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ABSTRACT A mean-field theoretical approach is applied to streptavidin tetramerization and two-dimensional (2D) crystal-
lization. This theory includes, in particular, solvent–residue interactions following the inhomogeneous Flory–Huggins model for
polymers. It also takes into account residue–residue interactions by using tabulated pair interaction parameters. This theory
allows one to explicitly calculate the entropy of the inhomogeneous system. We show that hydrophobic interactions are
responsible for the stability of tetramerization. Within the present theory, the equilibrium distance between the two dimers is
the same as that determined experimentally. The free energy of tetramerization (i.e., dissociation of the two dimers) is 50 kBT.
Unlike tetramerization, hydrophobic interactions alone are not sufficient to stabilize the 2D crystal C222, but solvent-mediated
residue–residue interactions give the most important contribution.

INTRODUCTION

The main goal of this paper is to establish a theoretical tool
to study the effect of intermolecular interactions on the
mechanism of two-dimensional (2D) protein crystallization.
Protein tetramerization is concurrently studied to emphasize
the difference between both processes. A better molecular
understanding of the interactions underlying these mecha-
nisms could lead to the development of improved technol-
ogies for crystallizing proteins or designing ordered protein
layers for biomaterial applications (Durbin and Feher,
1996).

In the present work, we focus on the interaction between
streptavidin molecules. Streptavidin forms 2D crystals on a
biotinylated lipid monolayer, which are exactly one mole-
cule thick. Three different crystal structures have been ex-
perimentally observed, including theC222 lattice analyzed
in the present paper (Wang et al., 1999a). We are interested
in understanding the relative stability of these crystals in
relation with the different crystal contacts. This relative
stability depends in particular on the pH of the solution and
the length of the polypeptidic chains (Wang et al., 2000).
Specific intermolecular interactions have also been manip-
ulated via mutagenesis to investigate the effect of these
interactions on the phase behavior (Wang et al., 1999b). All
these studies show that streptavidin crystallization is mainly
energetically driven (and not entropically). Indeed lattice
parameters seem not to depend on the concentration of
proteins in the bulk phase.

Protein–protein contacts in crystals are complex and in-
volve a delicate balance of interactions depending on solu-
tion conditions (Durbin and Feher, 1996). Recent studies
have successfully related osmotic second virial coefficient
measurements to favorable protein crystallization condi-
tions (Rosenbaum and Zukoski, 1996; Rosenberger et al.,
1996). A model of adhesive hard spheres has also been used
to describe protein interparticle interactions near crystalli-
zation conditions (Rosenbaum and Zukoski, 1996; Piazza et
al., 1998).

However, these models are not able to probe the effect of
a local change in the polypeptide chain (by mutagenesis for
example) on the crystallization. We therefore propose the
use of a mean-field approach in which proteins are coarse-
grained by introducing “effective atoms” which carry the
main feature of the part they represent (either backbone or
side chain). Effective interactions are introduced between
residues (or effective atoms) and between residues and the
solvent. A challenge with such a theory is the choice of
effective interactions. However, such a model presents the
possibility of studying, for example, the effect of mutagen-
esis or change of the polypeptide length on crystallization
and especially on the relative stability of crystals.

In the next section, we explain the theoretical model, and
we introduce the considered interactions. The application to
streptavidin tetramerization is discussed in the following
section. The streptavidin 2D crystallization case is pre-
sented in the section by that name. Our conclusions are
gathered in the last section, and the details of the mean-field
approach are given in the Appendices.

THEORETICAL MODEL

Crystallization and tetramerization are believed not to
change the internal structure of the protein except maybe in
the interaction domains. We therefore take, as a starting
point, the experimentally determined three dimensional
(3D) structure of streptavidin found in the Brookhaven
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Protein Database. The position of the protein backbone is
considered to be fixed to its experimental position, and to
the side chains that are not directly in the interaction do-
mains. In contact domains, on a particular protein (or dimer
for tetramerization), each side chain interacting with other
proteins (or dimers, respectively) will be allowed to move in
the mean field created by all the other residues and the
solvent (moving the other side chains will give a constant
contribution to the total free energy in the present studies.
See the next two sections).

