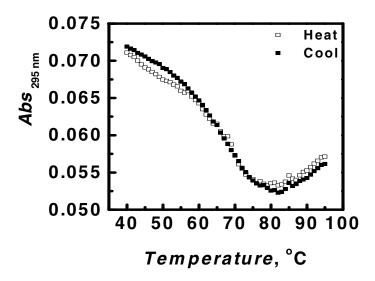
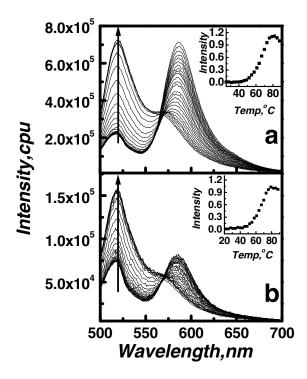

SUPPLEMENTARY MATERIAL


The Effect of Osmolytes and Small molecule on Quadruplex-Watson Crick Duplex

Equilibrium - a Fluorescence Resonance Energy Transfer Study.


Niti Kumar and Souvik Maiti*

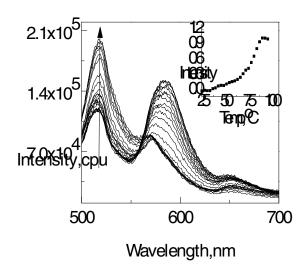

FigureS1: CD spectra of d(GGG TTA GGG TTA GGG TTA GGG) in 50 mM MES buffer pH 7 with 100 mM KCl in absence(\blacktriangle) and presence (\blacksquare) of 10% (wt/vol) ethylene glycol. CD spectra of equimolar mixture of d(GGG TTA GGG TTA GGG TTA GGG) and d(CCC TAA CCC TAA CCC TAA CCC) in 50 mM MES buffer pH 7 with 100 mM KCl in absence(\triangle) and presence (\square) of 10%(wt/vol) of ethylene glycol. All the spectra were recorded at 15°C and with total strands concentration of 10 μM.

Figure S2: UV melting of unlabeled $d(G_3TTA)_3G_3$ (2 μ M) in 50 mM MES buffer, pH 7 with 100 mM KCl. The plot shows the absorbance monitored at 295 nm as function of temperature for heat (\square) and cool (\blacksquare) cycle giving T_m as 67.8°C and 67.5°C respectively.

Figure S3: Fluorescence emission spectra of dual labeled d(GGG TTA GGG TTA GGG TTA GGG) in 50 mM MES buffer pH 7 with 100 mM KCl at different temperatures in (a)10% (wt/vol) ethylene glycol,(b) 10% (wt/vol) glycerol. The temperature was increased from 20°C to 100°C. Arrow headed line indicates the temperature increment direction. Quadruplex concentration was 30 nM. Inset shows intensity at 520 nm vs temperature plot.

Figure S4: Fluorescence emission spectra of dual labeled d(GGG TTA GGG TTA GGG TTA GGG TTA GGG) in 50 mM MES buffer pH 7 with 100 mM KCl at different temperatures in presence of 150 nM of TMPyP4. The temperature was increased from 25°C to 100°C. Arrow headed line indicates the temperature increment direction. Quadruplex concentration was 30 nM. Inset shows intensity at 520 nm vs temperature plot.