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ABSTRACT A standard analysis of the scattered neutron incoherent elastic intensity measured with very good energy
resolution yields elastic scans, i.e., mean-square displacements of atomic motions (in a pico to nanosecond time scale) in a
sample as a function of temperature. This provides a quick way for characterizing the dynamical behavior of biological
macromolecules, such behavior being correlated with biological function and activity. Elastic scans of proteins exhibit a
dynamical transition at ~200 K, marking a cross-over in molecular fluctuations between harmonic and nonharmonic
dynamical regimes. This paper presents an approach allowing analysis of the elastic scan in terms of force constants and
related parameters, such as the free energy barrier AG at the transition. We find that the increased protein flexibility beyond
the dynamical transition is associated with AG ~ RT and effective force constants of the order of 0.1-3 N/m. The analysis
provides a set of parameters for characterizing molecular resilience and exploring relations among dynamics, function, and
activity in proteins.

INTRODUCTION

Molecular dynamics plays an important role in enzymeformational changes appear to be low below and increase
catalysis and other aspects of biological activity, such asbove the transition. It has been found that protein activity
receptor-ligand binding or proton or ion pumping in mem-is inhibited when the temperature is lowered below the
brane proteins. The motions involved cover several ordergransition (Rasmussen et al., 1992; Ferrand et al., 1993;
of magnitude in time from the femtosecond for electronicLehnert et al., 1998). Thus, to characterize the relation
rearrangements, via the picosecond to nanosecond for thesimong protein dynamics, function, and activity it is impor-
mal fluctuations, the millisecond of conformational changestant to achieve a good understanding of the dynamical
involved in functional kinematics, to the seconds and min-transition. The role played by the solvent in the dynamical
utes of protein kinesis and cell division. In the present studytransition has been examined recently gRet al., 2000).
we are concerned with thermal molecular motions reflecting Neutron scattering is particularly suited to the study of
the forces that maintain biological tertiary and quaternarythermal molecular motions because neutrons of 1 A wave-
structure. They arise from H-bonding, electrostatic and vanength have an energy close to 1 kcal/mol. Thermal motions
der Waals interactions, and pseudo-forces associated withave been shown to be correlated with the ability of a
the hydrophobic effect (Creighton, 1991). Their associategrotein to undergo functional conformational changes (Lehnert
energies are of the order of a few kcal/mol and atomicet al., 1998), and they can be seen as the lubricant that
thermal fluctuations are of the order of 1 A. makes possible such displacements taking place on a much
To characterize dynamics-function and dynamics-activitylonger time scale (Brooks Il et al., 1988). Depending on the
relationships in molecular and cell biology, it is necessary tenergy resolution of the spectrometer, neutron scattering
study the molecular flexibility of as many different protein can be used to observe 1) elastic scattering, from which
systems in as many different conditions as possible. It hagean-square fluctuations in a given time scale can be cal-
been observed that proteins undergo a dynamical transitiogulated (Doster et al., 1989); 2) quasielastic scattering, from
as a function of temperature that marks the cross-over igyhich correlation times of diffusion motions can be calcu-
molecular fluctuations between the harmonic behavior domtgteqd (Be, 1988; Fitter et al., 1996); and 3) inelastic scat-

inated by vibrational motions at low temperatures and &ering, arising from vibrational modes (e.g., Cordone et al.,
nonharmonic dynamical regime involving barrier crossing;ggg).
processes at higher temperatures (Parak et al., 1982; Dosterthe elastic experiments are the most efficient to perform,
et al., 1989). Protein molecular fluctuations are of low andhaving the best signal-to-noise ratio. On backscattering
high amplitude below and above the transition, reSPECtive|YSpectrometers a time scale up4®.1 ns can be achieved
Similarly, protein flexibility and the ability to undergo con- (matching well with thermal motions) and a standard anal-
ysis as a function of scattering vect@yields values for the
mean-square displacements, dominated by H (hydrogen)
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amino acid side chains, to which they are bound (Smithdiate scattering functiohQ, t) given by
1991; Rext et al., 1998).
An elastic scan (i.e., the plot of the molecular mean- N
square displacements as a function of absolute temperature) (Q, 1) = D, x(gQrWgiQr), 1)
of myoglobin revealed the dynamical transition-at80 K a=1
(Parak et al., 1982; Doster et al., 1989). Doster et al.
analyzed the dynamical transition in terms of a double-wellyherex (SN_, x, = 1) is the fraction of particles experi-

potential model for the side-chain motions in the protein anduncing the same dynamics in the poten¥a(r), Q is the
calculated the displacement and free energy difference begattering wavevector of the neutrons, and brackets denote
tween the two wells. Related to this is the conformationakhe ensemble average over many trajectories for a popula-
substate model developed by Frauenfelder and collaboratog,, of particles initially at thermal equilibrium. For sma)l

