6000 8000 10000
iterations iterations
ses)q,, = 0.067 (.001)g., = —7.4e -4 (1. —4),q, = Kernel estimates
0.138 (8.68 — 4|) andd,, = 0.209 (1.48 — 4), the o0 properties of the samplé®*?, ..., 6™ can be
transition probability matrix, summarized through a kernel density estimate. Denote by
C C, 0, 0, E = M — b the effective number of iterations after burn in.
- - This estimator is given by
C, 0.924 0.008 0.066 0.002
(0.003 (0.002 (0.003 (0.002 1 M
C, | 73%-4 0991 22-4  0.008 Ko=2 3 ofx— o o, 27
e — e — Jde — 9 — m=b+1
13-4 23—-4 (Q1e—4) (2.9%-4

0, 0.002 58-5 0.996 0.0021 |
(le — 4) (5e—5) (Lle—4) (1Lle—4) where ¢, known as a kernel function, is itself a density

O, | 2544 0.064 0.027 0.91 usually chosen to be unimodal and symmetric about zero.
| (35%—4) (0.002 (0.002 (0.002 | Here we conside® as a normal density with mean 0.0 and
standard deviation (bandwidtla) > 0. Following Eq. 27,
and the variances of the n0|e§ =0.01 (2.6 — 5),02 this estimate is constructed by centering a scaled normal

0.01 (1.4% — 4), and02 = 0.01 (9.64 — 5), 02 = 0 01 density at each sample 6f™; the actual value at any point
(1.6% — 5). In general the sampled realizations that cor-x is the average of th®l — (b + 1) ordinates at that value.
respond to states or transitions that are less frequent hawer the level positiongy, this estimate might be used as an
higher variances. In this case, the uncertainties associatedternative to the all-points conductance histogram com-
with the short-lived state€, and O, are higher. monly used in single channel analysis. The estimates for
For comparison, Baum’s likelihood maximization was some components d@fincluding the ones fog. anddq., are

applied using the sam#® values as those for the sampler. shown in Fig. 3. Just as the bin width affects the appearance
In this case, the estimates for tliecomponents reported of a histogram, the value ob affects the shape of the

above werer, = 0.067,q., = 0.003,q, = 0.164,q,, = density estimate, with larger values producing smoother
0.207, 02 = 0. 01 andoz = 0.01, and, for the d|agonal of estimates. For all the components @fthis parameter is
A a.. = 0.964,a., = 0.996, a0, = 0.968, andh,,, =  obtained as» = o[4/(3E)] "%, wheres, denotes the sample
0.998. standard deviation (see Bowman and Azzalini, 1997, p. 31).
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FIGURE 3 Kernel density estimates for selected posterior margimgls. (
Estimates fon, (continuousbottom axiy andq, (dashestop axig, both
calculated from Eq. 27 witlh = 0.002. B) Estimates fog,, (continuous
bottom axi$ andac,o, (dashestop axig; both obtained witho = 0.0005.
The kernels were constructed from the last 1000 realizations.

Both figures also reflect the fact of higher uncertainty for
the parameters associated to short lived sates. In any case,
the posterior mode follows closely the true value.

Dwell time estimation
Single-state dwell times

The kernel density estimates for the dwell tinbgg,, . . . at

C 5000 (11

i o
4000 |- P o S i
,"1\ \
MY
YA
doA
@ 3000 - i v N
5 Vi
8
2000 -
1000 -
0 Y
6 5 -4 3 -2 1 0 1 2
In(dwell time)

any single state are presented in Fig. 4. These are calculatEfURE 4 Kernels for the dwell times for each state obtainégifitom
the ideal trace (see Fig.@); (B) from the posterior estimate produced

from m sampled realizations of by following a form
similar to the one in Eq. 27. Denatg,, theith sojourn of the
mth realization, then the kernel is computed as

