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ABSTRACT We formulate the proper statistical mechanics to describe the stretching of a macromolecule under a force
provided by the cantilever of an Atomic Force Microscope. In the limit of a soft cantilever, the generalized ensemble of the
coupled molecule–cantilever system reduces to the Gibbs ensemble for an isolated molecule subject to a constant force in
which the extension is fluctuating. For a stiff cantilever, one obtains the Helmholtz ensemble for an isolated molecule held at
a fixed extension with the force fluctuating. Numerical examples and predictions for experiments with cantilevers of differing
stiffness are given for short and long chains of poly (ethylene glycol), based on parameter-free ab initio calculations.

INTRODUCTION

A series of papers have reported the measurements of the
mechanical properties of single macromolecules with the
atomic force microscope (AFM) (Florin et al., 1994; Lee et
al., 1994a,b; Moy et al., 1994; Rief et al., 1997a,b; Lantz et
al., 1999; Ortiz and Hadziioannou, 1999; Oesterhelt et al.,
1999). The experiment proceeds as follows: A macromole-
cule is anchored on the surface of a substrate, and the
functionalized tip of an AFM cantilever picks up the mol-
ecule somewhere along its chain. By moving the cantilever,
the molecule is stretched by the elastic force of the deflect-
ing cantilever. Thus one obtains the mechanical response of
the macromolecule in the form of the force–extension
curve.

The force–extension relation or, in thermodynamic
terms, the mechanical equation of state, can be measured
and calculated under different boundary conditions: 1) One
can fix the length of the macromolecule and measure the
force necessary to maintain this length; this suggests doing
the statistical mechanics in the isothermal–isochoric or
Helmholtz ensemble in which the length is a control vari-
able and the average force and its fluctuations are calculated
by differentiation. 2) One can apply a given force and
measure the resultant extension of the molecule; this sug-
gests doing the statistical mechanics in the isothermal–
isobaric or Gibbs ensemble in which the force is a control
variable, and the length and its fluctuations are calculated by
differentiation; a discussion is given, for instance, by Flory
(1989). In the case of a one-dimensional chain, isochoric
and isobaric imply constant or fixed length and force,
respectively.

Because different ensembles in statistical mechanics are
only equivalent for thermodynamically large systems but
not for small systems in which fluctuations are non-negli-

gible, it is important to formulate the right statistical me-
chanics for the stretching of a macromolecule in an AFM
experiment to facilitate the correct interpretation of the
experimental data and to extract the maximum amount of
information from it. (This is also desirable for other, equiv-
alent, experiments such as with laser tweezers, but will not
be done here.) The question to be answered is which of the
two thermodynamically conjugate variables, force and ex-
tension, is held constant and which is the fluctuating re-
sponse. We will show in this paper that, in an AFM exper-
iment, both situations can be realized by changing the force
constant of the cantilever. So far, experiments were done
(approximately) under the second boundary condition,
mainly for reasons of sensitivity as we will discuss in detail
below. Recently, a first principles theory was developed by
Kreuzer et al. (1999) using both Gibbs and Helmholtz
ensembles. Applied to the stretching of poly (ethylene gly-
col) (PEG), both in hexadecane and in water, quantitative
agreement was achieved with the experimental results by
Oesterhelt et al. (1999), based on the Gibbs ensemble.
Different statistical mechanical ensembles for a stretched
polymer have also been studied within the context of simple
models (Gaussian chain and freely jointed chain) by Titanah
et al. (1999).

We show a schematic of the experimental setup in Fig. 1.
In the absence of contact between the cantilever tip and the
macromolecule, the tip would be at a distanceD from the
surface where the macromolecule is anchored. When the tip
is attached to the macromolecule, the latter is stretched to an
end-to-end lengthLm and the tip is deflected by a distance
Lc such that

D 5 Lm 1 Lc. (1)

WhereasLm is always positive,Lc can have either sign. In
the experiment, the distanceD is adjusted and the resulting
deflection,Lc, of the tip is measured optically. From this,
the force is calculated assuming Hooke’s law

F 5 kcLc, (2)

or, if this is not valid, from an otherwise measured force
law. Likewise, the extension,Lm, of the macromolecule is
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calculated from Eq. 1. ObviouslyLm undergoes thermal
fluctuations, and, consequently,F andLc are also fluctuat-
ing quantities.