Each amino acid residue is described by two effective
atoms (i.e., groups of atoms), one sitting at theCa position,
representing its backbone part, and the other sitting at the
side chain center of mass (cms) position, carrying the side
chain properties such as hydrophobicity. To evaluate the
free energy of the protein–solvent system, we use the mean-
field theory established in Vo¨lkel and Noolandi (1996,
2000). This theory allows us to explicitly calculate the
entropy of the inhomogeneous system (Appendix A).

The solvent–effective atom interactions are evaluated
following the inhomogeneous Flory–Huggins model for
polymers by defining contact interaction parameters that
depend on the relative hydrophobicity of the side chains
(Appendix B). Concerning the interactions between each
two of the effective atoms, we use tabulated pair interaction
parameters deduced from a statistical study of the number of
residue–residue contacts in experimentally determined pro-
tein structures (Kolinski et al., 1993, Skolnick et al., 1997)
(Appendix C).

STREPTAVIDIN TETRAMERIZATION

The present theory has already been applied top53, where
the effect of site-directed mutagenesis on the stability of its
tetramerization domain has been investigated (Noolandi et
al., 2000). In this Section, we study streptavidin tetramer-
ization. Streptavidin can be seen as a dimer of dimers. We
use the known streptavidin structure determined by Katz
(1995) for residues 13–133 (PDB, 1sle). The existence of a
minimum in the reduced total free energybF with respect to
the separation distanced between the two dimers (illustrated
in Fig. 1) will tell us about the stability of the tetramer.

Residues interacting across the dimer–dimer interface
include Ser-122, Thr-123, Leu-124, Val-125, Gly-126, His-
127, Asp-128 and Thr-129. Corresponding side chains are
allowed to move in the mean-field created by other residues
and the solvent. All other side chains and the backbone are
kept fixed at their experimentally determined position. Ac-
tually, explicitly including these side chains into the mean-
field calculations adds a constant contribution to the total
free energy, independent of the separation distance between
the dimers.

To limit the motion of the moving side chainn within a
physically relevant area, we impose the constraint

E dxrn~x!x 5 xn
0, (1)

wherexn
0 is the cms position found in the PDB file. Alter-

natively, we can bias the cms density toward the known
rotameric states of the side chain by including an appropri-
ate potential (Noolandi et al., 2000). The constraint Eq. 1 is
equivalent to forcing the side chain to remain in the same
rotameric state as the one found in the PDB file.

Figure 2 shows that a minimum in the total free energy
with respect to the separation distance exists. Clearly sol-
vent–residue interactions are responsible for the existence
of this minimum: this interaction gives the only increasing
contribution to the free energy with increasingd. That
means that the streptavidin tetramer is stable because of
hydrophobic interactions between the two dimers. This is
not surprising, knowing that the majority of hydrophobic
residues are buried inside the protein. Moreover, within the
tetramer, the estimated equilibrium separation distance be-
tween the two dimers is the one found in the experimentally
determined structure in the PDB file. The dissociation free
energy of the two dimers is evaluated as 50kBT. This is in
good agreement with the theoretical result from Sano et al.
(1997).

FIGURE 1 The two dimers forming streptavidin are represented in grey
(equilibrium structure of streptavidin from PDB file). We translate one of
them (black) by a separation distanced from the centrum of the protein
(dashed line), i.e., from the other dimer. This figure was obtained with
MolScript (Kraulis, 1991).
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STREPTAVIDIN 2D CRYSTALLIZATION

Experimental studies (Wang et al., 1999a,b, 2000) have
shown that the 2D crystal structureC222 is observed at
neutral pH (cf. Fig. 3). Crystallization seems to be driven

mainly by energetic constraints and not entropic ones. Ac-
tually, the lattice parameters deduced experimentally for
C222always have the same value, independent of the density
of the system. In this section, the present theory, where
energetic terms dominate (cf. Eq. A13), is applied toC222

crystallization. For each pair of nearest neighbors, the con-
tacts or interactions are equivalent in this 2D crystal (cf. Fig.
3). Interactions within the crystal are therefore characterized
by the free energy of dissociation of a pair of proteins and
the equilibrium separation distanced between these two
proteins (cf. Fig. 4).

