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ABSTRACT ATP synthase (F-ATPase) operates as an electrochemical-to-mechanical-to-chemical energy transducer with
an astounding 360° rotary motion of subunits egc10–14 (rotor) against d(ab)3ab2 (stator). The enzyme’s torque as a function
of the angular reaction coordinate in relation to ATP-synthesis/hydrolysis, internal elasticity, and external load has remained
an important issue. Fluorescent actin filaments of micrometer length have been used to detect the rotation as driven by ATP
hydrolysis. We evaluated the viscoelastic dynamics of actin filaments under the influence of enzyme-generated torque,
stochastic Langevin force, and viscous drag. Modeling with realistic parameters revealed the dominance of the lowest normal
mode. Because of its slow relaxation (;100 ms), power strokes of the enzyme were expected to appear strongly damped in
recordings of the angular velocity of the filament. This article describes the theoretical background for the alternative use of
the filament as a spring balance. The enzyme’s angular torque profile under load can be gauged by measuring the average
curvature and the stochastic fluctuations of actin filaments. Pertinent experiments were analyzed in the companion paper.

INTRODUCTION

ATP synthase generates ATP in F1, its peripheral portion, at
the expense of proton flow through FO, its membrane por-
tion. The enzyme operates as two rotary motors. They are
coupled by a central shaft and hold together by an eccentric
bearing (for reviews see Junge et al., 1997; Boyer, 1997;
Kinosita et al., 1998; Oster and Wang, 1999; Leslie et al.,
1999)). The “rotor” elements, subunitsegc10–14, move rel-
ative to the “stator” elements, subunitsab2d(ab)3. Depend-
ing on the dominant driving force, be it ion-motive or
chemical, one motor runs forward as a motor and the other
one backward as a generator. Both motor/generators are
evidently rotary steppers, with C3 symmetry in F1 (Abra-
hams et al., 1994) (but see also Sabbert and Junge, 1997;
Yasuda et al., 1998), and a still-debated C10-, C12-, or C14

symmetry in FO (Jones and Fillingame, 1998; Stock et al.,
1999; Seelert et al., 2000). An elastic power transmission
has been claimed to cope with the symmetry mismatch
(Cherepanov et al., 1999; Pa¨nke and Rumberg, 1999).

With its well-separated partial functions—electrochemi-
cal, mechanical, and chemical—this twin-engine is an ex-
cellent object for studies on nanomechanics. The ultimate
goal is to understand the functioning of this astounding
machine at the molecular scale. The relative rotation of
subunits in the isolated F1 portion has been detected by
chemical cross-linking (Duncan et al., 1995), polarized ab-
sorption recovery after photobleaching (Sabbert et al., 1996)
and, most spectacularly, by microvideography using fluo-

rescent actin filaments that were attached to the rotor por-
tion of immobilized single F1-molecules (Noji et al., 1997).
This technique has recently been expanded to FOF1 con-
structs (Sambongi et al., 1999; Tsunoda et al., 2000; Pa¨nke
et al., 2000). The average torque that is generated by ATP
hydrolysis, ;40 pN/nm (Yasuda et al., 1998) has been
calculated from the average rotation rate of the actin fila-
ments under the debatable assumption that the rotation was
controlled by the viscous drag of bulk fluid rather than by
surface contacts. If ATP hydrolysis occurred at unphysi-
ologically low ATP concentration (10 nM), a three-stepped
rotation was detected (Kinosita et al., 1998; Adachi et al.,
2000). This stepping, however, reflects the diffusion-con-
trolled supply of the next nucleotide rather than the dynamic
behavior of the enzyme under normal conditions ([ATP]..
10 mM). Under saturating ATP concentrations we obtained
evidence for threefold stepping using a single dye molecule
as a probe on subunitg (Sabbert and Junge, 1997; Sabbert
et al., 1997; Ha¨sler et al., 1998). No such stepping has been
detected using actin filaments. Apparently the viscous
damping of thelong actin filament in the liquid has ob-
scured the rotary dynamics of the enzyme.

These considerations prompted us to scrutinize the vis-
coelastic mechanics of the enzyme–filament construct. This
article outlines the theory. Following common practice in
mechanics, the dynamic behavior of F-actin was described
in terms of orthonormal modes. Because the viscous drag in
the fluid is much greater than the small inertia of the
filaments, the dynamics of filaments is over-damped, relax-
ing instead of oscillating. The spatial shapes of these modes
resemble the familiar ones of an oscillating cantilever with
n (n 5 0, 1, 2, 3, . . . )nodes over the length, excluding the
ends. A simulation of the dynamic behavior of rotating actin
filaments using realistic parameters showed that the funda-
mental normal mode with the longest relaxation time (100
ms) dominated the behavior in the time range of 10 ms,
whereas higher modes were of negligible extent and rapidly
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damped away. As intuitively expected, the slow response of
the lowest mode blurred fine details of the enzyme’s inter-
nal rotary motion. However, the momentary curvature at the
axis (see Eq. 3 below) was almost truly proportional to the
torque at any given angular position. This was what was
searched for and it has not been exploited until now.

