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ABSTRACT We present an analytical equation for the transmembrane voltage (A¢) induced by a homogeneous AC field on
arbitrarily oriented cells of the general ellipsoidal shape. The equation generalizes the Schwan equation for spherical cells and
describes the dependence of A¢ on field frequency, cell size and shape, membrane capacitance, conductivities of cytoplasm,
membrane and external medium, the location of the membrane site under consideration, and on the orientation of the cell with
respect to the field. The derivation is based on the fact that the cytoplasm and the Maxwellian equivalent body of the whole
cell are both of a general ellipsoidal shape and must thus exhibit constant local fields. The constant fields allow for a relatively
simple description of the potentials on the internal and external membrane sides, leading to A¢. For this, the properties of
cytoplasm, membrane, and external medium have been introduced into a special, finite element model. We found that A¢ can
be unambiguously defined for non-spherical cells, provided that the membrane thickness is thin in comparison to the cell
dimensions.

INTRODUCTION

As far as we are aware, Fricke (1953) was the first persoimave applied the knowledge developed by Schwan (Neu-
to express the direct current (DC) steady-state transmenmann et al., 1989; Zimmermann, 1982). Although the main
brane voltage A¢) for a cell of the general ellipsoidal focus of Schwan’s work was the frequency and time depen-
shape with negligible membrane conductance and aence of biological material properties, he also dealt with
highly polarizable cytoplasm. In Fricke’s brilliant paper, the induced transmembrane voltage. Analytidgl equa-
he presented thA¢ induced at the poles of an oriented tions are commonly named after Schwan to honor his role in
cell of the general ellipsoidal shape in its most universalthe research into electrical properties of biological cells
form, (Marszalek et al., 1990; Schwan, 1983; H.P. Schwan, per-
1 sonal information). Several attempts to improve and extend
Ad, aE. (1 the equations to specific electric properties of the media and
cells of the spherical (DeBruin and Krassowska, 1999) and
A, E, a, andn, stand for the induced transmembrane Nonspherical geometry (Gimsa and Wachner, 1999; Jerry et
voltage at the pole, the field strength, the semiaxis oriente@!-» 1996; Kotnik and Miklavcic, 2000) and to properties,
in field direction, and the depolarizing factor along semiaxis!ike the surface conductance (Grosse and Schwan, 1992) or
a, respectively. Expressions for the depolarizing factors aréh€ influence of deformational forces on the membrane
given in the appendix. Depending on the axial ratio of thePermeabilization (Sukhorukov et al., 1998) exist.
ellipsoid, the depolarizing factor can take on values varying We think that a completa¢ equation must describe the
between 0 and 1. For the spherical shape=(b = c = R,  dependence oA¢ on i) cell size and shape, ii) field fre-
n, = N, = n, = ¥s), Fricke’s equation can be reduced to the quency, iii) the membrane capacitance, iv) the conductivi-

:1—na

well-known expression, ties of cytoplasm, membrane and external medium, v) the
site at the membrane, e.g. given by the angle dependence,
Ao =1.5RE (2)  and vi) the orientation of the cell with respect to the external

The detailed\¢ equation published by Bernhardt and Pauly field- Analytical expressions for thé¢ for cells of the
(1973) is based on the knowledge of Stratton (1941) an(g;_eneral ellipsoidal shape, meeting all of the above de_mands
Fricke (1953). Models for the description of the impedancell)—(V) have, to our knowledge, not yet been published.
properties of cells and cell suspensions were pioneered t%ecently, we considered the polarization of spheroidal cells

Schwan (for a summary see: Schwan, 1957). Other autho imsa and Wachner, 1999). We also derived an analytical
equation forA¢ for two orientations of the symmetry axis,
parallel and perpendicular to the external field. Our expres-
: . o sion meets points (i)—(iv) but is restricted to the poles of the
Received for Publlcatlon 12 February 2001 and in fl.nal fqrm 1.1 July 2001.. cell. Nevertheless, it also applies to oriented cells of the
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Universitd Rostock, Wismarsche Str. 8, D-18051 Rostock, Germany. TeI.:gener'E_lI eII|p30|daI Shape when the respective depolar_lzmg
+49-381-498-1974; Fax: +49-381-498-1975; E-mail: jan.gimsa@ [actor is assumed. In this paper, we extend our expression to
biologie.uni-rostock.de. points (v) and (vi) to meet all above criteria. We consider a
© 2001 by the Biophysical Society single shell cell model of the general ellipsoidal shape with
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Induced Membrane Potential 1889