M Hm

1

k(x) = E > Ho > b — thn, o,

m=b+1 Mi=1

using the Gibbs sampler; an@)(by low-pass filtering the trace at 5 kHz
and thresholding@). The curves fromA) are echoed ing) for compar-

ison. Note the different vertical scale i€) Each trace has been scaled so
that it integrates to the number of sojourns in the corresponding state. For
the theoretical trace inA) the counts and time constants wég 1622,
0.055;C,: 2858, 1.35;0;: 3675, 0.063; andD,: 2527, 0.552. The band-
width was calculated from Eq. 29 with= 0.39. For comparison with the
ideal values ofr given earlier, the mean dwell times in each of the states

whereH,,, is the number of dwell times for a particular state in (C) are: 7., = 0.050,7, = 0.363,7, = 0.052, andr,, = 0.438.

in 2™, andtf,, = In(t, ), is the sequence of log-trans-
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formed sojourns. It is useful to use a scale-dependent bandesentation of th€ matrix (Colquhoun and Hawkes, 1982,
width, 1995), and least square fits of two log-transformed expo-
nentials,; (Wi/m)expx — expi)/7], | = 1, 2; withx = t,
o, = maxin(l + o/t ), gt (29)  orx = t_ to the kernel estimates obtained from the Gibbs
_ ) o sampler for the time spent in both classes. These are calcu-
where g is the bandwidth or standard deviation of the |40 with Eqs. 28 and 29 after adding together the events
normal density used for long dwell times, and If15/t ] o responding to successive sojourns of each class. The

ensures that the bandwidth for short dwell times correyqjayant dwell times were taken from the last 20 sampled

sponds to a time uncertainty of at least one sample interval, 5|7 ations. In Fig. & the dwell times have been obtained
The choices of bandwidth and the spacingxofalues for 1o nass filtering the noisy trace with a 5-kHz digital
evaluation of¢ are related. So that each dwell time will add 5 ,ssian filter and noting a change of state whenever the

equal weight to the density estimag,must exceed the  qqha crosses a threshold at 0.105, half way between the
spacing. The densities in Fig. 4 have been scaled by thg, s migdie levels. With this synthetic signal, a large ma-
number of detected events or counts to allow comparisofy, i, of genuine transitions do cross the midiine, which
between the kernel estimates calculated from output of the. .\ o< this an appropriate position for a single threshold.
Gibbs sampler and from the results of filtering and thresh-r4 fijter frequency of 5 kHz was chosen to reduce the
olding. For the Gibbs sampler, the density is multiplied by.fy g6 a1arms” resulting from noise fluctuations to less than

H = E.[Hyl. The plot in Fig. 4A corresponds to the 5o, of the total. It is possible to use relatively light filtering
estimates for the time spent at each state, calculated frog,  yojerate a relatively high rate of noise transitions when
the noiseless sequence. The plot in Figs 4hows the o gignalis in a state close to a threshold because these
estimate obtained from the last 20 realizations obtained by, s 4re occupied for less than 10% of the time and
Fhe Gibbs sampler. Th_ese are in good agreement with thSenuine transitions from them are frequent. However, even
ideal results. The plot in Fig. @ shows the estimate 0b- 5 5 1 more than a third of the genuine events have been
tained by low-pass filtering the data to 5 kHz using a digital\yisseq - Further low-pass filtering leads to a substantial
Gaussian filter and noting the crossings of thresholds afey,ction in the number of threshold crossings observed.
0.035, 0.105, and 0.175. Many of the extra counts in the 5 56 of the Gibbs sampler to analyze data for which
large peaks for statés, andO, in Fig. 4C are artifacts that o6 states present the same conductance can be illus-

represent the finite time taken for the filtered conductance tq, 4 directly by considering the previous data set, but with
pass through the band of conductances corresponding = g, = 0.0 andq, = q, = 0.07. These data were
Cy C, ' 0, 0, U

these states in the transitions betweégnand O, and be- analyzed with four states and the restrictiqf;j‘) = gm