Based on this view of the AFM experiment, we will, in
the following section, develop the statistical mechanics of
the coupled macromolecule–cantilever system and discuss
the limiting cases of soft and stiff (compared to the macro-
molecule) cantilevers. In the subsequent section, we will
then show numerical examples of the force–extension
curves of PEG stretched with different cantilevers. The
underlying potential energy curves for the various conform-
ers of PEG will be calculated with ab initio (density func-
tional theory) methods so that our predictions for AFM
experiments on the stretching of this molecule are essen-
tially parameter free. We also calculate Helmholtz and
Gibbs potentials and entropies in addition to fluctuating
quantities, stretch moduli, and segment elasticities. The
paper ends with a summary of the essential insights and
some conclusions.

STATISTICAL MECHANICS OF STRETCHING

In this section, we define the proper framework of statistical
mechanics for the description of the stretching of a macro-
molecule in the atomic force microscope. We treat the tip
(cantilever) and the macromolecule as two coupled sub-
systems whose lengths are unknown and to be measured and
calculated. The experimentally controlled variables are the
distanceD and the temperatureT. The microstates of the
system are those of the two subsystems for various lengths
and internal excitations. We first introduce canonical con-
figurational partition functions of the two decoupled sub-
systems for given lengths,Zm(T, Lm) and Zc(T, Lc), where
the subscripts refer to the macromolecule (m) and the can-
tilever (c). Coupling the two subsystems together allows the
total system to sample all lengthsLm andLc. Although the

structure and the internal vibrational excitation spectrum of
the macromolecule (more precisely of the relevant conform-
ers of the macromolecule) as a function of its length must be
calculated from quantum mechanics, its coupling to the
cantilever can be described adequately by classical statisti-
cal mechanics because it involves only its center-of-mass
motion. We can therefore write, for the total partition
function

Zsystem~T, D!

5h21E
0

`

dLmE
2`

`

dpe2bp2/2mZm~T, Lm!Zc~T, D 2 Lm!

(3)

5lm
21 E

0

`

dLmZm~T, Lm!Zc~T, D 2 Lm!. (4)

Here Planck’s constant accounts for the size of elemen-
tary cells in phase space, andb 5 1/kBT is the inverse
temperature. Performing the integration in Eq. 3 over the
momenta,p, of the center-of-mass motion of the macromol-
ecule and of the cantilever (of reduced massm) we intro-
duce the thermal wavelengthlm 5 h/(2pmkBT)1/2.

Strictly speaking,Lm is the z-component of a vector with
the z-direction alongD. To restrict the cantilever to exert
only stretching forces on the molecule, we could impose an
upper integration limitD in Eq. 4. This is what mostly
happens with long polymer chains that can easily curl up.
However, short chains may resist compression so that the
cantilever must be allowed to bend away from the macro-
molecule, and the upper limit in Eq. 3 can be much larger
thanD, and infinity for simplicity.

From Eqs. 3 and 4, we get the Helmholtz free energy of
the total system

f~T, D! 5 2kBT ln Zsystem~T, D!, (5)

which yields the average force on the system

F# ~T, D! 5
­f~T, D!

­D
U

T

. (6)

Because the coupled macromolecule–cantilever system is
in internal equilibrium, this is also the force with which the
cantilever acts on the macromolecule and vica versa. We get
for the average length of the macromolecule

L# m~T, D! 5
*0

` dLmLmZm~T, Lm!Zc~T, D 2 Lm!

*0
` dLmZm~T, Lm!Zc~T, D 2 Lm!

, (7)

and of the deflection of the cantilever

L# c 5 D 2 L# m. (8)

FIGURE 1 Schematic of an AFM experiment to measure the force–
extension curve of a macromolecule.
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We get the force–extension curve of the macromolecule,
i.e., L#m(T, F# ), by solving Eqs. 6 and 7 simultaneously for a
given temperature and varying distancesD. Its explicit form
obviously depends on both the intrinsic properties of the
macromolecule and of the cantilever.

To make closer contact with the AFM experiment, we
specify the cantilever to be well approximated by a har-
monic spring with spring constantkc. Its canonical partition
function is

Zc~T, Lc! 5 exp@2 1
2

bkcLc
2#. (9)

Typical cantilevers used in AFM experiments have force
constants varying from 1 to 100 pN/Å. We then get for the
force

F# ~T, D!