The above considerations were based on an idealized
situation, an actin filament driven at its fixed end by the
rotary enzyme and moving in a homogeneous viscous fluid.
In the realm of typical experiments, however, a filament of
3 mm length and,10 nm radius moves a few tens of
nanometers over a rough surface of a protein-covered solid
support. The viscosity close to the surface is not only greater
than in the bulk (Hunt et al., 1994), but contacts with the
surface may increase the apparent friction or even obstruct
the motion. In an attempt to extend the validity of the
above-described idealized concept we calculated the curva-
ture of actin filaments at constant torque as a function of
three different distributions of the compensating force over
length. We found that the overall curvature was only slightly
dependent on whether the force distribution was linear (viscous
drag), constant (surface friction), or concentrated (obstacle
contact). Broadly speaking, the idealized approach was appli-
cable to typical experimental situations. In this article we
present the theoretical background on the static curvature of
actin cantilevers, their dynamic normal modes, the momentary
curvature as a function of the transient torque generated by the
enzyme, the transient elastic energy storage, and the analysis of
thermal fluctuations. In the companion paper we evaluated
data on fluctuating and rotating actin-cantilevers to yield 1)
Young’s modulus of elasticity of F-actin and 2) the torque
profile of the chemical drive of FOF1 as a function of the
angular reaction coordinate. Equations of crucial importance
for the experimental companion paper are marked by under-
lined numbers in the following.

STATIC, DYNAMIC, AND STOCHASTIC
DEFORMATIONS OF ACTIN FILAMENTS

Torque balance of rotating acting filaments

Fig. 1 in the companion paper (Pa¨nke et al., 2001) illustrates
the experimental situation. The enzyme is immobilized by
His-tags on F1 to a nickel-nitrilotriacetic acid-coated glass
surface, head down and with thec-ring sticking out into the
bulk solution. A fluorescent actin filament is attached to the
c-ring by strep-tags. There was one engineered strep-tag on
each of the identical subunits of thec-ring (Pänke et al.,
2000). The filament, typically 2mm long and with a diam-
eter of 5.6 nm (Mendelson and Morris, 1997), moved;20
nm over a rough surface covered by horseradish peroxidase
and ATP synthase. It is sufficient to approximate the fila-
ment by a cylindrical rod, and not necessary to consider its
fine structure and the roughness of its surface, because the

friction coefficient depends only weakly (logarithmically)
on these properties.

It is evident that the torque generated by the rotary
enzyme,T0, is counterbalanced by the torque that is attrib-
utable to 1) the inertia of the filament,TI; 2) the viscous
drag,G z V, (G denotes the corrected Stokes friction coeffi-
cient near the surface (Happel and Brenner, 1983), andV is
the angular velocity); 3) the elastic and inelastic interactions
with the surface,TS; and 4) the thermal Brownian fluctua-
tions,TB. The torque balance then reads:

T0 5 TI 1 G z V 1 TS 1 TB (1)

In the case of slowly rotating actin filaments, which is consid-
ered here, i.e., at very low Reynolds numbers, the inertial
torque is smaller than the other components by several orders
of magnitude, and it can be eliminated from consideration
(Happel and Brenner, 1983; Berg, 1993). Additionally, the
torque generated by Brownian motion averages to zero.

Static elastic deformation of a cantilever under
constant torque

In this section we ignored thermal fluctuations (Langevin
forces) and dynamic effects, and considered the static elastic
deformation of the actin cantilever due to 1) the torque of
the rotary enzyme acting on the “fixed” end of the cantile-
ver, and 2) a compensating counter-torque caused by exter-
nal force acting on the filament. We considered three dif-
ferent types of force distributions over the filament length
(0 , x , L), namely linearly increasing, constant, and
concentrated at its very end (see inset to Fig. 1 for an
illustration). These force distributions correspond to viscous

FIGURE 1 Static deformation of an elastic cantilever under three types
of load distributions over its length (seeinset). (1) Linearly increasing load
as caused by a viscous drag on a rotating filament in a homogeneous fluid.
(2) Uniformly distributed load (idealized friction at a solid surface). (3)
Concentrated force acting on the very end of the cantilever (obstacle at the
surface).
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drag (proportional to the linearly increasing velocity of a
rotating filament), surface friction (ideally considered as
independent of the velocity), and a surface obstacle at the
very end of the filament (concentrated force), respectively.
The respective deformations of the cantilever under these
three rather different loads are depicted in Fig. 1. They were
calculated as follows by using the linear theory of elasticity
(Landau and Lifshitz, 1959). The analysis of nonlinear
effects is presented in the Appendix.

