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ABSTRACT A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is pre-
sented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this
purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data.
We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times,
the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find
quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154-158. We perform
additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors
creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also
examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules
dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the
microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean
speed of the motors in good quantitative agreement with the experimental and numerical results.

INTRODUCTION

Molecular motors constitute a class of proteins responsiblinformation about the motor's force. These motor assays
for the many transport processes within eukaryotic cellsallowed the recording of the position (Howard et al., 1989;
and in the organization of the mitotic spindle (see Alberts eBlock et al., 1990; Svoboda et al., 1993), velocity (Block et
al., 1994 or Lodish et al., 1995 for a general introduction).al., 1990), and force (Finer et al., 1994) applied by a single
Motors can be characterized as consisting of three domainsnotor, all with unprecedented sensitivity.
the “head” or “motor” domain, in which force is produced, As a more complete characterization of kinesin motors
the “tail” which attaches to a load, and the “body,” which emerged, a number of questions became apparent. First,
links the head to the tail. These motors work by movinghow do these motors move? Some kind of walking model is
their motor domains along relatively rigid polymers with a believed to be the correct way to think about this (Peskin
load attached to their tails. They are commonly divided intoand Oster, 1995; Déngi and Vicsek, 1996; Vicsek, 1997).
three families, myosins, dyneins, and kinesins (see HiroSecond, the “fuel” used by these motors is well known, but
kawa, 1998 for a family tree). Myosins are associated withithe question of the stochiometry between fuel consumption
actin filaments, whereas kinesins and dyneins are associateshd steps walked has recently been answered by Hua et al.,
with microtubules (MTs). These motor proteins have been(1997), Schnitzer and Block (1997), and Coy et al. (1999),
the subject of many ingenious experiments, as attempts twho have shown that consumption of one ATP molecule
characterize them have grown more ambitious. The discowesults in kinesin taking exactly one 8-nm step. Third, in
ery of the kinesin family in the late 1980s (Hirokawa et al., gliding assays, the speed of microtubule movement is found
1989; Scholey et al., 1989), along with advances in imagindo be independent of both the length of the microtubule, and
technology, opened the door to a set of exciting experithe density of kinesin adsorbed onto the substrate (Howard
ments. In gliding motility assays (Howard et al., 1989; et al., 1989; Hancock and Howard, 1998). It is not fully
Hancock and Howard, 1998), a microscope slide is coatednderstood why this should be so. And last, a graph of speed
with kinesin, a microtubule placed on top of the slide, andversus kinesin density tells us very little about the behavior
the motion of the center of mass of the MT is tracked as af a single motor—how long does it remain attached to the
function of time. In the optical-tweezer assay (Block et al.,microtubule, how much force does it exert, how is it cor-
1990), a single motor is tethered to a latex bead, which iselated with the behavior of the others, etc.
then held in an optical potential well. Attempts by the motor In this work, we focus on the last two of these questions.
to drag the bead out of the well yield important quantitativeFor this purpose, we develop a stochastic model for the
dynamics of a microtubule in gliding assay experiments,
which includes the viscous drag acting on the moving fiber

_ " and the interaction with the kinesins. For those motors, we
Address reprint requests to Jorge Jose, Center for the Interdlsmpl|nar§0nstruCt a simple mechanical model extracting the in-
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model, we then examine various aspects of motor behavior
to try to understand these observations. We use a combina-
tion of detailed numerical calculations with analytic analy-
sis in different limits.

THE MODEL

We describe the dynamics of a MT in terms of the location
of its center of mas® = xi + yj (wheref andj are units
vectors along th& andy axes), and the angl@ between the
horizontalx-axis and the unit vector pointing along the MT.

This model is two-dimensional, because it has beerf!GURE 1 A schematic of a motor walking on a microtubule, indicating

: g he position of the center of mass of the microtubi)ehe (fixed) tail of

shown (Hunt E.md prard, 1993) that, in motility assa,ys a[:hei?h motor aff; and the moving head &t. Kinesin isla plué—end)—directed
least, the vertical distance between the head and tail of F?lotor, as indicated by the arrow markegd Note that only a small section
kinesin attached to a microtubule is only about 20% of itSof the microtubule is shown, because it is so much larger than the motor.
total length—in other words, the motors mostly lie in a
plane parallel to the microscope slide. The motion of the
microtubule is overdamped because it involves low ReynThe components of the force exerted by the spring parallel
olds numbers (Hunt and Howard, 1993). This dimensionles@nd perpendicular to the MT axis along the unitary vedtor
number, defined a8k = vlLp/m, wherev is the relative are
velocity between the object and the fluldis its dimension, - A - L
p andn are, respectively, the density and viscosity of the Fy=F-0=—ku-(h—T),
fluid, indicating the relative importance of inertial to vis- FL—F— (-0 )
cous effects. For a fish swimming in wateé, = 100, L '
whereas, for a microtubule moving in an aqueous solutionwhereas the magnitude of the torque is given by
% = 8 X 10 clearly indicating that, although the fish L
experiences inertia, the MT does not. Its motion is Aristo- 7 = |h — RIFising;, ()

telian rather than Newtonian. A nice introduction to this where, is the angle between the rod and the spring.

concept is given in Purcell (1977) and Berg (1983). Combining Egs. 1-5, we have (see Appendix for more
Therefore, neglecting inertial effects, the translationaldetans)

bidimensional Brownian motion is described by the Lange-
vin equation

[=tb]

=]

b .
5 = kJ [Ficosd — 2F sin®] + 7(t) - T,

- = - BT

f=F+ @), 1)

) DH ) N ~
whereas, for the rotational Brownian motion, we have Y= T [Fsin® + 2F codd] + n(t) -,

(6 =14 n0), @ 6 = ok SR~ RIFy — Flsing:) + 10, ©)
B i

where the dot means the time derivatiVes the transla- )
tional drag forceZ, is the rotational friction constank is ~ Where2; denotes a sum only over those motors that are

the applied external force by the molecular motors on thédtached to the MT, and j are unitary vectors along the
MT, and 7 is the associated torque. The translational and?"dy axes, respectively.

rotational Gaussian fluctuating Langevin forces are respec- N Table 1, we show the parameter values that we use to
tively denoted byr,(t) and ,(t). model the behavior of the motors, as determined from

In what follows, we assume that the motors are located

randomly in the plane, with the position of thi motors
tail fixed atf; and the position of the head lat (See Fig. 1
for schematic.) We model each motor as a simple spring