(Frauenf.elder et a!., 1988).in which the protein atoms ar i.e., in the Gaussian scattering approximation) one can
trapped in harmonic potential wells at low temperature ang,erform the orientational average to eliminate angular co-
can sample different wells when the activation energy bey,ginates yielding

comes available above the transition temperature. Other

models, such as diffusion motions in cages (Kneller and N ,

Smith, 1994) and molecular dynamics simulations (Lon- _ g )

charich and Brooks, 1990; Smith et al., 1990) have also QY= % x.exp = g (ra) =1 0P (2)
been used to analyze the dynamical transition. Since the -

myoglobin experiments, the dynamical transition has been

observed in other soluble proteins (Andreani et al., 1995 ote that because of the polydispersity in particle dynamics
and membranes (Ferrand et al., 1993) ' i.e., X, # 1), the intensity in Eq. 2 results from a combi-

Experimentally, each point on an elastic scan provides ation of several Gaussian functions, and thus is no longer
value for the molecular mean-square displacement at th aussian as a function d‘D (Smlth et al.-, 1990). The.
temperature under consideration. Below the transition tem?'can-square d|sglacemeznt in this expression czan_ be written
perature, i.e., in the harmonic regime, the slope (i.e., th@sq,:%(t,) — (09 = 2<ra>d[_1 _I Cao(0)], W:teare“a% is the
derivative of the mean-square displacement with respect tgauilibrium mean-square displacement abd(t) the sta-
the temperature) of the elastic scan has the dimension Jionary position relaxation function (determination of which
ky/k, Whereks, is the Boltzmann constant and the “force requires to know the self-pair correlation function describ-

constant’k has the dimension of force per unit length. In the I"9 the time propagation of the particle in the potential).
vicinity and above the transition temperature, i.e., in the

Clearly, the mean-square displacement in Eq. 2 reduces to
nonharmonic regime, the direct use of this definition leaddh® equilibrium value @) for times long enough such that
to a temperature-dependent force constant that simply indCa(t) = 0. ] o .
cates that additional parameters are involved. In this paper The function measured in incoherent neutron scattering
we develop a simple model in which the mean-squaréaXpe”me”ts is thg incoherent dynamic structure factor
displacement shows the dynamical transition as a functiomnc(Q: @), wherefiw is the energy transfer from the neutron
of temperature. We derive an expression for the meanPeam to the systgm. This function is the Fourier transform
square displacement versus temperature, valid for all dy@f I(Q. t) and consists of the summation of two components:
namical regimes from harmonic to nonharmonic. This anal&n “elastic” componentSH(Q) = S(Q » = 0) =
ysis approach allows us to determine the transition(Q ©)8(w) plus a quasielastic component that involves
temperature, the force constants, and relevant parameters @ffergies» > 0. In what follows we focus only on the elastic
the problem. These quantities are used to characterize tf@mponent because we are interested in studying the spatial
molecular resilience of a macromolecule and to compardlistribution of particle motions. However, ifis the reso-
different systems (Zaccai, 2000a) in the exploration oflution time of the experimentS;(Q) is related to the
relations between dynamics with biological function andnormalized elastic intensity by
activity.

$LQ =17 = S xed- 5 [1-Cml| ©

THEORETICAL BACKGROUND

Let us consider the incoherent scattering of neutrons byhus, because of finite resolution tirsgl(Q) includes both
hydrogen nuclei in a protein. These particles undergo moér2) and C, (7). It eventually relaxes td(Q, ), which de-
tions in the potential(r), wherer(t) denotes the position pends only or{r2) when the resolution time is long enough

vector of the particle at timeé. The function of interest such that allC_(7) — 0. The observed mean-square dis-
describing the scattering process is the incoherent intermgalacement(R?), which takes into account fluctuations of all
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particles in the protein system, is given by: sponding ta, > r¥ because larger excursions of the particle
&S require a displacement of several neighboring molecules.
(R = -3 {In[Sa(QT1 In this model, the coordinates(t) andr(t) describe the

dQ) 1o, harmonic vibration and nonharmonic translation motions,
respectively. We now use this potential to calculate the

N normalized elastic intensity.