The bending moment in the filament,M(x), depends on
the distribution of the external forces over the filament
length,W(x):

d2M

dx2 5 W~x! (2)

At the same time, the bending moment is proportional to the
curvature of the cantilever:

M~x! 5
EI

r
5 EI

d2y

dx2 (3)

where r denotes the radius of curvature,y 5 y(x) is the
deviation from the unbent filament position (filament de-
formation), andEI denotes the flexural rigidity of the can-
tilever (E is Young’s modulus of the actin filament andI is
the cross-sectional moment of the cantilever; for a cylinder
with radiusR, the factorI equals top/4R4). As the bending
moment at the rotation axis,M(x 5 0), is equal to the
driving torque generated by the enzyme,T0, the curvature at
the axis (the fixed end) is proportional toT0:

T0 5 EI
d2y

dx2U
x50

~4!

In a static situation, the driving torque is equal to the
counteracting one as generated by a given force distribution
over length,w(x):

T0 5 E
0

L

w~x!xdx. ~5!

The solution has to match the boundary conditions for an
elastic cantilever:

yux50 5 0,
­y

­x
U

x50

5 0. (6)

The deformation of the cantilever,y(x), was calculated by
integrating Eqs. 2 and 3 with the boundary conditions 4–6
for the three types of force distribution described above. The
analytical expressions foryi(x), yii (x), andyiii (x) are given
below and the respective graphs are shown in Fig. 1.

Linearly increasing force density (force/unit length)
wi(x) 5 3L23T0x:

yi~x! 5
T0x

2

40EIL3 ~20L3 2 10L2x 1 x3! (7)

Constant force densitywii (x) 5 2L22T0:

yii~x! 5
T0x

2

12EIL2 ~6L2 2 4Lx 1 x2! (8)

Concentrated force:wiii (x) 5 L21T0 z d(x 2 L)

yiii ~x! 5
T0x

2

6EIL
~3L 2 x! (9)

where d(x 2 L) is the Dirac delta function,* f(x)d(x 2
L)dx 5 f(L), with the dimension of the reciprocal length.

As evident from Fig. 1, the respective deformations over
the full length are not too different. The maximal deforma-
tions, yk(L), are related as 1:0.9:1.2. The curvatures at the
fixed end are, of course, the same (because the same total
torque,T0, has been assumed for calculating the deforma-
tions, see Eq. 4).

The resolution of microvideography is limited by the
diffraction length of light (,500 nm). Thus, it is impractical
to read out the filament’s curvature close to the enzyme axis
(say at 10 nm). This limiting curvature can only be extrap-
olated from longer distance. The important result of the
above considerations on the static deformation is that the
extrapolation of the curvature to the fixed end of the can-
tilever yields the enzyme’s torque independently of whether
the major counter-force is viscous drag, surface friction, or
a surface obstacle.

So far, only the static deformation of a filament has been
considered. It approximates a situation where the enzyme
turnover is drastically slowed or even totally blocked by
either type of load on the filament.

Viscoelastic dynamics of a rotating filament

Discrete power strokes generated by the rotary enzyme may
rapidly accelerate the actin filament. Mass-related inertia is
negligible and viscous damping dominates the dynamic
behavior, as mentioned. We asked for the delay and the
distortion of the filament’s motion over its length relative to
the forced motion at its “fixed” end. The stochastic Lange-
vin force, which averages to zero, was again neglected.

We considered a rotating cantilever in a viscous medium
(see above). The torque applied to its fixed end,T0(u), was
assumed to be a well-behaved function of the angular po-
sition of the rotor,u. For simulation purposes we assumed a
test-torque profile with three periods over one full turn of
360° plus smaller components with higher angular frequen-
cies. The angular accelerations were expected to generate a
nonuniform elastic deformation of the cantilever.

The full displacement,dj, of a small fragment of the
filament, lengthdx, at the coordinatex is the superposition
of the axis rotation angle,du, and the transverse filament
deformation,dy:

dj 5 x z du 1 dy (10)
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As the inertial forces are negligibly small, the viscous force
acting on the elementdx, G0(­j/­t), matches the elastic
force due to filament deformation,EI(­4y/­x4):

G0

­j

­t
5 2EI

­4y

­x4 (11)

Here G0 is the viscous friction coefficient of a small ele-
ment,dx, of the rod with full lengthL and radiusR rotating
around one end in a liquid with the dynamic viscosityh,
G0 5 4ph(lnL/2R 2 0.447)21 (Hunt et al., 1994), andEI is
the flexural rigidity. The friction coefficient of the whole
filaments isG 5 1

3
G0L

3.
We assume that the polar angle of the engine,u, is a

smooth function of time, as well as the angular velocity and
acceleration:

u 5 u~t!, V~t! 5
du

dt
, a~t! 5

d2u

dt2
. (12)

The filament motion is then determined by the following
inhomogeneous partial differential equation:

­y

­t
1 x z v~t! 5 2D

­4y

­x4 (13)

where D 5 EI/G0. The solution has to match the four
boundary conditions: at the rotation axis (x 5 0) two of
them are given by Eq. 6, and at the free end (x 5 L) two
other conditions read:

­2y

­x2U
x5L

5 0,
­3y

­x3U
x5L

5 0 (14)