The selected residues are Glu-14, Ala-15, Gly-16, Thr-
18, Gly-19, Thr-20, Tyr-22, Thr-32, Gly-98, Gly-99, Ala-
100, Glu-101, Ala-102, Lys-132 (cf. Fig. 4). They all inter-
act with each other, and their cms are allowed to move in the
mean fields defined within the present theory. We still
impose the constraint Eq. 1. Unlike the tetramerization
described above, considering only the residue–solvent in-
teractions based on hydrophobicity indices (See Appendix
B) and residue–residue interactions based on Skolnick’s
interaction parameters (See Appendix C) is not sufficient to
create a minimum in the free energy with respect to the
separation distanced between the two proteins. Actually,
unlike the tetramerization case, hydrophobic interactions
give a decreasing free energy contribution with respect to
the separation distanced as do all the other contributions.

Because the relative orientation of proteins withinC222

crystal comes from an experimental study of the electron
density projection map of the crystal, this relative orienta-
tion is only approximately known. However, even when
varying the mutual alignment of the two proteins within the
uncertainty of their published position, we do not observe
the appearance of a well-defined minimum in the free
energy. On the surface of streptavidin, there are mainly
hydrophilic residues, and exposing them to the solvent does
not lead to a distinct energy penalty within the interaction
scheme of the model presented so far. Note that hydropho-

FIGURE 2 The reduced free energybF as a function of the separation
distanced between the two dimers. The lines on the figure represent the
total free energy (Ftot, solid line), the free energy due to fixed effective
atoms (FR

fixed, dot-dashed line), the free energy due to the selected (moving)
effective atoms (FR

sel, dotted line), the entropic part of the free energy due
to the solvent (FS, long dashed line) and the solvent-residue free energy
(FR–S, dashed line).

FIGURE 3 C222 crystal structure. The lattice parametera is about 58 Å.
The orientation of streptavidin within the crystal corresponds to experi-
mental observations. The four crystal contacts are all equivalent. This
figure was obtained with MolScript (Kraulis, 1991).

FIGURE 4 Two streptavidin proteins separated by a distanced. In the
equilibrium structure, this distance is aboutd 5 58 Å. Filled circles
represent the selected residues allowed to change their cms position com-
pared to the one found in PDB file. This figure was obtained with
MolScript (Kraulis, 1991).
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bicity can be a major factor in stabilizing protein–protein
association (Chothia and Janin, 1975; Olson, 1998; Young
et al., 1994). However, it appears to be more relevant for the
association within subunits of a protein (e.g., in tetramer-
ization) or between a protein and its ligand.

Note that electrostatic interactions are thought to be
screened in the present experimental situation (Wang et al.,
1999a,b, 2000). Note also that several studies report that
direct protein–protein contacts are reinforced by well-or-
dered solvent molecules. Extended patterns of hydrogen
bonds can therefore be formed to supplement and strengthen
the few direct interactions between residues (Frey et al.,
1988; Salemme et al., 1988). This contribution to the inter-
action energy potential is not included in the Skolnick
interaction parameters. They have been evaluated with a
statistical study made on the internal structure of individual
proteins where interactions reported in Frey et al. (1988)
and Salemme et al. (1988) are less likely to exist. Skolnick
and associates introduced hydrogen bonds explicitly into
their model for protein folding, but only between backbone
elements related toCa positions. The motivation for intro-
ducing these interactions was to enhance secondary struc-
ture formation during the folding process (Skolnick et al.,
1997; Kolinski et al., 1993), but not the formation of bonds
between different molecules during crystallization.

We therefore introduce a new contribution to the mean-
field model presented in the second section. This contribu-
tion can be seen as an addition to the Skolnick interaction
parameters. This new contributionbFH to the reduced free
energy of the system is

bFH 5
1

2 O
n51

N O
m51;
nÞm

N E dxE dx*rn~x!bVnm
H ~x 2 x*!rm~x*!

5
1

2 O
n51

N O
m51;
nÞm

N

xnm

1

VE dxfn~x!fm~x!, (2)

following the simple idea of Eq. B5 for the residue–solvent
contribution. The new parametersxnm with

xnm 5 H 0; if no possible H-bond
2a; if possible H-bond, (3)

are introduced to favor attractions between residues that
allow hydrogen bonds (direct or mediated by the solvent). In
Eq. 3,a is a free parameter and sets the scale of this energy
contribution.

