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ABSTRACT A standard analysis of the scattered neutron incoherent elastic intensity measured with very good energy
resolution yields elastic scans, i.e., mean-square displacements of atomic motions (in a pico to nanosecond time scale) in a
sample as a function of temperature. This provides a quick way for characterizing the dynamical behavior of biological
macromolecules, such behavior being correlated with biological function and activity. Elastic scans of proteins exhibit a
dynamical transition at ;200 K, marking a cross-over in molecular fluctuations between harmonic and nonharmonic
dynamical regimes. This paper presents an approach allowing analysis of the elastic scan in terms of force constants and
related parameters, such as the free energy barrier DG at the transition. We find that the increased protein flexibility beyond
the dynamical transition is associated with DG ; RT and effective force constants of the order of 0.1–3 N/m. The analysis
provides a set of parameters for characterizing molecular resilience and exploring relations among dynamics, function, and
activity in proteins.

INTRODUCTION

Molecular dynamics plays an important role in enzyme
catalysis and other aspects of biological activity, such as
receptor-ligand binding or proton or ion pumping in mem-
brane proteins. The motions involved cover several orders
of magnitude in time from the femtosecond for electronic
rearrangements, via the picosecond to nanosecond for ther-
mal fluctuations, the millisecond of conformational changes
involved in functional kinematics, to the seconds and min-
utes of protein kinesis and cell division. In the present study
we are concerned with thermal molecular motions reflecting
the forces that maintain biological tertiary and quaternary
structure. They arise from H-bonding, electrostatic and van
der Waals interactions, and pseudo-forces associated with
the hydrophobic effect (Creighton, 1991). Their associated
energies are of the order of a few kcal/mol and atomic
thermal fluctuations are of the order of 1 Å.

To characterize dynamics-function and dynamics-activity
relationships in molecular and cell biology, it is necessary to
study the molecular flexibility of as many different protein
systems in as many different conditions as possible. It has
been observed that proteins undergo a dynamical transition
as a function of temperature that marks the cross-over in
molecular fluctuations between the harmonic behavior dom-
inated by vibrational motions at low temperatures and a
nonharmonic dynamical regime involving barrier crossing
processes at higher temperatures (Parak et al., 1982; Doster
et al., 1989). Protein molecular fluctuations are of low and
high amplitude below and above the transition, respectively.
Similarly, protein flexibility and the ability to undergo con-

formational changes appear to be low below and increase
above the transition. It has been found that protein activity
is inhibited when the temperature is lowered below the
transition (Rasmussen et al., 1992; Ferrand et al., 1993;
Lehnert et al., 1998). Thus, to characterize the relation
among protein dynamics, function, and activity it is impor-
tant to achieve a good understanding of the dynamical
transition. The role played by the solvent in the dynamical
transition has been examined recently (Re´at et al., 2000).

Neutron scattering is particularly suited to the study of
thermal molecular motions because neutrons of 1 Å wave-
length have an energy close to 1 kcal/mol. Thermal motions
have been shown to be correlated with the ability of a
protein to undergo functional conformational changes (Lehnert
et al., 1998), and they can be seen as the lubricant that
makes possible such displacements taking place on a much
longer time scale (Brooks III et al., 1988). Depending on the
energy resolution of the spectrometer, neutron scattering
can be used to observe 1) elastic scattering, from which
mean-square fluctuations in a given time scale can be cal-
culated (Doster et al., 1989); 2) quasielastic scattering, from
which correlation times of diffusion motions can be calcu-
lated (Bée, 1988; Fitter et al., 1996); and 3) inelastic scat-
tering, arising from vibrational modes (e.g., Cordone et al.,
1999).

The elastic experiments are the most efficient to perform,
having the best signal-to-noise ratio. On backscattering
spectrometers a time scale up to;0.1 ns can be achieved
(matching well with thermal motions) and a standard anal-
ysis as a function of scattering vectorQ yields values for the
mean-square displacements, dominated by H (hydrogen)
atom motions in the sample because their incoherent cross
section is an order of magnitude larger than that of other
atoms (Smith, 1991). In the time scale examined, however,
H atoms reflect the global thermal behavior of a sample
because they move with the larger chemical groups, such as
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amino acid side chains, to which they are bound (Smith,
1991; Réat et al., 1998).