The general solution of the respectivehomogeneousequa-
tion

­ỹ

­t
5 2D

­4ỹ

­x4 (15)

can be developed into a sum of the viscoelastic normal
modes of the cantilever

ỹ~x, t! 5 O
n50

`

cnỹn~x!exp~2knt!, (16)

where cn(n 5 0, 1, . . . ) denotes a set of still arbitrary
amplitudes. Equation 16 describes the passive motion of a
cantilever in a viscous medium in the absence of externally
applied torque as the superposition ofn exponential decay
processes with characteristic relaxation timestn 5 kn

21. The
spatial factors of the normal modes,ỹn(x) (n 5 0, 1, 2, . . . ),
satisfying the boundary conditions 6 and 14, read (see, e.g.,
Beth, 1967):

ỹn~x! 5 L z @cosh~dnx/L! 2 cos~dnx/L!

1 an~sinh~dnx/L! 2 sin~dnx/L!!] ~17!

wheredn is thenth root of the equation cos(dn) cosh(dn) 5
21 and

an 5 2
cosh(dn) 1 cos(dn)

sinh(dn) 1 sin(dn)
.

The first four values ofdn ared0 5 1.875,d1 5 4.694,d2 5
7.855, andd3 5 10.995. The characteristic relaxation rates
of the cantilever therefore are:

kn 5
EI

G0
z Sdn

L D
4

(18)

The modesỹn(x) in Eq. 17 are eigensolutions of the self-
adjoint linear differential operator,­4/­x4, and form a com-
plete basis of orthogonal functions (see, e.g., Courant and
Hilbert, 1962) with the normalizationL23 z *0

L ỹn ỹn9dx 5
dnn9.

It is worth noting that the relaxation of a cantilever is
forty times slower than the relaxation of an unconstrained
beam of the same length! The viscoelastic relaxation of an
unconstrained beam was previously analyzed by several
authors (see, e.g., Gittes et al., 1993), and the following
expression for the relaxation rates was obtained:

kn 5
EI

G0
z Sp~n 1 3!

2L D4

, ~n 5 0,1, 2,. . .!.

The strong sensitivity to the boundary conditions originates
due to the fourth-power dependence on the filament length.

So far, only a passive motion of filaments has been
discussed (solutions to the homogeneous differential equa-
tion). Next, we consider the motion that was driven by the
rotary enzyme as induced by the angular velocityV(t) at the
fixed end of the filament.

Let y#0(x, t) be a solution of theinhomogeneousequation

x z V~t! 5 2D
­4y#0

­x4 (19)

matching the boundary conditions 6 and 14. It can be found
by sequential integration:

y#0~x, t! 5 V~t! z
L3

6D
z x2F21 1

x

2L
2

1

20 Sx

LD
3G

5 V~t! z C0~x! (20)

Not surprisingly, the time-independent factor in Eq. 20,
C0(x), describes the same elastic deformation as the func-
tion yi(x) in Eq. 7, the static solution for a cantilever ex-
posed to a linearly increasing loadwi(x) (viscous drag
exerted on a rotating cantilever). It can be expressed as a
series of the normal modes:

C0~x! 5 O
n50

`

bnỹn~x!, bn 5 L23 z E
0

L

C0~x!ỹn~x!dx (21)
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so that

y#0~x, t! 5 O
n

bnỹn~x! z V~t! (22)

The complete solution of 13 is the sum of the homogeneous
and the inhomogeneous solutions:

y~x, t! 5 O
n50

`

@bnV~t! 1 cn~t! z exp~2knt!# z ỹn~x!

; O
n50

`

An~t! z ỹn~x! (23)

Substituting this equation into 13 results in the ordinary
differential equations forcn(t):

dcn

dt
5 2bn z a~t! z exp~knt!

wherea(t) is the angular acceleration. The solution gives the
coefficientsAn(t):

An~t! 5 bnFV~t! 2 E
0

t

a~t!exp~kn~t 2 t!!dt 2 cn~0!G
(24)

where the coefficientscn(0) are determined by the initial
state of the filament. It is evident that the contributionAn(t)
of the normal moden is proportional to the velocityV(t) if
the respective relaxation ratekn is higher than the charac-
teristic frequency of the angular accelerationa(t).

The torqueT generated by the engine is a function of the
angular position of the filament,u, at the rotation axis,T 5
T(u). This torque is equal to the momentary bending mo-
ment of the filament atx 5 0 (see Eq. 4). If the rotation is
periodical, the initial valuescn(0) can be set to zero. From
Eq. 4 one finds

T~u! 5 2EI
­2y

­x2U
x50

5 2
2EI

L E
0

t ­2u

­t2 O
n

bndn
2@1 2 exp~kn~t 2 t!!#dt

(25)

If the time-dependence of the forced angular motion,u(t), is
known, expression 24 is the exact solution of the problem
and one finds the torque as function of the angle by solving
Eq. 25. The original task of the experimentalist, however, is
the opposite; namely, to find the dynamics of the driving
motor, u(t), based on experimental data on the angular

dependence of the torque,T(u). This requires a solution of
the integro-differential Eq. 25.

