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ABSTRACT Autocrine loops formed by growth factors and their receptors have been identified in a large number of
developmental, physiological, and pathological contexts. In general, the spatially distributed and recursive nature of autocrine
signaling systems makes their experimental analysis, and often even their detection, very difficult. Here, we combine
Brownian motion theory, Monte Carlo simulations, and reaction-diffusion models to analyze the spatial operation of autocrine
loops. Within this modeling framework, the ability of autocrine cells to recapture the endogenous ligand and the distances
traveled by autocrine ligands are explicitly related to ligand diffusion coefficients, density of surface receptors, ligand
secretion rate, and rate constants of ligand binding and endocytic internalization. Applying our models to study autocrine
loops in the epidermal growth factor receptor system, we find that autocrine loops can be highly localized—even at the level
of a single cell. We demonstrate how the variations in molecular and cellular parameters may “tune” the spatial range of
autocrine signals over several orders of magnitude: from microns to millimeters. We argue that this versatile regulation of the
spatial range of autocrine signaling enables autocrine cells to perceive a broad spectrum of environmental information.

INTRODUCTION

Cells actively modify their environment (Werb and Yan,
1998). Membrane proteases degrade the extracellular ma-
trix; receptors and proteoglycans shed from the cell surface
selectively block the incoming signals; cells secrete soluble
ligands that bind to receptors on their own surfaces. The last
process defines an autocrine loop: a mode of cell signaling
in which a cell both releases a soluble factor and responds
to it (Sporn and Todaro, 1980; Sporn and Roberts, 1992).
Autocrine loops formed by growth factors and their recep-
tors are ubiquitous in cell biology and have been identified
in a large number of normal and pathological contexts. At
the same time, the principles governing their operation and
their role in cell and tissue regulation are largely unex-
plored. A distinguishing characteristic of autocrine systems
is their structural complexity, stemming both from the mul-
tiplicity of their components and from the variety of mech-
anisms through which these components can be regulated.
Endogenous ligands are produced in extremely low amounts
and are suspected to operate at submicron dimensions.
These factors make the experimental analysis, and even the
detection, of autocrine loops exceedingly difficult (Lauffen-
burger et al., 1998; DeWitt et al., 2001).

Over the past few years, much has been learned about
important characteristics of autocrine loops from the studies of

engineered epidermal growth factor receptor (EGFR) systems
(Dong, 1999; Shi et al., 2000; Lauffenburger et al., 1998;
DeWitt et al., 2001; Oehrtman et al., 1998; Lauffenburger et
al., 1995). In particular, it has been found that autocrine cells
can be extremely efficient in processing and responding to
secreted ligands, and that autocrine loops appear to function in
a spatially localized manner (Lauffenburger et al., 1998; Dong
et al., 1999). For example, EGFR ligands made at the basolat-
eral surface of polarized epithelial cells do not enter the bulk
medium unless the EGFR are blocked (Kuwada et al., 1998).
Similar observations have been made in related contexts: e.g.,
regulatory cascades stimulated by the spatially restricted net-
works of paracrine and autocrine growth factors were identi-
fied at various stages ofDrosophiladevelopment (Casci and
Freeman, 1999), in bone remodeling (Goldring and Goldring,
1996), and in wound healing (Tokumaru et al., 2000). Al-
though the mechanism of self-stimulation involving the auto-
crine release of growth factors and cytokines appears to be
universal, little is known about the length scale over which any
given autocrine loop operates, or about the molecular and
cellular properties that govern the spatial range of autocrine
signals.

A mechanistic model relating the operation of autocrine
loops to their structural components can assist their exper-
imental detection and guide the development of strategies
for their manipulation. The need to manipulate autocrine
loops arises both in bioengineering and in medicine. For
example, autocrine loops can be harnessed to achieve cell
proliferation under serum-free conditions; at the same time,
autocrine loops are frequently used as a target in anti-cancer
therapies. Here, we have combined theory and computations
to provide a spatially resolved description of autocrine
loops. To illustrate, we have used our models to analyze
autocrine loops in the EGFR system.
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The paper is organized as follows: In the next section, we
describe a continuum reaction-diffusion model for a single
autocrine cell. We state the governing equations and deter-
mine the key dimensionless groups characterizing cell’s
ability to recapture the endogenous ligand. Following that,
we use Brownian motion theory and stochastic simulations
to characterize random paths followed by autocrine ligands.
Our results explicitly relate the spatiotemporal properties of
these paths to ligand diffusion constants, density of surface
receptors, and rate constants of ligand binding and endo-
cytic internalization. Finally, we use both approaches to
examine autocrine loops in the EGFR system. In the final
section, we discuss the recently proposed “cell sonar” hy-
pothesis (Lauffenburger et al., 1998), according to which
cells use the spatially restricted networks of autocrine
growth factors to actively probe their microenvironment.

CONTINUUM MODEL OF BINDING
AND TRANSPORT

In this section, we use a continuum reaction-diffusion
model to analyze transport and binding in an autocrine
system. We consider a single autocrine cell. Our analysis
enables the computation of the fraction of endogenous li-
gand recaptured by the autocrine cell, and the evaluation of
the transient ligand-receptor binding in an autocrine cell.
First, we analyze the transient problem, deriving the re-
duced binding/transport model that depends only on the
concentration of surface receptors and ligand/receptor com-
plexes. Our continuum model is similar to the one followed
by Shoup and Szabo (1982); Goldstein and Dembo (1995);
Berg and Purcell (1977); and Starbuck et al. (1990). A
hybrid stochastic/deterministic approach to modeling of au-
tocrine loops has been proposed by (Forsten and Lauffen-
burger, 1994b); our analysis is fully deterministic. Then, we
solve the steady problem, deriving the equation for the
steady probability of ligand recapture as a function of the
measurable parameters of autocrine loops.