= 2 {1 — C.(7]. 4)
a=1

Nonetheless, for a given experiméZ)j(7) is a constant that Elastic incoherent structure factor

rescales the observed mean-square displacement. Thughe elastic incoherent structure factt(Q, «), for the po-
without loss of generality, we can assume from now on thatential in Eq. 5 is given by:

C.(7) = 0 for particles under study. _
felQrefBV(r)dr 2

@) = [Sepig

FORMULATION OF THE MODEL ANALYSIS

For the sake of simplicity we introduce the model by as- = |1 — ¢)e" ¥WF(Q) + e Y F(QP,  (6)
suming that all particles are dynamically equivalent, i.e.

x. = 1. In the spirit of mode coupling theory (G and where the exponentials in Eq. 6 represent the Debye-Waller

factors in each witn2)) and(r2) being the vibrational
Sjogren, 1992), the model assumes that two classes O?Cto s In each cage fin,s) and(ry,) be' gt' € vibrationa
: . . ; mean-square displacement of the particle in small and large
conformational fluctuations essentially control atomic mo-

. . L . ’ . r tively. Th ring amplituée®) an
tions in a protein in the native state. First are fluctuations Ofcages, espectively e scattering amplitu ) and

. . . . F for translation motions in small and lar
the local environment in which the particle undergoes (Q) for translatio otions small and large cages,

. I L _“respectively, are given in the Gaussian approximation by:
movements about its equilibrium position. Second are in- P y g PP y

teraction-mediated fluctuations of the protein molecule that " .

allow larger excursions of the particle within a cage formed,:s(Q) — J drtrteBU(“)[Sm(Qr‘)] = g &6 (72)
by its neighboring molecules. For a protein atom this can be Zs Qr,

regarded as two, i.e., a large and a small, conformational

cages fitting together within which it is compelled to move " .

) : . 1 sin(Qry) 2

in a potentialV(r). Many conformational substates for the F Q) = = f drtrfeBU(“)[] ~ g Q6 (7b)
protein in the native state may correspond to the same Zy - Qr,

positionr of the particle at time.

Specifically, we consider in each conformational cage theyhere <rt25> and <rt2;> are the mean-square displacement for
vibrational and translational motions of the particle (othertranslational motions of the particle in small and large
degrees of freedom, such as rotation, are ignored for simeconformational cages, respectively. The probability
plicity). As customary, we assume thdt) can be splitinto  which is the fraction of equivalent particles probing only the
two independent componentsgt) = r,(t) + r(t), where the  |arge conformational cage, is given by:
vibrational component (t) is the displacement about the
equilibrium position within the host molecule and the trans- 1

lational partr(t) is the instantaneous location of the equi- ¢ = 1 + &#sc;
librium position at timet. For a spherically symmetric (8)
: s i . Z.Zs
potential,V(r) is given by: AG =KTIn = AH — TAS,
ZyZy
V(r) = V(r,, 1) = % k’v(rt)r\zl + U(ry, (5)

whereZ,andZ,, andZ andz, are the partition functions
wherek,(r,) is the vibrational force constant that depends onfor vibration and translation coordinates, respectively. The
the equilibrium position of the particle. The potentid(r,) AH and AG are the energy and free energy differences for
for translational motions has a double-well structure with athe system in the large and small cages, A&ds the total
barrier atr, = r¥ such thatU(r¥) > ksT, whereB™* = k;T  conformational entropy difference between the two cages.
is the thermal energy. We hake(r)) = kfor0O=r, =r¥  The ratio /(1 — ¢) = e P2C gives to some extent the
(small conformational cage) and(r) = k, for r, > r¥  frequency ratio of the large-to-small amplitude fluctuations
(large conformational cage); that is to say that the particleof the protein molecule. Protein fluctuations are mostly of
vibrational motions are harmonic in both small and largesmall amplitude whei ~ 0 at low temperature, while they
conformational cages, but with different frequencies. Pro-are of larger amplitude fop ~ 1 when the temperature gets
tein conformations corresponding to particle positions suctnigher. Accordingly, one can define a temperattie at
thatr, = r¥ are energetically more stable than those correwhich small and large fluctuations occur with equal fre-
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guency, i.e., wheAG(T,,) = 0 resulting from the compen- Equations 10 and 11 taken together into Eq. 9 can be
sation of the energy and entropy difference. Assuming thatecast in the formula,
AH is independent of temperature, we haye = AH/AS

0 0 T
RM)y=[1- ¢>(T)][i2<5kvS cotanl<2_|_> + kkB{s]

Mean-square displacement

l '%T], (12a)