Table 1 Parameter values used in the simulations

Microtubule lengthL 10 um

. . R Microtubule diameteb 25 nm
parameterized by a spring constakt and equilibrium Spring constant for motok, 0.2 pN i
lengthL,. Each motor will exert a force on the MT equal to gquilibrium length for springl, 50 nm
(see Appendix for further justification for our model) Maximal (unloaded) motor speed, 800 nm st

Motor stall force,Fg. 5 pN
r:i _ _ks(ﬁi _ Fi)- (3) Capture parametew 40 nm
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(a) Low kinesin density (oyin = (b) High kinesin density (own =
5pum™2) 100pum—2)

FIGURE 2 lllustration of results from simulation of microtubule gliding assay#\patow kinesin density ¢, = 5 wm™~2) and @) high kinesin density
(0win = 100um™2). At sufficiently high densities, the Brownian angular fluctuations are damped, and the motion is in a straight line. The MT is represented
by the long rod (its color changes from dark to light, to represent the passage of time). The locations of the motors are indicated by the small spheres.

experiment. A typical length for an MT in the mitotic  whereas our simulations assume the rods are completely
spindle is 10 microns (Gliksman et al., 1993). In the gliding-rigid (infinite persistence length). Therefore, the critical
assay experiments of Howard et al., the length of the MT idensity in our analysis should be larger.

2.2+ 1.4 um (Howard et al., 1989) using bovine brain  We have performed about 300 realizations of the gliding-
kinesin and 2.05t 0.92 um (Hancock and Howard, 1998) assay simulations, each with a different initial random ar-
using recombinarbrosophilakinesins. The spring constant rangement of kinesins, and random initial position and
ks is taken from experimental work (Coppin et al., 1995). orientation of the MT. For all realizations at a given density,
The value of the equilibrium length, of the spring is based we drew graphics like Figs. 3 and 4, ensuring that the track
on the facts that the length of kinesin is about 80 nm, and thevas straight, and then computing the average speed of the
extension of the spring, which is sufficient to stall the MT, as{v(o,)) = (d(t) — d(0))/t, whered(t) is the distance
motor, is about 25 nm. A precise value for the unloadedof the center of mass displacement at tifeom its initial
motor velocityv, is not known (see Howard et al., 1989; position d(0). We also computed error bounds for each
Svoboda et al., 1993), but it is in the range 0.5 s *. (V(oyin))- The results are shown in Fig. 5. Our principal
The parametew describes the minimal proximity required finding, in agreement with experiment, is that the speed of
between a motor and the microtubule for capture to occurthe microtubule remains constant over approximately two
No experimental values exist, but clearly it should be noorders of magnitude in the kinesin density,, (i.e., from
larger than the equilibrium length of the motor itse§0 o\, = 2 um 210 0, = 200um™2). For densities less than
nm). o = 1 pm~2, we find it difficult to gather data, because
the motors are so few and far between that there is seldom
any directed motion. At densities beyoag,, = 200 um2,
NUMERICAL RESULTS the opposite is true—there are so many motors that the
In Fig. 2, we show a gliding assay picture, obtained from

our numerical results for the MT motion at different times

for low and high kinesin densities. There we see that, at low 3. ] 20NN Y
densities, the MT can rotate as it moves, whereas, at high * (I : "\’ :

densities, the rotation is quenched.

We also looked at the shape of the trajectories of the
center of mass of the MT, as a function of kinesin density, ool . CIREREnE s B A 20NeNNee
owin- Figure 3 shows typical trajectories as a function of ' X : ~ 5
kinesin density, using the parameters in Table 1. For some ey ; . ’ -
densities between;, = 1 um 2 ando,;, = 5 um 2, there o : : :
is clearly a crossover from Brownian motion to a more -1.0 -05 00
directed kind of motion, in which the angular fluctuations *
are damped out. This critical density has been predicteff/GURE 3 Comparison of typical trajectories far = 40 nm, as the
(Duke et al., 1995) to ek, ~ 0.05p¢m72, independent of inesin density is varied. |nlt'l<‘?1| condlt_lons are unchanged in each run.

: ! ) Panels af correspond to densities of;, = 0.1, 1.0, 5.0, 20.0, 60.0, 100.0
microtubule length. However, their calculation assumes gm-2 respectively. Note that not all trajectories represent equal lapses in
finite persistence length for the microtubules 86 nm, time.
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3.90
4
d(t) d(1) (umf
6.0 3.85 0.2
d (Lm) m 0
.80 LA,
4.0 570 575 580 400
t 300 W
N
20 anr 200
100
0
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t(s) FIGURE 6 Typical microtubule path at high kinesin density, from sim-

FIGURE 4 Typical data fod(t), the distance moved by the MT center of Ulation, showing the attachment phase, followed by waiting, and finally
mass, from its initial position, as a function of timeThe inset shows the ~ directed motion. The weakness of the data shown in this graph is in the

path taken by the MT center of mass, as it moves acrosstha(d slide. length of _time simulated_. The MT moves only a few te_nths of a micron,
The microtubule length is 1@m, so, clearly, the microtubule has moved whereas its own length is 10 microns. Movement on this scale would not

by almost its own length in this simulation. The speed of the microtubuleP€ easily detectable in an experiment.

is clearly constant for the length of the simulation. Hegg = 10 um™2.

Inset shows the expected noisy nature of the same data.

number of motors attached, and it is likely to have some
averaging out, with some motors pushing and others pull-
ing. It is interesting to examine the detailed dynamics of the

A iol ial lanation for this: first id initial attachment of motors to the microtubule. An example
possibie partial expianation Tor this. 1IrSt, We CONSIAeT s o6y jn Fig. 6. At low densities, there is a brief “attach-

low kinesin densitiesd,i, = 5 um™?). With only one motor ment” phase, as the motors attach themselves to the micro-

attached (on average) ata given time, it is impossible for th‘:t‘ubule. The number of motors attached rapidly reaches a

mlcr.otubulle to move.f.aster than the m°t92r can walk. Forrelatively constant value, and the microtubule begins to
medium kinesin densities (8 oy, < 50 um™“), there may

) ' move. At higher kinesin densities, the attachment phase
be only two or three motors attached, so there is a finit

. . ) . enappens rapidly too, but motion does not begin immedi-
p'roba}blllty thgt they will cooperate WE[Q each o'gher. At high ately. There may be a waiting period, during which the
kinesin densities (56 gy, = 200 um™ ), there is a larger

microtubule undergoes no directed motion. It simply sits,
buffeted by the Brownian noise. This is visible in Fig. 6, for
t < 0.7 s. This kind of behavior can be explained by our
theoretical model (see below).

simulation time-step is driven down by orders of magnitude
causing the simulations to be impracticably slow.