B . 02 L
tween O, and C,, respectively. These artifacts render the qg?) _ q(()r:). In the first case, the state space is sinfply=

estimates forC, and O, virtually useless. If the cut-off {O, C}, whereas in the second, the partitith= O U C
frequency for the low-pass filter could be increased, thg, i o = {0, 0} and C = {C,, C,} is implicitly assumed.
artefactual counts would occur for shorter dwell times andyy, o sampler was run for 10" iterations using the same
thus might be separable from the genuine events. Howevefyiq s and the same initial values férandz as those used
increasing the cut-off frequency increases the amplitude OE)revioust. The results are shown in Fig. 6. Under these
the noise, which increases the frequency of another form Oéemanding conditions, the counts are now noticeably dif-
artefactual crossing of the thresholds. Indeed the peaks fqg ot from the ideal ones but the time constants are stil

the Iong;lllve(: sta;e@_z anld O, in Fig. 4C Cﬁ?ttam moLe close to their correct values. Moreover, in this case, the
counts than for the ideal trace and are shifted to shorteg,hjer is still able to recover the transition probability

dwell times because, even after filtering to 5 kHz, the noisg, iy
produces a large number of additional crossings of the '

thresholds at 0.035 and 0.175. C, C, 0, o}

c, [ 0927 0.006 0.015 0.005]
Class dwell times (0.01 (0.009 (0.01 (0.052

C, | 854—-4 0.991 0.001 0.007
In practice, filter and threshold analysis of the data summa- (7.12—4) (55%—4) (0.001 (0.001
rized in Fig. 4 would be attempted using a single thresholdy, | 28% -4 7.%2-4 0.996 0.003
leading to two classes of state®,= {O,, O,} above the (2.8 —4) (6.8le—4) (3.57%e—4) (7.8e—4)
threshold andC = {C,, C;} below. To obtain the predic- o, 0.005 0.071 0.012 0.908
tions of the model for these classes, ematrix is parti- (0.005 (0.008 (0.009 (0.006

tioned into four submatriceQ,,, Qcor Qo aNd Q.. each

with entries equal to the corresponding transition rates The Gibbs sampler can also be used to illustrate the
(Colguhoun and Hawkes, 1982). FigurefsandB, displays  consequences of fitting with a wrong model by using only
the theoretical densities obtained by using the spectral regwo states. The results are shown in Fidd 8Comparison of
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A the traces for the open and closed states in FiQ. \8ith
those for the open and closed classes in FigA &nd B,

. shows that the predictions are biased toward those consis-

tent with a two-state model. Many rapid transitions are

1 missed, and the apparent time constants for the longer

events are correspondingly too long(= 2.45 andrg, =

1 1.24, as compared to 1.44 and 0.60, respectively). Attempts

to use low-pass filtering and noting the crossings of a

. threshold at 0.035 produced much less satisfactory kernels.

With filtering to 2 kHz, more than 20% of the crossings

= were false alarms corresponding to the noise, whereas, at 1

kHz, there were only 1158 counts in each class with almost

complete failure to detect rapid events.

1000

800

600

(adusted) counts

400

200

Joint densities

0y
0
8

Class dwell-time histograms or kernels are useful for deter-

800 mining the number of components and their respective

700 mean dwell-time durations. However, they do not display
£ 600 important information that is available about the way states
§ 500 are connected. Further insight into the relationship among
] states of different classes is obtained by studying the pos-
B 400 sible correlations of consecutive dwell times. For pairs of
"g 300 consecutive sojourns @& andC, these correlations can be

displayed as a two-dimensional histogram (Magleby and
Song, 1992). The surface at FigAhresents the theoretical
joint density for the pair X, X)), which is obtained by
following arguments similar to the one used to derive the
unidimensional densities for each class (see Fredkin et al.,
1985, Eqg. 4.1). Figure B shows the bivariate kernel esti-

200

100

C T T T T T mate obtained as a multidimensional extension to Eq. 28,
1000 |- ~ - R
k(x, x5)
800 | & ) -
£ - R L
8 600 b ¢ = E E W (t[xt - utmi wi]d’[xt - V}\:mi wj]y (30)
%‘ m=b+1 Mij=1
é 400 | with uf,,, and v}, as the log-transformed (consecutive)
£ sojourns obtained from the last 20 iterations of the sampler
200 for the classe® and C, respectively. The bandwidths;,
and w; are given by Eqg. 29.
0 The highest peak in Fig. B arises from brief sojourns in