Placing the expression in Eq. 6 into Eq. 4 wiih(r) = 0, ! !

the mean-square displacemendB®), of the particle is  which, when neglecting quantum effects for> 6/2, sim-

readily obtained as: plifies to:
(R = (1— B2 + (D] + (1) + ()] RT) = [1— T o + G1'
= (1= ¢)rd) + &(rd). 9)

{kll = ks + k', (12b)

Although r,, and r, are supposed to be independent, this kot =kt + ki,

- . - _ 2 2
expression clearly shows that the splitting) = (rf) + (r7) wherek; andk, are the resulting force constants (from both

makes sense only within each conformational cage, but N \inration and translation) to particle motions in small
for the total mean-square displacement. Therefore,

) < 5 It 1$ng large conformational cages. As a consequence of in-
more convenient to defings) and(rf) as the overall mean- ,oking the linear approximation for translational motions,

square displacement of the particle moving within the small;iprational and translational motions are merged into a

and large conformatiqnal cages. _ single force constank, (i = 1, 2) in respective cages.
For a set of quantized harmonic oscillators the meangelaxing (or the failure of) the linear approximation would
square displacement is given k) = kg/2k tanh@/2T),  lead to nonlinear dependence(dh as a function off (i.e.,

where 6 = fiwg/ky is the Debye temperature ang andk  nonharmonic and temperature-dependent force constant),
are the frequency and force constant of the oscillator, reand thus to a distinction between the two types of motions.
spectively. ForT < 6/2 the mean-square displacement isThe nonharmonic behavior diR¥T)) in Eqg. 12b arises
almost a constant equal to the zero-point fluctuatiqqesk, because of finite fractiorb(T) describing the relative con-
while it linearly increases with the temperature Tor- 6/2.  tribution of population of particles probing the large con-
Thus, the mean-square displacements in Eqg. 9 originatinfprmational cage. We will see further that the dynamical
from harmonic vibrational motions can be written as, transition, defined as the deviation from the linear behavior
of (R¥(T)) versusT, takes place for a value dfthat is rather
kg6 0 small, i.e., when a small fraction of the total population of
(rlg = 2k, Cotanl{z.l_]; (riy = K, (10)  particles experience barrier crossing events caused by large
° ! amplitude fluctuations of the protein conformations. Equa-
tion 12b also suggests that within the linear (merging)
only at highT fipproximation the harmonic regime at low temperature may
' involved degrees of freedom other than vibration because

Fgr the trgnslan(.)n.al motions, hOWeYe“ thg cages o thT"he translational force constant also contribute;to
particle motions originate from the neighboring molecules The generalization of Eq. 12b to dynamically nonequiva-
that move due to structural fluctuations, as in the quuidIent particles is straightforwardly obtained as

state. This is represented by the potentlél,), which has a

where the classical limit is taken fér2) since it contributes

double-well structure. In order to introduce the force con- N keT keT
stants, we invoke the linear approximation for the particle (R(T)) = >, xa{[l — ¢, (1] T + Po(T) k}' (13)
motion about each bottom well df(r,), the translation a=1 Lo 2a

mean-square displacement of the particle within each we

of U(r,) can be written as, LlI’hls expression can again be rewritten in the same form as

Eq. 12b where nowp = 3N_.x ¢, andk, andk, will be
the effective force constants which are functionxgfde,,,
(r2y = E; (r3y = E (11) andk,, andks,, rt_agpective_ly, and thus_ functions of temper-
ke k ature. However, it is plausible to consider, and we will do so
from now on, thatk, andk, are almost independent af
wherek, andk, can be regarded as equivalent force con-within the range of temperatures under consideration, and
stants for translational motion in small and large conformathat the overall temperature dependence of the problem is
tional cages, respectively. entirely contained in the fractiop(T), which is still given
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by Eqg. 8. In this respectAG in Eq. 8 represents the mean is rather broad. However, Eq. 14 provides a simple relation

free energy difference, i.eAG = =Y_,x AG,, andk, and  betweenT, and other relevant parameters of the problem.