The additional term Eq. 2 does not bring any relevant
change to the tetramerization problem. The location of the
minimum in the free energy with respect to the separation
distance between the two dimers is not changed by intro-
ducing this additional term. That is because residues allow-
ing hydrogen bonds do not interact with each other through
the dimer–dimer interface.

By contrast, addition of the hydrogen bond attraction to
the model now causes a minimum to appear in the contact
free energy with respect to the separation distance between
the two proteins in theC222 lattice as shown in Fig. 5. It is
located atd 5 59 Å in good agreement with the experimen-
tal lattice parametera of C222 (cf. Fig. 4). The free energy
of contact is estimated to be around 10kBT.

CONCLUSIONS

The mean-field analysis of streptavidin tetramerization pre-
sented in this paper shows clearly that hydrophobicity of the
dimer–dimer interface plays the main role in stabilizing the
tetramer against dissociation into two dimers.

Unlike tetramerization, the existence of theC222 lattice in
2D streptavidin crystals cannot be explained with arguments
based on hydrophobicity alone. Residue–residue interac-
tions, which could be mediated by the solvent, give the main
contribution to the stability ofC222. Hydrogen bonds could
play an important role in this stability. A further study of the
validity of the effective interactions we have used should be
carried on to confirm that fact.

APPENDIX A:
MEAN-FIELD APPROACH

For clarity, in this section, we will write the guidelines of the mean-field
theory established in Vo¨lkel and Noolandi (1996). The main goal of this
section is to determine the probability (density) of finding the cms of each
of the effective atoms at a given position and the associated mean fields in

FIGURE 5 The reduced free energybF as a function of the separation
distanced between the two proteins. The lines on the figure represent the
total free energy (Ftot, thick solid line), the free energy due to fixed
effective atoms (FR

fixed, dot-dashed line), the free energy due to the selected
(moving) effective atoms (FR

sel, dotted line), the entropic part of the free
energy due to the solvent (FS, thin solid line), the solvent–residue free
energy (FR–S, dashed line) and the additional term Eq. 2 due to hydrogen
bonds (FH, long dashed line).
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which the effective atoms are moving. We will also evaluate the Helmholtz
free energy of the protein–solvent system.

First, we rewrite the partition function of a protein–solvent system in
such a way that its free energy can be approximated in a systematic and
consistent way (Vo¨lkel and Noolandi, 2000). The starting point of our
approach is the partition function,

Z 5 ]E P
n51

N

dxnP
j51

Ns

dr je
2bV({ xn}, { r j}) , (A1)

whereN is the number of effective atoms representing proteins,Ns is the
number of solvent atoms,xn is the position of effective atomn, andr j is the
position of solvent moleculej. V({ xn}, { r j}) denotes the potential energy of
the protein–solvent system andb 5 1/kBT with the temperatureT, and
Boltzmann’s constantkB. ] is the partition function related to the total
kinetic energy,

] 5
Ls

23Ns

Ns!
P
n51

N

Ln
23, (A2)

whereLn 5 =bh2/2pmn is the thermal de Broglie wavelength of particles
n with massmn (the indexn is used to label either effective atoms or
solvent molecules). First, we characterize each effective atom by a density
r̂n(x),

r̂n~x! 5 d~x 2 xn!, (A3)

and the solvent by the densityr̂s(x),

r̂s~x! 5 O
j51

Ns

d~x 2 r j!. (A4)

Using standard density functional techniques, we generalize the densities
from the delta distributions in Eqs. A3 and A4 to continuous functions
rn(x), n 5 1, 2, . . . ,N, Swith * dxrn(x) 5 Nn (Nn 5 1 for n 5 1, 2, . . . ,
N). The densityrn(x) represents the probability of finding the cms of the
effective atomn at positionx. rs(x) is the usual solvent density. Introducing
these functionsrn(x), we can rewrite the exponential in Eq. A1 as

e2bV({ xn}, { r j}) 5 E P
n51

N11

$@rn#d~rn~x! 2 r̂n~x!!e2bW[{ rn}] ,

(A5)

with

bW@$ra%# 5
1

2 O
n51

N11 O
m51;
nÞm

N11 E dx dx* rn~x!bVnm~x 2 x*!rm~x*!,

(A6)

where the notationW[{ ra}] denotes thatW is a functional of the densities
ra(x) and where we assume pair-additivity for the interaction potential
energybV. Respectively,bVnm andbVns represent the potential energy of
atoms n and m interacting with each other and of effective atomn
interacting with the solvent. The delta functionsd(rn(x) 2 r̂n(x)) can be
replaced by an exponential function with the help of auxiliary fieldsvn(x),

d~rn~x! 2 r̂n~x!!