2000

1500

v, (fs) Analysis of the effective force
1000 ] There are two questions here that are worth looking at: what
is the force required to move an MT? and why is the speed
. T+ * 3 > such a weak function of kinesin density? Or, to use a well

known analogy (Leibler and Huse, 1993), why should a boat
with 8 rowers move no faster than one with 4?
0 . A simple back-of-the-envelope calculation provides a

1 10 _ 100 1000
o (Wm™) qualitative answer to the first question. Let us take Eq. 6 and

FIGURE 5 Comparison of the results obtained by simulation using the2SSUME an MT aligned and moying only along ﬂq'eXiS- .
parameters of Table 1, with those experimentally obtained by Howard'sTake the time average of both sides of Eq. 6 (which elim-
group. Simulated data represent 257 individual MTs. In the experiments bynates the noise term, by definition), and ask what is the
Howard et al. (1989), the results came from measurements of drawings mee-averaged Iongitudinal force necessary to produce the

hand on acetate-sheet overlays of taped video images, acquired at 33 m . L - .
intervals. At low kinesin density, the speed was determined as the rate ﬁ%served velocity. The force is given 0if) = kgT(X)/D,.

. _ 721 . _ 71 .
which the MT's trailing end approached the fixed point at which the 1aKingkgT = 4.1 10 J,.<X> = 650 nm s~ (see Fig. 5)
kinesin molecule was located. Results were averaged over 233 individu@ind Dy = 10 B m?s ™1, we find (F) ~ 0.027 pN. Analysis
MTs in two different experiments (hence different symbols), and error barspf the force exerted during our simulations shows a figure

correspond to standard errors of the means. The experimental data is takg\ﬂthin a factor of two of this force (see Fig. 7). However, as
from Howard et al. (1989) that used bovine brain kinesin. These results are f imole f locit o Fig. 8 ! th
very similar to those obtained using two-headed recombiBaosophila we can see from a simple force-velocity curve (Fig. 8), the

kinesins (Hancock and Howard, 1998). See text for a more detaiIeJn?Ximum force that a single motor can exert is larger Fhan
discussion of this figure. this by a factor of 100 and up to 5 pN. A more detailed
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0.1 - different initial conditions, but for higher densities the cal-
culations are very CPU intensive, and we only show the
results for one initial condition. These results, however,
follow qualitatively and even quantitatively the experimen-

0 ]
<F,> (pN) }--eenv jHi 1{ ] tal results.

0.05 T

-0.05 |
-01} ] Attachment lifetime analysis
045 | ] We have also examined the distribution in times for which
each motor remains attached to the microtubule, shown in
-0.2 . Fig. 10. The times shown may include several detachment
1 10 100 :
-2 and reattachment processes. What matters is the total length
c (um ") of time a motor is attached, whether continuously or not.

FIGURE 7 The time-averaged total force exerted by motors on a microWe find that, of all the motors with which a microtubule
tubule. Black circles indicate ensemble means, error bars indicate standarfiay have contact, most remain attached only briefly. This is
deviations of the ensemblerd,, = (IN) %,y of). Negative values jljystrated in Fig. 11, which shows the integrated probability
|nd_|cat¢ that the force_|s directed towa_rd the minus end of the mlcrotubuledis,u,ibution of total attachment times. A small number of
which is consistent with motors walking toward the plus end. The force . . .
necessary to propel a microtubule at the observed averaged spe€8®f these motors remain attached for extended peI’IOdS of time,
nm s % is —0.027 pN. forming the long tails of these distributions, and it seems
reasonable to believe that these perform most of the work
o ) ) involved in moving the microtubule. What is clear from this
analysis given in the Appendix leads to an answer thafig e is that, at higher density, more motors remain at-

agrees quantitatively with the numerical calculations.  tached for longer periods of time: the tail is much longer at
We note that the mean force exerted at all densities I%'kin — 10 pm 2 than atoy,, = 5 pwm 2,

extremely small, much smaller than the maximum force

exerted by a single motor. This distribution of forces is

important to understand. the kinesin density independence ‘§ticky motors

the average MT velocity. Of course, the distribution of

forces exerted at a given time varies as a function of densit{t has been found in experiments (J. Howard, University of

on. This variation is explicitly shown in Fig. 9, which Washington, private communication), that not all motors are

gives a Gaussian distribution of forces exerted on the MTidentical: there is a natural variation in speed among motors

over the length of a numerical run. The force changes as &f & given type and, in addition, some motors may, for some

function of the longitudinal force exerted in the MT. Here reason, not be fully functional. We have examined the

we show results for several densities;, = 5, 10, 20, 30, effects of such nonuniformity in motor speed, in two dif-

50, and 10Qum™2. We point out that the results for densi- ferent ways.

ties below 13Qum ™2 have error bars due to the ensemble of ~ First, we allowed a motor to be either fagt,(; = 800 nm

s 1) or slow g, = 200 nm s1). We call this the delta-

function velocity distribution. The fraction of slow motors,

g, lies between 0 and 1. For= 0, all the motors are fast,

and forq = 1, they are all slow. Using the methods de-

scribed previously, we measured the speed of the microtu-

bule for several different values of kinesin densitigs,, as

g was increased from 0 to 1. The results are shown in Fig.

1 12 A. From Fig. 12A, two things are clear: the overall

behavior of the microtubule speed, as a functiongofs

nonlinear; and a small admixture (say,=< 0.1) of slow

motors has little effect on the overall speed of the microtu-

T 2. 3 4 5 ® bule. Likewise, a small admixture of fast motogg= 0.9)
Applied Force (pN) has little effect.