THEORY AND DISCUSSION

A finite element ansatz for A¢ of the oriented
single shell model

Biological cells are usually negligibly magnetizable, and
they are small with respect to wavelength at frequencies
below a few GHz. Under these conditions, potential
distribution can be directly obtained by solving Laplace’s
equation, which is the basis of the following derivations.
Explicit solutions require surfaces of the second degree
(Maxwell, 1873; Stratton, 1941). The general ellipsoid is
the most complex but finite surface of the second degree.
For the single shell ellipsoidal model, an additional geo-
metrical restriction applies: an explicit solution requires
that the two interfaces of the shell can be described
within the same coordinate system, which is determined oV
by the foci of the ellipsoidal surfaces. For a given thick-

ness of the shell, e.g., along a certain principal axis, th&IGURE 1 Sketch of the influential radius for a spherical, poorly polar-
foci determine the confocal shell of nonconstant thick-izable object, e.g., an air bubble. The symmetry plane is assumed to be at

ness. A feature of such models is that a homogeneou$": "0 @ sphere, the depolarizing factor= ¥s andRpy = 1.5 R. The
potential at the polep,,e corresponds to the undisturbed potential at

bOdy’ i.e., the Maxwellian eqUivalem bOdy* of t_he SamedistanceRmﬂ from the symmetry plane. The constant local field can be
external geometry can be found for all frequencies. For @alculated fromp,,. Please note that (inside the object) the distances from
given frequency, the body possesses certain electric&kch equipotential line to ¢h0 V plane are reduced by a factorRiR
properties and exhibits the same external field distribu_compared to a situation a great distance from the object or where the object
. L . is absent.

tion as the shelled model. The effective internal fig|g,.

of the body is constant. Its surface potential is identical to

the potential at the external membrane side of the cellhe influential radius,q is defined along the semiaxasby

model. The potential at the internal membrane side can b#e depolarizing facton, along that axis,

pole

R =RinsE

calculated from the cytoplasmic fiel, that is constant, 1

because the cytoplasmic surface is also ellipsoidal. For il =1y & (4)
the oriented ellipsoidal celA¢ at the poles with a per- a

pendicular orientation to the field vanisheAd is at The maximum local field is given by, E/a. Figure 1

maximum at the pole pointing in field direction. Here the demonstrates the relations for a nonpolarizable splzere (
external field,E., E;, and, consequently, the transmem R, a,,; = Rq). For a cell,A¢ is at maximum for Fricke’s
brane field are in parallel (Fricke, 1953; please compareonditions of a negligible membrane conductance and a
to Figs. 1, and 4). For a negligibly thin membrafe at  highly polarizable cytoplasm (see Eq. 1; Fricke, 1953). The
the pole of semiaxis, pointing in field direction, is given maximum at polea is a,,q E (Please note that such condi
by the difference of the potentials at the external anctions cannot as easily be met with alternating current (AC).

internal membrane side, At higher frequencies, when the membrane impedance de-
creases as a result of capacitive bridging, “metallic” cyto-
Ad, = (Ey. — Ea. (3) plasmic properties or an infinitely high permittivity are
required).

Figure 2 demonstrates the relations of a finite element
ansatz for modeling the membrane polarization (For details
see: Gimsa and Wachner, 1999). Its geometry ensures the

L . . correct reflection of the potentials at the pole at the internal
lated to _the ellipsoid’s axis ratio and can be expres_sed by thgnd external membrane side of the membrane. Only three
depolarizing factors (see Eq. 1 and the Appendix). Thes%lements of equal cross-sectional area are required. The

factors are obtained by solving Lapace’s equation (Landaﬂnpedancez* of each element is given by the geometry

and Lifschitz, 1985; Osborn, 1945; Stille, 1944; Stoner, ,q5 sectional area and lengthl) and the electric prop-
1945; Stratton, 1941; see also Kotnik and Miklavcic, 2000).tjes (specific conductivity and permittivity ee),

We recently introduced a related parameter, the influential

radius, for modeling the polarization of spheroidal cells by 11

* = i * = i
a special, finite element ansatz (Gimsa and Wachner, 1999). z * A with o o+ joes. ®)

In the DC case, the effective local field is amplified with
respect to the external field for a cell with a nonconductive
membrane. The maximum field amplification factor is re-
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R. FIGURE 3 Reduced scheme for modelifig in the range from DC up
< infi > to frequencies above the capacitive membrane bridging. The permittive
components of the internal and external media are cancelled out, allowing
for a reduction in the number of parameters to be introduced into Eqg. 6.