An elastic scan (i.e., the plot of the molecular mean-
square displacements as a function of absolute temperature)
of myoglobin revealed the dynamical transition at;180 K
(Parak et al., 1982; Doster et al., 1989). Doster et al.
analyzed the dynamical transition in terms of a double-well
potential model for the side-chain motions in the protein and
calculated the displacement and free energy difference be-
tween the two wells. Related to this is the conformational
substate model developed by Frauenfelder and collaborators
(Frauenfelder et al., 1988) in which the protein atoms are
trapped in harmonic potential wells at low temperature and
can sample different wells when the activation energy be-
comes available above the transition temperature. Other
models, such as diffusion motions in cages (Kneller and
Smith, 1994) and molecular dynamics simulations (Lon-
charich and Brooks, 1990; Smith et al., 1990) have also
been used to analyze the dynamical transition. Since the
myoglobin experiments, the dynamical transition has been
observed in other soluble proteins (Andreani et al., 1995)
and membranes (Ferrand et al., 1993).

Experimentally, each point on an elastic scan provides a
value for the molecular mean-square displacement at the
temperature under consideration. Below the transition tem-
perature, i.e., in the harmonic regime, the slope (i.e., the
derivative of the mean-square displacement with respect to
the temperature) of the elastic scan has the dimension of
kB/k, wherekB is the Boltzmann constant and the “force
constant”k has the dimension of force per unit length. In the
vicinity and above the transition temperature, i.e., in the
nonharmonic regime, the direct use of this definition leads
to a temperature-dependent force constant that simply indi-
cates that additional parameters are involved. In this paper
we develop a simple model in which the mean-square
displacement shows the dynamical transition as a function
of temperature. We derive an expression for the mean-
square displacement versus temperature, valid for all dy-
namical regimes from harmonic to nonharmonic. This anal-
ysis approach allows us to determine the transition
temperature, the force constants, and relevant parameters of
the problem. These quantities are used to characterize the
molecular resilience of a macromolecule and to compare
different systems (Zaccai, 2000a) in the exploration of
relations between dynamics with biological function and
activity.

THEORETICAL BACKGROUND

Let us consider the incoherent scattering of neutrons by
hydrogen nuclei in a protein. These particles undergo mo-
tions in the potentialV(r ), wherer (t) denotes the position
vector of the particle at timet. The function of interest
describing the scattering process is the incoherent interme-

diate scattering functionI(Q, t) given by

I~Q, t! 5 O
a51

N

xa^e
iQzra(t)e2iQzra(0)&, (1)

wherexa((a51
N xa 5 1) is the fraction of particles experi-

encing the same dynamics in the potentialVa(r ), Q is the
scattering wavevector of the neutrons, and brackets denote
the ensemble average over many trajectories for a popula-
tion of particles initially at thermal equilibrium. For smallQ
(i.e., in the Gaussian scattering approximation) one can
perform the orientational average to eliminate angular co-
ordinates yielding

I~Q, t! > O
a51

N

xaexpH2 Q2

6
^@r a~t! 2 r a~0!#2&J. (2)

Note that because of the polydispersity in particle dynamics
(i.e., xa Þ 1), the intensity in Eq. 2 results from a combi-
nation of several Gaussian functions, and thus is no longer
Gaussian as a function ofQ (Smith et al., 1990). The
mean-square displacement in this expression can be written
as^[ra(t) 2 ra(0)]2& 5 2^ra

2& [1 2 Ca(t)], where^ra
2& is the

equilibrium mean-square displacement andCa(t) the sta-
tionary position relaxation function (determination of which
requires to know the self-pair correlation function describ-
ing the time propagation of the particle in the potential).
Clearly, the mean-square displacement in Eq. 2 reduces to
the equilibrium value 2̂ra

2& for times long enough such that
Ca(t) 3 0.

The function measured in incoherent neutron scattering
experiments is the incoherent dynamic structure factor
Sinc(Q, v), where\v is the energy transfer from the neutron
beam to the system. This function is the Fourier transform
of I(Q, t) and consists of the summation of two components:
an “elastic” componentSinc

el (Q) 5 Sinc(Q, v 5 0) 5
I(Q, `)d(v) plus a quasielastic component that involves
energiesv . 0. In what follows we focus only on the elastic
component because we are interested in studying the spatial
distribution of particle motions. However, ift is the reso-
lution time of the experiment,Sinc

el (Q) is related to the
normalized elastic intensity by

Sinc
el ~Q! . I~Q, t! 5 O

a51

N

xaexpH2 Q2^ra
2&

3
@1 2 Ca~t!#J. (3)