An analytical solution is readily obtained if the contribu-
tion of the lowest normal mode is much larger than the
contributions of the rest:uA0(t)u .. uA1(t)u, uA2(t)u, . . . .Then
Eq. 25 simplifies:

E
0

t ­2u

­t2 @exp~k0t! 2 exp~k0t!#dt 5
T~u!Lexp~k0t!

2EIb0d0
2 (26)

By differentiation one finds the first-order ordinary differ-
ential equation

du

dt
5

2k0T~u!

2EIk0b0L
21d0

2 1
­T~u!

­u

(27)

which connects the unknown angular evolutionu(t) with the
experimentally accessible angular torque as a function of
the angleT(u).

Figs. 2 and 3 illustrate a representative example of fila-
ment dynamics. The rotation is forced by the enzyme’s
torque,T(u). Let us take as an example the function of the
angular coordinate, which is plotted in Fig. 2A. We used an
arbitrary but realistic test function with three periods of
torque (power strokes) over a full turn of 360°, and a time
period of 2 s for one full revolution. High-frequency com-
ponents of smaller magnitude were superimposed to the
ground period. Fig. 2B shows the assumed time course of
the angular progressionu(t) in revolutions and of the mo-
mentary angular velocityV(t) in radians per second calcu-
lated numerically by solving Eq. 25 (solid lines), and the
approximate solutions obtained by consideration of only the
lowest normal mode by solving Eq. 27 (broken lines). The
exact and the approximate solutions coincided very well;
u(t) andV(t) are periodical functions with the period of 667
ms or three periods over a full revolution, shaped after the
three reactive sites in F1. Whereas the angular progression
revealed a moderately stepped behavior, the angular veloc-
ity displayed more dramatic oscillations.

The time-dependence of the extent of the first mode,
A0(t), is depicted by the solid line in Fig. 2C. The dashed
and thin lines in Fig. 2C show the next normal modes of the
actin filament (their extent was scaled up by factors of 50
and 1000, respectively).

We conclude that the relative contributions of higher
modes in the series of Eq. 21 are negligible. The respective
amplitudes are proportional to the coefficientsb0 5 1, b1 5
4 z 1023, b2 5 2 z 1024, b3 5 1025. Typical parameters of
actin filaments in aqueous buffer were assumed as follows:
L ' 3 z 1026 m, R 5 2.8 z 1029 m, EI 5 10225 N z m2

(Gittes et al., 1993; Yasuda et al., 1996), so that the respec-
tive relaxation rate constants are:k0 5 7 s21, k1 5 270 s21,
k2 5 2100 s21, k3 5 8 z 103 s21.
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It was obvious that the higher modes, due to their higher
relaxation rate, followed the angular velocity of the rotary
enzyme without much delay; however, their extents were
negligible. In contrast, the dynamic behavior of the lowest,
slowest, and dominating mode was smoothed and phase-
shifted.

In Fig. 2 D we compared the time course of the torque
generated by the enzyme,T(t), and the time-dependence of
the extent of the lowest and slowest normal mode,A0(t). It
is obvious thatA0 follows the enzyme’s torque quite per-
fectly, rather than its angular velocity. This insight is further
illustrated in Fig. 3. Its upper portion, Fig. 3A, shows the

FIGURE 2 Simulation of the viscoelastic deformation of a rotating elas-
tic cantilever that is subjected to a certain torque profile,T(u), at its fixed
end. (A) An assumed torque profile of F1FO matching the threefold angular
symmetry of ATP hydrolysis in F1. (B) The calculated angular position at
the rotation axis in units of 2p, u(t), and the angular velocity of the free

FIGURE 3 Viscoelastic damping of and energy storage by the rotating
actin filament. (A) Comparison of the angular position of the cantilever as
a function of time at the rotation axis (upper curve) and at the free end
(lower curve). (B) Elastic energy stored by the cantilever during the
nonuniform rotation in units ofkBT (note that the standardDG8 of ATP
hydrolysis,230 kJ/mol, amounts to212.5kBT).

end, V(t), as function of time. The exact and approximate solutions are
shown by the solid and broken curves, respectively (see text for details).
(C) Time-dependence of the extents of the first tree normal modesA0(t),
A1(t), andA2(t) (shown by thethick solid, dashed, and thin lines, respec-
tively). For illustrative purposes the contributions of the first and second
“overtones,” which are very small, were upscaled by factors of 50 and
1000, respectively. It is obvious that the amplitude of the higher normal
modes does, and that of the fundamental mode does not, reproduce the
angular velocity profile. (D) A comparison of the time courses of the torque
(solid line) and of the amplitude of the lowest normal modeA0(t) (dashed
line). The amplitude of the fundamental mode reproduces the torque profile
quite accurately, except for a minor phase shift.
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filament’s angular progression at the axis and at the free
end, respectively. The average velocity is the same in both
cases. The average velocity is proportional to the average
torque of the enzyme as assumed in previous work (Noji et
al., 1997). The momentary velocities, however, differ be-
tween the fixed and the free end. The momentary velocity at
the free end reproduces the momentary torqueT(t) quite
accurately (not shown) but not the momentary velocity of
the enzyme, whereas the velocity at the fixed end, by
definition, follows the momentary angular velocity of the
driving enzyme.