O followed by long ones irC, which, for two open and two
closed states, could arise either frad3 — C, as in the
present mechanism or fro®, — C, = C,. A second peak
FIGURE 5 Kernels for log dwell-timesA] in the open clas), and 8)  corresponds to the occurrence of long dwell timesOat

in the closed class;, obtained from the sojourns in the last 20 sampled which are adjacent to short ones@ni.e.. O, — C. as here
realizations ofZ™ produced by the Gibbs sampler. The bandwidths were ' 12 1

calculated from Eq. 29 witly = 0.39. The kernel estimate is shown as a
continuous lfold) line, the theoretical pdf obtained from ti@ matrix as

short dashes, and a nonlinear least squares fit of an exponential mixture
(see text for details) as dot-dashes. The dots in b&klafd B) correspond  the original noiseless data. For the kernels for the Gibbs sampler output the
to the components of the fitted mixtureC)(Kernel for the dwell times in  counts and time constants wef&; 1835, 0.055C,, 2089, 1.420,, 1083,

O (continuou$ and C (dashey obtained via filtering and thresholding, 0.068; andD,, 2873, 0.57. A fit to the kernels presented @) (not shown)
superimposed on the kernels shown &) and @). Kernels and fits are  gave:r, = 0.076,7,, = 2.033,7, = 0.097,7,, = 1.012. Note (see also
scaled to integrate to the total number of dwell times. Theoretical pdfs inFig. 6) that the fitted components i) and B) are not estimates of the

(A) and B) are scaled to integrate to the number of dwell times present inkernels for the individual states (see e.g., Colquhoun and Hawkes, 1982).
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FIGURE 6 Logarithmic dwell time A
kernel estimates obtained for the
analysis of the same mechanism as in
the Results section, but with only two
conductance levelg, = q,, = 0.0
andq,, = q,, = 0.07. Plots 4, (B),
and () correspond to the estimates
obtained when analyzing this data
with four states with the restriction
ol = g8V, qf = g3, form =1, 2,
..., M. (A) represents the estimate
for the dwell times in the open class,
(B) for the closed class, andC) the 200
single state estimates. The plot BY)(
presents the estimates for the class
dwell times obtained with the sampler
by considering only two states. For
both (A), and B) the solid pold) line
corresponds to the kernel estimate,
short dashes correspond to the theo- T
retical pdf obtained fron®, and dot- 1200
dashes to a nonlinear least squares fit
of a two-component exponential mix- 1000
ture. The counts and the time con-
stants for the fitted components gave:
C,, 1324, 0.055C,, 2801, 1.4380;,
2805, 0.077; an®,, 2000, 0.599. In
(D), the solid lines represents the es-

timate for the open state and the K
dashed line the one for the closed 400 | /

state. All the densities are rescaled to AN Y

integrate respectively to the number 200 - e Vs

of dwell times in each class or state. o N 7z '

Plot (A) may be compared directly e e 0 == . L 1

with Fig. 5A, plot (B) with Fig. 5B 6 5 4 8 21 0 1 2 4200 2

and plot €) with Fig. 4B. In(dwell time) In(dwell time)
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or O; = O, — C;. A third, less prominent, maximum is coordinatep,(Xs, Xo) = qu(x’g, X5), and
constituted by long sojourns in both classes, which, in ng
general, could correspond to direct transitiahs— C, but P = > qu(x’g, XY,
here arise primarily from composite events of the form -1

0O, — C, — C,, in which the middle event is so brief that (32)

it is not detected. All of these features are recovered by the p(X) = 'E R0, X5
Gibbs sampler as shown by the kernel estimate at FR). 7 e - KogXo, X0)-
In general, the visible maxima correspond to the ones that P

present the most frequent interval combinations (includingrigure 7C shows the theoretical dependence-difference,

compound transitions) or those arising from componentsind Fig. 7D the one obtained from the estimate at Fid3.7

with widely separated time constants. It can be seen that significant dependend®ss, xX5) > 0,
Magleby and Song (1992) have introduced a measure foare related to dwell-time pairs that correspond to events

the significance of the dependencies between successi¥@, — C, andO, — C,. Negative dependencies exclude the

dwell-time pairs that helps to clarify the connectivity of the eventsO, — C, and O, — C,. It is therefore possible to

states. This measure is defined as the difference between tikenclude that the smallest of the three maxima in Fig. 7

square roots of the frequency of dwell-time paix, &%),  arises from composite transitions eitl@; — O, — C, or

and the frequency that would be expected if the successive, — C; — C,.