Thus, because of finite resolution timeSinc
el (Q) includes both

^ra
2& and Ca(t). It eventually relaxes toI(Q, `), which de-

pends only on̂ra
2& when the resolution time is long enough

such that allCa(t) 3 0. The observed mean-square dis-
placement,̂R2&, which takes into account fluctuations of all
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particles in the protein system, is given by:

^R2& 5 23
d$ln@Sinc

el ~Q!#%

d~Q2!
U

Q50

5 O
a51

N

xa^ra
2&@1 2 Ca~t!#. (4)

Nonetheless, for a given experimentCa(t) is a constant that
rescales the observed mean-square displacement. Thus,
without loss of generality, we can assume from now on that
Ca(t) 5 0 for particles under study.

FORMULATION OF THE MODEL ANALYSIS

For the sake of simplicity we introduce the model by as-
suming that all particles are dynamically equivalent, i.e.,
xa 5 1. In the spirit of mode coupling theory (Go¨tze and
Sjögren, 1992), the model assumes that two classes of
conformational fluctuations essentially control atomic mo-
tions in a protein in the native state. First are fluctuations of
the local environment in which the particle undergoes
movements about its equilibrium position. Second are in-
teraction-mediated fluctuations of the protein molecule that
allow larger excursions of the particle within a cage formed
by its neighboring molecules. For a protein atom this can be
regarded as two, i.e., a large and a small, conformational
cages fitting together within which it is compelled to move
in a potentialV(r ). Many conformational substates for the
protein in the native state may correspond to the same
position r of the particle at timet.

Specifically, we consider in each conformational cage the
vibrational and translational motions of the particle (other
degrees of freedom, such as rotation, are ignored for sim-
plicity). As customary, we assume thatr (t) can be split into
two independent components,r (t) 5 rv(t) 1 r t(t), where the
vibrational componentrv(t) is the displacement about the
equilibrium position within the host molecule and the trans-
lational partr t(t) is the instantaneous location of the equi-
librium position at time t. For a spherically symmetric
potential,V(r) is given by:

V~r! 5 V~rv, r t! 5 1
2

kv~r t!rv
2 1 U~r t!, (5)

wherekv(rt) is the vibrational force constant that depends on
the equilibrium position of the particle. The potentialU(rt)
for translational motions has a double-well structure with a
barrier atrt 5 rt

# such thatU(rt
#) . kBT, whereb21 5 kBT

is the thermal energy. We havekv(rt) 5 kvs for 0 # rt # rt
#

(small conformational cage) andkv(rt) 5 kvl for rt . rt
#

(large conformational cage); that is to say that the particle
vibrational motions are harmonic in both small and large
conformational cages, but with different frequencies. Pro-
tein conformations corresponding to particle positions such
that rt # rt

# are energetically more stable than those corre-

sponding tort . rt
# because larger excursions of the particle

require a displacement of several neighboring molecules.
In this model, the coordinatesrv(t) andr t(t) describe the

harmonic vibration and nonharmonic translation motions,
respectively. We now use this potential to calculate the
normalized elastic intensity.

Elastic incoherent structure factor

The elastic incoherent structure factor,I(Q, `), for the po-
tential in Eq. 5 is given by:

I~Q, `! 5 U*eiQzre2bV(r )dr
*e2bVrdr

U2

5 u~1 2 f!e2Q2^rvs
2 &/6Fs~Q! 1 fe2Q2^rvl

2 &/6Fl~Q!u2, (6)

where the exponentials in Eq. 6 represent the Debye-Waller
factors in each cage witĥrvs

2 & and^rvl
2 & being the vibrational

mean-square displacement of the particle in small and large
cages, respectively. The scattering amplitudesFs(Q) and
Fl(Q) for translation motions in small and large cages,
respectively, are given in the Gaussian approximation by:

Fs~Q! 5
1

Zts
E

0

r#

drtr t
2e2bU(rt)Fsin~Qrt!

Qrt
G . e2Q2^rts

2&/6 (7a)

Fl~Q! 5
1

Ztl
E

r#

`

drtr t
2e2bU(rt)Fsin~Qrt!

