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ABSTRACT Hidden Markov models have been used to restore recorded signals of single ion channels buried in background
noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants
of the Baum–Welch forward–backward procedures. This paper presents an alternative approach for dealing with this
inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and
numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by
using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those
calculated using the Baum–Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the
results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate
clearly the superiority of the new methods.

INTRODUCTION

The statistical analysis of single channel patch clamp
records has been the subject of extensive research for over
two decades. The most common scheme uses filtering and
thresholding to recover the underlying process that is fol-
lowed by the channel (see Colquhoun and Sigworth, 1995,
for an extensive review). As a consequence, the original
signal is reduced to a sequence of dwell times at a finite
number of possible conductance levels separated by the
thresholds. Empirical density estimates for the time spent at
each level are then constructed as histograms, which are
usually fitted by exponential mixtures. In the second stage
of the analysis, the obtained mixtures characterized by a set
of weights and rate constants are interpreted by modeling
the channel dynamics as a finite state space aggregated
Markov chain which is also homogeneous and has contin-
uous (time) parameter (Colquhoun and Hawkes, 1982;
Fredkin et al., 1985; Ball and Sansom, 1989). The infer-
ences are directed toward the structure and specific value of
the infinitesimal generator (the transition rate matrix) of the
Markov chain. Finally, model selection between various
alternatives is handled by using traditional penalized like-
lihood ratios. Ball and Rice (1992) provide a critical over-
view of the inferential difficulties of these approaches.

With only a few exceptions (Fredkin and Rice, 1992b),
these methods rely heavily on the accuracy of the initial
restoration step and are thus complicated when considering
signal-to-noise ratios that are at the limit of filtering and
thresholding. The pioneering work of Chung et al. (1990)

introduced hidden Markov models with the initial aim of
extracting information about current amplitudes and chan-
nel kinetics at low signal-to-noise ratios. More recently,
hidden Markov models have also been considered by Ven-
kataramanan et al. (1998) and Michalek and Timmer (1999)
extending the applicability of the initial framework. Param-
eter estimation and signal restoration are usually carried out
in an effective way by using variants of Baum’s forward–
backward procedures and reestimation formulas (Baum et
al., 1970). In this case, estimates are represented by points
in the parameter space that correspond to the coordinates of
a local maximum of the likelihood.

A radically different approach for the treatment of hidden
Markov models is provided by Bayesian statistics. In this
paper, the initial restoration problem is addressed by mod-
eling the observations with hidden Markov models. How-
ever, inferences are performed by using Bayesian statistics
and an extension to a stochastic simulation method first
proposed by Robert et al. (1993). Fredkin and Rice (1992a)
also considered Bayesian restoration, but their approach is
methodologically closer to Baum’s maximization proce-
dures. Bayesian inference based on stochastic search meth-
ods known as Markov Chain Monte Carlo have also been
considered by Ball et al. (1999, 1997), Hodgson (1999), and
Hodgson and Green (1999), however, the parameterization
and their inferences are directed toward the transition rate
matrix associated with a gating mechanism. The methods
developed here, based on simpler procedures, are computa-
tionally efficient and supported by a solid probabilistic
basis.

In this article, it is shown that the Bayesian methodology
provides a useful way to deal with hidden Markov models
for ion channels. Bayesian theory provides statistical
grounds for the assessment of the uncertainty in all the
unknowns considered in the modeling process. The next
two sections present a brief overview of the problems posed
by hidden Markov models and also their treatment from a
Bayesian perspective. Results for various synthetic signals
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are shown in the following section, together with those
obtained via standard Baum–Welch maximization. Compar-
isons of the Bayesian Markov Chain Monte Carlo approach
against filtering and thresholding clearly demonstrate the
new methods to be superior.

ION CHANNEL MODELING

Hidden Markov model

This section presents an overview of the hidden Markov
model formalism that will be adopted and the notation to be
used. The parameterization is consistent with the one con-
sidered by Chung et al. (1990) or Venkataramanan et al.
(1998).

A hidden Markov model is defined by two interrelated
stochastic processes. The first of these, representing the ion
channel, is a first-order finite-state homogeneous Markov
chain, {zl: l [ R1}, on # 5 {1, 2, . . . , n}, with initial
density l and transition rate matrixQ. The continuous
process is approximated by a discrete time version, {zk: k [
T}, whereT 5 { d, 2d, . . . ,dN}, with N as the total number
of sample points andd the sampling period of the acquisi-
tion system (hereafter we assumed 5 1). In these terms {zk}
is determined by a transition probability matrix,A 5
exp(Qd), with elementsaij 5 P(zk 5 juzk21 5 i), i, j [ #
(whereP(XuY) is the probability ofX givenY). The second
process is represented by the sety 5 { yk: k [ T} of
independent and identically distributed random variables
that constitute the observations. Each observationyk is
assumed to arise as a function ofzk, defined by a conditional
density

P~ykuzk 5 i, u! 5 di~y
k!, (1)

whereu is possibly a vector used to denote the parameters
associated with a particular familyd. Under standard nor-
mality assumptions, the function of the process is

di~y
k! } exp@2~yk 2 qi!

2/2si
2#, (2)

with qi and si
2 as the mean and the variance of theith

possible outcome associated withzk. Assuming the number
of conductance states,n, is known a priori, the model is
completely specified by

u 5 ~li , aij , qi , si
2!, i, j [ #. (3)

This suggests an equivalence between states and conduc-
tances. However, this correspondence may be relaxed by
imposing constraints onq such asqj 5 j for some valuej,
andj [ J , # if zk 5 j, as will be shown in the section Class
Dwell Times.

In this setting, each observation arises as the sum of two
terms,

yk 5 qi 1 sih
k, hk ;

iid

N~0, 1!. (4)

The first term at the right-hand side of Eq. 4 represents the
amount of current flowing through the channel associated
with the ith conductance level, whereashk is a normal
distributed random variable with mean 0 and variance 1,
representing the disturbance of the noise inherent in the
recording apparatus. The symbol; together with iid is used
to denote independent and identically distributed.

The assumption of independent observations, explicitly
stated as

P~ykuyk21, . . . ,y1, zk 5 i, u! 5 P~ykuzk 5 i, u!, (5)

is an important simplification that leads to the analytical
treatment of the model presented so far. It should be noted
that the observationsyk are indirectly dependent on each
other through the Markovian structure induced condition-
ally on di(y

k) by the underlying processzk.

Maximum likelihood approach

Let Z 5 { z: zk 5 i; k [ T, i [ #} be the space of events
constituted by the path realizations of the chain {zk}, and z
one of its elements, i.e.,z constitutes a particular sequence
of conductance states andZ the set of all possible sequences.
Then, following Eq. 1 and the Markov property onz, the
likelihood, which equals the probability of the observations
conditional on the parameters,L(u) 5 p(yuu), is given by

L~u! 5 O
z[Z

P~y, zuu! 5 O
z[Z

P~yuu, z!P~zuu!