dwell times occurred independently,

DO, X0) = POk, X0 — \pOxep(<).  (31) DISCUSSION

This quantity can be obtained from the estimate in Fig. 7 Summary

by marginalization. Lehg, X ng, be the dimension of the A method for dealing with the statistical analysis of hidden
grid used for the estimate at Fig.B/ then, for the §, g)th Markov models for single channel records has been devel-
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for pairs of adjacent sojournsxy X),

in O, C from the mechanism in the Re-
sults section. B) Posterior kernel den-
sity estimate for X, x%), calculated
from 10° dwell time pairs generated af-
ter iteration 1000. The estimate was ob-
tained following Eq. 30 with bothw,
andw, calculated from Eq. 29 witly = C
0.39 and a grid of 50< 50. (C) Theo-
retical dependence-difference (Eqg. 31).
(D) Dependence-difference obtained
from (B) by Eq. 32.
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oped. Inferences concerning signal restoration and parameeormality for likelihood-based estimates. However, the ac-
ter estimation were based on the framework provided bycuracy of the asymptotic approximation still remains un-
Bayesian statistics in contrast to methods based on likeliknown. Moreover, contrary to Monte Carlo estimates, the
hood maximization (Baum et al., 1970; Chung et al., 1990precision of the estimates in this setting depends on the
Venkataramanan et al., 1998; Michalek and Timmer, 1999length of the data sample. In the likelihood context, S.
Fredkin and Rice, 1992a). Here, the probability distributionMichalek, M. Wagner, W. Vach, and J. Timmer (submitted
of all the unknowns given the observations was explicitlyfor publication) propose\/a,-j/t)\i as an empirical estimate
defined, and was the basis for all the inferences. Estimatefor the standard deviation od;. An alternative for the
are generated by Markov chain Monte Carlo sampling fromconstruction of confidence intervals in this setting is pro-
this distribution. By analyzing signals of known character-vided by the use of parametric bootstrap methods that
istics, these methods have been found to produce estimatesquire additional computations (MacDonald and Zucchini,
of the model parameters that are similar to those obtained997).
using Baum'’s likelihood maximization. From a practical perspective, these methods do not im-
Sampling methods provide a precise description of thggose any constraint on the position of the conductance
modeling process. Under mild regularity conditions, thelevels, and they do not require specification of thresholds.
Gibbs sampler automatically provides a measure for thény information that is available about the conductance
uncertainty of the generated estimates. This fact followdevel positions is incorporated via a prior, which, as dis-
from the Central Limit Theorem, which applies as a conse-cussed in the section, Priors, may be arbitrarily vague. The
quence of the duality principle betweed{’} and {Z™}  prior for the levels in the example considered here was
stated in the section, Convergence. Further results concerspecified by setting the mean position for all the levels at the
ing the estimation of the variance are possible in this settingnidpoint of the observed data range, and their dispersion to
(Chauveau et al., 1998). Although different in nature from3.68 times the standard deviation of the observations.
the Monte Carlo estimates obtained here, Bickel and Ritov Kernel density estimates have been used to summarize
(1996) and Bickel et al. (1998) have established asymptotithe samples of the model parametéf® and dwell times
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obtained fromzZ™. These serve much the same purpose asances of the open states both 0.07. The conductance tran-
histograms. They have well-known advantages for displaitions were chosen to be less than the standard deviation
when there are relatively few data points (see i.e., Bowmaustill 0.1) of the white noise, so that these data would present
and Azzalini, 1997), compared to the desired number of real challenge for fitting. When the Gibbs sampler is run
bins in the histogram. Kernel estimation may thus be parwith four states subject to the constraing§}’ = g& and
ticularly useful in the construction of complex two-dimen- g™ = g™ the shapes of the kernels for the dwell times in
sional empirical estimates such as the joint density of sothe conductances classes (see FigA@nd B), the time
journ pairs. In addition, for the display of dwell times on a constants for the single state estimates (see F&), &nd
logarithmic axis, kernel construction is simpler than prepa-the transition probabilities are close to their ideal values. By
ration of a smoothed histogram because the operations @bntrast, when the Gibbs sampler is run with just two states,
binning, correction for the logarithmic transformation the kernel estimates for the classes are badly distorted (see