Qrt
G . e2Q2^rtl

2/6, (7b)

where ^rts
2& and ^rtl

2& are the mean-square displacement for
translational motions of the particle in small and large
conformational cages, respectively. The probabilityf,
which is the fraction of equivalent particles probing only the
large conformational cage, is given by:

f 5
1

1 1 ebDG ;

DG 5 kBT lnFZvsZts

ZvlZtl
G 5 DH 2 TDS,

(8)

whereZvs andZvl, andZts andZtl are the partition functions
for vibration and translation coordinates, respectively. The
DH andDG are the energy and free energy differences for
the system in the large and small cages, andDS is the total
conformational entropy difference between the two cages.
The ratio f/(1 2 f) 5 e2bDG gives to some extent the
frequency ratio of the large-to-small amplitude fluctuations
of the protein molecule. Protein fluctuations are mostly of
small amplitude whenf ; 0 at low temperature, while they
are of larger amplitude forf ; 1 when the temperature gets
higher. Accordingly, one can define a temperatureTm at
which small and large fluctuations occur with equal fre-
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quency, i.e., whenDG(Tm) 5 0 resulting from the compen-
sation of the energy and entropy difference. Assuming that
DH is independent of temperature, we haveTm 5 DH/DS.

Mean-square displacement

Placing the expression in Eq. 6 into Eq. 4 withCa(t) 5 0,
the mean-square displacement,^R2&, of the particle is
readily obtained as:

^R2& 5 ~1 2 f!@^rvs
2 & 1 ^r ts

2&# 1 f@^rvl
2 & 1 ^r tl

2&#

5 ~1 2 f!^rs
2& 1 f^r l

2&. (9)

Although rv and r t are supposed to be independent, this
expression clearly shows that the splitting^r2& 5 ^rv

2& 1 ^rt
2&

makes sense only within each conformational cage, but not
for the total mean-square displacement. Therefore, it is
more convenient to definêrs

2& and^r l
2& as the overall mean-

square displacement of the particle moving within the small
and large conformational cages.

For a set of quantized harmonic oscillators the mean-
square displacement is given by^r2& 5 kBu/2k tanh(u/2T),
whereu 5 \v0/kB is the Debye temperature andv0 andk
are the frequency and force constant of the oscillator, re-
spectively. ForT , u/2 the mean-square displacement is
almost a constant equal to the zero-point fluctuationskBu/k,
while it linearly increases with the temperature forT . u/2.
Thus, the mean-square displacements in Eq. 9 originating
from harmonic vibrational motions can be written as,

^rvs
2 & 5

kBu

2kvs
cotanhF u

2TG; ^rvl
2 & 5

kBT

kvl
, (10)

where the classical limit is taken for^rvl
2 & since it contributes

only at highT.
For the translational motions, however, the cages to the

particle motions originate from the neighboring molecules
that move due to structural fluctuations, as in the liquid
state. This is represented by the potentialU(rt), which has a
double-well structure. In order to introduce the force con-
stants, we invoke the linear approximation for the particle
motion about each bottom well ofU(rt), the translation
mean-square displacement of the particle within each well
of U(rt) can be written as,

^r ts
2& 5

kBT

kts
; ^r tl

2& 5
kBT

ktl
, (11)

wherekts and ktl can be regarded as equivalent force con-
stants for translational motion in small and large conforma-
tional cages, respectively.

Equations 10 and 11 taken together into Eq. 9 can be
recast in the formula,

^R2~T!& 5 @1 2 f~T!#FkBu

2kvs
cotanhS u

2TD 1
kBT

kts
G

1 f~T!FkBT

kvl
1

kBT

ktl
G, (12a)

which, when neglecting quantum effects forT . u/2, sim-
plifies to:

^R2~T!& 5 @1 2 f~T!#
kBT

k1
1 f~T!

kBT

k2
;

Hk1
21 5 kvs

21 1 kts
21,

k2
21 5 kvl

21 1 ktl
21, (12b)

wherek1 andk2 are the resulting force constants (from both
the vibration and translation) to particle motions in small
and large conformational cages. As a consequence of in-
voking the linear approximation for translational motions,
vibrational and translational motions are merged into a
single force constantki (i 5 1, 2) in respective cages.
Relaxing (or the failure of) the linear approximation would
lead to nonlinear dependence of^rt

2& as a function ofT (i.e.,
nonharmonic and temperature-dependent force constant),
and thus to a distinction between the two types of motions.
The nonharmonic behavior of̂R2(T)& in Eq. 12b arises
because of finite fractionf(T) describing the relative con-
tribution of population of particles probing the large con-
formational cage. We will see further that the dynamical
transition, defined as the deviation from the linear behavior
of ^R2(T)& versusT, takes place for a value off that is rather
small, i.e., when a small fraction of the total population of
particles experience barrier crossing events caused by large
amplitude fluctuations of the protein conformations. Equa-
tion 12b also suggests that within the linear (merging)
approximation the harmonic regime at low temperature may
involved degrees of freedom other than vibration because
the translational force constant also contributes tok1.