The model (Fig. 1A) accounts for the concentration of
endogenous ligand,L (moles/cm3), and the surface densities
of free and occupied surface receptors:Rs (moles/cm2) and
Cs (moles/cm2), respectively. The cell is modeled as a
hemisphere with radiusrcell, placed on an infinite plane.
This mimics an autocrine cell attached to a substrate; by
symmetry arguments, the same model applies to binding
and transport around an autocrine cell suspended in solu-
tion. We consider the axially symmetric spatial distribution
of ligand around the cell. Ligand secretion is uniformly
distributed over the cell surface, resulting in the steady flux
of autocrine ligands,q (moles/s/cm2). Ligand released in the
extracellular medium diffuses with constantD (cm2/s) and
reversibly binds to cell surface receptors with the binding
constantKd (moles/cm3). The newly synthesized receptors
arrive to the cell surface with the fluxs (moles/s/cm2); they
are constitutively internalized with the rate constantkc

(s21), and are converted to surface complexes with the rate
constantkon (moles21 cm3 s21). Surface complexes disso-
ciate with the rate constantkoff 5 konKd (s21) and are
endocytosed with rate constantke (s21).

The governing equations and boundary conditions are

L

t
5 DF2L

r2 1
2

r

L

r G , (1)

dRs

dt
5 2konRsL~rcell! 1 koffC 1 s2 kcRs, (2)

dC

dt
5 konRsL 2 koffC 2 keC, (3)

D
L~rcell, t!

r
5 2q 1 konRsL 2 koffC, L~`, t! 5 0.

(4)

The system of equations is rendered dimensionless by the
transformations,

r 5
r

rcell
, t 5 kofft, L# 5

L

Kd
,

C# 5
Cs

s/kc
, R# 5

Rs

s/kc
.

(5)

The coordinate is scaled by the cell radius; the time is scaled
by the inverse dissociation rate constant; ligand concentra-
tion is scaled by the equilibrium binding constant; the
surface densities of free and occupied receptors are scaled
by the density of receptors in the absence of ligand (RT [
s/kc). The rescaled problem becomes

«
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dR#

dt
5 2R# L# ~1! 1 g~1 2 R# ! 1 C# , (7)

dC#

dt
5 R# L# 2

1

1 2 d
C# , (8)

L# ~1, t!

r
5 2Au1 dDaR# L# , L# ~`, t! 5 0. (9)

Five dimensionless groups appear in Eqs. 6–9,

Au5
qrcell

DKd
, Da 5

konrcells

kcD
, g 5

kc

koff
,

d 5
ke

ke 1 koff
, « 5

rcell
2koff

D
.

(10)

The first of these dimensionless groups,Au, is the Autocrine
number, the ratio of the ligand concentration at the cell
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surface in the absence of surface receptors to the dissocia-
tion constant of a ligand-receptor pair. The second,Da, is
recognized as the Damko¨hler number that quantifies the
relative importance of ligand binding and transport (Deen,
1998). The third group,g, compares the rates, with which
free receptors are removed by constitutive internalization, to
the rate with which they are freed by dissociating com-
plexes. For a bound ligand, the fourth group,d, defines the
probability of being internalized. Finally,« is the time scale
for the extracellular diffusion.

The system of Eqs. 6–9 is nonlinear; its solution, in
general, requires numerical methods. We have discretized
the partial differential equation in this problem using equi-
distant finite differences. The semi-infinite domain was
approximated by a large finite domain with the Dirichlet
boundary condition at the outer boundary (L# (router) 5 0); the
domain size of ten times the size the cell radius (router5 10)
provides an excellent approximation to the semi-infinite
problem. Discretization leads to a large dynamical system
for the evolution of the concentrations of ligand on the grid
points and the surface densities of surface receptors and
complexes. This system was solved using a fully implicit
time-integration method with a sparse linear system solver.
Numerical solution was used to check the accuracy of the
simplified transport/binding model that can be derived from
Eqs. 6–9.

For high values of the secreted growth factor diffusivity,
concentrations of soluble species evolve on the time scale
that is much shorter than that of surface receptors and
ligand/receptor complexes. In this regime the binding/trans-
port model can be simplified. Using a steady-state approx-
imation for the concentration of endogenous ligand, we can
solve for the value of this concentration at the surface of our
autocrine cell,

L# ~1! 5
Au1 DaC#

1 1 DaR#
. (11)

Substituting this expression into the dynamical balance for
surface receptors and ligand/receptor complexes, we obtain
the lumped model for binding and transport,

dR#

dt
5 2R#

Au1 DaC#

1 1 DaR#
1 g~1 2 R# ! 1 C# , (12)

dC#

dt
5 R#

Au1 DaC#

1 1 DaR#
2

C#

1 2 d
. (13)

By construction, the steady state of the lumped system is
identical to that of the full model (Eqs. 6–9). Furthermore,
for small values of parameter« dynamics of the lumped
model is in excellent agreement with that of the full model,
Eqs. 6–9.

We can now analyze the steady probability for ligand
recapture. Definingf to be the steady mass flux of ligand
from the cell surface:f 5 D(L(rcell)/r), the fraction of

endogenous ligand that escapes from the autocrine cell is
found asf/q. The remaining fraction of the secreted ligand
defines the (steady) probability of ligand capture,Pcap 5
1 2 f/q. Finding the steady state of Eqs. 7–8 as a function
of ligand concentration at the cell surface, and then substi-
tuting this expression into the analytical solution of the
boundary value problem for the extracellular ligand (Eqs. 6
and 9),Pcap is expressed as a function ofAu, Da, g, andd,

Da 5
PcapAu

g
1

Pcap

d~1 2 Pcap!
. (14)

The classic Berg/Purcell expression,Pcap 5 Da/(1 1 Da)
(Berg and Purcell, 1977), is recovered in the limits of
infinitely fast ligand internalization or negligible rate con-
stant of complex dissociation. AtAu 5 0, Pcapsimplifies to
Pcap5 Dad/(1 1 Dad). At low autocrine numbers, i.e., low
secretion rates, we can use the implicit function theorem to
approximatePcap as

Pcap<
Dad

1 1 Dad
2

Aud

g~1 1 Dad!2 . (15)

This captures the initial decrease in the fraction of recap-
tured ligand with the increase in the ligand secretion rate.
When transport is rate limiting (Dad .. 1), the last expres-
sion becomesPcap ' 1 2 Au/dgDa2.

ANALYSIS OF LIGAND TRAJECTORIES

In this section, we use Brownian motion theory and sto-
chastic simulations to analyze the statistical properties of
random paths followed by autocrine ligands from the point
of their release on the cell surface until their removal from
the extracellular medium (Fig. 1B). Our results are in the
form of cumulative probability distribution functions that
relate the spatiotemporal properties of random trajectories
to the measurable parameters of autocrine systems. In par-
ticular, we focus on the spatial and temporal extrema of the
trajectories followed by autocrine ligands. This leads to the
estimates of the spatial and temporal ranges of autocrine
loops.