5 O
i151

n O
i251

n

· · · O
iN51

n

@li1di1~y
1!ai1i2di2~y

2! · · ·aiN21iNdiN~y
N!#,

(6)

with i1, i2, . . . , iN [ #. To simplify notation, let

hi
1 5 lidi~y

1!, hji
k 5 ajidi~y

k!, (7)

then

L~u! 5 O
i151

n

· · · O
iN2151

n O
iN51

n

hi1
1 · · ·hiN21iN

N . (8)

Statistical inferences concerningu generally take the form
of point estimates,u*, obtained at a local maximum ofL(u),

u* 5 argmax
u[Q

$L~u!%, (9)

with Q usually a compact subset of some Euclidean space
Rd, more preciselyQ 5 Rn 3 R1

n 3 [0, 1]n3n11. The
notation “argmax{L¼}” refers to the point inQ whereL¼
attains a (local) maximum. In the particular case whend is
normal (Eq. 2) andz is known, the required maximization is
analytic. However, in patch clamp recordings,z is unknown
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and inferences are directed toward both (z, u). In this case,
the maximization has to be performed numerically by con-
sideringnN terms at Eq. 8. Evaluation ofL(u) becomes a
critical issue, especially in the case of patch clamp records
suitable for stationary analysis whereN . 106. In the
general framework, this problem was first considered by
Baum et al. (1970), who derived an efficient solution re-
ducing the evaluation toO(n2N). Baum’s methods, known
as the forward–backward algorithm and reestimation for-
mulas, were first applied to patch clamp records by Chung
et al. (1990).

BAYESIAN APPROACH

Bayesian analysis proceeds by considering the parametersu
as random variables onQ , Rd. Inferences in this case
require the definition of a joint densityp(y, u), which can be
decomposed asL(u)p(u), simply by following the definition
of conditional probability. The densityp(u), known as the
prior, represents our previous knowledge or belief about the
value of the parameters before the observations have been
examined. Oncey is available, the uncertainties onu are
represented by a posterior density,p(uuy), which follows
from p(y, u) and the application of Bayes Theorem as

p~uuy! 5 L~u!p~u!YEL~u!p~u! du. (10)

Let Ep denote mathematical expectation with respect to the
posterior andg any (square integrable) function ofu. Formal
statistical inferences in this context often take the form of
integrals

Ep@g~u!# 5 Eg~u!p~uuy! du, (11)

and are thus based on the support ofp(uuy) rather than on a
single point estimate. This ensures the use of probabilities
for eventsu [ C (C # Q), in contrast to classical confi-
dence procedures. An account of Bayesian theory can be
found in Bernardo and Smith (1994).

Although there are clear theoretical advantages of the
Bayesian approach, there are difficulties that must be over-
come before they can be realized in practice. The integrals
in Eqs. 10 and 11 are not analytical for the current model.
This fact arises as a consequence of the structure imposed
by the likelihood in Eq. 8, regardless of the specific form of
g(u) andp(u).

Markov chain Monte Carlo for hidden
Markov models

A solution to the integration task posed by Eqs. 10 and 11
is provided by Monte Carlo approximation together with

Markov chain sampling. First, an ergodic Markov chainu(0),
u(1), . . . , isconstructed onQ, such that its invariant distri-
bution corresponds to the hidden Markov model posterior
p(uuy). It should be made clear that this process represents
a different Markov chain than that followed by the channel
on Z.

More precisely, letKum 5 P(u(m) [ Buu(m21) 5 x) denote
the step transition probability fromu(m21) to u(m) for any
m 5 1, 2, . . . , andp0 5 P(u(0) [ A) an initial density for
A, B , Q, andx [ Q. Under mild regularity conditions that
ensure ergodicity

lim
m3`

@Ku
mp0# ¡

d
p~uuy!, (12)

for almost all initial values ofu(0). Here Ku
m 5 P(u(m) [

Buu(0) 5 x) denotes themth iterate ofKu
1, that is, Ku

m 5
KumKu

m21, and3d is used to denote convergence in distri-
bution (see Billingsley, 1968). Thus, after an initial relax-
ation periodb, successive iterations generate a sequence of
samplesu(b11), . . . , u(M) that are approximately distributed
according top(uuy). This sequence may then be used to
calculate averages that approximate the desired expectations
under the posterior target density

Ep@g~u!# <
1

M 2 b O
m5b11

M

g~u~m!!, (13)

constituting a Monte Carlo estimate of the integrals in
Eq. 11.

The combination of these techniques has been used to
tackle complex multidimensional problems, proving to be
an effective tool where standard frequentist methods have
failed. The theoretical background needed for the use of
these general state chains is described in Nummelin (1984)
or Meyn and Tweedie (1993); whereas their application to
Bayesian statistics is presented among others by Tierney
(1994), Besag et al. (1995), or Robert and Casella (1999).
J. A. Stark, R. Rosales, W. J. Fitzgerald, and S. B. Hladky
(manuscript in preparation) also present a different Markov
chain Monte Carlo approach for the single channel restora-
tion problem in terms of a change point model. The partic-
ular chain that will be used to generate approximate samples
from the posterior in Eq. 10 is presented in detail in the next
section.

Gibbs sampler

Let p(uiuu2i, y) be the (full) conditional densities for each of
the componentsui, given values of the other components
u2i 5 { uj: j Þ i}. These densities are uniquely determined
by a particular posterior (Besag, 1974) and constitute the
building blocks of a Markov chain Monte Carlo method
known as the Gibbs sampler (Gelfand and Smith, 1990).
This sampler proceeds as follows. Given an arbitrary set of
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starting valuesu(0) 5 (u1
(0), . . . , ur

(0)), draw a sample ofu1
(1)

from p(u1uu21
(0), y), i.e.,

u1
~1! , p~u1uu2

~0! , . . . ,ur
(0), y!

then

u2
~1! ;p~u2uu1

~1! , u3
~0! , . . . ,ur

(0), y!
. . .

ur
(1) ;p~uruu1

~1! , . . . ,ur21
(1) , y!.

(14)

This completes one iteration of the sampling schemeu ;
{ p(uiuu2i, y)}, and also a transition fromu(0) to u(1). The
sampling of a high dimensional vectoru has been replaced
by the sampling of lower dimensional components, which is
one of the key features of this algorithm.

The decomposition ofp(uuy) into its conditionals is rather
involved because of thenN terms in Eq. 8. Consider instead
the joint p(u, zuy), which leads to the following decompo-
sition and sampling scheme:

~u, z! , $p~uiuu2i , y, z!, p~zuu, y!%. (15)

In this case, under the appropriate choice of priors, all the
densitiesp(uiuu2i, y, z) are analytical because they only
involve one of the possible realizations inZ. This simplifi-
cation was first considered by Robert et al. (1993), and by
Diebolt and Robert (1994) in the general mixture distribu-
tion context. The key of this conditional decomposition
resides in consideringz as a random variable, much in the
same way asu, instead of integrating it out. This scheme
leads to rigorous theoretical facts on the convergence of the
sampler to be discussed in the section entitled Convergence.

Following Eq. 15, draws have to be produced from the
full conditional for the hidden process

p~zuy, u! 5 hi1
1 · · ·hiN21iN

N /L~u! (16)

for any i1, . . ., iN21, iN [ #. This can be achieved in
different ways. A first alternative consists of the method
proposed by Carter and Kohn (1994), which constitutes a
stochastic version of the forward–backward algorithm. This
follows by noting thatp(zuy, u) can be decomposed as

p~zuy, u! 5 p~zNuy, u! P
k51

N21

p~zkuzk11, yk , u!, (17)

with yk 5 y1, . . . , yk. Given zk11, p(zkuzk11, yk, u) is a
discrete distribution, which suggests the following sampling
strategy. Fork 5 2, . . . ,N andi [ #, compute and store the
optimal filterp(zk 5 iuyk, u), then samplezN from p(zNuy, u),
and, fork 5 N 2 1, . . . , 1,samplezk from p(zkuzk11, yk, u),
where, ifzk11 5 l, for i [ #,

p~zk 5 iuzk11 5 l, yk , u! 5
ailp~zk 5 iuyk , u!