FIGURE 8 A typical experimentally determined force—velocity curve  \We also looked at a more realistic scenario, in which the

for kinesin, taken from Svoboda et al. (1993). For low values of the appliedmotor speeds are distributed according to a normal or

force (the load), the v_elocity is near its maximum_ value. The velocity Gaussian distribution. This is characterized by specifying a

decreases as the load increases, until the stall feyggis reached and the I

velocity is zero. Under loads greater than the stall force, the tendency is fo[r.nean sPeed‘/&eaf) an_d a sjtan'dar('j de,VIatlon from the mean

the motor to become detached from the microtubule, rather than to mové0ver)- FOr the Gaussian distribution in motor speeds shown

backward. in Fig. 12B, the principal effect of allowing the motors to

800
600
Vyp (RV/S)

400

200
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FIGURE 9 Distribution over time of the total force exerted on a MT. The labels in the panels in the figure indicate the kinesin densifies &f
10, 20, 30, 50, and 10@m™2, respectively. It illustrates that the mean force exerted is always a very small fraction of the stall force, though the maximum
instantaneous force exerted increases with kinesin density, and may be severdlines

assume speeds over a wide distribution seems to be a slightg. 5. To provide further understanding to the agreement of
increase in the mean speed for very wide distributions othese results, we have carried out approximate analytical
motor speeds. It seems that, in general, the speed of ttelculations of the model Langevin Egs. 6. We have ana-
microtubule goes as the mean speed of the motors. lyzed the short and long time limits of the equations for one,
two, and a very large number of motors attached to the MT.
The details of these calculations are given in the Appendix.
The analytic calculations differ from the numerical ones in
One of the main results of this paper is the agreementhat we do not consider the dynamic attachment and detach-
between experiment and our numerical results, shown iment of motors from the MT, but assume that the motors are
attached all the time. We do find, nonetheless, that the
asymptotic value of the average displacement velocity of
; ' ' (a) the MT is given by the mean speed of the motors, that
' quantitatively agrees with the experiments and our numer-

Theoretical analysis

50 . ;
ical calculations.
T.(s) 1.
00 Ml :;J., JL Tﬂ h{ M :
T T T 1 4
(b) 08 @
50 . 0.6
0.4
0.2
0
00 i e il . 1 :
0 50 100 150 200 08 (b)
motor number (arbitrary) 06
P(t<t)™
FIGURE 10 Histogram showing the length of time for which each motor 0.4
is attached to the microtubule. The horizontal axis gives a unique number 0.2
to every motor that has ever attached to the microtubule. The vertical axis 0 . ,
indicates the total length of time for which this motor is attached during the 00 20 t?i(‘)) 6.0 8.0

course of the simulation (it may detach and then re-attaehthé results
for oy = 10 um~2; (b) those foroy,, = 5 um~2 Itis clear that only a  FIGURE 11 Integrated probability of attachment lifetimes. The abscissa
small fraction of the motors remain attached for a significant length of P(t; < t) indicates the probability that any motérwill have a total
time, indicating that a small number of them do most of the work. The totalattachment time less than the ordinatd he total length of time for the run
length of time for the run was 10 s. was 10 s. 4) oy, = 10 um™2 (b) 0y, = 5 wm™2
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0.8

0.6
Vi)

0.4

0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 08 0.8 1.0

q o,/

mean

FIGURE 12 Effects of distribution in motor speeds on the MT velocity, at various kinesin densities. To compensate for the slight dependence of the MT
velocity on kinesin density, all velocities at a given density have been normalized to the velocity for that density, with no distribution inAjpeed. (
Delta-function distributiom(v) = (1 — Q)8(V — Viasd + A8V — Veiow)- Viast = 800 Nm s'%, andvy,,, = 200 nm s *. Data for three different kinesin densities

are shown®, m, and ¢ represent data far,;,, = 10, 40, and 10Qum s %, respectively. In additiond indicate the linear relationship= 1 — 0.75,

which would be achieved if the MT speed varied linearly witi{B) Gaussian distributiop(v) = (2mo2,) 2 exp(—(v — Vo)%/2m02,). Mean motor speed,

Vo, is 800 nm s, and the distribution widtlar,, is normalized to this value. Data for three different kinesin densities are st@yan; and ¢ represent

data foro,;, = 10, 60, and 10Qum™?, respectively.

DISCUSSION speedv;,., we find that the microtubule speed generally

We h introduced imolified stochasti del to d scales with the average motor speed. Taking a Gaussian
€ have introduced a simplified stochastic Model 10 0€+y;qyintion, we find that the microtubule speed remains

scribe thvev behfmor of hklnesm-balsed lranlcr(g[l{{l;ule %.“d'lng ore or less unchanged. In each case, it seems that the
assays. Ve set up a phenomenology-based theorelical Ogsqaqq of the microtubule is proportional to the mean max-

scription for the motion of a single microtubule moving imum motor speed. Note that our mechanical model de-

through a viscous r_nedl_um (assume_d to be water), acrosss%ription does not contain biochemical elements that may
bed of attached kinesins. Comparing the results of ou |

imulati d vt vsis with th biained Biso play a roll, like the energy consumption of ATP that
simutation and analytic analysis wi ose obtaine eXperaepends on the total number of motors moving along the
imentally (Howard et al., 1989; Hancock and Howard

. X 'MT. We do find, however, a good semi-quantitative agree-
1998), we find rather good agreement. By analyzing th d d g

total f ted by th i th icrotubul Sment between our model and experiment.
otal force exerted by the motors on the microtubule as a -, summary, the goal of our work was first to come up

function of time, we have shown how cancellations between

S with a simple mechanical model that can agree quantita-
the forces exerted by the individual motors can produce ?ively with the experimental results (Howard et al., 1989;

resultant that is orders of magnitude smaller than the MaXs, ohoda et al.. 1993 Hunt et al.. 1994: Coppin et al., 1995)
imum for_ce exerted by a single motor, bUt_m agreement W'thand with previous theoretical analysis (Duke et al., 1995).
the predicted value of the total force required to produce th%econd we wanted to develop a model that we could use to
exper|m_er_1tally obse_rved motion. There are c_hfference§ Ir%tudy the more complicated mitotic spindle formation (J.-F.
the explicit expressions for the force used in numerlcaICh(,MNin F. Gibbons, and J. Joseanuscript in prepara-

analysis, which Y'eld results that compare with t_he exper!'tion). Previous theoretical analysis has also provided some
mental results, in contrast to the forces used in analyti

lculati Th gif h ti " (i{nderstanding to this problem (Duke and Leibler, 1996).
;:a cuallc_)nst.h ese d Ierentlz_fst_are, owe\t/er, ?% 'Mportanbiere we show, however, that our simplified model can
0 expiain the general qualitative property ot having anprovide numerical results that are in good quantitative

almost constant MT displacement speed for different k'ne'agreement with experiment. Furthermore, we also provided

smodensmes._ | vsis for the durati ¢ h ; an approximate analytic understanding of the kinesin den-
ur-numernical analysis for the duration ot €ach mo Orsity independence of the MT averaged displacement veloc-

attachment to the microtubule reveals that, although a m'l'ty
crotubule may come into contact with hundreds (at low '

kinesin densities) or thousands (at high kinesin densities) of

motor molecules, only a small fraction of these remain

attached for long periods of time, and therefore most of thdAPPENDIX

work appears to be performed _by a relatively small ”U_mbei.angevin equations for the microtubule dynamics

of motors. We have also examined the effect of allowing a

distribution in the maximum speeds of the motors, to mimicFollowing the standard treatment (Doi and Edwards, 1986) we decompose