Our analysis is based on a model in which a ligand is
represented by a point particle that is released at the origin
and randomly moves in the half-space above the plane
covered by reversible traps that represent surface receptors
(Wang et al., 1992; Lagerholm and Thompson, 1998; For-
sten and Lauffenburger, 1994a; Agmon and Edelstein,
1997). Transport of autocrine ligands in the extracellular
space is modeled as the three-dimensional Brownian mo-
tion. The distribution of surface receptors is assumed to be
uniform in space and time. Surface complexes, produced
when a ligand binds to one of the surface receptors, diffuse
in two dimensions and are removed from the surface by
internalization and dissociation. The dissociated ligand,
again, moves in the half-space above the plane covered by
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receptors plane until the next binding event. Thus, a trajec-
tory followed by a ligand from the time of its release until
its internalization is composed of an equal number of two-
and three-dimensional random “segments” (see Fig. 2A).
Four random numbers can be associated with each compos-
ite trajectory:Zmax andRmax denote the maximal excursions
in space,Tmax is the time interval between the particle’s
release and internalization, and 2N is the number of seg-
ments. The cumulative distribution functionsP{ Zmax # z},
P{ Rmax # r}, and P{ Tmax # t} quantify the spatiotemporal
extent of autocrine loops. By containing the information
about the statistical properties of the extremal properties of
ligand trajectories, these distributions provide quantitative
estimates in answering the following question: how far do
autocrine signaling loops extend into the cell’s microenvi-
ronment? For example, the probabilityP{ Zmax # z} char-
acterizes the maximal distance traveled by the secreted
ligand normal to the cell surface.

In the model, we do not restrict the motion of Brownian
particles, allowing for arbitrarily large lateral and vertical
displacements prior to capture. Although, in reality, the
finite size of the cell and system boundaries influence the
transport of autocrine ligands, analysis of ligand motion in
an unbounded case is quite useful. As far as lateral con-
straints on the trajectory are concerned, our analysis is
applicable to the analysis of transport above a confluent
monolayer or an epithelial layer of autocrine cells. See
Freeman (2000) for many examples of this problem in the
context of developmental biology. In addition, the rates with
which the spatial distribution functions approach unity, as

FIGURE 1 Models of binding and transport in autocrine systems. (A)
Continuum model. A cell is modeled as a hemisphere with radiusrcell

placed on a plane that does not absorb secreted ligand. The model accounts
for the surface densities of receptors and ligand-receptor complexes, and
for the radial distribution of endogenous ligand. The inset shows the main
physical processes: receptor synthesis and constitutive degradation, ligand
secretion at constant rate, diffusion, reversible binding, and endocytosis.
(B) Stochastic model. A Brownian particle is released at the surface
randomly covered by reversible traps. Each trajectory is composed of a
random number of two- and three-dimensional “segments.” Bound particle
is removed from the surface by a combination of two first-order processes:
in one of these processes, the particle is again released into the half-space
above the plane, the other process terminates the trajectory.

FIGURE 2 Definition of the random variables that characterize stochas-
tic trajectories (see text for details). Every trajectory is composed of an
equal number of two- and three-dimensional segments. Random variables
characterizing the composite trajectories are related to the corresponding
random numbers of the individual segments. In this example, the ligand is
internalized after the first binding event and the composite trajectory
consists of one three-dimensional and one two-dimensional segment. Max-
imal radial displacement of the composite trajectory,Rmax, is bounded from
above byR# max 5 Rmax

2D 1 Rmax
3D , the sum of maximal displacements in two

and three dimensions. In (B). The solid and dashed lines represent the
radial parts of the two- and three-dimensional segments, respectively.
Trajectory is terminated afterTmax 5 Tmax

3D 1 Tmax
2D . Maximal vertical

displacement isZmax
3d , (A).
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their arguments increase, indicate whether secreted ligands
are captured before they reach an absorbing boundary
placed at the argument of the distribution function. For
example, the probabilityP{ Zmax # z} can be interpreted as
the probability of the particle being absorbed before reach-
ing the perfectly absorbing boundary located at the heightz
above the layer of autocrine cells.

The number of segments in a composite trajectory is
related to the probability of ligand internalization. From the
previous section, this probability is given byd 5 ke/(koff 1
ke). The number of “visits” to the surface, therefore, is a
geometric random variable with parameterd (Ross, 1972);
hence, on the average, composite trajectories haveN 5 1/d
two-dimensional (and an equal number of three-dimen-
sional) segments.

Consider a particular composite trajectory consisting of
2N segments as in Fig. 2A andB. Three random numbers
are assigned to each of theN three-dimensional segments:
Zmax,i

3D and Rmax,i
3D denote the maximal vertical and lateral

excursions of a particle, whereasTmax,i
3D is the time elapsed

from the release of the ligand and to its next capture. In
complete analogy, two random numbers can be associated
with each of theN two-dimensional segments:Tmax,i

2D is the
duration of theith visit to the surface, andRmax,i

2D is the
maximal distance the particle diffuses before it is either
internalized or dissociated. Random variables characteriz-
ing a composite trajectory are related to the corresponding
random variables of the individual segments,

Tmax 5 O
i51

N

T max,i
3D 1 O

i51

N

T max,i
2D , (16)

Zmax 5 max$Z max,i
3D %i51

N , (17)

Rmax # R# max ; O
i51

N

Rmax,i
3D 1 O

i51

N

Rmax,i
2D . (18)

The last inequality follows from the fact that every trajec-
tory can be fully enclosed by a cylinder with the radius
R# max, equal to the sum of the maximal radial displacements
of all the segments (Fig. 2B). Hence, the cumulative dis-
tribution function of random variableR# max provides an
upper bound for the lateral extent of autocrine loops,

P$R# max # r% # P$Rmax # r%. (19)

At the end of this section, we describe efficient Monte Carlo
algorithms for the numerical generation of the cumulative
distribution functions ofZmax, R# max, and Tmax. Our algo-
rithms are based on direct generation of the random num-
bersZmax

3D , Rmax
3D , Tmax

3D , Rmax
2D , andTmax

2D . The algorithms are
direct in the sense that extremal properties of Brownian
paths are obtained without simulation of the paths them-
selves. In Appendices A and B we illustrate how cumulative
distribution functions for these random variables are de-

rived; here, we only summarize our analytical results. Note
that the distribution ofZmax, R# max, andTmax are not inde-
pendent of each other; they are distributed according to the
joint multivariable distribution function. Here we report the
marginal probability distributions forZmax, R# max, andTmax.
The joint distributions for the random variables character-
izing the individual segments can be easily obtained from
the linear boundary value problems stated in Appendices A
and B.