k, in Eq. 12b are the expected force constants associated Now, to characterize the thermal mobility of a protein

with the small and large conformational cages, respectivelymolecule within the temperature intervl= T < T,,,, we
Finally, it may be instructive in closing this subsection to linearize Eq. 12b about a certain reference temperafure

mention the difference between Eqgs. 12a and 12b and th@.g., T, = 300 K) to obtain:

expression used by Doster et al., 1989, which writes in our

notation (RXT) = (1) + &(1 — $)r). This relation is (R(T)) 2{ kBT/kl;_ ) H<T<T, (15)

obtained for the jump model between the two minima keTls — @’ To<T~Tp,

(points) separated by a constaftifidependent) distance

V/(r?) of a double well and assuming identical vibrational where

motions (i.e.{r2)) in the two wells. In contrast, our descrip- 1 [1- ()] AH

tion considers the entire well (cages, not points), allows Ks = K, 1- ﬁd’(-ﬂ)

different(r2) in each well, and treats the inter-well transla-

tional transition as a continuous process. If it is assumed in o(T) AH

Eq. 9 tha(r?y) = (rf9 = (r5), Eq. 12b become&R¥(T)) = + K, 1+ ﬁ[l — ¢(M]y, (16a)
(r2y + (1 — d)rdy + ¢(rd), indicating and underlining that

the nonharmonic behavior 0R(T)) originates from barrier 5 (1 B 1) B

crossing events in the translational motions. a’ = AH k, Kk ¢(TILL = $(T))] (16D)

The force constark; and the pseudo-force constadgtcan
Transition temperature thus be regarded as a measure of the degree of flexibility of

From what precedes and according to Eq. 12b, the mean-
square displacement linearly increases Wittvith a slope 0.75 T T T T T T
kg/k, at low temperaturedf ~ 0). In practice, one is inter-
ested to locate the temperature about which the departure
from the straight line of slopég/k, is effective and then -
determine the temperature for the dynamical transition. To
this end, since the transition from low to high temperature
behaviors of R¥(T)) is controlled by the fractiorp(T), one -
can define in an operative way a transition temperaiiyre 0.50
such that:

AH
AS+ kg In(9)’

ie., (14)
1 1 kn(@©

To Th AH

HT)=10"& T, =

<R¥(T)> %)

0.25

whereT,,, defined byd(T,,) = 0.5, is the temperature at
which the energy-entropy compensation occurs. As defined,
To, smaller thanT,,, is the temperature at which10% of L
the protein fluctuations are of large amplitude, allowing T
particles to cross the free energy barrier of heigdld = L7 A ,A 1
IN(Q)ks Ty = 2ks T at T = T,. The transition temperature is 0.00 Q0 AR
independent of the observation time, but it depends upon

both the energy gap and the entropy difference between
conformational cages. We note, however, that in most eXgiGURE 1 Hydrogen mean-square displacen{8A¢T)) = 3(x¥(T)) ver-
periments dealing with the dynamical transition the highestus temperature for hydrated myoglobicir¢les (from Doster et al.,
temperature investigated is always lower tAigpnThe study ~ 1989). The solid line is the best fit to the datér¢les) using the expression

of the higher temperature regime&,> T.., requires taking in Eq. 12b with parameters_ Iistgd in 'Table 1. The quoted dashed curves
.correspond to linear approximations in Eqg. 15 with the force constants

Into aqcount_addltlonal _processes like prec_ur_sor_s f[O prOteIgndk3 (see Table 1). The triangles represent elastic scans for the trehalose-
unfolding. It is worthwhile to note also that it is difficult to  coated co-myoglobin (from Cordone et al., 1999). Note the absence of the
experimentally determin&, exactly because the transition dynamical transition for trehalose-coated CO-myoglobin.

50 100 150 200 250 300 .
T (K)

Biophysical Journal 80(3) 1115-1123



1120 Bicout and Zaccai

a protein molecule, and as such they can be used to compasean and density of state measurements showed that up to
different systems having similar transition temperatures. 320 K (the highest temperature examined) the system has a
harmonic behavior. The authors suggested that the protec-
tive effect of trehalose on the biological structures is related
ILLUSTRATIVE APPLICATIONS AND DISCUSSION to “trapping” them in a hard harmonic state even at high
As an illustration, we used the theory developed in thetemperature. The fit to the data gave a Debye temperature
previous sections to analyze elastic temperature scans froth= 300 K (i.e.,w, = 210 cm ) and a force constant of
the literature on myoglobin and purple membranes under-3.14 N/m. These datdr{angles are also reported in Fig.
different environmental conditions. Equation 12b, wiifT) 1 where, as one can see, there is no discernible dynamical
given in Eq. 8, and Eq. 14 constituted the main theoreticairansition. The effect of the trehalose environment on the
formulae to analyze experimental data. In both sets ofnyoglobin dynamics would then be to increase both the
experiments the data had been collected on backscatteringebye temperature and the dynamical transition tempera-
spectrometers IN10, IN13, or IN16 at the ILL in Grenoble, ture (by increasing\H and/or decreasingSsuch thafl, >

with energy resolution ranging from 1 to 1@eV, corre- 320 K). The Doster et al. (1989) and Cordone et al. (1999)

sponding to a time window (or observation time)-ef =  experiments emphasized the importance of the protein en-
1 — 0.1 ns, andQ-range 0.6— 4.5 A~* corresponding to  vironment on its dynamics.
fluctuations of~1 A. As another example we considered the purple membrane