. L . . . the translational hydrodynamical drag force in its parallel and perpendic-
the natural nonumformlty in motor behavior. Taklng a bi- ular components. The parallel and perpendicular friction constarasd

nomial distribution in motor speeds, Whe_re a fractopof ¢, are not equal. Thus, i, andV, are the parallel and perpendicular
the motors have speed,,,, and the remaining motors have components of the MT velocity, the drag is then written as
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f= v+ £uvy, (A1) Motor phenomenology

It has been shown experimentally (Svoboda et al., 1993) that kinesin can be
modeled as a nonlinear (non-Hookean) spring, whose stiffness increases
L oaa . with extension. The optical trap they used in their experiment is found to
Vy=({V-0)u, v, =v-y, (A2) obey Hooke’s law, with spring constant (related to the laser power) of
Kiaser= (4.3% 0.3)X 10~*pN nm™ * mw 2, For the low-load part of their
andl = cosOT + sin Of being the unit vector pointing along the MT. experiment (laser power 17 mW), this gives an effective spring constant
Combining Egs. Al and A2, the components of the drag force can bdor the trap ofif9%1°2 ~ 7.31x 1072 pN nm*. During the high-load part

laser

where

written as of their experiment, the power is increased to 58 mW, causing the spring
constant to increase proportionatelyffgh'°2~ 25 x 10 2 pN nm *. By
fy = v ({,cosO + {,sif®) + v ({, — ¢,)sin@co, comparison, the spring constant associated with the kinesin itself varies
from kg ~ 22 X 102 pN nm* for a distance of 50 nm from the
f, = v,(¢Sinf® + {,cos0) + v,({; — {,)sin@co. trap-center, to 53< 10~2 pN nm* at the edge of the trap (200 nm from
(A3) the center). In each case, the motor spring constant is larger than that

associated with the optical trap (though not by a large factor). It has been
Inserting Eq. A3 in Eqg. 1 and decomposiﬁgﬁndﬁ(t) in their parallel found (Duke and Leibler, 1996), in simulations, that the force—extension
and perpendicular components, as in Eq. A2, we obtain the followingrelationship of the spring is nonlinear, with the force diverging for large
Langevin equations for the MT motion: extensions. They made use of the Langevin functipf) = cothx — 1/x,
but mention that any other sufficiently divergent function will also work.
1 1 It seems that what they imply is that, beyond a certain extension, the force
X=— [F” + m(t)]cos@ ——[F, + nl(t)]sinG), should diverge, effectively pulling the motor off the microtubule. Because
gH 41 the measured spring constant for kinesin varies only by a factor 2 from
low- to high-load conditions, a linear approximation seems nonetheless
quite reasonable. The nonlinearity (Duke and Leibler, 1996) is important
only insofar as it causes the motor to detach from the MT once the load (or
equivalently in our model, the extension) becomes too great. We account
. 1 for this by detaching any motor that attempts to stretch beyond twice its
0=—[7+ ()] (A4)  own length. Many experimental workers have shown that kinesin obeys a
r force—velocity curve like the one shown in Fig. 8, in which the motor

) . L ) attains maximum speed when it is unloaded, with the speed dropping
To satisfy the fluctuation-dissipation theorem, the Langevin forces musiinearly as the load increases, up to a point. Beyond a certain load, called

obey the following Gaussian white noise correlation relations (Risken e stall force forward motion becomes impossible. In experiments, no
1996) retrograde motion has been observed, although some models have pre-

, , dicted such behavior (Leibler and Huse, 1993).
(i) =0, (Mi)n(t")) = 28;5keTH(t — ),

1 1
Y= 7 [Fy + m(©)]sin® + —[F, + n,(t)]cosd,

(A5)
Numerical simulations
where thei, j indicate||, L, orr. The symbol(: - ) represents the time
average] the temperature, an, the Boltzmann constant. The diffusion It therefore seems reasonable to assume that the motor is pulled off the
coefficients for translation parallel and perpendicular to the rod and themicrotubule when the force exceeds the stall foFegy,. In this numerical

diffusion coefficient for the angular motion are denotedhyD ,, andD,, analysis, we used the linear relationship
respectively, which must satisfy the Einstein relations F
kT v(F) = vo(l e ) , (A8)
D, = ? , (A6) stall
i

subject to the condition that the velocity may not be negative. The specific
values ofv, andFg,, are given in Table 1. Experimental work (Hunt and

Howard, 1993) has illuminated the nature of the coupling among the head,
body, and tail of kinesin. In particular, they have shown that there must be
a swiveling coupling between the head and body regions of this motor,

Expressions for the friction coefficients ¢, and{, for a rod of length
L and diameter R are given by (Doi and Edwards, 1986)

_ anWL because attachment between motor and microtubule is not dependent on
I In(L/b)’ relative orientation. In addition, there is evidence that the body region acts
like a torsional spring, a “coiled coil,” with stiffness = (117 = 19) X
g 107 2* N m rad % This is extremely weak, and it is unlikely that, once
{1 = E ) coiled, kinesin could completely uncoil itself during the detachment phase
of its power cycle. Further evidence for the torsional spring model is given
7777st by_the angular di_stribution of the microtgbules—_it is Gaussian rather_ than
L=, (A7) uniform, suggesting a smooth, symmetric potential well, rather than simply
3[|n(|-/b) - 7] a pair of stops. Nearly 100% of the motors on the surface of an organelle

that can reach the microtubule should be able to bind and exert force. With
wherey = 0.8 is a constant angl,, = 10 ®kg m~* s ! is the viscosity of ~ any motor, there is a finite probability that it will spontaneously detach
water. We generally take the rod to be one-dimensional (i.e., having lengtifrom the microtubule. In contrast to other motors, however, kinesin has the
but no width). In computing the involved coefficients, however, we use theproperty ofprocessivity This means that its duty ratio (the percentage of
values shown in Table 1. From Egs. A7, we get 10 °gs tand¢f, = time the motor remains bound to the filament) is extremely high9%.
2Xx 10Pgnnfs L This compares to a typical value of 5-20% for myosin (Finer et al., 1994).
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We assume 100% processivity in this work. Perhaps the only nonintuitivehe list of attached motors. If not, we do nothing. After all the motors have
parameter here is theapture parameter, wshown in Table 1. It describes been checked, we compute the forces exerted by the attached motors. The
the Brownian rotational motion of the motors. Because they are so muclsavings in computing forces for such a small fraction of motors greatly
smaller than the MTs, they diffuse on a much faster time scale. To see thigutweighs the cost of maintaining the list.