The statistical properties of the three-dimensional seg-
ments depend on receptor densitys, forward ligand/recep-
tor binding constantkon, and the ligand diffusivity in the
extracellular medium,D. In this approach, the receptor
density, s, can be identified with the surface density of
unoccupied receptors in the continuum model (Rs). The
cumulative distribution functions of the random variables
T max

3D , Rmax
3D , andZ max

3D can be approximated by the following
expressions (Appendix A):

P$T max
3D # t% < GTSskonÎ t

DD ; 1 2 ErfcxSskonÎ t

DD ,

(20)

P$Z max
3D # z% < GZSskonz

D D ;
skonz/D

1 1 skonz/D
, (21)

P$Rmax
3D # r% < GRSskonr

D D .
skonr/D

1.871 skonr/D
. (22)

where Erfcx is the scaled complementary error function
(Abramowitz and Stegun, 1964).

The statistical properties of the two-dimensional seg-
ments depend on the rate constants of dissociation,koff, and
endocytic internalizationke, as well as on the diffusion
coefficient of the bound ligand,Ds. In Appendix B, we
derive the following expressions for the cumulative distri-
bution functions of the random variablesRmax

2D andTmax
2D :

P$Rmax
2D # r% 5 1 2 1/I0~r Î~ke 1 koff!/Ds!, (23)

P$T max
2D # t% 5 1 2 exp@2~ke 1 koff!t#, (24)

whereI0 is the modified Bessel function of the first kind of
order zero (Abramowitz and Stegun, 1964).

In Fig. 3, each of the derived distributions is plotted as a
function of the corresponding dimensionless variable. The
cumulative distributions forRmax

3D , Zmax
3D , andTmax

2D are easily
invertible; hence, generation of the corresponding random
variables is trivial. Generation ofRmax

2D and Tmax
3D is easily

accomplished by numerical inversion. To generate each of
the random variables, we generate a uniformly distributed
random number and use it as an argument of the inverse of
the cumulative distribution function (Dagpunar, 1988).

The foregoing provides a basis for the straightforward
Monte Carlo algorithms for the generation of the random
variablesZmax, R# max, and Tmax. Each algorithm starts by
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drawing a random number,N, from the geometric distribu-
tion with parameterd; N is the number of returns to the
surface. For a fixedN, Zmax is generated by calculating a
maximum of N independent random numbers distributed
according toP{ Zmax # z}, Eq. 1. For a fixedN, R# max is
generated by adding two terms, which correspond to the
sum ofN random variables distributed according toP{ Rmax

3D

# r} and P{ Rmax
2D # r}. In the similar generation ofTmax, the

two terms correspond to the sum of theN random variables
distributed according toP{ Tmax

3D # r} and P{ Tmax
2D # t}.

For each of the random variablesZmax, R# max, andTmax,
generation of 104 realizations took;2 min on a 450 MHz
PC. To determine the cumulative distribution functions for
Zmax, R# max, or Tmax, we first generated multiple realizations
(104) of the corresponding random variable. An accurate
discrete approximation of the corresponding distribution
function was then assembled through statistical analysis of
the resulting database.

EXAMPLE APPLICATION: AUTOCRINE LOOPS IN
THE EGFR SYSTEM

In this section, we use our continuum and stochastic models
to analyze autocrine loops in the EGFR system. Signaling
through EGFR is critical in defining and modulating normal
physiological responses, such as cell proliferation, differen-
tiation, and motility (Casci and Freeman, 1999; Davies et
al., 1999; Hackel et al., 1999; Kim et al., 1999; Wells, 1999,

2000; Zwick et al., 1999). At the same time, dysregulation
of the various parts of the EGFR system has been correlated
with several stages of tumorigenesis (Tang et al., 1997; Kim
et al., 1999; Wells, 2000; O-Cahroenhat et al., 2000). EGFR
belongs to the class of receptor tyrosine kinases (Zwick et
al., 1999; Wells, 1999; Moghal and Sternberg, 1999).
Bound receptors dimerize, cross-phosphorylate their cyto-
plasmic tails at several tyrosine residues, forming a signal-
ing complex that provides a scaffold for the components of
intracellular signaling cascades (Schlessinger, 2000). Acti-
vation of EGFR system is commonly accomplished by
locally produced ligands and can be classified as paracrine,
autocrine or juxtacrine. It is known that EGFR ligands are
produced in the form of membrane-bound precursors that
are processed into soluble form by membrane metallopro-
teases (Massague and Pandiella, 1993). In several cases, it
was demonstrated that biological activity of soluble ligands
is much greater than that of their membrane-bound precur-
sors. In the EGFR system, the perturbation of the external
part of autocrine loops critically affects cell’s proliferative
and migratory patterns, and the ability of cells to self-
assemble in multicellular structures (Wiley et al., 1998;
Dong et al., 1999; Tokumaru et al., 2000; Kalmes et al.,
2000).

Equilibrium and kinetic parameters for binding and traf-
ficking in growth factor receptor systems, including the
ErbB1-4 system to which the EGFR belongs, have been
well documented; furthermore, experiments either reporting

FIGURE 3 Distribution functions characterizing the spatiotemporal extent of the two- and three-dimensional parts of “composite” trajectories.
Cumulative distribution functions are plotted as functions of their dimensionless arguments.
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diffusivities of growth factors in tissues or allowing their
estimation from data have recently started to appear (Dowd
et al., 1999; Strigini and Cohen, 2000; Haller and Saltzman,
1998; Entchev et al., 2000). These data can be directly
incorporated into our models of autocrine loops.

First, we analyze the steady probability of ligand capture
by a single autocrine cell. Fixing the value of rate constants
koff, kc, andke—the intrinsic parameters of autocrine loops,
we examine the effects of parameters that can be manipu-
lated—the rates of ligand and receptor synthesis (Dong,
1999; Dong et al., 1999; DeWitt et al., 2001). In our model,
this amounts to the variations in the Damko¨hler (Da) and
Autocrine (Au) numbers. Using Eq. 14, we plot the lines of
constant capture probability,Pcap, in the Da–Au plane,
Fig. 4.