The generalization of Eq. 12b to dynamically nonequiva-
lent particles is straightforwardly obtained as,

^R2~T!& 5 O
a51

N

xaH@1 2 fa~T!#
kBT

k1a
1 fa~T!

kBT

k2a
J. (13)

This expression can again be rewritten in the same form as
Eq. 12b where nowf 5 (a51

N xafa, andk1 andk2 will be
the effective force constants which are functions ofxa, fa,
andk1a andk2a, respectively, and thus functions of temper-
ature. However, it is plausible to consider, and we will do so
from now on, thatk1 and k2 are almost independent ofT
within the range of temperatures under consideration, and
that the overall temperature dependence of the problem is
entirely contained in the fractionf(T), which is still given
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by Eq. 8. In this respect,DG in Eq. 8 represents the mean
free energy difference, i.e.,DG 5 (a51

N xaDGa, andk1 and
k2 in Eq. 12b are the expected force constants associated
with the small and large conformational cages, respectively.

Finally, it may be instructive in closing this subsection to
mention the difference between Eqs. 12a and 12b and the
expression used by Doster et al., 1989, which writes in our
notation ^R2(T)& 5 ^rv

2& 1 f(1 2 f)^rt
2&. This relation is

obtained for the jump model between the two minima
(points) separated by a constant (T-independent) distance
=^rt

2& of a double well and assuming identical vibrational
motions (i.e.,̂ rv

2&) in the two wells. In contrast, our descrip-
tion considers the entire well (cages, not points), allows
different ^rv

2& in each well, and treats the inter-well transla-
tional transition as a continuous process. If it is assumed in
Eq. 9 that̂ rvs

2 & 5 ^rvs
2 & 5 ^rv

2&, Eq. 12b becomeŝR2(T)& 5
^rv

2& 1 (1 2 f)^rts
2& 1 f^rtl

2&, indicating and underlining that
the nonharmonic behavior of^R2(T)& originates from barrier
crossing events in the translational motions.

Transition temperature

From what precedes and according to Eq. 12b, the mean-
square displacement linearly increases withT with a slope
kB/k1 at low temperature (f ; 0). In practice, one is inter-
ested to locate the temperature about which the departure
from the straight line of slopekB/k1 is effective and then
determine the temperature for the dynamical transition. To
this end, since the transition from low to high temperature
behaviors of̂ R2(T)& is controlled by the fractionf(T), one
can define in an operative way a transition temperatureT0

such that:

f~T0! 5 1021N T0 5
DH

DS1 kB ln~9!
,

i.e., (14)

1

T0
5

1

Tm
1

kB ln~9!

DH
,

whereTm, defined byf(Tm) 5 0.5, is the temperature at
which the energy-entropy compensation occurs. As defined,
T0, smaller thanTm, is the temperature at which;10% of
the protein fluctuations are of large amplitude, allowing
particles to cross the free energy barrier of heightDG 5
ln(9)kBT0 . 2kBT0 at T 5 T0. The transition temperature is
independent of the observation time, but it depends upon
both the energy gap and the entropy difference between
conformational cages. We note, however, that in most ex-
periments dealing with the dynamical transition the highest
temperature investigated is always lower thanTm. The study
of the higher temperature regime,T . Tm, requires taking
into account additional processes like precursors to protein
unfolding. It is worthwhile to note also that it is difficult to
experimentally determineT0 exactly because the transition

is rather broad. However, Eq. 14 provides a simple relation
betweenT0 and other relevant parameters of the problem.