Myoglobin has been widely used as a model protein forof Halobacterium salinarunthat has been studied exten-
studies of dynamics (e.g., Frauenfelder et al., 1988) and th&ively by neutron scattering. It is made up of the retinal
first neutron scattering experiments on the dynamical tranprotein, bacteriorhodopsin, and specific lipids, and func-
sition in a protein were on myoglobin powders hydratedtions as a light-activated proton pump. By observing their
with heavy water (DO) (Doster et al., 1989). Fig. 1 displays respective dependence on hydration, correlations were es-
these experimental dataiicles) and the best fit using Eq. tablished between dynamics and functional aspects such as
12b (solid ling). The parameters extracted from the fit are photocycle kinetics and conformational changes (Zaccai,
listed in Table 1. We found that the transition temperature i2000b). Different populations of motions were also found in
~T, = 200 K (compared to 180 K estimated by Doster etpurple membranes, depending on energy resolution (time
al.), the free energy barrier of the transition at 300 K iswindow) (Fitter et al., 1996), scattering vector range (space
~AG = 0.52 kcal/mol, and the force constants associated twindow) (Ret et al., 1997), H-D labeling of different parts
conformational fluctuations are, = 2.76 N/m in the har- of bacteriorhodopsin (Re et al., 1998), or hydration de-
monic regime at low temperature, akg= 0.28 N/m for  pendence (Lehnert et al., 1998). We note that within the
larger fluctuations regime. The fit to low temperatufe  framework of our analysis, the expression different popula-
100 K) data using the leftmost expression in Eq. 10 gives dions of motions means that there are fractions of particles
Debye temperatur® = 110 K corresponding to the low that are dynamically nonequivalent, i.&, # 1. The mo-
frequencyw, = 38 cm ™. This is to say that Eq. 12b applies tions for each dynamical categosyof particles was fitted
for temperatures>6/2 = 55 K. in terms of the model with a small and a large conforma-

The dynamics of myoglobin in the presence of very hightional cage as outlined above.
concentrations of the disaccharide, trehalose, has been stud-Fig. 2 A shows results from the dry sample, and FigB2,
ied by neutron scattering (Cordone et al., 1999). The elastiand C from the wet ones, Fig. B describing only the

TABLE 1 Summary of parameters obtained from the best fits to data in Figs. 1 and 2

Native PM wet

Myoglobin PM dry PM wet
Parameters (hydrated) (unlabeled) (labeled core) X, = 0.57 X, = 0.43 Average
AH (kcal/mol) 1.59 1.08 1.57 1.57 9.53 5
AS(R) 1.80 1.30 1.65 1.65 14 7
AG, (kcal/mol) 0.88 0.70 0.90 0.90 1.30 1.07
AG (kcal/mol) 0.52 0.30 0.59 0.59 1.18 0.84
T (K) 444 420 480 480 340 358
To (K) 200 156 205 205 293 272
ky (N/m) 2.76 1.56 2.24 2.24 1.06 1.51
k, (N/m) 0.28 0.38 0.23 0.23 0.028 0.06
ks (N/m) 0.33 0.44 0.28 0.28 0.014 0.03

AH and AS are the energy and entropy differences for the system in the large and small conformational cages, respegggivelin(9) RT, and AG
represents the free energy barrier of the transitiofaand 300 K, respectivelyRT = 0.6 kcal/mol at 300 K). The energy-entropy compensation
temperature i§,,, = AH/AS, and the transition temperatufg is calculated from Eq. 14, andk; are the force constants associated to the small and large
conformational cage, respectively (see Eqg. 12b), land the force constant at 300 K, andx, denote the population fraction.
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FIGURE 2 Hydrogen mean-square displacen{8RE(T)) = (R3(T)) — (R¥(T,;i)) (with 2(R?) = (u?)) versus temperature for the purple membrane (PM)
bacteriorhodopsin (from R et al., 1998). The solid lines are best fits to the dati@les) using the expression in Eq. 12b with parameters listed in Table
1. The quoted dashed curves correspond to linear approximations in Eq. 15 with force cdgstaotk; (see Table 1). Pand refers to unlabeled PM
dry, B to labeled core PM wet, an@d to native PM wet. For paneZ the solid line through the data is obtained using Eq. 13 for two populat&RrgT))