52
kBT

lm

1

Zsystem
E

0

`

dLmZm~T, Lm!
­

­D
expF2 bkc

2
~D 2 Lm!2G

(10)

5
kc

lm

1

Zsystem
E

0

`

dLmZm~T, Lm!~D 2 Lm!Zc~D 2 Lm! (11)

5kc~D 2 L# m! (12)

whereL#m is the average length of the macromolecule, Eq. 7.
Thus, the average force is determined by measuring the
average deflection (D 2 L#m) of the cantilever as required by
Eq. 2. Note, in particular, that Eq. 12 demonstrates that both
the length of the macromolecule and the force needed to
maintain this length are fluctuating quantities. For these we
have generally

~dLm!2 5 Lm
2# 2 L# m

2

5
*0

` dLm~Lm 2 L# m!2Zm~T, Lm!Zc~T, D 2 Lm!

*0
` dLmZm~T, Lm!Zc~T, D 2 Lm!

,

(13)

and, for the harmonic cantilever,

~dF!2 5 kc
2~dLm!2 (14)

so that

dF

F#
5

dLm/L# m

D/L# m 2 1
. (15)

To further clarify the force–extension relation, we write
in Eq. 9

Lc
2 5 ~D 2 L# m!2 1 2~D 2 L# m!~L# m 2 Lm!

1 ~L# m 2 Lm!2, (16)

and insert this in Eq. 7 to get

L# m 5
*0

` LmdLmZm~T, Lm!exp@bF# Lm#exp@!#

*0
` dLmZm~T, Lm!exp@bF# Lm#exp@!#

, (17)

where

! 5 2
bkc

2
~L# m 2 L# m!2.

The last exponential function in both numerator and
denominator involves the length fluctuations. The simulta-
neous solution of Eqs. 12 and 17 yields the force–extension
curve for a macromolecule stretched by a harmonic spring
cantilever. Importantly, at this stage, this force–extension
curve depends not only on the intrinsic properties of the
macromolecule, viaZm(T, Lm), but also on the elastic prop-
erties of the cantilever via its harmonic force constantkc.
However, what one aspires to measure in the AFM (or any
other) experiment are the intrinsic properties of the macro-
molecule. We will show now that the effect of the cantilever
can be minimized (essentially eliminated) from the mea-
surements by judicious choices of the cantilever properties,
namely either very soft or very stiff cantilevers.

Soft cantilever

To simplify Eq. 17 for a soft cantilever, we take the limits

kc 3 0 D 3 `

kcD 5 const. (18)

The last condition ensures that the average force remains
nonzero. This reduces Eq. 17 to

L# m .
*0

` LmdLmZm~T, Lm!exp@bF# Lm#

*0
` dLmZm~T, Lm!exp@bF# Lm#

. (19)

This is exactly the expression one would write for the
average length using the Gibbs (or isothermal–isobaric)
ensemble of an isolated macromolecule to which an external
force is applied whose origin is not explicitly identified, i.e.,
from a Gibbs partition function and Gibbs potential

Zm
(Gibbs)~T, F! 5 lm

21 E
0

`

dLmZm~T, Lm!exp@bFLm#, (20)

g~T, F! 5 2kBT ln Zm
(Gibbs)~T, F!, (21)

L# m 5 2
­g~T, F!

­F
U

T

. (22)

(The sign convention in Eqs. 20–22 has the mechanical
energy increasing byF dLm for a displacement dLm of the
macromolecule.) The only difference is that, using the
Gibbs ensemble, one explicitly assumes that the external
force is experimentally controlled and thus does not fluctu-
ate. Indeed, we can demonstrate this point for a soft canti-
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lever explicitly by looking at the force fluctuations. The
limit, Eq. 18, implies thatD/L#m3 ` so that, from Eq. 15,
we see that the force fluctuations become arbitrarily small.
This is exactly the prerequisite for the use of the Gibbs
ensemble for the macromolecule. Thus the criterion for a
very soft cantilever is thatD/L#m .. 1. This is indeed the
case in the series of experiments done by Gaub and his
coworkers. There is of course a balance to be struck in the
sense that the noise in the cantilever increases with its
softness.