Now, to characterize the thermal mobility of a protein
molecule within the temperature intervalu # T , Tm, we
linearize Eq. 12b about a certain reference temperatureTr

(e.g.,Tr 5 300 K) to obtain:

^R2~T!& . H kBT/k1; u , T , T0,
kBT/k3 2 a2; T0 , T , Tm, (15)

where

1

k3
5

@1 2 f~Tr!#

k1
H1 2

DH

kBTr
f~Tr!J

1
f~Tr!

k2
H1 1

DH

kBTr
@1 2 f~Tr!#J, (16a)

a2 5 DHS1

k2
2

1

k1
Df~Tr!@1 2 f~Tr!#. (16b)

The force constantk1 and the pseudo-force constantk3 can
thus be regarded as a measure of the degree of flexibility of

FIGURE 1 Hydrogen mean-square displacement^R2(T)& 5 3^x2(T)& ver-
sus temperature for hydrated myoglobin (circles) (from Doster et al.,
1989). The solid line is the best fit to the data (circles) using the expression
in Eq. 12b with parameters listed in Table 1. The quoted dashed curves
correspond to linear approximations in Eq. 15 with the force constantsk1

andk3 (see Table 1). The triangles represent elastic scans for the trehalose-
coated CO-myoglobin (from Cordone et al., 1999). Note the absence of the
dynamical transition for trehalose-coated CO-myoglobin.
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a protein molecule, and as such they can be used to compare
different systems having similar transition temperatures.

ILLUSTRATIVE APPLICATIONS AND DISCUSSION

As an illustration, we used the theory developed in the
previous sections to analyze elastic temperature scans from
the literature on myoglobin and purple membranes under
different environmental conditions. Equation 12b, withf(T)
given in Eq. 8, and Eq. 14 constituted the main theoretical
formulae to analyze experimental data. In both sets of
experiments the data had been collected on backscattering
spectrometers IN10, IN13, or IN16 at the ILL in Grenoble,
with energy resolution ranging from 1 to 10meV, corre-
sponding to a time window (or observation time) of;t .
1 2 0.1 ns, andQ-range 0.62 4.5 Å21 corresponding to
fluctuations of;1 Å.

Myoglobin has been widely used as a model protein for
studies of dynamics (e.g., Frauenfelder et al., 1988) and the
first neutron scattering experiments on the dynamical tran-
sition in a protein were on myoglobin powders hydrated
with heavy water (D2O) (Doster et al., 1989). Fig. 1 displays
these experimental data (circles) and the best fit using Eq.
12b (solid line). The parameters extracted from the fit are
listed in Table 1. We found that the transition temperature is
;T0 . 200 K (compared to 180 K estimated by Doster et
al.), the free energy barrier of the transition at 300 K is
;DG . 0.52 kcal/mol, and the force constants associated to
conformational fluctuations arek1 . 2.76 N/m in the har-
monic regime at low temperature, andk2 . 0.28 N/m for
larger fluctuations regime. The fit to low temperature (T ,
100 K) data using the leftmost expression in Eq. 10 gives a
Debye temperatureu . 110 K corresponding to the low
frequencyv0 . 38 cm21. This is to say that Eq. 12b applies
for temperatures.u/2 . 55 K.

The dynamics of myoglobin in the presence of very high
concentrations of the disaccharide, trehalose, has been stud-
ied by neutron scattering (Cordone et al., 1999). The elastic

scan and density of state measurements showed that up to
320 K (the highest temperature examined) the system has a
harmonic behavior. The authors suggested that the protec-
tive effect of trehalose on the biological structures is related
to “trapping” them in a hard harmonic state even at high
temperature. The fit to the data gave a Debye temperature
u . 300 K (i.e.,v0 . 210 cm21) and a force constant of
;3.14 N/m. These data (triangles) are also reported in Fig.
1 where, as one can see, there is no discernible dynamical
transition. The effect of the trehalose environment on the
myoglobin dynamics would then be to increase both the
Debye temperature and the dynamical transition tempera-
ture (by increasingDH and/or decreasingDSsuch thatT0 .
320 K). The Doster et al. (1989) and Cordone et al. (1999)
experiments emphasized the importance of the protein en-
vironment on its dynamics.

