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ABSTRACT The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of
bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible
for the transition from the purple form (lmax 5 570 nm) to the blue form (lmax 5 605 nm) of bR. This transition can also be
induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the
surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by
evaluating the interaction between Mn21 and a nitroxyl radical probe covalently bound to several mutants in which protein
residues were substituted by cystein. We have found that Mn21, which binds to the highest-affinity binding site, significantly
affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding
site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be ;9.8 6 0.7
Å. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn21 bound
to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein.
The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve
negatively charged lipids located on the exterior of the bR trimer structure.

INTRODUCTION

Bacteriorhodopsin (bR) is the light-transducing protein in
the purple membrane ofHalobacterium salinarum(Oester-
helt and Stoeckenius, 1971, 1974). The protein contains an
all-trans retinal chromophore bound covalently via a pro-
tonated Schiff base to Lys-216. Following light absorption,
bR converts from a dark-adapted state containing a mixture
of 13-cis and all-trans retinal to a light-adapted state that
contains only the all-trans chromophore. Light absorption
by the light-adapted state initiates a photocycle character-
ized by several distinct intermediates. The photocycle is
coupled to proton release to the extracellular medium, a step
that initiates a proton pump cycle. The formed pH gradient
generates a proton-motive force that is used by the bacte-
rium to synthesize ATP from inorganic phosphate and ADP.
The proton pumping process is initiated by a proton transfer
from the retinal-protonated Schiff base linkage, which gen-
erates the blue-shifted M photocycle intermediate (for re-
cent reviews see Ottolenghi and Sheves, 1995; Lanyi, 1997;
Haupts et al., 1999).

Lowering the pH of bacteriorhodopsin suspension red-
shifts the pigment absorption maximum from 565 nm to 605
nm and produces a blue membrane (Mowery et al., 1979;
Fischer and Oesterhelt, 1979; Edgerton et al., 1980; Kimura
et al., 1984; Va´ró and Lanyi, 1989). This transition from
purple to blue membrane is characterized by pKa 5 2.7 in

0.1 M NaCl (Kimura et al., 1984; Chang et al., 1985) and is
referred to as blue membrane state produced at low pH
(Kobayashi et al., 1983; Dupuis et al., 1985; Albeck et al.,
1989; Nasuda-Kouyama et al., 1990). It was found that the
formation of the blue membrane is associated with proto-
nation of Asp-85, which probably induces the spectrum red
shift, due to elimination of the electrostatic interaction be-
tween the retinal protonated Schiff base and Asp-85 (Metz
et al., 1992).

Removal of cations by deionization treatment produces
“deionized blue membrane” (Padros et al., 1984; Chang et
al., 1985; Jonas and Ebrey, 1991) characterized by higher
purple to blue pKa, which is similar to the acid blue form.
Therefore, cations play an important role in bR function,
and it was suggested that they control the pKa of Asp-85
residue, thereby allowing for production of the crucial M
intermediate in the photocycle (Kobayashi et al., 1983;
Moltke and Heyn, 1995). Furthermore, it was suggested that
cations participate in the mechanism that controls the proton
transfer following light absorption (Tan et al., 1996; Birge
et al., 1996). A variety of experimental data suggested
specific cation binding to bR. Potentiometric titration stud-
ies of deionized membrane using a Ca21-specific electrode
have suggested two high-affinity cation binding sites and
four to six low-affinity sites (Zhang et al., 1992, 1993;
Zhang and El-Sayed, 1993; Yang and El-Sayed, 1995; Yoo
et al., 1995). It was proposed that the binding of cations of
the second high-affinity site correlates with the blue-purple
transition (Ariki and Lanyi, 1986; Zhang et al., 1992). EPR
measurement of Mn21 indicated one high-affinity and three
weaker binding sites, characterized by similar binding con-
stants (Dunach et al., 1987).