we just need to compute the rotational diffusion coefficient, taking the

motors as rigid rods of length 80 nm and diameter 20 nm (Egs. A7 and A6).

We find that it comes out to~9600 s*. The time required to rotate Theoretical analysis

through an anglerist ~ 7%D, = 10 ° s (see Honerkamp, 1994, for an

explanation of mean first-passage times). Thus, for time-steps of this orderere we obtain approximate analytical results from Egs. A4. It is conve-
or larger, the rotational motion of the motors is completely blurred out. Fornient first to perform a coordinates transformation of the center of mass.
this reason, we can assume that, once the MT is within a distance of abodaking a rotation of thex and § axis by an angle®, we obtain the
half the motor’s length (i.e., 40 nm), the motor will rotate to a position that coordinates,

causes it to be close enough to the MT that it can attach. Our numerical

simulations are based on Eq. 6 which can be obtained from Eqgs. A4 g = xcos + ysino,
combined with Egs. 4 and 5. .
The simulations were performed on our group’s cluster of Alpha p = —xsin® + ycow, (A9)

workstations (Digital Equipment Corp., Maynard, MA). With clock
speeds ranging from 100 to 433 MHz, these RISC machines are capablihich give the paralleld) and perpendiculaipj components of the center
of ~18-140 MFLOPS (million floating-point operations per second). Of massR. Transforming Eq. A4 using these new variables, we get the
The programming languages used were Fortran 90 (numerical workfionlinear Langevin equations,
and C (input/output), compiled using Digital Equipment Corporation’s

compilers (f90 V4.1-270 and cc V5.2-036, respectively). In addition, s ﬂ _ 1 _ 77”7(0 nf(t)

the Unix Perl language (version 5.003) was used for data processing. q Q\ P s B g\l IS

The choice of programming language was motivated by the desire to

take advantage of such concepts as user-defined data types, which ] F. T m,. ) (1)

greatly ease the task of modeling such complex objects as molecular pP— ? +q Z = Z —q ;

motors, without sacrificing the proven numerical efficiency of the L r L r

Fortran language. In simulating noisy systems, we must be careful ) 1 1

about the finite-difference method we use, and, in particular, about how [ ) — ) (t) (AlO)
it may influence the noise autocorrelations. This problem has been s ;"

examined in detail (Helfand, 1979; Greenside and Helfand, 1981). We
have used their second-order Runge-Kutta method to solve all thavhich will be the basis for our subsequent analysis. From Fig. 1, one sees
equations. thath; = R + &, wherea is a vector pointing along the plus end of the MT.

In this, as in all simulations, the question arises: What is the appropriatd © model the uniform walking of thé&h motor, we assume that
time-scales? There are several considerations here: At very low density, ) ) :
the time-step should be short enough that the distance diffused by the rod oV = ozS) + Vﬂ])t, (All)
in one step is not greater than the spring length, because this will cause , )
unnatural (unrealistic) detachments of the springs from the rod. Thigvherevs) is the mean speed of thin motor walking along the MT, and
imposes the limit << L2/D, wherel, is the spring equilibrium length, and IS its initial attachment position. Here all the velocitied are chosen
D is the diffusion coefficient of the MT. For the values considered here,POsitive because the kinesins are plus-end-directed motors. Note that the
this means that < 0.025 s. In contrast, at very high density, if there is a Mmodel is independent of an underlying mechanism for the walking because
large number of motors attached to the rod, we should take care that thié does not include any kind of stepwise movement. The only assumption
time step is small enough that the combined force of all the motors does ndé that the kinesin remains bound to the MT throughout the motion, like the
cause overly jerky motion of the MT (it is a stochastic system), inducingWild-type kinesins (Hancock and Howard, 1998). This assumption allows
spurious detachments. This means that we wish to have ~F)D/ksT us to fix the mean speed) for each motor. Note that the inclusion of this
< L, wherex is the instantaneous velocity of the MT center of mass, and (linear) term allows us to mimic the velocity of the motors as they consume
(F) indicates the mean force felt by the MT as a result of all the motors. WeATP. Using Egs. 4 and 5, the parallel and perpendicular force components
write this ag(F) ~ N.f, wheref is a time-averaged force for one motor. As and the torque can be expressed in terms ofdfye, @) coordinates system
an order-of-magnitude estimate, we might set this aFQ,g2 For high as
kinesin densityN,, = Loy;,w, wherew is the capture parameter, aog,,

is the kinesin density. This leads us to the upper limithpn Fﬁi) = _ks(q + (X(i)(t) - rﬁi))y
_ kTl kT 1 FU=—k(p—r?),
T —_ = =, X
D Nuf  ° D Loywf 70 = —ka®(t)(p — r?), (A12)

For typical values used in this work (see Tabled); 80/o\;,w. Clearly, where
the time-stepl) is to be chosen much smaller than this value. In simulating

this system for high kinesin densities, the number of motors rapidly I‘ﬁi) = I‘@COS@ + r<y”sin®,
becomes very large, yet only a tiny fraction are attached to the MT at a ) _ )
given instant. In addition, because the motion is noisy only on a small scale r(L') = — r;”sin@ + I‘§,')C0§9. (A13)

at biological temperatures, the particular set of motors that are attached

does not vary a lot from one instant to another. Maintaining a linked-list Here we try to understand the relation between the MT speed and the
(see Brainerd et al., 1996, for details of implementation in Fortran 90) ofattached motors speed. We start by analyzing the MT motion due to only
attached motors greatly speeds things up. At each time step, we iterate ovene attached motor. In this case, after setfing 0 anda(t) = ag + V.,

all the motors, to see if they can attach to the MT. If so, we add them tothe Langevin equations for the MT become