The preceding section has demonstrated the following.
The momentary torque generated by the enzyme, or the
torque as function of the angular position of the enzyme,
can be adequately recorded by a long actin filament that
operates against viscous load provided that the viscoelas-
tic relaxation time,t 5 1/k0 (see Eq. 18), is comparable
or longer than the characteristic period of the rotation.
Under these conditions, the filament smoothes and phase-
shifts the forced rotation (“viscoelastic damping and de-
lay”). The unperturbed transient velocity of the system is,
in principle, detectable either by normal modes of the
3-mm-long filament with much shorter relaxation times,
being impractical because of their far-too-low ampli-
tudes, or by the basal mode of stiffer and/or shorter
filaments. The torque of the enzyme can be monitored by
the dominating “slow mode” of the long filament in
either of two ways: 1) by the curvature at the axis, or 2)
by the momentary angular velocity at the free end. As
demonstrated in the previous section, the latter is not as
reliable as the former because the motion may be totally
obstructed by obstacles, whereas the curvature at the axis
does not depend on the physical nature of the counter-
torque.

Transient storage of elastic energy by the
deformed acting filament

Any deformation of a cantilever can be represented as a sum
of its normal modes,

y~x, t! 5 O
n50

`

An~t! z ỹn~x!.

The elastic energy of the deformation is

Uelast5
EI

2 E
0

L S­2y

­x2D2

dx5
EI

2 E
0

L SO
n

An

­2ỹn

­x2D2

dx

5
EI

2 O
n

O
n9

AnAn9 E
0

L ­2ỹn

­x2

­2ỹn9

­x2 dx (28)

By using the boundary conditions 6 and 14, the latter
expression can be integrated:

Uelast5
EI

2 O
n

O
n9

AnAn9 E
0

L ­4ỹn

­x4 ỹn9dx
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2L4 O
n

O
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4 E

0
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ỹnỹn9dx5
EI

2L O
n

dn
4An

2

(29)

When the motion of the cantilever is forced by the torque
T(u), the coefficientsAn(t) are defined by Eq. 24, and the
elastic energy is

Uelast5
EI

2L O
n

dn
4Fbn E

0

t

a~t! z ~1 2 exp~kn~t 2 t!!!dtG2

(30)

Comparing Eq. 30 with 25 and neglecting the contributions
of higher normal modes, we found:

Uelast5
L

8EI
T2 ~31!

Thus, the elastic energy stored by the filament is propor-
tional to the length, the square of the torque, and it is
reciprocal to the flexural rigidity.

The elastic energy stored by the filament in the course of
motion in Fig. 2B was calculated by Eq. 30 and plotted in
units ofkBT in Fig. 3 B. The elastic energy varied between
one and sixkBT units. Considering the average torque
generated by the active F-ATPase during the hydrolysis of
one molecule of ATP per turn of 120°, namely 20–25kBT
(Yasuda et al., 1998; Kinosita et al., 1998), the elastically
stored energy amounts up to one-fourth of the free energy
provided by the cleavage of one molecule of ATP.

Stochastic dynamics of cantilever due to thermal
impact (Langevin force)

In the forgoing sections the Brownian motion of the actin
cantilever has been neglected. In this section we focus on its
fluctuations. The impact of thermal collisions with solvent
molecules causes a transient deformation of the cantilever. The
elastic energy of the deformation stored between the fixed and
free ends of the filament is given by Eq. 29. Thus, the normal
modes are independent harmonic oscillators whose dynamics
are determined by the stochastic Langevin equations:

dAn

dt
1 knAn 5 Î2kBT

3G
F~t! (32)
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wherekn denotes the relaxation rate constant as in Eq. 18,G
is the viscous friction coefficient for the rotating rod of
lengthL, and the random forceF(t) satisfies the conditions

^FA~t!& 5 0, ^FA~t1!FA~t2!& 5 d~t1 2 t2!.

According to the general theory of the Langevin equation,
the time correlation of the coordinateAn can be calculated
by the formula (see, e.g., (Klimontovich, 1986)):

^An~t1!An~t2!& 5
2kBT

3pG E
0

` cos~k~t1 2 t2!!

kn
2 1 k2 dk (33)

In the thermodynamic equilibrium the amplitudesAn obey
the Boltzmann distribution:

rn~An! 5 expS2
EIdn

4An
2

2LkBTD ~34!