Several studies have suggested that the cation binding
site, which determines the state of protonation of Asp-85
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and, thus, the color of the pigment, is located in the retinal
binding pocket (Jonas and Ebrey, 1991; Zhang et al., 1992;
Tan et al., 1996; Pardo et al., 1998). Another model sug-
gested that the cations bind to the membrane surface and
control the apparent pKa of Asp-85, thereby the purple-blue
transition through surface potential effects (Szundi and Sto-
eckenius, 1987–1989). Free (Guy-Chapman) or bound
metal cations on the membrane surface compete with pro-
tons and thus determine the local proton concentration
around the membrane.

Recently, kinetic studies of Asp-85 reprotonation as a
function of cation size have indicated that the color-control-
ling cation binding site is in an exposed location on or close
to the membrane surface (Fu et al., 1997). Furthermore, it
was shown that the titrations of Asp-85 and of the cation
binding residues in bR are uncoupled, excluding direct
binding of the cation to Asp-85 (Eliash et al., 1999). Solid-
state NMR studies indicated that cation binding affects
Ala-196 located in the E-F interhelical loop, supporting
binding in the membrane surface (Tuzi et al., 1999). A study
using eosin dye covalently bound to the protein suggested
that the cations do not bind to specific sites and bind equally
to both membrane surfaces to negatively charged lipids
(Váró et al., 1999).

In this study we have reexamined the possibility of spe-
cific cation binding sites using a new, complementary ap-
proach. We have monitored the interaction between Mn21

and EPR probe, covalently bound to several mutants in
which protein residues were substituted by cystein, and have
revealed that the high-affinity binding site is located in the
extracellular region, whereas at least part of the three to four
low-affinity cation binding sites are located in the cytoplas-
mic surface. The results indicate specific binding sites for
the color-controlling cations and suggest that all the cation
binding sites are associated with negatively charged lipids
located on the exterior of the bR trimer structure.

MATERIALS AND METHODS

Bacteriorhodopsin mutants were obtained as a generous gift from Prof. R.
Needleman of Wayne State University.

Spin-labeled mutants

The radical probe was attached to three different mutants by forming a
covalent bond between a specific cysteine mutation and the radical. The
spin label (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosul-
fonate (MTSSL, Toronto Research Chemicals, Ontario, Canada), was
covalently attached to cysteine residue of the appropriate bR mutant
(A103C, M163C, or E74C) to yield the spin label side chain. A 10-fold
excess of the radical was used in 0.1 M phosphate buffer (pH 8) and 0.1 M
NaCl. The suspensions were stirred at room temperature for 12 h. The
non-covalently bound spin label was removed by washing the membrane
pellet with a solution of 1% BSA.

Spin-labeled artificial pigment I

The nitroxide retinal analog was synthesized from 2,2,5,5-tetramethyl-3-
pyrroline-1-oxyl-3-carboxylic acid according to previously described pro-
cedures (Crouch et al., 1981). The synthetic retinal analog was incubated
with apomembrane for 3–6 h at room temperature to yield pigmentI ,
which absorbs at 460 nm (Crouch et al., 1981).

Deionized (DI) blue membranes were obtained by passing bR suspen-
sion or the appropriate labeled mutants and the artificial pigmentI through
a Dowex 50 WX8 (Fluka, Buchs, Switzerland) cation exchange column.

EPR measurements and distance calculations

Increasing Mn21 concentrations were added to deionized membrane sam-
ples, and the EPR spectra of both the radical probe and the Mn21 free
signal were monitored. The pH was adjusted to 5 and readjusted using
NaOH solution with each addition of Mn21.

The EPR measurements were preformed on a Bruker ER200 D-SRC.
The samples were measured at a concentration of;5 3 1025 M radial
probe.

Distance calculations

The distance between nitroxyl spin label and bound Mn21 was estimated
by measuring the intensity decrease of the EPR signal of the spin-labeled
protein (central component) upon addition of Mn21 (Leigh, 1970; Voss et
al., 1995). The distance,R, was calculated from the following equation
(Leigh, 1970):

R5 6Îgbm2

\c
z tc (1)

The constantg is the electronic factor for nitroxyl radical,b is the Bohr
magneton, andm and tc are the magnetic moment and the electron-spin
relaxation time of Mn21. tc 5 1.5 3 1029 s (Cohn et al., 1971) was used.
The value ofc/Ho was obtained from the relative amplitude (I/Io) of EPR
spectrum of the spin label in the presence of paramagnetic ion using a
graph presented by Voss et al. (1995) for the label motion in solution
(isotropic case). In this graph we usedHo (line width of central component
of the EPR spectrum) asHo 5 2 G for mutant E74C, andHo 5 6 G for
M163C and A103C.