Oj[# ajlp~zk 5 juyk , u!
. (18)

This strategy updates (u, z) by following the decomposition
given by Eq. 15. A second option follows by considering the
full conditional densities

p~zkuz2k, y, u! 5 p~zkuzk21, zk11, y, u!, (19)

which follow from the Markov property onz. For k 5
2, . . . ,N 2 1 and for anyi, j, r [ #, these densities are

p~z1 5 iuy, u! } hi
1,

p~zk 5 iuzk21 5 j, zk11 5 r, y, u! } hji
kair ,

and, fork 5 N,

p~zN 5 iuzN21 5 j, u, y! } hji
N . (20)

This sampling scheme leads to the conditional decomposi-
tion,

~u, z! , $p~uiuu2i , y, z!, p~zkuy, u, z2k!%, (21)

wherei denotes the index over the components ofu (Eq. 3).
Note that the first option generates a realization ofzdirectly
from the conditionalp(zuu, y) by using a single Gibbs com-
ponent. The second usesN different components and pre-
sents a more complicated correlation structure, since eachzk

depends on bothzk21 and zk11, which leads to a slower
mixing chain (see Liu et al., 1995, for the effects of corre-
lations among sampled components). However, by adopting
the latter option, it is possible to avoid any part of the
forward–backward filtering procedures used in the other
two cases. This fact is particularly useful in the treatment of
dependent observations (R. Rosales, J. A. Stark, W. J.
Fitzgerald, and S. B. Hladky, manuscript in preparation).

Priors

In this paper, we consider proper conjugate priors that
attempt to be weakly informative onQ. A prior p(u) that
belongs to a parametric familyF is conjugate to a given
likelihood if the resulting posterior is also from this family.
In this case, the required conditionals foru also belong toF
(see, for example, Bernardo and Smith, 1994). This prior
has been chosen for tractability. It should be noted that
hidden Markov models do not allow the use of improper
(noninformative) priors forl or for each row ofA (Diebolt
and Robert, 1994).

Let ai denote theith row of A. Then, by assuming
independence between priors over states and conditional
independence between priors over parameters,

p~u! 5 P
i[#

p~l, ai , qi , si
2!

5 p~l! P
i[#

p~ai!p~qi!p~si
2!. (22)
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In the case of a univariate normal likelihood forhk and a
multinomial forz, the conjugate families foru are given by
the following densities:l ; D(b1, . . . ,bn), ai ; D(ei1, . . . ,
ein), qi ; N(mi, si

2) and si
2 ; IG(ui, wi). IG is used for an

inverted gamma density with shape and scaleui, wi and
hence with meanwi/(ui 2 1) wheneverui . 1 and variance
wi

2/[(ui 2 1)2(ui 2 2)] if ui . 2. The symbolD is used for
a Dirichlet density with parameter vectorx with eitherx 5
b or x 5 ei. In this case,xj . 0, and thejth mean and
variance for thejth component arexj/x0 and xj(x0 2 xj)/
[x0

2(x0 1 1)] wherex0 5 (j xj.
The parametersmi, si

2, ui andwi are regarded as constants
that may be calculated according to the observed data range.
Let the range extend from 0 toR, with R measured in
physical units of current. Then, setting

mi 5 R/2, si
2 5 R2 (23)

for all i [ #, tends to produce a prior forqi that is relatively
flat over the interval specified byR. The constantsui andwi

may be specified by setting the mean of the inverse gamma
density equal to the observed variancesy

2 (if available), and
also the variance equal to some reasonable multiple of the
data rangeR̃ (i.e., R̃ 5 4R). Solving the resulting system for
ui andwi gives

ui 5 @~sy
2!2 1 2R̃#/R̃ wi 5 @~sy

2!4 1 sy
2R̃#/R̃. (24)

Noninformative priors for the initial density and for the
transition probabilities are obtained at the limit whenbi 3
0 andeij 3 0. However, care must be taken becausebi 5
eij 5 0 for anyi, j [ # results in an improper prior. Sensible
choices representing weak prior information areeij [
[0.1, 1] andbi 5 1026. In terms of the single channel record,
the value foreij constitutes a statement about the frequency
of the transitioni 3 j, whereas the choice forbi represents
the prior belief that the channel will start at theith level.
Due to the structure induced by the Dirichlet density for
each row, informative priors forA obeying reversibility
constraints imposed by Kolmogorov’s criteria could also be
used as those suggested forQ by Ball et al. (1999).

The full conditionals necessary to implement the Gibbs
sampler follow immediately once the priors have been spec-
ified. Samples for all these densities where generated by
implementing Eqs. 14, 18, and 20, and following the meth-
ods described in Fishman (1996) and Gelman et al. (1995).
The explicit form forp(uiuu2i, y, z) is derived in the Ap-
pendix.

Convergence

Successive iterations from the sampling scheme at Eq. 15
(or Eq. 21) produce the sequence (u(1), z(1), . . . , (u(M), z(M)),
which is a Markov chain onQ 3 Z. Let p(uuy) be the

marginal ofp(u, zuy), that is,

p~uuy! 5 O
z[Z

p~u, zuy!, (25)

andpm(uuy) the density generated at themth Gibbs step. Let
also f(zuy) and fm(zuy), be the corresponding densities forz.
Then,

pm~uuy! 5 O
z[Z

p~uuz, y!fm~zuy! (26)

represents a relation between the marginals at each step that
enables transfer of the convergence properties of {z(m)} to
{ u(m)}. This fact, first elicited in Diebolt and Robert (1994)
and Robert (1995), is known under the term “duality prin-
ciple.” Because {z(m)} is a regular discrete state space
Markov chain, then it is stationary and its equilibrium
distribution f(zuy) is unique, that is, {z(m)} is ergodic. Al-
though {u(m)} is not a Markov chain, it is straightforward to
show that its stationary distribution is the marginalp(uuy).
In this case, due to Eq. 26, the following results hold:

a. For any starting valueu(0), the process {u(m)} converges
uniformly to p(uuy) at a geometric rate.

b. For any real functiong, providedEp[ug(u)u] , `, and for
any stating pointu(0), Epm[g(u)] converges uniformly at a
geometric rate toEp[g(u)].

c. Because {z(m)} is a stationary Markov chain, it is also
w-mixing, and hence, so is {u(m)}. In this case a Central
limit Theorem for any real functiong(u) holds, provided
Ep[ug(u)u2] , `.

Proofs for a and b can be found in Theorem 1, (i)–(ii) in
Robert et al. (1993). A proof for c is provided by Theorem
1 (iii) in Robert et al. (1993) and Theorem 20.1 in Billings-
ley (1968). An expression for the rate of convergence in a is
outlined in the Appendix.

RESULTS

This section presents results obtained with the Gibbs sam-
pler on synthetic signals of known characteristics. The fol-
lowing example was designed to present a challenge by
providing a combination of brief events together with
closely located subconductance levels. A four-state Markov
chain with reversible cyclic mechanism

SCHEME 1

was considered. The symbolski, i 5 1, . . . , 8 are used to
denote the transition rate constants among the states. By
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settingk1 5 6.183,k2 5 0.454,k3 5 2.697,k4 5 1.665,
k5 5 0.446,k6 5 13.163,k7 5 0.182, andk8 5 11.812 and
the sampling period tod 5 0.005, the transition probability
matrix, A 5 exp(Qd), becomes

C1

C2

O2

O1

C1 C2 O2 O1

3
0.924 0.0129 0.063 0.000122

0.000870 0.991 0.000153 0.00793
0.00218 0.785e2 4 0.996 0.00213

0.584e2 4 0.0562 0.0295 0.914
4

and the expected life times at each state are spread over two
orders of magnitude, i.e.,tc1

5 0.0551,tc2
5 1.351,to1

5
0.0629, andto2

5 0.5519. This mechanism generates long
sojourns in an “open” state or in a “closed” state, which are
then interrupted by brief transitions to a state of the opposite
type, that is,C2 3 O1 3 C2 or O2 3 C1 3 O2. The
conductances were set toqc1

5 0.07,qc2
5 0.0,qo1

5 0.14,
andqo2

5 0.21, and white noise of mean 0.0 and standard
deviation 0.1 was added to a million-point realization ofz.
The allowed set of transitions, together with the labels
assumed for the conductances, can be seen in Fig. 1C. The
corresponding noisy segment is presented in Fig. 1A.