(Stark and Hladky, 2000), and smoothing are all replaced byrig. 6 D) with poor detection of rapid events and a corre-
a single step. sponding lengthening of the long events. Attempts to use
To illustrate the method and to demonstrate its effectivethreshold detection after sufficient low-pass filtering to re-
ness, a synthetic data set was constructed with four equallyluce false alarms resulting from noise to less than 5% of the
spaced conductance levels and rapid transitions betweerumber of detected events produced no suggestion of a
nonadjacent levels. Traditional methods in which transitiongapid component in the kernels.
are detected as threshold crossings after low-pass filtering The approach followed here is similar in spirit to those of
the data are very difficult to apply to this type of data. If Ball et al. (1999) and Hodgson and Green (1999). Both are
three thresholds are spaced between the levels, there arencerned with restoration under a constrained hidden
obvious artifacts (see Fig.@) including false alarms when Markov model that follows a particular gating mechanism.
the noise reaches a nearby threshold and “transit peakS’he second actually takes a further step toward model
which result from the finite time it takes the filtered trace to selection. The principal objective here is signal restoration,
pass through the intermediate conductance band in a traand, for this, we have designed a simpler Markov Chain
sition between nonadjacent levels. If the low-pass filteringMonte Carlo sampler based on a discrete time approxima-
is light (e.g., 20 kHz), then the noise frequently reaches thdion. As a result, the methods developed are less computa-
thresholds and the genuine transitions are swamped. If, itionally intensive. Moreover, for the set of examples con-
contrast, the data is more heavily filtered (i.e., to 5 kHz assidered, the sampler seems to be less sensitive to initial
in Fig. 4C), then the time taken for a transit through the conditions and does not require acceleration techniques to
intermediate conductance band becomes comparable to ti@prove its mixing such as tempering. Possible disadvan-
actual dwell times in some of the conductance states, andages of our parameterization are discussed in the next
again, there are no means for distinguishing genuine fronsection.
artefactual events. In Fig. @ the filtering has eliminated Our programs have been implemented in C and compiled
approximately a third of the genuine transitions, while theusing the GNU C compiler (gcc) on various platforms
“transit peaks” completely obscure the peaks for the moréncluding Unix, Linux, and Windows NT without further
rapid transitions. By contrast, the Gibbs sampler recovers modifications. Each iteration consisting on the update of
faithful copy of the ideal trace from the noise, and, further-(6™, Z™) to (6™, Z™*1) for the 1¢ samples data with
more, the parameters of the probability matéy,are very  four states presented in the Results section takes about 12 s
close to the values used in the construction of the datasedn a PC with a Pentium 225-MHz processor under Linux.
The mean dwell times in the states can be recovered frorror the examples presented here, 1000 iterations were al-
either the probability matrix or from fits of exponentials to lowed for burn in, although for most cases a stationary point
the kernel density estimates for the dwell times. was reached at50 iterations. The kernels shown in Figs. 4
In practice, analysis of these data using methods based @nd 6 are based on the last 20 iterations of each run.
filtering and thresholding would use a single threshold and
would thus detect dwell times in closed and open classes cExtensions
states rather than in the individual states. Results based oni
this approach are shown in Fig. 5. More than a third of theThe results in this paper are based on a simplified version of
genuine events have been missed by filter and thresholdhe hidden Markov model Markov chain Monte Carlo
and~5% of the transitions that have been detected are falsmethod in which the observations are assumed to be inde-
alarms. pendent and identically distributed. Real patch clamp
Much of the difficulty inherent in fitting the data used for records, however, are usually correlated due to the use of
Figs. 4, 5, and 7 arises from transitions between nonadjacennalog low-pass band filters and the presence of nonwhite
conductances. Figure 6 shows the results obtained for theackground noise. It has been shown (Venkataramanan et
same sequence of state transitions, but with the condu@l., 1998, among others) that standard Hidden Markov mod-
tances of the two closed states both zero and the conduels produce biased estimates if these dependencies are not
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taken into account. An extension of the Gibbs sampler tQAPPENDIX
filtered and colored noise data will be presented by R'Because the Gaussian hidden Markov model likelihood belongs to a