Biophysical Journal 80(6) 2515-2526



2524 Gibbons et al.

: Y e , ,
q+ K(q + a(t)(l + 8pZ)) — D\Il 2('}’\|(t) + psl/Z’Yr(t)), 3/12 ;oar\(}:e. Note that settirig= 0 in Egs. A10 (i.e., the motor is detached),
5+ kD(2 — 1)q) = D242y, (t) — ge¥2y, (1), .
P+ kp( sa(t)q) I (242 (1) — g™y, (D) <R2> — 2(DH + D)), <®2> = 2D t, (A20)
0 + ka(t)ep = DY?y,(1), (A14)  and then(Vy, ) ~ 0, because, in this case, the MT diffuse away in the
) ) ] solution performing a pure Brownian motion.
where we have set = kJ{ ande = /(.. The white Gaussian noise The case of two motors attached to the MT can be analytically solved
sources are normalized ag(t) = m;(t)/(¢D?), to satisfy(y(t)y(t) = by settingry = r2 = 0 andr} = —r2 Following closely similar steps as
28;;8(t — t'). Using the calculated coefficienfs and{,, we find thatk = above, we find

2 X 10°s *ande = 5.3 X 1078 nn?. With these coefficients in mind, and

noting that, if the fixed tail of the motor is attachedrat 0, the values of N I Vi + Vv, ag + ag "

g andp cannot be larger tharLg (so that the motor remains attached to the <R2) ——+ 4 - 2 - 2 t),
MT). We can then neglect the terms proportionaktm Eq. 20, so that K K (A21)

. _ R12

G+ k(@ + alt)) = Djy ), where we can see that the MT speed also tends to the average of the two
. _ 12 motor velocities. When we considsrmotors that are attached to the MT,
P+ 2xp = (2D) "%y, (1), the corresponding Langevin equations read

: _ Nl ) .
O + ra(t)ep = Dy (t). (A15) KN{q+ > % (a<i>(t)_r@)+8p(pz %am(t)

To obtain the average MT speed we need to calculate
d R 1 i X
Vi) = —~ (R)M2. A16 =2 5 a”Or? ] =Dy t) + e"pyi1)),
dt ~ N

We need then to find the evolution @f?) and(p?), because the mean square b1 i q 1 @
displacement of the center of mass is given(&) = (@) + (2 = (P + p+ 2xkNyp — IE N ry — &5 pZ N& (t)

(p®. After integration and averaging over time of Egs. A15, we get

2

1 :
() = [l &) — e+ e = 1+ k) 2N a“><t>r&”>} = DIA(2y.(1) — e av(1),

D . G G i 12
(1 - e, 0+ SK{pZ al(t) = X oz(”(t)ri')} = Dy (1),
K I I
(A22)
(p?) = ple*t + % (1 — e, (A17) whereX denotes the sum only over those motors that are attached to the
K MT. Using the same approximations as in the case of only one attached

. . . . . ) motor, we get
wherek 1 is the characteristic decaying time associated with the Hookean

behavior of the motors. This time is of the order of 1 ms. Therefore, for times . 1 ) ) 2
greater thark %, the mean square displacement of the center of mass tends to g+ «kNyq + E N (a(')(t) - rﬁ')) = D” ’Y”(t),
]

. 2D
(R = "+ (ap + Vi), (A18) _ b1
. " p+2eNip— 2 1l = (2D)"*y.(1),
so that the average speéd,;) tends to the mean motor speeg (A23)
In contrast, forkt >> 1, the evolution equation for the averaged mean
square of the angl® reads which, after time integration and averaging, give
5 2 Vim () = et + ﬂ (1— e 2w
<®>%®0_8p0®0 a0+27}< q _qO NK
t] 2 DH Vm 2 DH V, 2 1 . VS]) .
- _ om 2 om _ — Nkt = @ _ M _ ANkt (i)
(9o 2 22+ 2 ()] 23 L (o - a4 i
D v AW AT
2=l _m T 0 = ™)1 — o Nkt (0)
+ 2Dt + ¢ 2[(% 2K>aot + {.E N((ao NK)(l e )+th)] ,
v, 1 B D, ~
+ (ao - 4:)vmt2 +3 vﬁf‘] . (A19) (p? = pae Nt + N (1 — e 4N, (A24)
This result is strongly dependent on the initial attachment positiaiong Here we used the fact that, in the high kinesin density case, it is

the MT, that affects the value of the rotational angular motion produced byreasonable to discard those terms that inclifie () andZ; (), because
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we have assumed that the kinesins are randomly located in the plane. For

the short time evolution, we find
(R?) = (R) + [6D; — 2Nk(f + 2pp)]t,  (A25)

which shows that, initially, the motion is Brownian, in agreement with our

numerical results. In contrast, note from Eqs. A24 that the characteristic

relaxation time for the high kinesin density caseNs~*, which is very
short and difficult to observe experimentally.

2525
1o i)
(@ =—3 §ad +vio. (A32)
Plugging in numbers to this equation, we get
VY
(F)= =42 =~ —0.065pN, (A33)

For Nkt > 1 the mean square displacement of the center of mass tendhere we use tha vi)/N ~ 650 nm s, and quantitatively corresponds

to
moy _ 2D Lo el
(R =N 7|2 N@ +VaD |, (A26)

and, taking into account that, for high motors densities, one ca¥;sep
~ 0, we finally get
:|2

from which we conclude that the MT speed tends to the average Yzilue
VN of the attached motor speeds.
We note that, in the gliding-assay experiments (Howard et al., 1989

S 2D v
(R =11 N

Np{Z

(A27)

Hancock and Howard, 1998) and in our numerical simulations, the MT

motion is essentially one-dimensional due to the compensation of th
perpendicular motor forces acting on the MT. If one $@ts ®, = 0, then
g = x and the MT motion can be described simply by

X = —KN[X +3 % (") — ri”)] + D*%(0),
(A28)

from which we obtain

D, - 'l - -
<X2> :m(l_ e ZNKt) + [IE Naé)(l_ e NKt) — X Nt
m(e « —1+NKt)

+ >

2
] , (A29)
I
where we neglected those terms that inclXiér®).
For Nkt > 1, expression A29 tends to

E’l

2
> L@ [ aso)

00 = gL +
Nk

to the numerical result.