RESULTS

Binding of Mn21 to deionized wild-type and
mutants E74C, A103C, and M163C

The binding of Mn21 to deionized protein membranes was
followed by an EPR spectrum. The spectrum mostly origi-
nates from unbound Mn21 because the amplitude of the
bound Mn21 is only ;5% of that of an identical concen-
tration of the free ion in solution. Three mutants, E74C,
A103C, and M163C, were spin-labeled by (1-oxyl-2,2,5,5-
tetramethylpyrroline-3-methyl)-methanethiosulfonate (Aha-
roni et al., 2000) and their EPR spectra are shown in Fig. 1.

The relatively sharp peaks of the labeled E74C mutant
compared with the other mutants indicate that the probe
movement in this position is less restricted by the protein’s
environment, and increased free rotation is achieved.

Scatchard plots of Mn21 binding to blue membranes (Fig.
2) indicate that all three mutants are characterized by one
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strong binding site (Table 1) and by three or four additional,
identically weaker binding sites similarly to the wild type
(Dunach et al., 1987). Interestingly, the first strong binding
site did not follow a simple binding behavior (Fig. 2A for
the three mutants, and Fig. 2B for wild type), and it appears
that the first cation binds in a cooperative manner. A Scat-
chard plot ofn/c versusn (n, number of Mn21 equivalents
bound to bR;c, concentration of added Mn21) should give
a straight line with a slope of2K (binding constant), while
thex intercept yields the value ofn (number of binding sites
with the same affinity), according to:

n/c 5 K~n 2 n! (2)

To exclude the possibility that the effect on the EPR spectrum
does not originate from a protein conformational change, due
to blue-purple transition, we carried out a control experiment.
Binding of Ca21 instead of Mn21 to the blue membrane did
not affect the EPR spectrum. This experiment clearly indicates
the role of magnetic interaction between the paramagnetic
species in decreasing the EPR spectrum intensity.

It is clear (Fig. 2,A andB) that the first Mn21 equivalent
deviates from the expected behavior and the binding is
stronger as more Mn21 is added. Further studies should be
carried out to clarify this observation and its origin. Mutants
74C and 163C exhibited, in addition to the strong binding

site, three weaker sites in contrast to mutant 103C, which
exhibited four weaker sites.

Effect of Mn21 binding on the EPR probe signal

Binding Mn21 to the blue membrane forms of the mutants
reduces the signal of the EPR probe due to dipole-dipole

FIGURE 1 EPR spectra of spin-labeled bR mutants A103C, M163C, and
E74C. Protein concentration: 83 1025 M, T 5 23°C.

FIGURE 2 Scatchard plots of Mn21 binding to deionized bR mutants
and native bR at pH 5. The concentration of free Mn21 in the solution was
determined by the EPR spectra. The bound EPR signal of Mn21 was only
;5% of the free EPR Mn21 signal. (A) Mutants M163C, E374C, and
A103C. (B) Scatchard plot of the high-affinity binding site of native bR.

TABLE 1 Binding constants of the two classes of binding
sites in the various mutants

Mutant K1 (M21) n1 K2 (M21) n2

163C 2.23 105 1 6.83 104 3
103C 1.73 105 1 4.53 104 4
74C 2.23 105 1 6.63 104 3
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interactions between the bound Mn21 and the probe. The
interaction strength is correlated with the distance between
the paramagnetic species (see Eq. 1). In the labeled 74C
mutant located in the extracellular side, the first equivalent
of Mn21 significantly affects the EPR signal (Fig. 3) and
lowers its intensity by;50%. The second equivalent of
Mn21 further reduces the signal to;30% of the original
signal (Fig. 3). Different behavior was observed for the
103C mutant located at the cytoplasmic side (Pebay-Pey-
roula et al., 1997; Luecke et al., 1998). The first equivalent
of Mn21 had a minor effect and reduced the signal intensity
by only ;8%, whereas an additional four equivalents af-
fected the signal more significantly and reduced it mono-
tonically up to 30% of the original signal (Fig. 3).