Stiff cantilever

To examine the case of a stiff cantilever, we start from the
system partition function Eq. 4 and note that, in the limit,

kc 3 `, (23)

the cantilever partition function, Eq. 9, approaches a delta
function

Zc~T, Lc! 5 expF2
1

2
bkc~D 2 Lm!2G

3 S2p

bkc
D1/2

d~D 2 Lm!. (24)

We get, for the partition function,

Zsystem~T, D! 3 Zm~T, D!
kBT

\vc
, (25)

and for the free energy,

fsystem~T, D! 3 fm~T, D! 2 kBT ln~kBT/\vc!. (26)

Here,vc 5 (kc/m)1/2 is the frequency, increasing with in-
creasing stiffness of the cantilever, at which the center of
mass of the macromolecule oscillates in response to the
force exerted by the rigid cantilever. In Eq. 26, the first term
is the Helmholtz free energy of the isolated macromolecule
with fixed lengthD, and the second term arises from the
cantilever. This term does not approach zero askc ap-
proaches infinity because we have used classical statistics in
Eq. 4 with the inherent assumption thatkBT/\vc .. 1. This
cosmetic blemish can easily be remedied by using quantum
statistics throughout. We have not done this here because
AFM stretching experiments are done at room temperature
with big molecules justifying the use of classical statistics.

With Eq. 26, the force, Eq. 6, becomes

F# ~T, D! . 2kBT
1

Zm~T, D!

­Zm~T, D!

­D
U

T

. (27)

This is precisely what we would have written if we had
started with an isolated macromolecule with lengthD spec-
ified, and thus worked in the Helmholtz ensemble (for the
isolated macromolecule rather than for the coupled macro-
molecule–cantilever system) withT andD the natural vari-

ables. That this is indeed the case can be demonstrated by
observing that the limit, Eq. 23, implies thatD/L#m 3 11.
Rewriting Eq. 15 as

dLm

L# m

5 ~D/L# m 2 1!
dF

F#
, (28)

we see that, in this limit, the length fluctuations are reduced
to zero, which is the prerequisite for the use of the Helm-
holtz ensemble for the (isolated) macromolecule. Our crite-
rion for a very stiff cantilever is, therefore, that (D/L#m 2 1)
,, 1. This limit is experimentally more difficult to achieve
than the soft limit in that the deflection of a stiff cantilever
is obviously very small so that its sensitivity becomes poor.
Yet, as we will see in the numerical examples in the next
section, this limit is physically also interesting and thus
worth pursuing experimentally. One should keep in mind
that, once theory has produced a quantitative explanation of
the soft cantilever experiments, it is an easy task to calculate
what one would expect for a stiff cantilever.

NUMERICAL EXAMPLES

To calculate the force–extension curve for a given macro-
molecule, we must first obtain its canonical partition func-
tion, Zm(T, Lm), for a fixed lengthLm. Next we must specify
the force constant,kc of the cantilever. Last, for a range of
D values, we determineL#m(T, F# ) by solving Eqs. 7 and 12
selfconsistently. We will do this for two systems: a short
chain of PEG with only three subunits, and a longer chain
with 21 subunits.

A short chain of PEG

We have recently presented a theoretical description (Kreu-
zer et al., 1999; H. J. Kreuzer and M. Grunze, submitted for
publication) of the force measurements reported by Oester-
helt et al. (1999) on individual PEG chains in different
solvents, i.e., PBS buffer or Hexadecane. In our first prin-
ciples theory, we calculated the energy spectrum (or the
density of states) for PEG chains from quantum mechanics,
and used the Gibbs ensemble to derive the force–extension
curve.

The first task is to calculate the energy spectrum of oligo
(ethylene oxide) as a function of chain length for a given
number of EG units; here EG stands for (–O–CH2–CH2–).
Because ab initio quantum mechanical calculations of the
electronic structure of a molecule scale at least with the
fourth power of the number of electrons, one has to restrict
oneself to rather small molecules, in our case,
CH3(EG)3OCH3. As we have shown, this is not a serious
restriction for a quantitative description of the late stages of
the elastic response, essentially because the total response of
a long chain is more or less additive over the individual EG
units, provided the ab initio calculations are done as accu-
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rately as possible for all the conformers of the (small)
molecule. Whereas, in the previous paper (Kreuzer et al.,
1999), we based our calculations on the Hartree–Fock
method (at the MP2/6-3111G**//HF/3-21G level), we
have, in the meantime, switched to density functional theory
(also using the GAUSSIAN 98 suite of programs, Frisch et
al., 1998) using the option BP86/6-31111G** for the
exchange/correlation potential. The same stability series for
the various conformers was obtained as with the best MP2
calculations, with most energies and geometries very close,
to within better than ten percent. See H. J. Kreuzer and M.
Grunze (submitted for publication) and, for more details,
Wang et al. (2000).