Rosales et al. _(manusprlpt In preparauon). exponential family, there is a clags of conjugate priors for which the

The underlying continuous time process followed by therelevant full conditionals reduce to analytic densities (Bernardo and Smith,
channel £} is approximated by the discrete versior], In 1994, Prop. 5.4, p. 266). In this case, conditionals¢fander a particular
these terms, the model is parameterized through the tranggalization.z, are given by
tion probability matrixA instead of the generat@. This
produced satisfactory results for the purposes of signal p(6]6_.,y, 2 = p(8, y, z)/Jp(B, y, 2) d6,
restoration. However, there are several disadvantages for
this choice if the main objective is to estimate the rate
constants of the model, i.e., to determi@eFirst, the map
Q — A = exp@J), for real positive elements @, is not = p(y,
onto the space of ait X n transition probabilities. Second,
if the sample interval is sufficiently long that multiple
transitions can occur W|th|r_1 one mterval, the inversion can — Lz(ﬂi)p(Gi)/sz(Gi)p(ﬂi) do, (A1)
be very inaccurate or even impossible. Values that should be
zero may not be, i.e., composite events via transient inter- _ _ - _
mediates may be incorrectly assigned as direct transitions iffer¢L=(%) IS the function formed from the likelihood undewith the

. terms that contain the componeht The last relation holds only #; is

the model. Third, the rate constan@ are much more or A. When considering, = q; or 6, = o2, each conditional is also a
convenient than the probabiliti#sfor describing the struc-  function of the other component.
ture of the model in displays of the possible transitions of
{29, such as shown by the mechanism in the Results
section. Finally, the continuous time parameterization ma)p
reduce the computational effort by considering interval up+ollowing Eq. A1, explicit substitution of the likelihood and the prior

6)p(6) / J p(y, Z6)p(6) d6,

onditional for o?

dates forz rather than single point ones. IG(u;, w) leads to
Parameterization of the model usi@rather thanA has ext] — x(o?)]o 2
been considered in the frequentist context by Michalek and 2oy 2) = i A2
p( 1 ) yl ) f F{_ ( )] C1 d ( )
Timmer (1999) and in the Bayesian framework by Ball et al. REXHL— X (X)X~ OX

(1997). In the first approach, the transition rates are maxiynere
mized numerically by considering Baum’s auxiliary func-

tion for Q. The Bayesian approach follows by considering N
an exponential mixture likelihood for class dwell times, x(0?) = | 2 (Y — @)A(Z) + wi | ] 207
which, following standard theory (Colquhoun and Hawkes, k=1

1982), is given byQ. This matrix is parameterized k&,

and, in this case, a conjugate prior for each rate is given by

a Gamma densit$(«;;, B;), with both o, andB;; assumed

known. The estimation of andzis made by using a hybrid

Markov chain Monte Carlo algorithm. The ratég are  andl(z) is the indicator function, i.el;(Z) = 1 if Z = i and 0 otherwise.

sampled through a Metropolis—Hastings kernel, angy  Settingx = o7, ¢, = ¢, — 1, ande; = 3iL, (Y — q)*(Z9/2 + w;, the

one with reversible jumps similar to the one presented irf€9ra! in Eq. A2 has the solutiar *I'(c;) (Box and Tiao, 1992, p. 144,
L . Eq. A2.1.1). Substitution of this result into Eq. A2 leads to the conditional,

J. A. Stark et al. (manuscript in preparation).

Selecting one or possibly a subset of aggregated hidden p(a?6,y, 2 = 1IG(U;, W),
Markov models from an arbitrarily chosen family of com-

N
c,= > L) +u+1,

k=1

peting candidates is perhaps still the most challenging prob't t = 2 and

lem in the statistical analysis of ion channel data. With few N

exceptions (Hodgson and Green, 1999; Ball and Sansom, W= 1/20 D (v — g)(2) + wi |
1989), this problem and the closely related question of k=1

model identifiability have not been formally addressed. In

practical terms, there are instances in which physically N

different models produce identical statistics (Kienker, 1989:Conditional for g;