Consider an autocrine cell equipped with 105 receptors
and producing one ligand molecule per second (the lower
limit of secretion rates reported in DeWitt et al., 2001). At
fixed values for the rates of ligand and receptor synthesis,
theAuandDa depend on the extracellular ligand diffusivity,
D. Reported valuesD for peptide growth factors range from
1027 cm2/s in free solution to 10211 cm2/s in the extracel-
lular matrix (ECM) (Dowd et al., 1999). Low values of
ligand diffusivity arise from the combination of geometric
and hydrodynamic effects with the reversible ligand binding
to the components of the ECM (Johnson et al., 1996). In our
model, changing the extracellular ligand diffusivity with all
parameters held constant, shifts the autocrine cell along the
line Da/Au 5 q/RTkoff. We predict that, depending on the
value of extracellular ligand diffusivity, our cell can recover
from 10 to 65% of endogenous ligand. Hence, our analysis
of steady ligand recapture probability indicates that auto-
crine cells can be very efficient in recapturing the endoge-
nous ligand and, accordingly, that autocrine loops can op-
erate already at a single cell level.

Recent experiments with autocrine systems indicate that
ligand release is dynamically regulated through the activity
of ligand-releasing proteases (Arribas et al., 1996; Carpen-
ter, 1999; Dent et al., 1999; Dethlefsen et al., 1998; Diaz-
Rodriguez et al., 2000; Doedens and Black, 2000; Fan and
Derynck, 1999; Gechtman et al., 1999). To examine the
dynamics of ligand-receptor binding induced by a step-
change increase of the rate of ligand release we use the
time-dependent continuum model, Eqs. 12–13. As we see in
Fig. 5, steady receptor occupancy can be achieved relatively
quickly, within 15–30 min. Note that the reduced model
provides a very accurate approximation to the transient
computed with the full model, Eqs. 6–9.

We now turn to the analysis of random trajectories followed
by autocrine ligands. Consider a confluent monolayer or an
epithelial layer of autocrine cells. We start by analyzing the
effect of ligand diffusion in the extracellular medium. In Fig. 6
A, the distribution functionP{Zmax # z}, which quantifies the
probability that the ligand is bound for the first time before
diffusing to the heightz above the cell surface, is plotted for

several values of the effective diffusivityD. In these compu-
tations, the surface receptor density corresponds to 105 recep-
tors uniformly distributed over the surface of a disk-like cell
with 10-mm diameter. We see that, atD 5 1029 cm2/s, 90% of
the ligand molecules are bound before reaching the height of
one micron. Autocrine loops become progressively localized
as D decreases. Charged ligands strongly interacting with
components of ECM, such as HB-EGF, will have even smaller
values of effective diffusivities (D , 10210 cm2/s); autocrine
loops formed by these ligands are likely to be even more
localized. This means that absorbing boundary placed at
heights above 1mm above the layer of autocrine cells will have

FIGURE 4 Steady-state analysis of the continuum model. (A) Lines of
equal probability of capture in theAu–Da plane computed with Eq. 14 for
g 5 0.1 andd 5 0.5.Pcapfor a single autocrine cell computed as a function
of the extracellular ligand diffusivity. Parameters used:Kd 5 10212 moles/
cm3, koff 5 1/60p 0.1 s21, kon 5 1/60p 1011 moles21 cm3s21, kc 5 1/60
p 0.01 s21, ke 5 1/60p 0.1 s21, rcell 5 5 p 1024 cm,Q 5 1 molecule/s/cell,
105 receptors/cell;D 5 1029, 1028, 1027 cm2/s. (B) Pcap for a single
autocrine cell as a function of the number of receptors/cell computed for
several values of ligand release rate.Q 5 1/60 p 1, 100, 1000, 4000
molecules/cell/s; all other parameters as in (A).
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negligible effect on the statistical properties of the trajectories
followed by autocrine ligands. Thus, prior to the first binding
event, autocrine ligands sample a very small volume.

Our analysis was done for the case when the extracellular
ligand diffusivity is space independent. The structural and
biochemical complexity of the extracellular matrices is only
now starting to be appreciated. The cell surface proteolgly-
cans can reversibly bind peptide growth factors, lowering
the value of the effective diffusion coefficient next to the
surface. To analyze the effects in the spatial variation of the
diffusion coefficient, e.g., lower value of diffusivity next to
the surface, consider the case when the diffusivity is a
piecewise constant function of the height above layer of
autocrine cells. Straightforward modification of the bound-
ary value problem (Eq. A9) for the case with the space-
dependent diffusivity leads to the following expression for
the cumulative distribution function characterizing the max-
imal vertical displacement:

P$Z max
3D # z%

5 5
skonz/D1

1 1 skonz/D1

z# z1,

skonz/D2 1 z1/D1 2 z1/D2

1 1 skonz/D2 1 z1/D1 2 z1/D2

z. z1 .
(25)

The effect of the nonuniformity in the diffusivity on ligand
recapture is presented in Fig. 6B. Note that 90% capturing
efficiency of the homogeneous medium withD 5 1028 cm2

can be realized in the medium whereD 5 1027 cm2/s and
the surface is surrounded with the low diffusivity layer of
one micron. Hence, the parameters that characterize the
nonuniformity in the spatial distribution of ligand transport
properties can play critical roles in governing the operation
of autocrine loops (and other ligand/receptor systems).

We have also calculated the minimal number of surface
receptors that ensures that a ligand is bound, for the first
time, with high probability (95%) before diffusing to a
radial distance equal to the linear dimension of the cell. For
this, the inequalityP{ Rmax

3D # rcell} $ 0.95 has to hold

FIGURE 5 Evolution in the number of ligand receptor complexes
(scaled by the total number of receptors/cell,RT [ s/kc) in response to a
step-change in ligand secretion computed with a continuum model. Time is
scaled by the dissociation rate constant of the ligand/receptor complex. In
the computation,koff 5 1/60 p 0.1 s21, RT [ s/kc 5 105 receptors/cell,Q
was changed from 0 to 1/60p 1000, 1/60p 2000, and 1/60p 4000
molecules/cell/s. All other parameters as in Fig. (A). Solid line: Full model
Eqs. 6–9.Circles: Pseudo-steady-state approximation, Eqs. 12–13. The
PDE for the spatial distribution of endogenous ligand was discretized using
100 equidistant intervals.