In mutant 163C, which is located on the cytoplasmic side,
the first equivalent of Mn21 reduced the EPR probe signal
by ;15% and further addition of two equivalents reduced
the main EPR signal more significantly, up to 20% of its
original intensity. These experiments clearly indicate that
the three labeled mutants are affected differently by the
bound Mn21 cations.

To gain further information on binding site locations of
the Mn21 cations we prepared artificial pigmentI , derived
from a retinal analog characterized by a spin-labeled sub-
stitution of the native retinalb-ionone ring (Crouch et al.,
1981). Binding of five Mn21 equivalents to deionized pig-
ment I (as evident from the EPR spectra of Mn21) did not
affect the intensity of the EPR signal. A minor effect of
;10% peak reduction was obtained by an additional bind-
ing of five equivalents (Fig. 4). We note that the EPR data
indicated similar Mn21 binding to both pigmentI and native

bR. This very weak effect on the EPR signal clearly indi-
cates that the cations do not bind to the retinal chromophore
vicinity and supports earlier suggestions (Szundi and Sto-
eckenius, 1987) and our recent results that the cations bind
on or close to the membrane surface (Fu et al., 1997; Eliash
et al., 1999).

Estimation of the distance of the Mn21 cation
from the EPR probe

Leigh methodology (Leigh, 1970) allows for distance esti-
mation between a paramagnetic cation and the nitroxyl
radical probe. Analysis in the bacteriorhodopsin system is
more complicated and requires several assumptions because
it involves the binding of more than one cation. The stron-
gest binding site mostly affects the 74 residue and, assuming
that two equivalents of Mn21 lead to almost complete
occupation of the high-affinity binding site, the calculated
distance of the Mn21 cation for the EPR probe is;9.8 6
0.7 Å. The situation is more complicated for the three to
four low-affinity binding sites because interaction of Mn21

with the spin label will be the sum of the contributions of
each Mn21 that produces a paramagnetic effect (Hill et al.,
1988), and many combinations are possible for the distances
between the Mn21 and 103 and 106 residues. To estimate
the topographical relationship we used the extreme case in
which all the low-affinity binding sites were equidistant
from the spin label and, therefore, all affect the spin-probe

FIGURE 3 Effect of Mn21 binding to deionized bR mutants on the
central component of the EPR spectra of labeled mutants A103C, E74C,
and M163C.

FIGURE 4 Effect of Mn21 binding to deionized artificial bR I on the
central component of the EPR spectrum.

Scheme 1.
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EPR spectrum. Assuming full occupation by three and four
equivalents for 103C and 163C mutants, we obtained an
average distance of;15.16 0.7 Å and 13.26 0.7 Å of the
binding sites from 103 and 163 residues, correspondingly.

DISCUSSION

Several studies have led to the suggestion that the high-
affinity binding site for cations, which is responsible for the
blue-purple transition, is located in the vicinity of the retinal
protonated Schiff base associated with Asp-85 and Asp-212
residues (El-Sayed et al., 1995; Jonas and Ebrey, 1991;
Stuart et al., 1995; Tan et al., 1996). In contrast, another
approach proposed that the cations bind to the membrane
surface and their effect on the purple3 blue equilibrium
was attributed to surface potential effects (Szundi and Sto-
eckenius, 1987). We have recently examined the kinetics of
Asp-85 reprotonation as a function of cation size. The
studies suggest that the color-controlling cation binding site
is in an exposed location on or close to the membrane
surface (Fu et al., 1997). These studies are supported by the
observation that the titration of Asp-85 and the binding
residues of the cation are not coupled (Eliash et al., 1999).