5 E$@vn#expHE dx vn~x!~rn~x! 2 r̂n~x!!J. (A7)

Defining

Qn 5 E dx e2vn(x), (A8)

we can rewrite the partition function Eq. A1 as

Z 5 E P
n51

N11

$$@rn#$@vn#%e
2b^[{ rn}, { vn}] , (A9)

with

b^@$rn%, $vn%#

5bW@rn# 2 O
n51

N11 HE dx rn~x!vn~x!

1Nn ln~QnLn
23!J 1 ln~Ns!!. (A10)

Eqs. A9 and A10 give an exact representation of the partition function of
the system and are a convenient starting point for developing systematic
approximations for calculating the partition function. In particular, we use
a mean-field approximation where Eq. A9 is replaced by the maximum of
its integrand. In this case, Eq. A10 must fulfill the conditions,

­^@$rn%, $vn%#

­rn~x!
5 0

­^@$rn%, $vn%#

­vn~x!
5 0, (A11)

which lead to the coupled set of equations

rn~x! 5
Nn

Qn
e2vn(x)

vn~x! 5 O
m51, mÞn

N E dx* bVnm~x 2 x*!rm~x*!

1E dx* bVns~x 2 x*!rs~x*! (A12)

vs~x! 5 O
n51

N E dx* bVsn~x 2 x*!rn~x*!.

By doing this approximation, we replace the detailed interactions between
the different components of the system by the average of all the interac-
tions that each of the individual components sees. Substituting Eqs. A12 in
Eq. A10 yields (using Stirling’s approximation for largeNs)

bF 5 O
n51

N11 E dx rn~x!H12 vn~x! 1 ln~Ln
3rn~x!!J

2E dx rs~x!, (A13)

2008 Coussaert et al.

Biophysical Journal 80(4) 2004–2010



wherebF is the reduced Helmholtz free energy of the protein–solvent
system. Besides the two-particle interactions and the usual kinetic
energy contributions, we obtain an additional entropic part,(n51

N * dx
rn(x)ln rn(x), which arises from the finite width of the densitiesrn(x).

APPENDIX B:
RESIDUE–SOLVENT INTERACTIONS

Interactions between the solvent (water in the present case) and proteins
take place at their mutual interfaces (Vo¨lkel and Noolandi, 2000). We
characterize each effective atomn by rn(x), i.e., the probability of finding
the cms at positionx (See Appendix A). Because the effective atom
represents a group of atoms, we map the cms densityrn(x) to the interface
of the effective atom. Assuming each effective atom to be a sphere with an
effective atom-dependent radiusRn, we can define a volume fractionfn(x)
as

fn~x! 5 E dy Kn~x 2 y!rn~y! (B1)

with

Kn~x! 5 H Kn0; uxu # Rn

0; else, (B2)

where Kn0 is a normalization constant, which is chosen such that 0#

fn(x) # 1 everywhere in the system. Figure 6 shows schematically how
this mapping works:fn(x) 5 1 at places that are always occupied by the
effective atomn; the interface is defined as the region that is occupied by
the effective atom with a finite probability less than 1. Because of the
incompressibility of the system, i.e.,

O
n51

N

fn~x! 1 fs~x! 5 1, (B3)

we calculate the solvent volume fraction as

fs~x! 5 1 2 O
n51

N

fn~x!. (B4)

Introducing volume fractionsfn(x) and following the Flory–Huggins
model for polymers, we rewrite the contribution of solvent–protein inter-
actions to the free energy (cf. Eq. A13) as