These data were analyzed with the Gibbs sampler spec-
ified by Eq. 15, more precisely by using stochastic forward–
backward updates (Eq. 18) with four conductance levels and
2000 iterations. The priors where specified as:mi 5 0.36,
si
2 5 0.25,ui 5 2, wi 5 1, eij 5 0.5, andbi 5 1 3 1026, for

all i, j [ #. The sampler was started at arbitrary initial
values foru andz, namely:qi

(0) 5 0.36,si
2(0) 5 0.5,ai5j

(0) 5
0.99, andaiÞj

(0) 5 0.003, andli
(0) 5 0.25. The initial realiza-

tion, z(0), was obtained by sampling from the values ofA(0)

andl(0).

General output for z and u

The traces at Fig. 1B show detail of a few of the sampled
realizations forz. Long-lived sojourns with high signal-to-
noise ratios are usually well located, whereas brief instances
with poor resolution present some degree of uncertainty. An
example of the latter is given by the short sojourns atC1,
arising from transitions fromO2 such as the one near the
sample 447 in Fig. 1B. Rather than showing all the samples
for z, it is desirable to present a summary of their statistical
properties. Figure 1D presents the most frequently visited
state at each time point. The actual location of the levels is
assigned by taking the ergodic average for the sampled
values ofq, i.e., by settingg(ui) 5 qi in Eq. 13. Different
summaries forz(m), such as the Monte Carlo mean6
standard deviation or their Rao-Blackwellized versions
(Robert and Casella, 1999) are also possible. The proportion
of misclassified points computed from the most frequently
visited state is 0.0315, with a large majority of these ac-
counted for by fitted transitions that slightly precede or
follow the corresponding transition in the ideal record.

The plots in Fig. 2 show samples of few components of
u against the number of iterations. It appears that the sam-
pler reaches a stationary state within approximately 100
iterations. Further iterations (see Fig. 2D, and further.106,
not shown) do not seem to diverge from these values. The
ergodic averages for some components ofu obtained from
the last 1000 iterations are (standard deviation in parenthe-

FIGURE 1 (A) A segment of the synthetic data generated by the mechanism in the Results section. (B) An ensemble of few sampled realizations,z(m),
for m: 22, 24, 25, 47, 49 (3102), for the range marked in (A). (C) The ideal (noiseless, unfiltered) trace underlying the data segment shown in (A) indicating
the labeling of the states,C1, C2, O1, O2. (D) The most frequently visited state during the last 1000 iterations of the Gibbs sampler.
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ses):qc1
5 0.067 (.001),qc2

5 27.44e2 4 (1.9e2 4), qo1
5

0.138 (8.68e 2 4), and qo2
5 0.209 (1.43e 2 4), the

transition probability matrix,

C1

C2

O2

O1

C1 C2 O2 O1

3
0.924 0.008 0.066 0.002

~0.003! ~0.002! ~0.003! ~0.002!
7.3e2 4 0.991 2.2e2 4 0.008

~1.3e2 4! ~2.3e2 4! ~1.1e2 4! ~2.9e2 4!
0.002 5.8e2 5 0.996 0.0021

~1e2 4! ~5e2 5! ~1.1e2 4! ~1.1e2 4!
2.54e2 4 0.064 0.027 0.91

~3.53e2 4! ~0.002! ~0.002! ~0.002!

4,
and the variances of the noisesc2

2 5 0.01 (2.64e2 5), sc1

2 5
0.01 (1.45e 2 4), andso1

2 5 0.01 (9.64e 2 5), so2

2 5 0.01
(1.69e 2 5). In general, the sampled realizations that cor-
respond to states or transitions that are less frequent have
higher variances. In this case, the uncertainties associated
with the short-lived statesC1 andO1 are higher.

For comparison, Baum’s likelihood maximization was
applied using the sameu(0) values as those for the sampler.
In this case, the estimates for theu components reported
above were:qc1

5 0.067,qc2
5 0.003,qo1

5 0.164,qo2
5

0.207,sc2

2 5 0.01, andso1

2 5 0.01, and, for the diagonal of
A: ac1c1

5 0.964,ac2c2
5 0.996,ao1o1

5 0.968, andao2o2
5

0.998.

Kernel estimates

Some properties of the samplesui
(b11), . . . , ui

(M) can be
summarized through a kernel density estimate. Denote by
E 5 M 2 b the effective number of iterations after burn in.
This estimator is given by

k̂~x! 5
1

E O
m5b11

M

f$x 2 ui
(m), v%, (27)

where f, known as a kernel function, is itself a density
usually chosen to be unimodal and symmetric about zero.
Here we considerf as a normal density with mean 0.0 and
standard deviation (bandwidth)v . 0. Following Eq. 27,
this estimate is constructed by centering a scaled normal
density at each sample ofui

(m); the actual value at any point
x is the average of theM 2 (b 1 1) ordinates at that value.
For the level positions,q, this estimate might be used as an
alternative to the all-points conductance histogram com-
monly used in single channel analysis. The estimates for
some components ofu including the ones forqc1

andqc2
are

shown in Fig. 3. Just as the bin width affects the appearance
of a histogram, the value ofv affects the shape of the
density estimate, with larger values producing smoother
estimates. For all the components ofu, this parameter is
obtained asv 5 su[4/(3E)]1/5, wheresu denotes the sample
standard deviation (see Bowman and Azzalini, 1997, p. 31).

FIGURE 2 Samples for some components ofu
against iteration number: (A) samples for the level
positionsq; (B) samples for the variancesC1

2 ; (C) sam-
ples foraC2C1

(center), aO1C1
(top), aC1C2

(bottom); (D)
samples foraO2C2

(top), aO1O2
(center), aC1O2

(bottom).
The total number of iterations in (A), (B), and (C) were
2000, whereas (D) presents a longer run (104) that
suggests stationarity foraC1O2

.
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Both figures also reflect the fact of higher uncertainty for
the parameters associated to short lived sates. In any case,
the posterior mode follows closely the true value.

Dwell time estimation

Single-state dwell times

The kernel density estimates for the dwell timest1, t2, . . . at
any single state are presented in Fig. 4. These are calculated
from m sampled realizations ofz by following a form
similar to the one in Eq. 27. Denoteti,m theith sojourn of the
mth realization, then the kernel is computed as

k̂~x! 5
1

E O
m5b11

M 1

Hm
O
i51

Hm

f$x 2 t*i,m, vi%, (28)

whereHm is the number of dwell times for a particular state
in z(m), and t*i,m 5 ln(ti,m), is the sequence of log-trans-

FIGURE 3 Kernel density estimates for selected posterior marginals. (A)
Estimates forqc2

(continuous, bottom axis) andqc1
(dashes, top axis), both

calculated from Eq. 27 withv 5 0.002. (B) Estimates forac2c2
(continuous,

bottom axis) andaC2O2
(dashes, top axis); both obtained withv 5 0.0005.

The kernels were constructed from the last 1000 realizations.