=32 x (8R%(T)), where(8R(T)) corresponds td.
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protein core (data from a sample with labeled amino acid$or which the associatefiH = 9.53 kcal/mol corresponds to
and retinal). The data in Fig. 2 andB were fitted by using that of one to two H-bonds (H-bond energy lies between 3
Eq. 12b 6olid line) for a single population model, while and 6 kcal/mol). As expected, comparison of force constants
data in Fig. 2C required using a two-population model (i.e., indicates that population 2 is more flexible than population
Eqg. 13) for a better fitgolid line) over the entire range of 1. At physiological temperature (i.e., above the solvent
temperature (see Table 1 for parameters). In this latter casaelting point at 270 K) the active core of the wet protein is
(i.e., Fig. 2C), we found that 57% of the total mean-squareabout a factor of 10 more resilient than the wet membrane
displacements are represented by motions of the proteias a whole.
core identical to that in Fig. B. Finally, we compared the dynamics of the hydrated myo-
Comparison of parameters in Table 1 corresponding tglobin and hydrated purple membrane in Fig. 3 through the
Fig. 2, A andC shows that the underlying dynamics of the curves obtained from best fits to experimental data in Figs.
dry sample is very different from that of the wet one (i.e.,1 and 2. It appears that the transition temperature, the free
single population versus two populations) underlining agairenergy barrier of the transition, and force constants are very
the importance of the protein environment on the dynamicssimilar for myoglobin and the bacteriorhodopsin core. At
In addition, a similar comparison between data in FigA2, low temperatures the highest force constant is for myoglo-
andB (both being fitted with a single population, i.&,, = bin, followed by the bacteriorhodopsin core, then purple
1) indicated that the bacteriorhodopsin core (even whemembranes (see Table 1). At the higher temperatures the
wet) is less flexible than the dry sample as a whole becausayoglobin and bacteriorhodopsin core have similar behav-
the transition temperature, the free energy barrier of théor as a function ofl and thus show similar force constant
transition, and the force constants of the protein core are allalues (see Table 1), consistent with the compact structure
higher than those of the dry sample. of the alpha-helical myoglobin, which does not have any
The data in Fig. 2C, from Lehnert et al. (1998), were large surface loops. However, because of the two popula-
obtained forQ-range (0.3 A* < Q < 1.8 A Y. These tions in the wet membrane (with different transition tem-
authors also analyzed what they named a “small amplitudeperatures) the elastic scans for the purple membrane and for
population of membrane motions in a highgrange (2.4 the bacteriorhodopsin core diverge a260 K, with the
A~1 < Q< 3.6 A1). The Gaussian approximation is still
valid sinceQ%R?) = 1 for these motions. We performed our
model fit to these data (not shown) to examine whether this 125 VT
high Q population corresponds to one of the two found in -
the lowQ data. The total higlkp) mean-square displacements -
are described by a single population with the parameters
AH = 1.78 kcal/mol, AS = 1.14 R,k; = 1.88 N/m,k, =
0.48 N/m, andT, = 267 K. A comparison with values in
Table 1 shows that the thermodynamic parameters are sim-
ilar to those of population 1 in the lo® analysis, except L
for Ty, which is close to the average value for the two -
populations. 0.75 -
In order to speculate on the two-population interpretatiorr@
of the wet sample, we recall that 60% of amino acid residues a
of bacteriorhodopsin are in the seven transmembrane heli£2
ces, and 40% are in solvent-exposed loops linking the‘% 0.50
helices and N and C-terminal. Thus, a conceivable assign- L
ment is that the first population is formed by the alpha -
helices (constrained) in the membrane and the second one -
by the remaining solvent-exposed parts of the protein that i
can experience larger fluctuations within larger conforma- 025
tional cages (seASvalues in Table 1). This is consistent
and provides support for finding that 57% and 43% of
contributions to the total mean-square displacements in Fig.
2 C come from populations 1 and 2, respectively. In addi- 0.00
tion, the free energy barrieAG is of order of RT for 0 50
population 1, while it is about twice as large for population
2. According to th_ese ConSIdera_‘“onS’ pOpU|at|9nxiL € FIGURE 3 Comparison between hydrated myoglobin in Fig. 1 and na-
0.57) would describe the dynamics of the protein core angve pm wet and labeled core PM wedashed ling in Fig. 2, B andC,
population 2 X, = 0.43) the dynamics of loops in solvent respectively.