Recent studies with eosin dye covalently linked to the
protein and13C-NMR studies (Va´ró et al., 1999; Tuzi et al.,
1999) supported the suggestion that a cation does not bind
specifically to the retinal binding site. Furthermore, none of
the high-resolution diffraction studies identified a divalent
cation at the chromophore binding site (Kimura et al.,
1997a, b; Pebay-Peyroula et al., 1997; Luecke et al., 1998;
Essen et al., 1998). However, because these studies did not
identify any cation in the structure, it seems plausible that
the method of sample preparation eliminated the cations that
usually bind to bacteriorhodopsin. The results described in
the present work strongly indicate that the cation binding
sites are not located within the retinal vicinity. The insen-
sitivity of the radical probe, EPR signal of pigmentI tai-
lored into the retinal binding site to interaction with the
Mn21 dipole occupying the five high-affinity binding sites,
indicates that the distance between the two paramagnetic
species is.22 Å. This is in keeping with cation binding
sites on or close to the membrane surface.

Before discussing in more detail the identity and loca-
tions of the cation binding site, we point out that the
following analysis is based on three plausible assumptions:
1) Mn21 occupies the same binding site as Ca21 or Mg21

do in native bR, though with a somewhat different binding
constant (Dunach et al., 1987). 2) The present mutations do
not markedly affect the bR structure to modify the cation
binding sites and their respective affinities. This assumption
is supported by the similarity of the respective Scatchard
plots (Dunach et al., 1987 and the present work). 3) Al-
though regenerated Ca21-bR is found to exhibit some
changes in protein structure with respect to native bR (Tuzi

et al., 1999), we assume that the identities of the cation
binding sites are the same in both systems.

We refer to the observation (see Fig. 2) of a change in the
sign of the slopes of the Scatchard plots aroundn 51. Such
a deviation from a simple expected behavior may be indic-
ative of a cooperative binding mechanism in which the
binding constant of the site in one trimer member is affected
(increases) upon populating the site of a neighboring mem-
ber of the trimer. An alternative explanation may be ad-
vanced on the basis of the model (Szundi and Stoeckenius,
1987–1989) based on the effects of cations on the surface
pH of the bR membrane. When the first few cations are
bound the surface pH increases. This reduces competition
by protons, increasing the apparent cation affinity to the
(same) binding site. Finally, one cannot exclude the possi-
bility of two interacting biding sites that are populated in
parallel up to a 50% population. Nevertheless, the discus-
sion below is based on the more likely assumption that atn
51 mostly one high-affinity site is populated.

Quenching of the radical probe EPR signal by the first
equivalent of Mn21, which is added to the deionized mem-
brane, is much more efficient in the 74C-labeled pigment
than in the 103C and 163C, indicating that the highest-
affinity binding site is located on the extracellular side of
the protein. The binding constants ratio of the strongest
binding site and the weaker three, in the 74C-labeled pig-
ment, is ;3:1 (Table 1). Therefore, only;75% of the
highest-affinity binding site will be occupied by the first
Mn21 equivalent and almost complete occupation will oc-
cur following addition of the second equivalent. The obser-
vation that;70% of the EPR signal is quenched by two
equivalents of Mn21 indicates that the distance between
Mn21 and the probe labeled at the 74C residue is 9.86 0.7
Å. The binding constant ratio of the highest- and low-
affinity binding sites for mutants 103C and 163C is;3:1
(Table 1). Therefore, only;25% of the first equivalent of
Mn21 will be distributed among the weaker binding sites,
whereas additional equivalents will populate mostly the
weaker binding site. Indeed, the first equivalent of Mn21

effects the EPR label at 103C and 163C more weakly than
an additional two or three equivalents. The EPR signal is
quenched by only 8% (103C) and 15% (163C) by the first
equivalent, whereas two equivalents quenched the signal by
25% and 50%. The results contradict nonspecific binding to
both extracellular and cytoplasmic sides, and are in keeping
with specific cation binding sites in which the highest-
affinity binding site is located on the extracellular site where
74C residue is located. The low affinity of the sites on the
cytoplasmic side can be interpreted in terms of an intrinsi-
cally weak binding sites. Alternatively, adopting the ap-
proach of Szundi and Stoeckenius (1987–1989), it could be
attributed to a lower surface pH on that side of the mem-
brane. However, the different sensitivity of the EPR probe
at residues 103C and 163C to Mn21 interaction indicate
specific locations for the cation binding sites that could
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result from an asymmetric distribution of lipids (Essen et
al., 1998).