The various conformers of (EG)3 form local minima on
the total energy surface. Of these, we have selected 27
according to the following criteria. In the EG subunit (–O–
CH2–CH2–) all the C–O bonds are kept in the trans config-
uration. (We have also calculated a few conformers with
gauche rotations around C–O bonds. They are typically
higher in energy, but of similar length, than those with a
trans configuration, and thus contribute little to the force–
extension curve.) This information can then be omitted from
the notation, so that, as an example, the helical and all-trans
conformers, (tg1t–tg1t–tg1t) and (ttt–ttt–ttt), can be de-
noted as (g1g1g1) and (ttt), respectively. We thus have
three EG units, g1, g2, and t, to be placed on three positions
along the chain, or 33 5 27 combinations or conformers. To
calculate their structure, we start from a conformer with
standard C–C and C–O bond lengths (1.52 and 1.42 Å),
C–C–O and C–O–C bond angles (109° and 112°) and di-
hedral angles (674°, 180°), but adjust all these parameters,
and also allow rotation around the C–C bond to find a local
minimum in the total electronic energy. Because these cal-
culations are done for isolated molecules, their symmetry
implies that there are only ten energetically different groups
of conformers, e.g., E(g1g1g1) 5 E(g2g2g2),
E(g1g1g2) 5 E(g2g1g1) 5 E(g1g2g2) 5 E(g2g2g1),
etc. Here the energyE is the total electronic energy of the
conformer. In Fig. 2, we show the potential energy curves,
Vi(Lm), for these ten (energetically different) conformers.
Further details of the calculations are given by Wang et al.
(2000) where we also discuss solvation effects.

Having the potential energy curves for all the conformers
as a function of their lengths, we can write down the
canonical partition function of the isolated macromolecule

Zm~T, Lm! 5 O
i51

10

gi exp@2bVi~Lm!# P
k

zk
(i)~Lm!. (29)

The sum overi runs over all ten conformers with each term
multiplied by the degeneracygi of that particular conformer,
i.e., the number of other conformers with the same energy as
listed in the caption of Fig. 2. The product overk exhausts
all the internal vibrational/rotational modes of each con-

former withzk
(i)(L) the corresponding partition function. The

internal modes, for the most part, do not change drastically
as a function of the length of the conformer, so that their
contribution to the force–extension curves is usually negli-
gible, but they contribute to the free energy and entropy.

In Fig. 3, we show force–extension curves for tri-(ethyl-
ene oxide) as stretched by cantilevers for a range of spring
constants. The calculations proceed as follows. We select a
specific setting ofD, as in the AFM experiment, and the
lengthL#m(T, D) is calculated using Eqs. 7, 9, and 29. The
selfconsistent forceF# 5 F# (T, L#m) for a macromolecule
stretched by a harmonic spring cantilever follows from Eq.
12. Repeating this procedure for a sequence ofD-settings, a
full force–extension curve is recorded. How much this
curve deviates from the true force–extension curve of an
isolated macromolecule depends on the force constant of the
cantilever, as is clear from the sequence of panels in Fig. 3.

In the top panel of Fig. 3, we show the force–extension
curves for soft cantilevers. For spring constants less than 10
pN/Å, these curves are, to within a fraction of a percent,
equal to those of an isolated macromolecule stretched by an
external force as calculated with the Gibbs ensemble as
discussed above. In the same panel, we can also see that
lowering the temperature from 300 to 100 K sharpens up
some features in the force–extension curve. We have also
plotted the settings ofD necessary to measure this curve
with a cantilever of 10 pN/Å. Not surprisingly, this weak
cantilever needs substantial deflection (about three times the
length of the macromolecule at maximum extension) to
produce forces of the order of 400 pN. Large deflection of

FIGURE 2 Potential energy curves of ten conformers of (EG)3 as a
function of the end-to-end length per monomer. From left to right accord-
ing to the minimum (degeneracy in front): 2(g1g2g1), 4(g1g1g2),
4(g1g2t), 2(g1g1g1), 4(g1g1t), 2(g1tg1), 2(g1tg2), 2(tg1t), 4(g1tt),
1(ttt).
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course also implies good sensitivity of the cantilever pro-
vided its fluctuations remain manageable.

In the two center panels of Fig. 3, we show the force–
extension curves (again for 300 and 100 K) for larger force
constants, showing already a substantial modification from
the soft cantilever (i.e., Gibbsian) limit. We emphasize that,
in an AFM experiment with intermediate strength cantile-
vers (for (EG)3 this is the range from 102 to 103 pN/Å), the
measured force–extension curve would not be that of an
isolated macromolecule. It would take considerable effort
(such as our theoretical approach presented here) to disen-
tangle the features arising from the macromolecule itself
and those from its coupling to the cantilever. Also note that,
for these cantilevers, theD settings needed are only slightly

larger than the end-to-end length of the stretched macro-
molecule, i.e., the deflections of the cantilever are already
marginal making their experimental detection difficult.