E dx rs~x!vs~x! 5 O
n51

N

xn

1

VE dx fn~x!fs~x!, (B5)

whereV is the volume of the system. Within this model the solvent–residue
interaction is replaced by a contact interaction characterized by parameters
xn, which describe the hydrophobic/hydrophilic nature of the effective
atom n. Note that the incompressibility of the system Eq. B3 leads to
nonzero contributions to Eq. B5 only wherefn(x) andfs(x) overlap, i.e.,
at the mutual interfaces of the effective atoms and the solvent. That means
that, within the present model, there is no interaction between the solvent
and the backbone or the fixed side chains, because these residues volume
fractions have no overlap with the solvent volume fractionfS. For the
effective atomn (for nonfixed side chains), we define the parametersxn as

xn 5 aV2/3
bGn

Sn
, (B6)

whereSn is the free surface area of the effective atom (estimated by the
method suggested by Lee and Richards (1971), andbGn is the reduced
solvation free energies per particle (Eisenberg and McLachlan, 1986),
bGn 5 2.3PF(n). Hydrophobic indicesPF(n) were estimated at neutral pH
by Fauche`re and Pliska (1983) by comparing the distribution coefficients
of amino acid amides in water and octanol and fixing the absolute scale
such thatPF(Gly) 5 0. The constanta allows us to calibrate the numerical
protein–solvent interaction strength from experimental results. More de-
tails about the way the different parameters introduced in the present theory
are fixed can be found elsewhere (Vo¨lkel and Noolandi, 2000).

APPENDIX C:
RESIDUE–RESIDUE INTERACTIONS

For the interactions between the different effective atoms, we use tabulated
two-body interaction parameters obtained by Skolnick and coworkers
(Kolinski et al., 1993; Skolnick et al., 1997), who use a similar coarse-
graining procedure (two effective atoms per residue) for their study of
protein folding. Because we always start with an experimentally deter-
mined protein structure in the present model, we only use two-body
interactions and neglect higher-order interactions that were introduced by
Skolnick and coworkers to enhance the formation of the secondary struc-
ture or to correct for the discretization effects of their lattice model. We
also neglect the single-body interactions, because they were originally
introduced to mimic solvent–protein interactions, which are explicitly
included in the present model. Because of the continuous nature of our field
theoretical approach we use the two-body potential (Vo¨lkel and Noolandi,
2000) between residuesi and j at distancer ij

bVij~r ij!

5 H bVij
K~r ij!~1/1ij!$~1/r ij

2! 2 ~1/Rij
2!%; Rij

rep , r ij , Rij

bVij
K~r ij!; else,

(C1)

FIGURE 6 Schematic plot of the mapping ofrn(x) to fn(x) (cf. Eq. B1).
(A) Full line representsfn(x) for a situation of a fixed effective cms to
positionxn

0 (rn(x) is therefore a delta function centered onxn
0, not illustrat-

ed). (B) fn(x) (full line) for a nonfixed cms characterized byrn(x) (dashed
line).
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which multiplies a 1/r2 dependence to the otherwise constant Skolnick
two-body potential (Skolnick et al., 1997),

bVij
K~r ij! 5 5

bVrep; r ij , Rij
rep,

beij ; Rij
rep , r ij , Rij and eij $ 0,

fijbeij ; Rij
rep , r ij , Rij and eij , 0,

0; r ij . Rij .
(C2)

The two-body interaction parameterseij between residues of typei and type
j are estimated as

beij 5 2ln
Nij

^Nij&
, (C3)

where Nij and ^Nij& are, respectively, the number of contact between
effective atomsi andj as found in experimentally determined structures of
proteins and in a completely random protein.

The normalization constants1ij in Eq. C1 are chosen such that the
average interaction energies^Vij

K& and^Vij& are the same within the spherical
shellRij

rep , r ij , Rij . For close encountersr ij , Rij
rep repulsion correspond-

ing to an energy ofbVrep5 6 is considered. The contact distance (Kolinski
et al., 1993)Rij is estimated as the distance between the two effective atoms
i and j with their heavy atoms not more than 4.2 Å separated from each
other. Forr ij . Rij the interaction is zero. The factor,

fij 5 1 2 $cos2~ui , uj! 2 cos2~p/9!%2, (C4)

reflects the average angle between elements of secondary structure seen in
globular proteins (ui 5 r i12 2 r i22 wherer i is the coordinate of theith Ca

on the backbone).

We thank Dr. Szu-Wen Wang for helpful discussions.
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