FIGURE 4 Kernels for the dwell times for each state obtained: (A) from
the ideal trace (see Fig. 1C); (B) from the posterior estimate produced
using the Gibbs sampler; and (C) by low-pass filtering the trace at 5 kHz
and thresholding (C). The curves from (A) are echoed in (B) for compar-
ison. Note the different vertical scale in (C). Each trace has been scaled so
that it integrates to the number of sojourns in the corresponding state. For
the theoretical trace in (A) the counts and time constants wereC1: 1622,
0.055;C2: 2858, 1.35;O1: 3675, 0.063; andO2: 2527, 0.552. The band-
width was calculated from Eq. 29 withg 5 0.39. For comparison with the
ideal values oft given earlier, the mean dwell times in each of the states
in (C) are:tc1

5 0.050,tc2
5 0.363,to1

5 0.052, andto2
5 0.438.
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formed sojourns. It is useful to use a scale-dependent band-
width,

vi 5 max$ln~1 1 d/ti,m!, g%, (29)

where g is the bandwidth or standard deviation of the
normal density used for long dwell times, and ln[11 d/ti,m]
ensures that the bandwidth for short dwell times corre-
sponds to a time uncertainty of at least one sample interval.
The choices of bandwidth and the spacing ofx values for
evaluation off are related. So that each dwell time will add
equal weight to the density estimate,g must exceed the
spacing. The densities in Fig. 4 have been scaled by the
number of detected events or counts to allow comparison
between the kernel estimates calculated from output of the
Gibbs sampler and from the results of filtering and thresh-
olding. For the Gibbs sampler, the density is multiplied by
H 5 Ep[Hm]. The plot in Fig. 4A corresponds to the
estimates for the time spent at each state, calculated from
the noiseless sequence. The plot in Fig. 4B shows the
estimate obtained from the last 20 realizations obtained by
the Gibbs sampler. These are in good agreement with the
ideal results. The plot in Fig. 4C shows the estimate ob-
tained by low-pass filtering the data to 5 kHz using a digital
Gaussian filter and noting the crossings of thresholds at
0.035, 0.105, and 0.175. Many of the extra counts in the
large peaks for statesC1 andO1 in Fig. 4C are artifacts that
represent the finite time taken for the filtered conductance to
pass through the band of conductances corresponding to
these states in the transitions betweenC2 and O1 and be-
tweenO2 and C1, respectively. These artifacts render the
estimates forC1 and O1 virtually useless. If the cut-off
frequency for the low-pass filter could be increased, the
artefactual counts would occur for shorter dwell times and
thus might be separable from the genuine events. However,
increasing the cut-off frequency increases the amplitude of
the noise, which increases the frequency of another form of
artefactual crossing of the thresholds. Indeed the peaks for
the long-lived statesC2 and O2 in Fig. 4C contain more
counts than for the ideal trace and are shifted to shorter
dwell times because, even after filtering to 5 kHz, the noise
produces a large number of additional crossings of the
thresholds at 0.035 and 0.175.

Class dwell times

In practice, filter and threshold analysis of the data summa-
rized in Fig. 4 would be attempted using a single threshold
leading to two classes of states,O 5 { O1, O2} above the
threshold andC 5 { C1, C2} below. To obtain the predic-
tions of the model for these classes, theQ matrix is parti-
tioned into four submatricesQoo, Qco, Qoc, andQcc; each
with entries equal to the corresponding transition rates
(Colquhoun and Hawkes, 1982). Figure 5,A andB, displays
the theoretical densities obtained by using the spectral rep-

resentation of theQ matrix (Colquhoun and Hawkes, 1982,
1995), and least square fits of two log-transformed expo-
nentials,(i (Wi/ti)exp[x 2 exp(x)/ti], i 5 1, 2; with x 5 to
or x 5 tc to the kernel estimates obtained from the Gibbs
sampler for the time spent in both classes. These are calcu-
lated with Eqs. 28 and 29 after adding together the events
corresponding to successive sojourns of each class. The
relevant dwell times were taken from the last 20 sampled
realizations. In Fig. 5C the dwell times have been obtained
by low-pass filtering the noisy trace with a 5-kHz digital
Gaussian filter and noting a change of state whenever the
signal crosses a threshold at 0.105, half way between the
two middle levels. With this synthetic signal, a large ma-
jority of genuine transitions do cross the midline, which
makes this an appropriate position for a single threshold.
The filter frequency of 5 kHz was chosen to reduce the
“false alarms” resulting from noise fluctuations to less than
5% of the total. It is possible to use relatively light filtering
and tolerate a relatively high rate of noise transitions when
the signal is in a state close to a threshold because these
states are occupied for less than 10% of the time and
genuine transitions from them are frequent. However, even
at 5 kHz, more than a third of the genuine events have been
missed. Further low-pass filtering leads to a substantial
reduction in the number of threshold crossings observed.

The use of the Gibbs sampler to analyze data for which
several states present the same conductance can be illus-
trated directly by considering the previous data set, but with
qc1

5 qc2
5 0.0 andqo1

5 qo2
5 0.07. These data were

analyzed with four states and the restrictionqc1

(m) 5 qc2

(m),
qo1

(m) 5 qo2

(m). In the first case, the state space is simply# 5
{ O, C}, whereas in the second, the partition# 5 O ø C
with O 5 { O1, O2} and C 5 { C1, C2} is implicitly assumed.
The sampler was run for 23 104 iterations using the same
priors and the same initial values foru andz as those used
previously. The results are shown in Fig. 6. Under these
demanding conditions, the counts are now noticeably dif-
ferent from the ideal ones but the time constants are still
close to their correct values. Moreover, in this case, the
sampler is still able to recover the transition probability
matrix,

C1

C2

O2

O1

C1 C2 O2 O1

3
0.927 0.006 0.015 0.005
~0.01! ~0.005! ~0.01! ~0.052!

8.54e2 4 0.991 0.001 0.007
~7.12e2 4! ~5.55e2 4! ~0.001! ~0.001!
2.87e2 4 7.9e2 4 0.996 0.003

~2.88e2 4! ~6.81e2 4! ~3.57e2 4! ~7.8e2 4!
0.005 0.071 0.012 0.908

~0.005! ~0.008! ~0.009! ~0.006!

4.
The Gibbs sampler can also be used to illustrate the

consequences of fitting with a wrong model by using only
two states. The results are shown in Fig. 6D. Comparison of
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the traces for the open and closed states in Fig. 6D with
those for the open and closed classes in Fig. 6,A and B,
shows that the predictions are biased toward those consis-
tent with a two-state model. Many rapid transitions are
missed, and the apparent time constants for the longer
events are correspondingly too long (tC2

5 2.45 andtO2
5

1.24, as compared to 1.44 and 0.60, respectively). Attempts
to use low-pass filtering and noting the crossings of a
threshold at 0.035 produced much less satisfactory kernels.
With filtering to 2 kHz, more than 20% of the crossings
were false alarms corresponding to the noise, whereas, at 1
kHz, there were only 1158 counts in each class with almost
complete failure to detect rapid events.

Joint densities

Class dwell-time histograms or kernels are useful for deter-
mining the number of components and their respective
mean dwell-time durations. However, they do not display
important information that is available about the way states
are connected. Further insight into the relationship among
states of different classes is obtained by studying the pos-
sible correlations of consecutive dwell times. For pairs of
consecutive sojourns atO andC, these correlations can be
displayed as a two-dimensional histogram (Magleby and
Song, 1992). The surface at Fig. 7A presents the theoretical
joint density for the pair (x*o, x*c), which is obtained by
following arguments similar to the one used to derive the
unidimensional densities for each class (see Fredkin et al.,
1985, Eq. 4.1). Figure 7B shows the bivariate kernel esti-
mate obtained as a multidimensional extension to Eq. 28,

k̂~x*o, x*c!