1.00

Myoglobin
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membrane scan displaying a very low (10 times smallerposter, W., S. Cusack, and W. Petry. 1989. Dynamical transition of

force constant value, 0.03 N/m, at physiological temperature. ?g’fg;%%m revealed by inelastic neutron scatteridature. 337:

TOI conclude, the time wmd.ow examined in the. aboYeDoster, W. S., and M. Settles. 1999. The dynamical transition in proteins:
elastic scans corresponds mainly to H atoms moving with the role of hydrogen bondén Hydration Processes in Biology: Theo-

the amino acid side chains of the protein (Smith 1991)_ retical and Experimental Approaches, Nato Science Series A: Life
. . . - ' . Science, Vol. 305. M.-C. Bellissent-Funel, editor. IOS Press, Berlin.
Thus, it may be instructive to analyze values in Table 1 with 17'7_191. ' ! ' '

this perspective. The number of nonexchangeable H atoMsrand, M., A. J. Dianoux, W. Petry, and G. Zaccai. 1993. Thermal
in side chains varies from 1 (for glycine) to 9 (for leucine motions and function of bacteriorhodopsin in purple membranes: effects

e ; ; ; ; of temperature and hydration studied by neutron scatteRnac. Natl.
and iso-leucine), with a mean value of 5 H per amino acid, Acad. Sci USA90:9668.9672.

calculated for the cqmposmon of monlObm' for eXa'rm:)k:'"Fitter, J., R. E. Lechner, N. A. Dencher, and G:ld8u1996. Internal
The H-bond energy idH,, = 3—6 kcal/mol; the stretching  molecular motions of bacteriorhodopsin: hydration-induced flexibility
ka and bending(ﬁ force constants associated to an H bond studied by quasielastic incoherent neutron scattering using oriented

N . . _ purple membranedroc. Natl. Acad. Sci. USA3:7600—7605.
are~13 N/m and 2-3 N/m (Chou' 1985; Itoh and Shiman Frauenfelder, H., F. Parak, and R. D. Young. 1988. Conformational sub-

ouchi, 1970), respectively, while the force constant for a states in proteinsannu. Rev. Biophys. Biophys. Chetii:569-572.
typical covalent bond falls in the range of 100—400 N/m. ItGetze, W., and L. Sjgren. 1992. Relaxation processes in supercooled
results from the above analysis that the dynamical transition liquids. Rep. Prog. Phys55:241-376.

; ; ; ; : oh, K., and T. Shimanouchi. 1970. Vibrational frequencies and modes of
is associated with typical free energy barriers of the order oft achelix. Biopolymers 9:383-399,

the thermal energﬁil’, ?‘nd tygical force constants ranging Kneller, G. R., and J. C. Smith. 1994. Liquid-like side-chain dynamics in
from 0.1 to 3 N/m, similar td;;. Moreover, except for the myoglobin.J. Mol. Biol. 242:181-185.

purple membrane at 270 K, the energies for the dynamicdiehnert, U., V. Rat, M. Weik, G. Zaccai, and C. Pfister. 1998. Thermal

" : : : motion in bacteriorhodopsin at different hydration levels studied by
transition CorreSpond te-1 H bond per amino acid side neutron scattering: correlation with kinetics and light-induced confor-

chain since AH ~ AH,. As already noticed by Doster and  mational changesBiophys. J.75:1945-1952.
Settles (1999), these observations tend to suggest that thencharich, R. J., and B. R. Brooks. 1990. Temperature dependence of
H-bond networks within the protein and between protein dynamics of hydrated myoglobin: comparison of force-field calculations

d sol t ol k le in the d ical t it and neutron scattering data. Mol. Biol. 215:439—-455.
and solvent play a key roie in the dynamicai transition. Parak, F., E. W. Knapp, and D. Kucheida. 1982. Protein dynami¢ssMo

bauer spectroscopy on deoxymyoglobin crystdls.Mol. Biol. 161:
177-194.

Thanks are due to C. Pfister and the IN13 group for stimulating discussionfasmussen, B. F., A. M. Stock, D. Ringe, and A. G. Petsko. 1992.

and comments on the manuscript, and to P. Nesi@nd the theory group Ctrésztg”li(n?\l“?onuglseﬁig ;‘ '2;25 function below the dynamical transition
of ILL for their hospitality. @ -Nalure. 5o f:azs—424.
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