In the bottom panel of Fig. 3, we show force–extension
curves for two temperatures as calculated from Eq. 27 for a
very (infinitely) stiff cantilever. These curves correspond to
the first boundary condition in the Introduction, namely that
a distanceD is fixed between the ends of the macromolecule
and the external force necessary to keep the clamp at that
position is measured. These curves, albeit measured under
different limits for the cantilever, contain information solely
about the intrinsic properties of the isolated macromolecule,
just as the ones in the top panel of Fig. 3, measured under
the Gibbsian boundary conditions of the Introduction.

To see the physical significance of the different boundary
conditions, i.e., fixed length (Helmholtz) versus fixed force
(Gibbs), it is useful to evaluate Eq. 27 for the partition
function, Eq. 29. We get

F# ~T, Lm!

5
1

Zm~T, Lm! O
i51

10

giFdVi~Lm!

dLm
2 kBT O

l

­ ln zl
(i)~Lm!

­Lm
U

T

G
exp@2bVi~Lm!#P

k

zk
(i)~Lm!. (30)

The first term implies that the average force is obtained by
taking the derivatives of the potential energy curves of all
the conformers at a given lengthLm and weighting them
with their Boltzmann factors. At low temperatures, this
implies that only the energetically lowest conformer con-
tributes at a given length so that the force switches from
negative to positive as one proceeds from left to right of the
minimum of one conformer. In contrast, if we measure the
force–extension curve at fixed force, we sample all con-
formers that have a slope corresponding to the specific force
at which the measurement is made. These two situations are
illustrated schematically for three conformers in Fig. 4. At
fixed length, we take the derivatives of the three potential
energy curves and add these different forces with their
respective Boltzmann factors. At fixed force, we sample
those points on the potential energy curves at different
lengths where the derivatives are the same.

Ideally, in an experiment, one would switch to cantilevers
with larger force constants for the measurement of the
high-force regime to minimize the cantilever extensionD 2
L#m and reduce its fluctuations.

A long chain of PEG

One can use the results of ab initio calculations for short
polymer molecules to construct an interacting Ising-like
chain model valid for any length of the polymer. By neces-
sity, one looses some details, both structurally and energet-

FIGURE 3 Force–extension curves for (EG)3 as measured in an AFM
experiment with cantilevers of different force constantskc in picoNewton
per Angstrom as indicated at 300 K (thick solid lines) and at 100 K (thin
solid lines). Also shown as dashed lines is the ratio of the positionD of the
cantilever to the lengthL#m of the macromolecule (right scale).
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ically, but it turns out that this loss is far compensated by the
advantages of being able to deal with large molecules.

In an interacting chain model of PEG, we allow individ-
ual EG units to be in three independent conformations, ttt,
tg1t, and tg2t; their designation we abbreviate to t, g1, and
g2. We define occupation number vectors,ni, whose trans-
pose takes valuesni

T 5 (100), (010), and (001) if theith EG
unit along the chain is t, g1, or g2, respectively. We also
define a vector of self-energiesE 5 (Et, Eg, Eg) and a
matrix of nearest-neighbor interaction energies,

V
7

5 1
Vtt Vtg Vtg

Vtg Vgg Vg1g2

Vtg Vg1g2 Vgg

2 . (31)

We then write the hamiltonian of a chain ofN EG units
as

H~n1, n2, . . . , nN! 5 Es 1 O
i51

N

E z ni 1 O
i51

N21

ni
T z V
7

z ni11.

(32)

Es is the energy of the terminating groups at each end of the
chain. The self energies,Et and Eg, the nearest-neighbor
interactionsVtt, Vtg, etc., are determined from the ab initio
calculations of short (EG)n chains.

To obtain the geometry of a given conformer, we must
specify bond lengths and angles. We do this for the EG units
as a whole rather than for the individual C–C and C–O
bonds within a EG unit. We proceed by listing all the unit

lengths of the g and t units in all the conformers of (EG)3

and then take the averages. Similarly, we look at all the
bond angles between gg, gt, g1g2, and tt neighboring pairs
in all the conformers and again determine their averages.
Last, we determine the dihedral angles in all the conformers
of (EG)3. Details of these calculations and all the parameters
of the chain model will be given elsewhere (L. Livadaru,
R. R. Netz, and H. J. Kreuzer, manuscript in preparation).