5
1

E O
m5b11

M 1

Hm
O

i, j51

Hm

f@x*o 2 u*i,m, vi#f@x*c 2 v*j,m, vj#, (30)

with u*i,m and v*j,m as the log-transformed (consecutive)
sojourns obtained from the last 20 iterations of the sampler
for the classesO and C, respectively. The bandwidthsvi,
andvj are given by Eq. 29.

The highest peak in Fig. 7B arises from brief sojourns in
O followed by long ones inC, which, for two open and two
closed states, could arise either fromO1 3 C2 as in the
present mechanism or fromO13 C2º C1. A second peak
corresponds to the occurrence of long dwell times atO
which are adjacent to short ones inC, i.e.,O23 C1 as here

FIGURE 5 Kernels for log dwell-times (A) in the open class,O, and (B)
in the closed class,C, obtained from the sojourns in the last 20 sampled
realizations ofz(m) produced by the Gibbs sampler. The bandwidths were
calculated from Eq. 29 withg 5 0.39. The kernel estimate is shown as a
continuous (bold) line, the theoretical pdf obtained from theQ matrix as
short dashes, and a nonlinear least squares fit of an exponential mixture
(see text for details) as dot-dashes. The dots in both (A) and (B) correspond
to the components of the fitted mixture. (C) Kernel for the dwell times in
O (continuous) and C (dashes) obtained via filtering and thresholding,
superimposed on the kernels shown in (A) and (B). Kernels and fits are
scaled to integrate to the total number of dwell times. Theoretical pdfs in
(A) and (B) are scaled to integrate to the number of dwell times present in

the original noiseless data. For the kernels for the Gibbs sampler output the
counts and time constants were:C1, 1835, 0.055;C2, 2089, 1.42;O1, 1083,
0.068; andO2, 2873, 0.57. A fit to the kernels presented in (C) (not shown)
gave:tc1

5 0.076,tc2
5 2.033,to1

5 0.097,to2
5 1.012. Note (see also

Fig. 6) that the fitted components in (A) and (B) are not estimates of the
kernels for the individual states (see e.g., Colquhoun and Hawkes, 1982).
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or O1 º O2 3 C1. A third, less prominent, maximum is
constituted by long sojourns in both classes, which, in
general, could correspond to direct transitionsO23 C2 but
here arise primarily from composite events of the form
O23 C13 C2, in which the middle event is so brief that
it is not detected. All of these features are recovered by the
Gibbs sampler as shown by the kernel estimate at Fig. 7B.
In general, the visible maxima correspond to the ones that
present the most frequent interval combinations (including
compound transitions) or those arising from components
with widely separated time constants.

Magleby and Song (1992) have introduced a measure for
the significance of the dependencies between successive
dwell-time pairs that helps to clarify the connectivity of the
states. This measure is defined as the difference between the
square roots of the frequency of dwell-time pairs (x*o, x*c),
and the frequency that would be expected if the successive
dwell times occurred independently,

D~x*o, x*c! 5 Îp~x*o, x*c! 2 Îp~x*o!p~x*c! . (31)

This quantity can be obtained from the estimate in Fig. 7B
by marginalization. Letng1 3 ng2 be the dimension of the
grid used for the estimate at Fig. 7B, then, for the (p, q)th

coordinateppq(x*o, x*c) 5 k̂pq(x*o, x*c), and

pp~x*o! 5 O
q51

ng2

k̂pq~x*o, x*c!,

pq~x*c! 5 O
p51

ng1

k̂pq~x*o, x*c!.

(32)

Figure 7C shows the theoretical dependence-difference,
and Fig. 7D the one obtained from the estimate at Fig. 7B.
It can be seen that significant dependencies,D(x*o, x*c) . 0,
are related to dwell-time pairs that correspond to events
O13 C2 andO23 C1. Negative dependencies exclude the
eventsO1 3 C1 and O2 3 C2. It is therefore possible to
conclude that the smallest of the three maxima in Fig. 7B
arises from composite transitions eitherO23 O13 C2 or
O23 C13 C2.

DISCUSSION

Summary

A method for dealing with the statistical analysis of hidden
Markov models for single channel records has been devel-

FIGURE 6 Logarithmic dwell time
kernel estimates obtained for the
analysis of the same mechanism as in
the Results section, but with only two
conductance levels,qc1

5 qc2
5 0.0

andqo1
5 qo2

5 0.07. Plots (A), (B),
and (C) correspond to the estimates
obtained when analyzing this data
with four states with the restriction
qc1

(m) 5 qc2
(m), qo1

(m) 5 qo2
(m), for m5 1, 2,

. . . , M. (A) represents the estimate
for the dwell times in the open class,
(B) for the closed class, and (C) the
single state estimates. The plot at (D)
presents the estimates for the class
dwell times obtained with the sampler
by considering only two states. For
both (A), and (B) the solid (bold) line
corresponds to the kernel estimate,
short dashes correspond to the theo-
retical pdf obtained fromQ, and dot-
dashes to a nonlinear least squares fit
of a two-component exponential mix-
ture. The counts and the time con-
stants for the fitted components gave:
C1, 1324, 0.055;C2, 2801, 1.438;O1,
2805, 0.077; andO2, 2000, 0.599. In
(D), the solid lines represents the es-
timate for the open state and the
dashed line the one for the closed
state. All the densities are rescaled to
integrate respectively to the number
of dwell times in each class or state.
Plot (A) may be compared directly
with Fig. 5A, plot (B) with Fig. 5B
and plot (C) with Fig. 4B.
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oped. Inferences concerning signal restoration and parame-
ter estimation were based on the framework provided by
Bayesian statistics in contrast to methods based on likeli-
hood maximization (Baum et al., 1970; Chung et al., 1990;
Venkataramanan et al., 1998; Michalek and Timmer, 1999;
Fredkin and Rice, 1992a). Here, the probability distribution
of all the unknowns given the observations was explicitly
defined, and was the basis for all the inferences. Estimates
are generated by Markov chain Monte Carlo sampling from
this distribution. By analyzing signals of known character-
istics, these methods have been found to produce estimates
of the model parameters that are similar to those obtained
using Baum’s likelihood maximization.

Sampling methods provide a precise description of the
modeling process. Under mild regularity conditions, the
Gibbs sampler automatically provides a measure for the
uncertainty of the generated estimates. This fact follows
from the Central Limit Theorem, which applies as a conse-
quence of the duality principle between {u(m)} and {z(m)}
stated in the section, Convergence. Further results concern-
ing the estimation of the variance are possible in this setting
(Chauveau et al., 1998). Although different in nature from
the Monte Carlo estimates obtained here, Bickel and Ritov
(1996) and Bickel et al. (1998) have established asymptotic

normality for likelihood-based estimates. However, the ac-
curacy of the asymptotic approximation still remains un-
known. Moreover, contrary to Monte Carlo estimates, the
precision of the estimates in this setting depends on the
length of the data sample. In the likelihood context, S.
Michalek, M. Wagner, W. Vach, and J. Timmer (submitted
for publication) proposes=aij /tli as an empirical estimate
for the standard deviation ofaij . An alternative for the
construction of confidence intervals in this setting is pro-
vided by the use of parametric bootstrap methods that
require additional computations (MacDonald and Zucchini,
1997).

From a practical perspective, these methods do not im-
pose any constraint on the position of the conductance
levels, and they do not require specification of thresholds.
Any information that is available about the conductance
level positions is incorporated via a prior, which, as dis-
cussed in the section, Priors, may be arbitrarily vague. The
prior for the levels in the example considered here was
specified by setting the mean position for all the levels at the
midpoint of the observed data range, and their dispersion to
3.68 times the standard deviation of the observations.