The flexural rigidity of unconstrained actin filaments and
microtubules,EI, has been determined from the amplitude
of their thermal bending fluctuations (see Yanagida et al.,
1984; Gittes et al., 1993; Isambert et al., 1995). Equation 34
can be used for the analogous analysis of fixed filaments
with a fluctuating free end (see the companion paper Pa¨nke
et al., 2001). It is noteworthy that the eventual figure of the
flexural rigidity is independent of the viscosity of the me-
dium, and even independent of friction of the long filament
at the surface of the solid support. It is sensitive, however,
to elastic contacts with the surface. They are equivalent to
an additional, possibly nonlinear force-field acting on the
cantilever, a complication that has not been considered in
this work.

Langevin analysis of the forced viscoelastic
rotary dynamics

The Brownian thermal forces did not enter in Eq. 27 for the
forced rotary dynamics, but they could be introduced by the
Langevin stochastic approach. If the angular variation of the
torque is small (see Pa¨nke et al., 2001) the Langevin equa-
tion can be written as:

G z u̇ 2 T~u! 5 Î2GkBT z F~t! (35)

The extent of the lowest eigenmode,A0, obeys the stochas-
tic equation

Ȧ0 1 k0A0 1
d0

2T~u!

6G
5 Î2kBT/3G z F~t! (36)

The solution of Eqs. 35 and 36 is represented by two
stochastic variablesu(t) andA0(t). The mean angular veloc-
ity V# (u) can be directly found from Eq. 35 by averaging
V# (u) 5 G21T(u). If the rate of filament relaxationv0 is

greater thanV# (that is true in the cases of rotating F-actin
filaments), the average deflectionA# 0 reads:

A# 0 5 2
LT

2d0
2EI

~37!

It is noteworthy that the viscosityh does not enter into this
equation. This is a consequence of the quasi-equilibrium
between the filament and the bulk solution. Instead, the
deflection of the filament is entirely determined by the
torqueT and the flexural rigidity of the filamentEI. For a
given torque, the amplitudeA0 obeys the Boltzmann statis-
tical distribution:

r~A0! 5 expS2
EId0

4~A0 2 A# 0!
2

2LkBT D ~38!

To calculate the autocorrelation ofu(t) andA0(t), we intro-
duced new variablesj(t) 5 V(t) 2 V# , z(t) 5 A0(t) 2 A# 0, and
expanded them under the Fourier integrals:

j~t! 5
1

2p E
2`

`

jve2ivtdv and z~t! 5
1

2p E
2`

`

zve2ivtdv

Substituting these variables into 35 and 36, we obtained two
algebraic equations for the Fourier componentsjv andzv:

G z jv 5 Î2GkBT z Fv ~39a!

and

~2iv 1 v0! z zv 5 Î2kBT/3G z Fv ~39b!

whereFv is the Fourier transform of the Langevin source
F(t). The autocorrelation functionŝjj&t and ^zz&t are con-
nected with the spectral densities (jj)v and (zz)v by the
Fourier transformation,̂jj&t 5 1

2p
*2`

` (jj)veivtdv, ^zz&t 5
1

2p
*2`

` (zz)veivtdv. The functions (jj)v and (zz)v are con-
nected with jv and zv (see, e.g., Klimontovich, 1986),
yielding the following spectral densities

~jj!v 5
2kBT

G
and ~zz!v 5

2kBT

3G~v2 1 v0
2!

(40a,b)

and the autocorrelation functions:

^jj&t 5
kBT

G
d~t! and ^zz&t 5

kBT

3pG E
2`

` cos~vt!

v2 1 v0
2 dv

(41a,b)

Equations 37 and 38 are particularly useful for the analysis
of rotation experiments aiming at a determination of both 1)
the flexural rigidity of the filament as a probe and 2) the
torque of the rotary enzyme to which the filament is at-
tached. This technique was applied to the rotary FOF1-
ATPase as detailed in the companion paper (Pa¨nke et al.,
2001).
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SUMMARY AND CONCLUSIONS

This article describes the static, dynamic, and stochastic be-
havior of actin cantilevers that are connected to the rotor
portion of ATP synthase when its stator is fixed to a solid
support. The study aims at the detailed rotary characteristics of
this enzyme. The actin filament, approximated as a cylindrical
rod with a typical radiusR5 2.8 nm and lengthL 5 1–3mm,
was treated as a continuous medium. Its elastic behavior was
assumed to be Newtonian, and it was characterized by a single
parameter,EI, the flexural rigidity. For actin filamentsEI is
typically ;10225 N z m2 (Gittes et al., 1993; Yasuda et al.,
1996). Our approach was based on the linear theory of elas-
ticity; it was limited to small deformations. The viscoelastic
normal modes of the actin cantilever were calculated under the
assumption of motion in a homogeneous viscous medium.