As another example we considered the purple membrane
of Halobacterium salinarumthat has been studied exten-
sively by neutron scattering. It is made up of the retinal
protein, bacteriorhodopsin, and specific lipids, and func-
tions as a light-activated proton pump. By observing their
respective dependence on hydration, correlations were es-
tablished between dynamics and functional aspects such as
photocycle kinetics and conformational changes (Zaccai,
2000b). Different populations of motions were also found in
purple membranes, depending on energy resolution (time
window) (Fitter et al., 1996), scattering vector range (space
window) (Réat et al., 1997), H-D labeling of different parts
of bacteriorhodopsin (Re´at et al., 1998), or hydration de-
pendence (Lehnert et al., 1998). We note that within the
framework of our analysis, the expression different popula-
tions of motions means that there are fractions of particles
that are dynamically nonequivalent, i.e.,xa Þ 1. The mo-
tions for each dynamical categorya of particles was fitted
in terms of the model with a small and a large conforma-
tional cage as outlined above.

Fig. 2A shows results from the dry sample, and Fig. 2,B
and C from the wet ones, Fig. 2B describing only the

TABLE 1 Summary of parameters obtained from the best fits to data in Figs. 1 and 2

Parameters
Myoglobin
(hydrated)

PM dry
(unlabeled)

PM wet
(labeled core)

Native PM wet

x1 5 0.57 x2 5 0.43 Average

DH (kcal/mol) 1.59 1.08 1.57 1.57 9.53 5
DS (R) 1.80 1.30 1.65 1.65 14 7
DG0 (kcal/mol) 0.88 0.70 0.90 0.90 1.30 1.07
DG (kcal/mol) 0.52 0.30 0.59 0.59 1.18 0.84
Tm (K) 444 420 480 480 340 358
T0 (K) 200 156 205 205 293 272
k1 (N/m) 2.76 1.56 2.24 2.24 1.06 1.51
k2 (N/m) 0.28 0.38 0.23 0.23 0.028 0.06
k3 (N/m) 0.33 0.44 0.28 0.28 0.014 0.03

DH andDS are the energy and entropy differences for the system in the large and small conformational cages, respectively.DG0 5 ln(9) RT0 andDG
represents the free energy barrier of the transition atT0 and 300 K, respectively (RT . 0.6 kcal/mol at 300 K). The energy-entropy compensation
temperature isTm 5 DH/DS, and the transition temperatureT0 is calculated from Eq. 14.k1 andk2 are the force constants associated to the small and large
conformational cage, respectively (see Eq. 12b), andk3 is the force constant at 300 K.x1 andx2 denote the population fraction.
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FIGURE 2 Hydrogen mean-square displacement^dR2(T)& 5 ^R2(T)& 2 ^R2(Tmin)& (with 2^R2& 5 ^u2&) versus temperature for the purple membrane (PM)
bacteriorhodopsin (from Re´at et al., 1998). The solid lines are best fits to the data (circles) using the expression in Eq. 12b with parameters listed in Table
1. The quoted dashed curves correspond to linear approximations in Eq. 15 with force constantsk1 andk3 (see Table 1). PanelA refers to unlabeled PM
dry, B to labeled core PM wet, andC to native PM wet. For panelC the solid line through the data is obtained using Eq. 13 for two populations^dR2(T)&
5 (a51

2 xa^dRa
2(T)&, where^dR1

2(T)& corresponds toB.
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protein core (data from a sample with labeled amino acids
and retinal). The data in Fig. 2,A andB were fitted by using
Eq. 12b (solid line) for a single population model, while
data in Fig. 2C required using a two-population model (i.e.,
Eq. 13) for a better fit (solid line) over the entire range of
temperature (see Table 1 for parameters). In this latter case
(i.e., Fig. 2C), we found that 57% of the total mean-square
displacements are represented by motions of the protein
core identical to that in Fig. 2B.

Comparison of parameters in Table 1 corresponding to
Fig. 2, A andC shows that the underlying dynamics of the
dry sample is very different from that of the wet one (i.e.,
single population versus two populations) underlining again
the importance of the protein environment on the dynamics.
In addition, a similar comparison between data in Fig. 2,A
andB (both being fitted with a single population, i.e.,xa 5
1) indicated that the bacteriorhodopsin core (even when
wet) is less flexible than the dry sample as a whole because
the transition temperature, the free energy barrier of the
transition, and the force constants of the protein core are all
higher than those of the dry sample.