Kernel density estimates have been used to summarize
the samples of the model parametersu(m) and dwell times

FIGURE 7 (A) Theoretical density
for pairs of adjacent sojourns, (x*o, x*c),
in O, C from the mechanism in the Re-
sults section. (B) Posterior kernel den-
sity estimate for (x*o, x*c), calculated
from 105 dwell time pairs generated af-
ter iteration 1000. The estimate was ob-
tained following Eq. 30 with bothvo

andvc calculated from Eq. 29 withg 5
0.39 and a grid of 503 50. (C) Theo-
retical dependence-difference (Eq. 31).
(D) Dependence-difference obtained
from (B) by Eq. 32.
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obtained fromz(m). These serve much the same purpose as
histograms. They have well-known advantages for display
when there are relatively few data points (see i.e., Bowman
and Azzalini, 1997), compared to the desired number of
bins in the histogram. Kernel estimation may thus be par-
ticularly useful in the construction of complex two-dimen-
sional empirical estimates such as the joint density of so-
journ pairs. In addition, for the display of dwell times on a
logarithmic axis, kernel construction is simpler than prepa-
ration of a smoothed histogram because the operations of
binning, correction for the logarithmic transformation
(Stark and Hladky, 2000), and smoothing are all replaced by
a single step.

To illustrate the method and to demonstrate its effective-
ness, a synthetic data set was constructed with four equally-
spaced conductance levels and rapid transitions between
nonadjacent levels. Traditional methods in which transitions
are detected as threshold crossings after low-pass filtering
the data are very difficult to apply to this type of data. If
three thresholds are spaced between the levels, there are
obvious artifacts (see Fig. 4C) including false alarms when
the noise reaches a nearby threshold and “transit peaks”
which result from the finite time it takes the filtered trace to
pass through the intermediate conductance band in a tran-
sition between nonadjacent levels. If the low-pass filtering
is light (e.g., 20 kHz), then the noise frequently reaches the
thresholds and the genuine transitions are swamped. If, in
contrast, the data is more heavily filtered (i.e., to 5 kHz as
in Fig. 4C), then the time taken for a transit through the
intermediate conductance band becomes comparable to the
actual dwell times in some of the conductance states, and,
again, there are no means for distinguishing genuine from
artefactual events. In Fig. 4C the filtering has eliminated
approximately a third of the genuine transitions, while the
“transit peaks” completely obscure the peaks for the more
rapid transitions. By contrast, the Gibbs sampler recovers a
faithful copy of the ideal trace from the noise, and, further-
more, the parameters of the probability matrix,A, are very
close to the values used in the construction of the dataset.
The mean dwell times in the states can be recovered from
either the probability matrix or from fits of exponentials to
the kernel density estimates for the dwell times.

In practice, analysis of these data using methods based on
filtering and thresholding would use a single threshold and
would thus detect dwell times in closed and open classes of
states rather than in the individual states. Results based on
this approach are shown in Fig. 5. More than a third of the
genuine events have been missed by filter and threshold,
and;5% of the transitions that have been detected are false
alarms.

Much of the difficulty inherent in fitting the data used for
Figs. 4, 5, and 7 arises from transitions between nonadjacent
conductances. Figure 6 shows the results obtained for the
same sequence of state transitions, but with the conduc-
tances of the two closed states both zero and the conduc-

tances of the open states both 0.07. The conductance tran-
sitions were chosen to be less than the standard deviation
(still 0.1) of the white noise, so that these data would present
a real challenge for fitting. When the Gibbs sampler is run
with four states subject to the constraints,qc1

(m) 5 qc2

(m) and
qo1

(m) 5 qo2

(m) the shapes of the kernels for the dwell times in
the conductances classes (see Fig. 6,A and B), the time
constants for the single state estimates (see Fig. 6C), and
the transition probabilities are close to their ideal values. By
contrast, when the Gibbs sampler is run with just two states,
the kernel estimates for the classes are badly distorted (see
Fig. 6D) with poor detection of rapid events and a corre-
sponding lengthening of the long events. Attempts to use
threshold detection after sufficient low-pass filtering to re-
duce false alarms resulting from noise to less than 5% of the
number of detected events produced no suggestion of a
rapid component in the kernels.

The approach followed here is similar in spirit to those of
Ball et al. (1999) and Hodgson and Green (1999). Both are
concerned with restoration under a constrained hidden
Markov model that follows a particular gating mechanism.
The second actually takes a further step toward model
selection. The principal objective here is signal restoration,
and, for this, we have designed a simpler Markov Chain
Monte Carlo sampler based on a discrete time approxima-
tion. As a result, the methods developed are less computa-
tionally intensive. Moreover, for the set of examples con-
sidered, the sampler seems to be less sensitive to initial
conditions and does not require acceleration techniques to
improve its mixing such as tempering. Possible disadvan-
tages of our parameterization are discussed in the next
section.

Our programs have been implemented in C and compiled
using the GNU C compiler (gcc) on various platforms
including Unix, Linux, and Windows NT without further
modifications. Each iteration consisting on the update of
(u(m), z(m)) to (u(m11), z(m11)) for the 106 samples data with
four states presented in the Results section takes about 12 s
on a PC with a Pentium 225-MHz processor under Linux.
For the examples presented here, 1000 iterations were al-
lowed for burn in, although for most cases a stationary point
was reached at,50 iterations. The kernels shown in Figs. 4
and 6 are based on the last 20 iterations of each run.

Extensions

The results in this paper are based on a simplified version of
the hidden Markov model Markov chain Monte Carlo
method in which the observations are assumed to be inde-
pendent and identically distributed. Real patch clamp
records, however, are usually correlated due to the use of
analog low-pass band filters and the presence of nonwhite
background noise. It has been shown (Venkataramanan et
al., 1998, among others) that standard Hidden Markov mod-
els produce biased estimates if these dependencies are not
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taken into account. An extension of the Gibbs sampler to
filtered and colored noise data will be presented by R.
Rosales et al. (manuscript in preparation).

The underlying continuous time process followed by the
channel {zl} is approximated by the discrete version {zk}. In
these terms, the model is parameterized through the transi-
tion probability matrixA instead of the generatorQ. This
produced satisfactory results for the purposes of signal
restoration. However, there are several disadvantages for
this choice if the main objective is to estimate the rate
constants of the model, i.e., to determineQ. First, the map
Q ° A 5 exp(Qd), for real positive elements ofQ, is not
onto the space of alln 3 n transition probabilities. Second,
if the sample interval is sufficiently long that multiple
transitions can occur within one interval, the inversion can
be very inaccurate or even impossible. Values that should be
zero may not be, i.e., composite events via transient inter-
mediates may be incorrectly assigned as direct transitions in
the model. Third, the rate constantsQ are much more
convenient than the probabilitiesA for describing the struc-
ture of the model in displays of the possible transitions of
{ zk}, such as shown by the mechanism in the Results
section. Finally, the continuous time parameterization may
reduce the computational effort by considering interval up-
dates forz rather than single point ones.