Wagner et al., 1999). !n principle, Bayesian statistics pro‘l'aking a normal prior with mean and varianog §* leads to the following
vide a sound and consistent framework for model selectionexpression for the numerator of Eq. AL,

The results presented here suggest that the present Bayesian N 5 5

Markov Chain Monte Carlo methods are suitable for signal exp[— } i (Y — )29 _ G -m . (A3)
restoration and may prove to be useful for model selection. 2 of s
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The denominator follows by integrating this expression with respegt to
on R, which leads to

(2m0?) ™2

SZOZ (Szni + O_,IZ 1/2e*(C4+C5),

(A4)

with

20 (@) + ofm
- 2078 ’
i 2 YU(2) + ofm
= a02(Em + )

The conditional foig; is a normal density that results by replacing Egs. A3
and A4 into Eq. A1,

p(cil6,y, 2 = N(m, ),

Cy

with

§ 2 YU(Z) + mo?
o L) +of

B o'

g0 (@) + o

rh:

s

Conditionals for a; and A

Let D(ae) be theith transition probability row prior, which is explicitly
given by

N0 e;)a_al,l .
jn:l I'(ey) '

Following Eq. A1, the full conditional for each row is

|

/!

D(ale) = g

H )QT'+3'_1 dx;, (A5)

n
j+ej—1
p(alo,y, 2 = [[a*®
j=1 j=1
where
t-1
Gj = E Hi(zk)ﬂj(zk+l)
k=1
is the frequency of the transitian— j during z, and

n

j=1

The integral in Eq. A5 has solution (Box and Tiao, 1992, p. 142, Eq.

A2.1.7)

n n
I Yc+e /[T +e.

=1 i=1
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The conditional follows by substituting the expression above into Eq. A6.
In this case, the conditional is

p(al6,y,2) = D(Cy + &1, ... ,Cn + &)

The full conditional forA is similarly found by considering the same prior
structure as for the row, but the quantities; are replaced by, = 1;(ZY).
In this case, the conditional is a Dirichlet density,

p(A

0,y¥,2)=D(o, + by, ...,0,+b,).

APPENDIX B: CONVERGENCE RATE

This appendix presents an explicit form for the rate of convergence and its
implications for the practical implementation of the Markov Chain Monte
Carlo algorithm. Letk® = P(Z™ = B|Z? = A), the mth iterate of the
transition probability forz, and f°z = Aly) its initial density for any
realizationsA, B € Z. Becaus€ is countable an&}' > 0 (by construction
from Eqgs. 17 or 20), thed™ is ergodic, and, hence, for amy= 1, ...,

[f"(2dy) — f(Zy)] = (1 — 2K*)™, (B1)
where
f™(zy) = > KJfzy),
zeZ
and
K* = min {K&} (B2)
20), 0)

(see Kemeny and Snell, 1960, Corollary 4.1.5, p. 71).A.eenote the.*
norm with respect td(-) or m(-), i.e.,

A(f™, ) = Xlf™(dy) — f(@y)l.

zeZ

Then, following Eq. 26 and noting that Eq. B1 is pointwise satisfied for any
Z™ = B (B € 2), gives

A(7™, ) = A(f™, f) = n¥(1 — 2K*)™ L,
Hence, the convergence to the posterior marginat Bord 6 is determined
by the same rate that is governé&d. In these terms, the number of
iterations necessary to achieve an accuracy fof In[A(#™, )] is given by
m=[In(g) — NIn(n)]J/In(1 — 2K*).
Evaluation of the convergence rate leads, therefore, to the minimization of

Kl in Eq. B2. As an example, for the sampling scheme defined by Eq. 21,
this is

N
K% — H p(zk|z(1)"<k, Z(O),I>k, 0(0)1 y)

k=1
N-1
1 K N
e hy, H (M B )i i
k=2

with Z™-K as thekth element ofZ™. Given 69, the sequencg, . . . , iy
that minimizes the above expression can be obtained recursively by a
dynamic programming procedure such as the Viterbi algorithm.
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