Using this interacting chain model, we have calculated
the force extension curves for PEG with 21 EG subunits for
various force constants of the cantilever. In the top panel of
Fig. 5, we show the results for a soft cantilever withkc 5 1
pN/Å; the force–extension curves do not change for softer
cantilevers. Because longer chains have significantly more
conformers and thus are much more flexible, the force is
positive down to end-to-end lengths of less than 1 Å per

FIGURE 4 Schematic to illustrate the different boundary conditions.
Working at fixed length (Helmholtz ensemble), one samples different
forces, i.e., the derivatives of the potential energy curves at that length
(squares). Working at fixed force, one samples the same slope on the
energy curves, albeit at different lengths (circles).

FIGURE 5 Force–extension curves for (EG)21 as measured in an AFM
experiment with cantilevers of different force constantskc in picoNewton
per Angstrom as indicated, at 300 K (thick solid lines) and at 100 K (thin
solid lines). Also shown, as dashed lines, is the ratio of the positionD of
the cantilever to the lengthL#m of the macromolecule (right scale).
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monomer, cf. Fig. 3. Remarkable is the change in the
distanceD needed for the measurement of the force–exten-
sion curves as one goes from a short to a long chain, and
also from stiffer to softer cantilevers. Whereas for the short
chain andkc 5 1 pN/Å, we needD/L#m . 20 for the largest
extension, this ratio is less than 2 for the long chain, but
would go up to 10 forkc 5 0.1 pN/Å. In contrast, for a long
chain andkc 5 10 pN/Å (center panelof Fig. 5), the setting
D is only 10–20% larger thanL#m for the largest extension.
These numbers agree remarkably well with the settings in
the experiment by Oesterhelt et al. (1999).

In the bottom panel of Fig. 5 we finally show the force–
extension curve for a stiff cantilever. Again, as for the
shorter chain, we are approaching the Helmholtz limit in
which the force starts to oscillate between attraction and
repulsion as different conformers contribute. This is most
pronounced at the largest extension (and also at lower
temperatures) where the number of conformers available
becomes rather sparse. Note also that, with the cantilever
much stiffer than the molecule itself (except for the longest
extension possible, where within an interacting chain model
the stiffness is infinite), the settingD is only marginally
larger than the resulting extension of the molecule,L#m.

FLUCTUATIONS AND THERMODYNAMICS

Next we look at the fluctuations of the length of the mac-
romolecule around its mean,dLm/L#m, shown in Fig. 6 for
(EG)3. For a soft cantilever, there is a substantial variation
of the fluctuations as the macromolecule is stretched, de-
creasing to minimal values as the maximum extension of the
molecule is approached. This is shown for a force constant
kc 5 10 pN/Å at 300 K (thick solid line) and with more
structure at 100 K (thin solid line); the dashed-dot line is for
the Gibbs limit (vanishingly soft cantilever). For a stiff
cantilever,kc 5 103 pN/Å, the fluctuations are much smaller
overall and show less dependence on the extension of the
macromolecule (dashed lines).

To extend these results to longer chains, such as for PEG
with 750 EG units, we can estimate the relative fluctuations
by scaling with the square root of the ratio of the respective
lengths,=3/750 5 0.06, yieldingdLm/L#m , 0.003 in the
high force regime. In contrast, we can estimate these fluc-
tuations from the force fluctuations using Eq. 14. From the
experiments on PEG by Oesterhelt et al. (1999) we estimate
dF ' 10 pN so that, forkc 5 10 pN/Å, we havedLm/L#m '
0.0004, and forkc 5 1 pN/Å we havedLm/L#m ' 0.004, in
reasonable agreement with the theoretical estimate.

We have also calculated the segment elasticity per mono-
mer,

Ks 5 N
­F#

­L# m

U
T

, (33)

which is plotted in the lower panel of Fig. 6 for (EG)3 for
stiff (dashed lines) and soft (solid lines) cantilevers at two
temperatures. In the Helmholtz limit (stiff cantilever) the
segment elasticity has obviously much more structure re-
flecting the structure in the force–extension curve. In con-
trast, in the Gibbs limit (soft cantilever), the segment elas-
ticity is fairly constant (;100–150 pN/Å) up to the regime
of extreme forces, i.e., close to bond rupture where it
increases dramatically.