FIGURE 6 Autocrine loops in the model of the EGFR/EGF system:
analysis of random trajectories. (A) Effect of the ligand diffusivity in the
extracellular medium on the distribution function for the radial component
of the three-dimensional segment computed forkon 5 1/60p 1011 moles21

cm3s21 and 105 receptors/cell. (B) Effect of the spatially nonuniform
extracellular ligand diffusivity. Diffusivity is a stepwise function of the
height above the cell surface,

D 5 H D1, z# w
D2, z. w .

Computation parameters:D1 5 1028 cm2/s, D2 5 1027 cm2/s; w 5 0, 0.1
p 1024, 0.25p 1024, 0.5 p 1024, and 1p 1024 cm.
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(rcell ' 5 mm). Using Eq. 22, the calculation of the requisite
surface density is done analytically. The requisite number of
surface receptors is an increasing function ofD, as shown in
Fig. 7. The figure also illustrates the sensitivity of the
requisite number of surface receptors to the forward binding
rate constant. The higher the value ofkon, the greater is the
spatial localization of autocrine loops. Consequently, fewer
receptors are needed to ensure binding within a specified
distance, ifkon is large.

Multiple binding events preceding the eventual ligand
internalization delocalize autocrine loops. This is illustrated
in Fig. 8, A andB, which show the functionsP{ Zmax # z}
andP{ R# max # r} for several values of the parameterkoff/ke;
the magnitudes for vertical and radial excursions increase
with koff/ke. Recall that the average number of binding
events isN 5 1 1 koff/ke. The rate constants of ligand
dissociation and endocytic internalization are approximately
equal for the EGFR/EGF pair; henceN ' 2. We have found
that, even atD 5 1029 cm2/s, autocrine loops are quite
localized for the parameters and receptor densities charac-
teristic of the EGFR system. Although the value of the
surface diffusion coefficient,Ds, has no affect on the ver-
tical extent of autocrine loops, it strongly affects their radial
span. In fact, surface diffusion becomes the main source of
the radial dispersion whenD . 1028 cm2/s.

Surface mobility of ligand/receptor complexes in growth
factor systems can be impeded by their interaction with
cytoskeletal components and by the presence of “corrals”
that compartmentalize the cell surface (Saxton, 1994, 1995,
1996, 1997; Saxton and Jacobson, 1997) in our computa-
tions we useDs 5 10211 cm2/s.

CONCLUSIONS

We have developed mechanistic models of binding and
transport in autocrine systems. The continuum model allows
the evaluation of the steady and transient ligand recapture
probabilities as functions of the ligand diffusivity, kinetic
and equilibrium binding constants, and internalization rate
constants characterizing the ligand/receptor pair. A stochas-
tic description of the extremal properties of trajectories
followed by autocrine ligands provides direct estimates for
the spatial range of autocrine loops. Applying our models to
study autocrine loops in the EGFR system, we found that
the distances over which cells communicate with their en-
vironment using secreted endogenous ligands can vary from
submicron to tens of microns as a function of such param-
eters, as receptor density and endocytic rates. Thus, cells
have the capability to tune the range of their autocrine loops
through the regulation of gene expression levels and choice
of ligand family members. These levels of regulation are
certainly present in the EGFR system: Cells equipped with
the EGFR autocrine loops release several types of the EGFR

FIGURE 7 Number of surface receptors needed to ensure that ligand is
bound for the first time before diffusing to a distance equal to the linear
dimension of the cell (5p 1024 cm), plotted as a function of ligand
diffusivity for several values ofkon, 1/60 p 1010, 1/60 p 1011, and 1/60p

1012 moles21 cm3s21. Computations are based on Eq. 22.

FIGURE 8 Effect of multiple binding events. The number of binding
events is given byN 5 1 1 koff/ke. Radial and vertical distribution
functions computed forD 5 1029 cm2/s, Ds 5 10211 cm2/s and several
values ofkoff/ke. The distribution functions were constructed using the
Monte Carlo algorithm in Appendix C.
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ligands, such as heparin-binding EGF, transforming growth
factor alpha, and amphiregulin. Concurrently secreted li-
gands can differ in their binding affinities, levels of their
interaction with the extracellular matrix, and binding/traf-
ficking rate constants. Surface receptor densities are regu-
lated by a variety of mechanisms, from relatively fast re-
ceptor-mediated endocytosis, to slower changes at the level
of gene expression. Rates of EGFR ligand release can be
differentially regulated by surface metalloproteases. Such
versatility in autocrine regulation is likely to be character-
istic of other growth factor and cytokine systems. This
indicates that an important fraction of information process-
ing in cell communication can take place even before the
intracellular signaling circuitry is engaged.

Both the deterministic and stochastic models are easy to
use. The evaluation of the steady capture probability in-
volves solving a single algebraic equation, Eq. 14. The
transient binding and transport problem had been converted
to a second-order dynamical system that serves as an accu-
rate approximation of the original model, Eqs. 12–13. The
distribution functions characterizing the spatiotemporal ex-
trema of the two- and three-dimensional random paths are
provided by explicit analytical expressions, Eqs. 20–24. We
have to rely on the simulation when computing the distri-
bution functions of composite (a mix of two- and three-
dimensional) random paths. These simulations, however,
are straightforward to implement and extremely efficient;
our Monte Carlo procedure relies on the analytically avail-
able distribution functions for the extrema of individual,
two- and three-dimensional segments.

We have used our models and algorithms to analyze the
operation of autocrine loops in the EGFR system. Based on
the continuum model, we conclude that autocrine cells can
be very efficient in recapturing endogenous ligand. Hence,
autocrine loops can operate already at the level of a single
cell. This is consistent with experiments that report that
effects of autocrine signaling can be detected in migratory
responses of single epithelial cells equipped with the EGFR
autocrine loops (Dong et al., 1999). In these experiments
interrupting autocrine loops at the stages of ligand release or
recapture, using inhibitors of ligand-releasing proteases or
receptor-blocking antibodies resulted in significant changes
of the speed and persistence of random walks executed by
autocrine epithelial cells. Using our stochastic model, we
have found that, prior to their capture, autocrine loops
sample a very small volume of the extracellular medium.
Specifically, in the EGFR system, autocrine ligand is bound
for the first time before it has a chance to leave the “pillbox”
with the characteristic dimension of 2–3mm. This estimate
is important in light of recent findings in developmental
biology, reporting that, in developing tissues, autocrine sig-
naling through the EGF receptor proceeds in the spatially
restricted manner. Specifically, in theDrosophila oogene-
sis, secreted ligand Spitz (a homologue of the mammalian
TGFa) has been estimated to act on 3–4 cells (Stevens,

1998). Note that, in most of the experimental reports of
autocrine systems, the spatial range of autocrine loops is
inferred from indirect measurements: e.g., changes of the
cell migratory parameters or spatial distribution of the ex-
pression of the gene activated by the activated receptor. Our
models provide fast access to the estimates of the quantita-
tive characteristics of autocrine loops that cannot be easily
or directly measured.