The data in Fig. 2C, from Lehnert et al. (1998), were
obtained forQ-range (0.3 Å21 , Q , 1.8 Å21). These
authors also analyzed what they named a “small amplitude”
population of membrane motions in a higherQ-range (2.4
Å21 , Q , 3.6 Å21). The Gaussian approximation is still
valid sinceQ2^R2& # 1 for these motions. We performed our
model fit to these data (not shown) to examine whether this
high Q population corresponds to one of the two found in
the lowQ data. The total highQ mean-square displacements
are described by a single population with the parameters
DH 5 1.78 kcal/mol,DS 5 1.14 R,k1 5 1.88 N/m,k2 5
0.48 N/m, andT0 5 267 K. A comparison with values in
Table 1 shows that the thermodynamic parameters are sim-
ilar to those of population 1 in the lowQ analysis, except
for T0, which is close to the average value for the two
populations.

In order to speculate on the two-population interpretation
of the wet sample, we recall that 60% of amino acid residues
of bacteriorhodopsin are in the seven transmembrane heli-
ces, and 40% are in solvent-exposed loops linking the
helices and N and C-terminal. Thus, a conceivable assign-
ment is that the first population is formed by the alpha
helices (constrained) in the membrane and the second one
by the remaining solvent-exposed parts of the protein that
can experience larger fluctuations within larger conforma-
tional cages (seeDS values in Table 1). This is consistent
and provides support for finding that 57% and 43% of
contributions to the total mean-square displacements in Fig.
2 C come from populations 1 and 2, respectively. In addi-
tion, the free energy barrierDG is of order of RT for
population 1, while it is about twice as large for population
2. According to these considerations, population 1 (x1 5
0.57) would describe the dynamics of the protein core and
population 2 (x2 5 0.43) the dynamics of loops in solvent

for which the associatedDH . 9.53 kcal/mol corresponds to
that of one to two H-bonds (H-bond energy lies between 3
and 6 kcal/mol). As expected, comparison of force constants
indicates that population 2 is more flexible than population
1. At physiological temperature (i.e., above the solvent
melting point at 270 K) the active core of the wet protein is
about a factor of 10 more resilient than the wet membrane
as a whole.

Finally, we compared the dynamics of the hydrated myo-
globin and hydrated purple membrane in Fig. 3 through the
curves obtained from best fits to experimental data in Figs.
1 and 2. It appears that the transition temperature, the free
energy barrier of the transition, and force constants are very
similar for myoglobin and the bacteriorhodopsin core. At
low temperatures the highest force constant is for myoglo-
bin, followed by the bacteriorhodopsin core, then purple
membranes (see Table 1). At the higher temperatures the
myoglobin and bacteriorhodopsin core have similar behav-
ior as a function ofT and thus show similar force constant
values (see Table 1), consistent with the compact structure
of the alpha-helical myoglobin, which does not have any
large surface loops. However, because of the two popula-
tions in the wet membrane (with different transition tem-
peratures) the elastic scans for the purple membrane and for
the bacteriorhodopsin core diverge at;260 K, with the

FIGURE 3 Comparison between hydrated myoglobin in Fig. 1 and na-
tive PM wet and labeled core PM wet (dashed line) in Fig. 2, B and C,
respectively.
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membrane scan displaying a very low (10 times smaller)
force constant value, 0.03 N/m, at physiological temperature.

To conclude, the time window examined in the above
elastic scans corresponds mainly to H atoms moving with
the amino acid side chains of the protein (Smith, 1991).
Thus, it may be instructive to analyze values in Table 1 with
this perspective. The number of nonexchangeable H atoms
in side chains varies from 1 (for glycine) to 9 (for leucine
and iso-leucine), with a mean value of 5 H per amino acid,
calculated for the composition of myoglobin, for example.
The H-bond energy isDHH . 3–6 kcal/mol; the stretching
kH

S and bendingkH
B force constants associated to an H bond

are;13 N/m and 2–3 N/m (Chou, 1985; Itoh and Shiman-
ouchi, 1970), respectively, while the force constant for a
typical covalent bond falls in the range of 100–400 N/m. It
results from the above analysis that the dynamical transition
is associated with typical free energy barriers of the order of
the thermal energy,RT, and typical force constants ranging
from 0.1 to 3 N/m, similar tokH

B. Moreover, except for the
purple membrane at 270 K, the energies for the dynamical
transition correspond to;1 H bond per amino acid side
chain since 5DH ; DHH. As already noticed by Doster and
Settles (1999), these observations tend to suggest that the
H-bond networks within the protein and between protein
and solvent play a key role in the dynamical transition.

Thanks are due to C. Pfister and the IN13 group for stimulating discussions
and comments on the manuscript, and to P. Nozie`res and the theory group
of ILL for their hospitality.
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