Our approximate analysis has helped our understanding of why the MT
motion is almost kinesin density independent. From our analysis we see,
however, that we have left out many collective effects that will be kinesin
density dependent. We could conceive more complicated analysis of the
equations of motion that could lead to further probes of the experimental
results. We leave that for future study.

We thank Prof. William Dietrich, 1l and Angela Ramsey of the Biology
Department at Northeastern University for helpful discussions. Sugges-
tions by Jonathon Howard at the University of Washington were very
useful toward completion of this work. Thanks are also due to Jagesh Shah
and Paul Janmey of the Division of Experimental Medicine at Brigham and
Women's Hospital for being generous with their time, and showing us their
experimental setup. This work has been partially funded by the Center for
Interdisciplinary Research on Complex Systems, Northeastern University

?und.

REFERENCES

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson.
1994. Molecular Biology of the Cell. 3rd ed., Garland Publishing, Inc.,
New York.

Berg, H. C. 1983. Random Walks in Biology. 2nd ed., Princeton University
Press, Princeton, NJ.

Block, S. M., L. S. B. Goldstein, and B. J. Schnapp. 1990. Bead movement
by single kinesin molecules studied with optical tweezé¥sture.
348:348-352.

Brainerd, W. S., C. H. Goldberg, and J. C. Adams. 1996. Programmer’s
Guide to Fortran 90. Springer, New York.

Coppin, C. M., J. T. Finer, J. A. Spudich, and R. D. Vale. 1995. Measure-
ment of the isometric force exerted by a single kinesin molecule.
Biophys. J.68:242s-244s.

Coy, D., M. Wagenbach, and J. Howard. 1999. Kinesin takes one 8-nm
step for each ATP that it hydrolysed. Biol. Chem274:3667-3671.

Derayi, I., and T. Vicsek. 1996. The kinesin walk: a dynamic model with
elastically coupled head®roc. Natl. Acad. Sci. U.S.83:6775—-6779.

Doi, M., and S. F. Edwards. 1986. The Theory of Polymer Dynamics.
Clarendon Press, Oxford.

and we recover the experimental and numerical results for which thebuke, T., T. E. Holy, and S. Leibler. 1995. “Gliding assays” for motor
velocity of the MT is given by the average of the attached motor speeds. proteins: a theoretical analysBhys. Rev. Let{74:330-333.

Note that this result is independent of the form of the velocity distribution.

Duke, T., and S. Leibler. 1996. Motor protein mechanics: a stochastic

It is worth pointing out that, in our analytical analysis, we assumed that the model with minimal mechanochemical couplin@iophys. J.71:

N motors are always attached to the MT. As the MT moves, however, new 1235-1247.

motors are attached at its leading end and others are detached at the tafiner, J. T., R. M. Simmons, and J. A. Spudich. 1994. Single myosin
Finally, we analyze the behavior of the force exerted by the motor. From molecule mechanics: piconewton forces and nanometre dtisre.

(Eq. A12), the mean value of the longitudinal force can be calculated from 368:113-119.

Fo =@+ S @ - ). @an

which includes the mean displaceméqt Time integration and averaging
of Eq. A23 gives, folNkt > 1,

Gliksman, N. R., R. V. Skibbens, and E. D. Salmon. 1993. How the
transition frequencies of microtubule dynamic instability (nucleation,
catastrophe, and rescue) regulate microtubule dynamics in interphase
and mitosis: analysis using a Monte Carlo computer simulafidol.

Biol. Cell. 4:1035.

Greenside, H. S., and E. Helfand. 1981. Numerical integration of stochastic
differential equations: lIBell Syst. Tech. J60:1927-1940.

Biophysical Journal 80(6) 2515-2526



2526 Gibbons et al.

Hancock, W., and J. Howard. 1998. Processivity of the motor proteinLeibler, S., and D. A. Huse. 1993. Porters versus rowers: a unified

requires two headsl. Cell Biol. 140:1395-1405. stochastic model of motor protein. Cell Biol. 121:1357-1368.
Helfand, E. 1979. Numerical integration of stochastic differential equa-Lodish, H., D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J.

tions. Bell Syst. Tech. J58:2289-2299. Darnell. 1995. Molecular Cell Biology. 3rd ed., Scientific American
Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the Books, New York.

mechanism of organelle transpoBcience279:519-526. Peskin, C. S., and G. F. Oster. 1995. Force production by depolymerizing
Hirokawa, N., K. K. Pfister, H. Yorifuji, M. C. Wagner, S. T. Brady, and microtubules: load—velocity curves and run—pause statificghys. J.

. . I . 69:2268.
G. S. Bloom. 1989. Submolecular domains of bovine brain kinesin .
identified by electron microscopy and monoclonal antibody decoration.Purcell, E. M. 1977. Life at low Reynolds numbém. J. Phys45:3-11.

Cell. 56:867—878. Risken, H. 1996. The Fokker-Planck equation. Springer, New York.
Honerkamp, J. 1994. Stochastic Dynamical Systems. VCH PubllshersSChr"tzer M. J., and S. M. Block. 1997. Kinesin hydrolyses one ATP per
New York. 8-nm step Nature 388:386-390.

Howard, J., A. J. Hudspeth, and R. D. Vale. 1989. Movement of micro—SCIZOIet)./f'. ‘]'t.M" ‘2 Il-kzu?er, J. E Yanhg, a_mdl h Sd' B.f?(_old;tetln. 1989.
tubules by single kinesin moleculeNature.342:154-158. entiication of globular mechanochemical heads o kineslature.

338:355-357.
Hua, W., E. C. Young, M. L. Fleming, and J. Gelles. 1997. Coupling of g\51044 K., C. F. Schmidt, B. J. Schnapp, and S. M. Block. 1993, Direct
kinesin steps to ATP hydrolysidlature. 388:390-393. observation of kinesins stepping by optical trapping interferometry.
Hunt, A. J., F. Gittes, and J. Howard. 1994. The force exerted by a single Nature.365:721-727.
kinesin molecule against a viscous lod&ophys. J.67:766-781. Vicsek, T. 1997. A statistical physicist's approach to biological: from the
Hunt, A. J., and J. Howard. 1993. Kinesin swivels to permit microtubule kinesin walk to muscleln Bulletin of the American Physical Society
movement in any directionProc. Natl. Acad. Sci. U.S.A90: March meeting, Kansas City, MO. American Physical Society, College
11653-11657. Park, MD.

Biophysical Journal 80(6) 2515-2526