Both the deterministic and stochastic approaches can be
easily extended to account for other processes of ligand/
receptor systems, such as recycling of internalized ligands
and receptors. A combination of ligand diffusion, binding,
internalization, and recycling has been recently shown to
define the morphogen gradients in the developing tissues
(Strigini and Cohen, 2000; Entchev et al., 2000). These
quantitative measurements of the spatial distribution of the
ligands and its target genes can be used together with our
models to extract the kinetic and transport parameters from
a system that cannot be easily reconstituted using the cell
tissue culture experiments.

Spatially restricted operation of autocrine loops might
have important consequences for the dynamics of intracel-
lular cell signaling. Rapidly mounting experimental evi-
dence indicates that proteolytic release of growth factors
can be activated by the signal transduction pathways that are
stimulated by the corresponding growth factor receptors. In
an autocrine cell operating in the regime of efficient ligand
recapture, this can establish a positive feedback loop. In-
deed, positive feedback has been identified in the EGFR
system: the EGFR stimulates the Ras-MAPK pathway, that,
through still ill-defined processes, activates ligand-releasing
protease, leading to a further increase of receptor occupancy
and activation (Dent et al., 1999). Using this positive feed-
back loop, autocrine cells can fine-tune their responses to
exogenous stimuli. Specifically, both the duration and the
amplitude of signaling through the Ras-MAPK pathway can
be influenced by the autocrine loops. When autocrine loops
are closed, i.e., endogenous ligands are recaptured, the
dynamics of MAPK induced by a transient exogenous stim-
ulus is large amplitude and persistent; when the autocrine
loop is interrupted at the stage of ligand return to the
surface, the dynamics of induced MAPK signaling is low-
amplitude and transient. The fact that secreted growth fac-
tors can bind to the components of the extracellular matrix
indicates that the dynamics of intracellular signaling in-
duced in an autocrine cell by exogenous stimuli is sensitive
to the composition of cellular microenvironment. Hence,
spatially localized autocrine loops emerge as modules for
(extracellular) context-dependent signaling. This mecha-
nism of context-dependent cell signaling, efficient ligand
recapture1 positive feedback involving ligand release,
provides a working model for the “cell sonar” hypothesis,
according to which autocrine cells use endogenous ligands
to probe the composition of their microenvironment
(Lauffenburger et al., 1998).
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APPENDIX A: RANDOM PATHS LEADING TO THE
FIRST CAPTURE

Consider a Brownian particle moving in the half-space above a plane
covered by traps, which are distributed with surface densitys. Trapping is
characterized by the forward rate constantkon. The cumulative distribution
functions of random variablesT max

3D , Rmax
3D , andZmax

3D depend on parameters
s, kon, andD,

P$Tmax
3D # t% 5 FT~t, s, kon, D!, (A1)

P$Rmax
3D # r% 5 FR~r, s, kon, D!, (A2)

P$Zmax
3D # z% 5 FZ~z, s, kon, D!. (A3)

The first step in our derivation of approximate expressions for these distribu-
tion functions involves averaging of the heterogeneity of the trapping surface.
In this way, the surface is modeled as trapping everywhere, with the surface
reaction rate constantkeff. This effective rate constant appears in the boundary
condition of a diffusion equation that describes the evolution of the probability
density function of particle coordinates. In the simplest approximation,keff 5
skon. Deriving effective rate constants from the structural parameters of
heterogeneous systems, in this case a two-dimensional surface covered by
partially absorbing traps, is the subject of active research (Zwanzig and Szabo,
1991; Belyaev et al., 1999; Torquato, 1991).

Let p(rW, turW0, 0) denote the probability density function of particle
coordinates at timet, given that, initially, the particle was located atrW0 5
(x0, y0, z0). The evolution ofp(rW, turW0, 0) is governed by diffusion equation,

p

t
5 DF2p

x2 1
2p

y2 1
2p

z2G , (A4)

p~rW, turW0, 0! 5 d~rW 2 rW0!, (A5)

D
p

z
U

z50

5 keffp. (A6)

The chosen approximation for the effective boundary condition on the
trap-covered surface is based on using the low-density limit forkeff and
on the steady-state value of the bimolecular reaction rate constant
(Zwanzig and Szabo, 1991). Because these assumptions provide a lower
bound forkeff (Belyaev et al., 1999), our estimates of the spatial and
temporal extent of autocrine loops will be conservative. Hence, auto-
crine loops will be even more localized than predicted by our analysis.

With heterogeneity in the boundary condition removed, we can derive
expressions for the distribution functions characterizing extrema of the
Brownian paths leading to the first capture. Approximations for the distri-
bution functionsFZ, FR, and FT, obtained using the effective boundary
condition, are denoted byGZ, GR, andGT, respectively. The derivation of
GZ, GR, andGT follows the standard analysis of splitting probabilities, i.e.,
the probability of a diffusing particle being absorbed by one of several
competing boundaries (Weiss, 1994; Berezhkovskii et al., 1999).

The probability, P{ Zmax
3D # z}, that a particle is absorbed before

reaching the heightz is equivalent to the probability of a particle getting
absorbed before reaching a perfectly absorbing plane located at the
heightz. In complete analogy,P{ Rmax

3D # r} is found as the probability
that a particle, starting on the partially absorbing plane, is absorbed
before reaching the perfectly absorbing surface of a cylinder with radius
r. In both cases, we derive the probability of escape from the partially
absorbing plane to the perfectly absorbing surface. The splitting prob-
abilities are functions of the starting coordinates,z0 andr0, of a particle.
Problems for splitting probabilities lead to Laplace’s equation; the
boundary condition is unity on the absorbing surface to which the
particle is escaping, and partially absorbing on the plane from which the
particle starts (Weiss, 1994; Schuss, 1980; Berezhkovskii et al., 1999).