For completeness, we mention that we can also relate the
segment elasticity to the length fluctuations

Ks 5 NF kBT

~dLm!2 2 kcG (34)

5NF kBT/L# m
2

~dLm/L# m!2
2 kcG . (35)

Thus, although the relative length fluctuations are smallest
for a stiff cantilever, their variation withL#m is important.

FIGURE 6 Relative length fluctuations (a) and segment elasticity (b) of
(EG)3 when coupled to cantilevers of different force constants.Dashed
lines, kc 5 103 pN/Å; solid lines, kc 5 10 pN/Å; anddashed-dot line, kc 5
0; thick lines, 300 K; andthin lines, 100 K.
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Last, in Fig. 7, we show the Helmholtz free energy of the
macromolecule–cantilever system, Eq. 5, and the entropy

s~T, D! 5 2
­f~T, D!

­T
U

D

(36)

plotted as a function of the average length of the macro-
molecule, for the cantilever force constants and tempera-
tures of Fig. 3, excluding the contributions from the internal
vibrational modes of the macromolecule. (The internal vi-
brational modes arise from 84 degrees of freedom for (EG)3

and contribute at 300 K and zero force;255kBT to the free
energy and 29kB to the entropy (Wang et al., 2000).) For a
soft cantilever (top panel) the Helmholtz free energy of the
total system is rather structureless and the Gibbs free energy

(as a function of the average length and not of its proper
variable, the force),g(T, L#m(D)) 5 f(T, D) 2 F# D, looks like
the Gibbs free energy of the isolated macromolecule. For a
stiff cantilever (third panel) the Helmholtz free energy of
the total system follows the envelope of the conformer
potential energy curves, particularly at low temperature, and
is thus very similar to the Helmholtz free energy for the
isolated macromolecule (bottom panel) from which one can
obtain the force–extension curve by direct differentiation.

The entropies are fairly constant for soft and moderately
stiff cantilevers at;5–7 kB, because of the fact that the
conformer potentials overlap, see Fig. 2. Structure only
shows up in the Helmholtz limit where, for very low tem-
peratures, the entropy is the logarithm of the sum of the
degeneracies of the contributing conformers, e.g., it is
kB ln 2 around the minimum of the (g1g2g1) conformer,
kB ln 4 around the minimum of (g1g1g2), and it develops a
narrow peak of heightkB ln(4 1 2) where these two poten-
tials cross, and similarly for the other conformers. An ex-
ample of such behavior has been published previously by
Kreuzer et al. (1999).

SUMMARY

In this paper, we have set up the theory to describe the
stretching of a macromolecule by a cantilever in an AFM
experiment. We have shown that, for intermediate cantile-
ver force constants, the elastic and energetic properties of
both the macromolecule and the cantilever contribute to the
force–extension curve in an intricate way, roughly describ-
able as a convolution. However, for soft cantilevers, a
situation can be achieved in which the effect of the canti-
lever on the force–extension curve becomes negligible, and
the latter can be calculated using the Gibbs ensemble for an
isolated molecule, as we have done in our previous work
(Kreuzer et al., 1999; H. J. Kreuzer and M. Grunze, sub-
mitted for publication). In contrast, for very stiff cantilevers
the force–extension curve resembles that which one would
obtain from a calculation in the Helmholtz ensemble of the
isolated macromolecule. These two ensembles do not pro-
duce the same mechanical equation of state (i.e., force–
extension curve) as they would for a macroscopically large
system, because polymer molecules even with several hun-
dred monomer units are still substantially influenced by
fluctuations, in particular, in the force needed to stretch
them.

As examples of this theory and in an attempt to under-
stand quantitatively the experiments by Oesterhelt et al.
(1999) on the stretching of PEG, we have used, as input, the
energetics and structure of the conformers as calculated
with ab initio methods. The resulting force–extension
curves are thus parameter-free and relevant as predictions
for experiments where the cantilever compliance can be
varied. Where a comparison is already possible, namely for

FIGURE 7 Helmholtz free energy (solid lines) and entropy (dashed
lines) of (EG)3 when coupled to cantilevers of different force constants as
in Fig. 3. Thick lines at 300 K and thin lines at 100 K.
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long PEG molecules stretched with a soft cantilever, the
agreement is excellent.

H.J.K. is grateful to H. E. Gaub for stimulating discussions and for pointing
out that this problem needed a resolution. This work was supported by a
grant from the Office of Naval Research. H.J.K. would also like to thank
M. Grunze for many discussions and the University of Heidelberg for a
guest professorship during the winter semester 1999/2000 when this work
was begun.
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