Parameterization of the model usingQ rather thanA has
been considered in the frequentist context by Michalek and
Timmer (1999) and in the Bayesian framework by Ball et al.
(1997). In the first approach, the transition rates are maxi-
mized numerically by considering Baum’s auxiliary func-
tion for Q. The Bayesian approach follows by considering
an exponential mixture likelihood for class dwell times,
which, following standard theory (Colquhoun and Hawkes,
1982), is given byQ. This matrix is parameterized bykij ,
and, in this case, a conjugate prior for each rate is given by
a Gamma densityG(aij , bij ), with bothaij , andbij assumed
known. The estimation ofu andz is made by using a hybrid
Markov chain Monte Carlo algorithm. The rateskij are
sampled through a Metropolis–Hastings kernel, andz by
one with reversible jumps similar to the one presented in
J. A. Stark et al. (manuscript in preparation).

Selecting one or possibly a subset of aggregated hidden
Markov models from an arbitrarily chosen family of com-
peting candidates is perhaps still the most challenging prob-
lem in the statistical analysis of ion channel data. With few
exceptions (Hodgson and Green, 1999; Ball and Sansom,
1989), this problem and the closely related question of
model identifiability have not been formally addressed. In
practical terms, there are instances in which physically
different models produce identical statistics (Kienker, 1989;
Wagner et al., 1999). In principle, Bayesian statistics pro-
vide a sound and consistent framework for model selection.
The results presented here suggest that the present Bayesian
Markov Chain Monte Carlo methods are suitable for signal
restoration and may prove to be useful for model selection.

APPENDIX

Because the Gaussian hidden Markov model likelihood belongs to a
exponential family, there is a classF of conjugate priors for which the
relevant full conditionals reduce to analytic densities (Bernardo and Smith,
1994, Prop. 5.4, p. 266). In this case, conditionals foru under a particular
realization,z, are given by

p~uiuu2i , y, z! 5 p~u, y, z!YEp~u, y, z! dui

5 p~y, zuu!p~u!YEp~y, zuu!p~u! dui

5 Lz~ui!p~ui!YELz~ui!p~ui! dui , (A1)

whereLz(ui) is the function formed from the likelihood underz with the
terms that contain the componentui. The last relation holds only ifui is ai

or l. When consideringui 5 qi or ui 5 si
2, each conditional is also a

function of the other component.

Conditional for si
2

Following Eq. A1, explicit substitution of the likelihood and the prior
IG(ui, wi) leads to

p~si
2uu, y, z! 5

exp@2x~si
2!#si

22c1

*R1
exp@2x~x!#x2c1 dx

(A2)

where

x~si
2! 5 FO

k51

N

~yk 2 qi!
2Ii~z

k! 1 wiGY2si
2,

c1 5 O
k51

N

Ii~z
k! 1 ui 1 1,

andIi(z
k) is the indicator function, i.e.,Ii(z

k) 5 1 if zk 5 i and 0 otherwise.
Settingx 5 si

2, c2 5 c1 2 1, andc3 5 (k51
N (yk 2 qi)

2Ii(z
k)/2 1 wi, the

integral in Eq. A2 has the solutionc3
2c2G(c2) (Box and Tiao, 1992, p. 144,

Eq. A2.1.1). Substitution of this result into Eq. A2 leads to the conditional,

p~si
2uu, y, z! 5 IG~ui# , wi#!,

with ui 5 c2, and

wi# 5 1/2FO
k51

N

~yk 2 qi!
2Ii~z

k! 1 wiG.
Conditional for qi

Taking a normal prior with mean and variancemi, si
2 leads to the following

expression for the numerator of Eq. A1,

expF2 1

2
Ok51

N ~yk 2 qi!
2Ii~z

k!

si
2 2

~qi 2 mi!
2

si
2 G. (A3)
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The denominator follows by integrating this expression with respect toqi

on R, which leads to

~2psi
2!2ni/2

si
2si

2 ~si
2ni 1 si

2!1/2e2~c41c5!, (A4)

with

c4 5
si

2Ok51
N ~yk!2Ii~z

k! 1 si
2mi

2si
2si

2 ,

c5 5
si

2 Ok51
N ykIi~z

k! 1 si
2mi

4si
2si

2~si
2mi 1 si

2!
.

The conditional forqi is a normal density that results by replacing Eqs. A3
and A4 into Eq. A1,

p~qiuu, y, z! 5 N~mi# , s#i
2!,

with

m# i 5
si

2 Ok51
N ykIi~z

k! 1 misi
2

si
2 Ok51

N Ii~z
k! 1 si

2 ,

s#i
2 5

si
2si

2

si
2 Ok51

N Ii~z
k! 1 si

2.

Conditionals for ai and l

Let D(aiuei) be theith transition probability row prior, which is explicitly
given by

D~aiuei! 5
G~Oj51

n eij!Pj51
n G~eij!

ai1
ei121 · · ·ain

ein21.

Following Eq. A1, the full conditional for each row is

p~aiuu, y, z! 5 P
j51

n

aij
cij1eij21YE

L

P
j51

n

xij
cij1eij21 dxij , (A5)

where

cij 5 O
k51

t21

Ii~z
k!Ij~z

k11!

is the frequency of the transitioni 3 j during z, and

L 5 Haij : aij . 0, O
j51

n

aij , 1J.
The integral in Eq. A5 has solution (Box and Tiao, 1992, p. 142, Eq.
A2.1.7)

GSO
j51

n

cij 1 eijDYP
j51

n

G~cij 1 eij!.

The conditional follows by substituting the expression above into Eq. A6.
In this case, the conditional is

p~aiuu, y, z! 5 D~ci1 1 ei1 , . . . ,cin 1 ein!.

The full conditional forl is similarly found by considering the same prior
structure as for the rowai, but the quantitiescij are replaced byoi 5 Ii(z

1).
In this case, the conditional is a Dirichlet density,

p~luu, y, z! 5 D~o1 1 b1, . . . ,on 1 bn!.

APPENDIX B: CONVERGENCE RATE

This appendix presents an explicit form for the rate of convergence and its
implications for the practical implementation of the Markov Chain Monte
Carlo algorithm. LetKz

m 5 P(z(m) 5 Buz(0) 5 A), the mth iterate of the
transition probability forz, and f 0(z 5 Auy) its initial density for any
realizationsA, B [ Z. BecauseZ is countable andKz

m . 0 (by construction
from Eqs. 17 or 20), thenz(m) is ergodic, and, hence, for anym 5 1, . . . ,

uf m~zuy! 2 f ~zuy!u # ~1 2 2K* !m21, (B1)

where

f m~zuy! 5 O
z[Z

K z
mf 0~zuy!,

and

K* 5 min
z(1),z(0)

$Kz
1% (B2)

(see Kemeny and Snell, 1960, Corollary 4.1.5, p. 71). LetD denote theL1

norm with respect tof[ or p[, i.e.,

D~f m, f! 5 O
z[Z

uf m~zuy! 2 f~zuy!u.

Then, following Eq. 26 and noting that Eq. B1 is pointwise satisfied for any
z(m) 5 B (B [ Z), gives

D~pm, p! # D~f m, f! # nN~1 2 2K* !m21.

Hence, the convergence to the posterior marginal forz andu is determined
by the same rate that is governedK*. In these terms, the number of
iterations necessary to achieve an accuracy of« for ln[D(pm, p)] is given by

m5 @ln~«! 2 N ln~n!#/ln~1 2 2K* !.

Evaluation of the convergence rate leads, therefore, to the minimization of
Kz

1 in Eq. B2. As an example, for the sampling scheme defined by Eq. 21,
this is

Kz
1 5 P

k51

N

p~zkuz~1!, l,k, z~0!, l.k, u~0!, y!

} hi1
1 P

k52

N21

~hik21ik
k aikik11!hiN21iN

N ,

with z(m),k as thekth element ofz(m). Given u(0), the sequencei1, . . . , iN
that minimizes the above expression can be obtained recursively by a
dynamic programming procedure such as the Viterbi algorithm.
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