The lowest dynamic mode (n 5 0) broadly resembles a
statically bent cantilever with a concentrated load acting on its
very end, as known from the macroscopic world. The over-
tones haven 5 1, 2, . . . nodes over the full length. The
characteristic relaxation times are quite different, they scale by
hL4/EI and are modulated bydn

24, whereindn denotes a char-
acteristic factor for each normal mode which is geometry- and
medium-independent. Because of the dependence on the fourth
power of the parameterdn (which progresses as;1.9, 4.7, 7.9,
11, . . .starting fromn 5 0) the relaxation time of the second
mode is 37 times shorter than of the first mode, the one of the
third 299 times, and of the fourth 1123 times shorter. For a
given filament of full length 3mm the ground mode relaxes in
150 ms, that is, 40 times slower than the relaxation of an
unconstrained filament with the similar length.

When the enzyme turns over it creates torque and rotates
the actin filament. Counter-torque is generated by viscous
drag in the medium. If accelerating pulses of the driving
rotary motion occur in the typical time range of some ten
milliseconds, the higher bending modes follow with little
delay, but not the ground mode. Its relaxation is simply too
slow. The higher modes, however, are of such a small
amplitude that the slow response of the ground mode dom-
inates the experimentally accessible behavior. Therefore,
the observablemotion of the filament is smoothed and
phase-shifted relative to the driving rotation of the enzyme
(“visco-elastic damping and delay”). What appears as a
deficit at the first sight is advantageous at closer inspection.
The extent of the ground mode as function of the angular
position of the filament reflects the torque as a function of
the angular position of the filament. The torque is apparent
both from the curvature of the filament at its “fixed” end
and from the angular velocity at the free end. The curvature
is a more reliable indicator than the velocity because an
obstacle on the surface of the solid support may totally
block the angular progression despite persisting torque,
whereas the cantilever will still be bent. Unfortunately, the
inherently limited optical resolution prevents accurate mea-
surement of the curvature at the very axis of rotation.

Taking a filament of 3-mm length one can only “see” the
overall curvature over the last 0.5–3mm of the total length.
At any given torque of the enzyme, however, the overall
curvature of the actin cantilever differs depending on the
particular force distribution over length, whether it is linear
by viscous drag (rotating filament), constant by surface
friction, or concentrated by an obstacle (blocked filament).
In this article we showed that theinvisible curvature at the
axis can be extrapolated with fair precision from thevisible
curvature along the few micrometer length of the filament.
This extrapolation yields the enzyme’s torque rather inde-
pendently of whether the major counter-force results from
the viscous drag, the surface-friction, or a surface obstacle.
In the companion paper (Pa¨nke et al., 2001) this insight is
applied to evaluate the angular dependence of the enzyme’s
torque as function of the angular reaction coordinate.

In previous works the average torque has been inferred
from the detected average rate of rotation of actin filaments
(Yasuda et al., 1998; Omote et al., 1999; Pa¨nke et al., 2000).
The calculated figures have been based on the assumption
that the filament rotates in a homogeneous medium with the
viscosity of water (;1023 kg21 s21). This assumption is
questionable for two obvious complications; 1) the medium
viscosity very close to the surface can be much larger than
in the bulk (Hunt et al., 1994) and 2) elastic and inelastic
contacts with the surface may slow or even totally block the
rotation. This is why we favor studying the curvature of
actin filaments to evaluate the torque. In this case the
calibration has to rely on the flexural rigidity of the actin
filament. It can be determined from the amplitude of bend-
ing fluctuations, either of fixed actin filaments by Eq. 34 or
of the same rotating filament by Eq. 38. It is noteworthy that
the eventual figure of the flexural rigidity is independent of
the viscosity of the medium, and even independent of fric-
tion (inelastic contacts) at the surface of the solid support.

The analysis of the curvature of actin filaments allows us
to more precisely estimate the magnitude of the torque and
the torque profile over the angular reaction coordinate. The
application of these considerations to data on the rotation of
subunitg in the isolated F1 portion and on the rotation of the
c-ring in FOF1 is the subject of the companion paper.

APPENDIX

Nonlinear Deformation of an Elastic Cantilever

According to the nonlinear theory of elasticity (Landau and Lifshitz, 1959),
the deformationy(x) of an elastic cantilever with the lengthL and the
flexural rigidity EI as caused by an orthogonal concentrated forceF can be
expressed parametrically through the elliptic integral

y~u! 5 ÎEI

2F
z E

u

p/2 cos~z!

Îcos~j! 2 cos~z!
dz (A1)

x~u! 5 Î2EI/F z ~Îcos~j! 2 Îcos~j! 2 cos~u!! (A2)
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where the parameterj is the solution of an integral equation

L 5 ÎEI

2F
z E

j

p/2 dz

Îcos~j! 2 cos~z!
(A3)

We compared the numerical solution of equations A1–A3 with the linear
Eq. 9 using the same parameters as in Fig. 1 (L 5 3 z 1026 m, EI 5 10225

N z m2). The nonlinear solutions are shown in Fig. 4 by solid lines, the
linear are plotted by dashed lines. The lower, middle, and upper pairs of
curves were calculated for the torque values of 20, 50, and 100 pNz nm,
respectively. These data show that the linear theory of elasticity is approx-
imately valid even at a very high torque of 100 pNz nm.
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