Recent13C-NMR studies suggested that one of the pre-
ferred cation-binding sites is located at the loop between
helices F and G near Ala-196 (Tuzi et al., 1999). These
results are consistent with our present observation. Residue
74C is located in the inner part of the trimer structure of bR
(Kimura et al., 1997a, b; Pebay-Peyroula et al., 1997;
Luecke et al., 1998; Essen et al., 1998). The strong influence
of Mn21 on residue Ala-196 labeled with13C and the
distance of 9.86 0.7 Å we have found between Mn21-
labeled residues, point to the highest-affinity binding site
being located in the protein extracellular side at the exterior
of the trimer structure (Fig. 5a). Both labels at 163C and
103C are affected far less by the first equivalent of Mn21,
in keeping with the suggestion that the highest-affinity
binding site is located at the extracellular side. The low-
affinity three to four additional binding sites are located at

the protein cytoplasmic side, as is evident by the Mn21

influence on the EPR signal of labels at 163C and 103C. We
note that we cannot exclude the possibility that one or two
of the low-affinity binding sites are located at the extracel-
lular side. In this case, the effect on 163 and 103 labeled
residues originated from part of the low-affinity binding
sites, whereas the effect on the spin label at the 74 residue,
located in the extracellular side, was negligible because the
signal was almost completely quenched by the Mn21 occu-
pying the high-affinity binding site. 163C is located closer
to the exterior of the trimer structure than 103C (Fig. 5b).
The average distance calculated between the low-affinity
binding sites and these residues (13.26 0.7 and 15.26 0.7
Å) do not contradict the fact that these binding sites are
located in the exterior of the trimer structure. Therefore, it is
tempting to speculate that both the strongest cation binding
site and the three to four weaker sites are located on the
exterior of the trimer, and probably involve the membrane
acidic groups and, possibly, protein residues. This sugges-
tion is in keeping with a previous observation that bR
treated with CHAPS lacks the cation binding sites discussed
above (Eliash et al., 1999). Previous studies indicated that
deoxycholate-treated purple membrane, in which a partially
delipidated process occurred, maintained the original native
purple membrane trimer structure (Grigorieff et al., 1995).
Three of the lipids per bR molecule remain in an identical
position relative to the trimer and, in addition, three lipids
per bR molecule have been identified, including a lipid
between the monomers. Part of the lipids on the trimer
exterior was removed by deoxycholate treatment. Partial
lipid-depleted membranes obtained by CHAPS treatment
exhibit a normal circular dichroism spectrum (data not
shown), indicating that the trimer structure is intact, as was
observed for the deoxycholate-treated purple membrane.
Therefore, since the CHAPS-treated purple membrane lost
its ability to bind cations (Eliash et al., 1999), it is tempting
to suggest that the strong cation binding sites are located on
the exterior of the trimers and are associated with negatively
charged lipids, but not with the lipids occluded inside the
trimers or between the monomers.

Our results, revealing specific binding sites for the strong
cation binding sites, seem to contradict recent experiments
that used eosin dye (Va´ró et al., 1999). These experiments
indicated that the surface pH changes about equally at both
extracellular and cytoplasmic surfaces when one equivalent
of Ca21 is added to the blue membrane. However, the eosin
dye bound to the cytoplasmic side may respond to binding
at the extracellular side, because it was reported that re-
leased protons on the extracellular side of bR rapidly equil-
ibrate with the cytoplasmic side (Heberle et al., 1994; Alex-
iev et al., 1995). It is possible that this equilibration process
prevents different proton concentrations at both sides of the
membrane.

FIGURE 5 Bacteriorhodopsin trimer structure. The coordinates of Essen
et al. (1998) were used (1BRR). (a) Cytoplasmic view, Glu-74 and Ala-196
are labeled for one monomer. (b) Extracellular view, Met-163 andAla-103
are labeled for one bR monomer.
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