Formally, if the probabilities of escape to the perfectly absorbing
surfaces are denoted by«(z0) and«(z0, r0), respectively, then

Gz~z, keff, D! 5 1 2 «~0!, (A7)

GR~R, keff, D! 5 1 2 «~0, 0!. (A8)

We now specify the boundary value problems for«. For the Brownian
particle starting atz0 [ [0, z], the probability of escaping to the perfectly
absorbing boundary at heightz is given by the solution of the boundary
value problem,

d2«

dz0
2 5 0, «uz05z 5 1, D

d«

dz0
U

z050
5 keff«. (A9)

For the Brownian particle, starting inside the infinitely tall cylinder of
radiusr, the probability of escaping to the perfectly absorbing side is given
by

1

r0



r0
r0

«

r0
1

2«

z0
5 0, (A10)

«uz05` 5 1,
«

z0
U

z050
5 keff«,

«

r0
U

r050
5 0, «ur05r 5 1.

(A11)

Note that, although we are solving for escape probabilities in the
domain bounded by the trapping surfaces, we are interested in solutions
evaluated only at a single point. We need«(0) and«(0, 0) for the first and
second boundary value problems, respectively. Both problems can be
solved analytically. The solutions, expressed in terms of dimensionless
variablesz# 5 keffz/D and r# 5 keffr/D are

Gz~Z, keff, D! 5 Gz~z! 5
z#

1 1 z#
, (A12)

GR~R, keff, D! 5 GR~r#!

5 O
n51

` 2r#

ln~r# 1 ln!J1~ln!

.
r#

1.871 r#
, (A13)

whereln are zeros ofJ0, Bessel function of the first kind of order zero, and
J1 is the Bessel function of the first kind of order one (Abramowitz and
Stegun, 1964). The inequality in Eq. A13 comes from approximation to the
infinite series in expression forGR. Although this series, involving zeros of
Bessel functions, can be summed numerically, it is not convenient for use
in applications. The last inequality is strict, with the maximum difference
between exactGR and its approximation being less than 2%.

The cumulative distributionGT(t, keff, D) is found as the probability that
a Brownian particle, moving on a half-line with a partially absorbing
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boundary and starting at that location, has not been absorbed by timet. The
transient problem leading toGT(t, keff, D) is

GT~t, keff, D! 5 1 2 E
0

`

p~z, t! dz, (A14)

p

t9
5 D

2p

z2 , (A15)

D
p

z
U

z50
5 keffp, p~z, t9 5 0! 5 d~z!. (A16)

Solution to this problem can be found in the literature (Weiss, 1994),

GT~t, keff, D! 5 1 2 Erfcx~t#!

5 1 2 et# 2F1 2
2

Îp E
0

t#

e2h2dhG , (A17)

wheret# [ keff
=t/D. Our analytical results are summarized by Eqs. 5–7 in

the paper.

APPENDIX B: EXTREMA STATISTICS FOR
SURFACE DIFFUSION

Before being removed from the surface, bound ligands diffuse with an
effective diffusion coefficientDs; this increases the radial extent of auto-
crine loops. In this appendix, we formulate and solve a boundary value
problem describing the distribution of the maximal radial distances to
which a particle can diffuse before it is removed from the surface. The
probability,P{ Rmax

2D # r}, that the maximal distance,Rmax
2D , traveled on the

surface is less thanr, can be found as the probability that a particle is
removed before reaching the perfectly absorbing boundary at radiusr.

Consider a two-dimensional Brownian particle starting inside a circular
domain with a perfectly absorbing boundary. A particle can disappear on
the boundary of the domain, or it can leave the surface due to a first-order
process with a total rate constantk [ koff 1 ke. The probability,w(r0, t),
that a particle, starting atr0, “reacts” in the time interval (t, t 1 dt) is
proportional to the product two probabilities,

w~r0, t! 5 ke2ktS~tur0!. (B1)

The first term,ke2kt, is the probability that a particle, not yet reacted at
time t, reacts betweent andt 1 dt. The second term,S(tur0), is the so-called
“survival probability,” i.e., the probability that the particle, in the absence
of reaction, is still inside the circle at timet. It is defined as

S~tur0! 5 E
0

r

2pp~r, tur0, 0!r dr, (B2)

wherep(r, tur0, 0) is the probability density function of the radial coordi-
nate of a Brownian particle diffusing inside a circle of radiusr with
absorbing boundary. The probability that a particle starting atr0 reacts
before reaching the boundary is denoted byF(r0). It is found by integrating
the expression forw(r0, t) over all times,

F~r0! ; E
0

`

w~r0, t! dt. (B3)

Following these definitions, the probability that a particle is removed from
the surface before its radial coordinate reachesr is found as

P$Rmax
2D # r% 5 E

0

`

w~0, t! dt 5 F~0!. (B4)

Hence our goal is to obtain the dependence ofF on the radius of the
domain.

The derivation relies on the properties of survival probabilityS(tur0). A
well-known result in the theory of Brownian motion (Berezhkovskii et al.,
1999) states that survival probability satisfies the adjoint equation,

S

t
5

Ds

r0



r0
SS

r0
D ; Ds¹r0

2S, (B5)

where¹r0
2 is the radial part of Laplace operator in cylindrical coordinates.

Applying that operator to both sides of Eq. B3, multiplying byDs and using
Eqs. B3 and B5 gives

Ds¹r0

2F 5 Ds¹r0

2E
0

`

ke2ktS~tur0! dt

5 E
0

`

ke2kt
S~tur0!

t
dt. (B6)

Integrating the last expression by parts, we obtain

Ds¹r0

2F 5 2k 1 kF. (B7)

The boundary conditions are posed by requiring thatF is finite everywhere
in the domain and zero on the boundary; clearly, for a particle starting on
the boundary, the chance of reacting is zero. The solution is found in terms
of the modified Bessel function of the first kind of order zero (Abramowitz
and Stegun, 1964):

F~r0! 5 1 2
I0~r0Îk/Ds!

I0~r Îk/Ds!
. (B8)

For the probability that the particle, released at the origin, is dissociated or
internalized before its radial coordinate increases tor, we obtain

P$Rmax
2D # r% 5 w~r0 5 0!

5 1 2 I0~r Î~ke 1 koff!/DS!
21. (B9)
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