R. and 3). The indices i, m, and e stand for the impedance of
infl > cytoplasm, membrane, and external medium, respectively,
according to Eg. 5. Index a refers to the geometry alon
g q g y g
< ™ d semiaxisa. Please note that no axis index must be assumed
l—
,Jvlr A for the membrane impedance. The membrane elements can

be assumed to possess the same geometry along each prin-
cipal axis. The length in Eq. 5 must be replaced by the
respective expression according to Fig. 2. The cross-sec-
tional areaA is cancelled out.

The parameter dependence of A¢ at the poles of
the oriented single shell model

CDO= WhenAd is considered in the frequency range from DC up
oV RinﬂE to frequencies of the capacitive membrane bridging (see
below; Eq. 8) the permittive properties of the internal and
FIGURE 2 Oriented single-shell ellipsoid with sketches of the threeexternal mgdla can be neglected. Accordlngly, the lump
finite elements and the RC-lump model for cytoplasjn iembranert), model of Fig. 2 reduces to that of Fig. 3.
and external mediuney, respectively. The symmetry plane of the modelis ~ Please note that the complete model, according to Eq. 6
assumed to be at 0 V. The elements possess the same cross-sectional i¢f] the scheme of Fig. 2, can be applied in cases where
A. '_I'he length of the external mediun_w elgmgnt is given by the i”ﬂ“e”tia'higher frequencies or nonregular membrane properties
radius Rnq)- In the model, the potentiab, is fixed. ¢, depends on the . . o
voltage divider properties of the elements. The maximbigg,e is ¢y = Sh(?wd also b_e considered. In this case., the perm!ttlve prop-
R, E. The impedance of each element is given by Eq. 5 and can b&rties of the internal and external media and their possible
modeled by an RC-pair. structural (e.g., due to internal membrane systems) and
nonstructural (e.g., due to Debye effects) dispersions can be
o* and j are the complex, specific conductivity of the included as well. The reduced scheme allows for a reduction
considered medium and1%°, respectively. Eq. 5 applies to in the number of parameters to be introduced into Eq. 6. A
each resistor—capacitor (RC)-pair of the RC-lump model irfurther simplification is possible by expressing the mem-
Fig. 2. Starting from the finite element model, for a cell with brane properties by area-specific parameters. The properties
semiaxisa oriented in field directiom¢ at the axis’ pole of a membrane of thickness are described by the area-
can be expressed by the voltage divider properties of thepecific capacitanc€ and conductanceg. These values are

i pole

lump model (compare to Figs. 1 and 2), given bye e /d, and o, /d, respectively. As long a€ and
g are kept constant, the model behavior will be largely
Ada = akq. — ak insensitive to changes in membrane thickness. Physically, it
(Z*+ Z%) o Ziboa is difficult to assume a membrane thickness lower tg#G

because this would lead to a relative membrane permittivity
lower than unity. Nevertheless, for biological cellS,is
z approximately 10 F/n?, leading to a lower membrane
= m&nﬂE- (6) thlcknes§ limit of abqut 1nm, nggllglb!y low with respect to
‘ ’ the cell size. Assuming a negligibly thin membrane, the cell
¢ o Stands for the potential at the influential radius distanceand the cytoplasm would be of the same ellipsoidal shape,
from the symmetry plane along axds(compare to Figs. 2 i.e., resemble surfaces of the second degree. Thus, the

T+ N+ ZE, Nt It I,
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OV-pIan e The site dependence of A¢ for the oriented

ellipsoidal cell
—

— X As already pointed out in the introduction, a complete
7 Schwan equation should also describe the angle dependence
Y of A¢. In the following, we will derive an expression for the
angle dependence. For surface points that are not poles of
28 % the ellipsoid, e.g.X’ in Fig. 4, the definition ofA¢ is not
clear per se. Under geometric criteigh may, e.g., be the
potential differenceX’ — Y’ when Y’ is, for example,
- defined by the shortest transmembrane distance. Similarly,
—» A¢ may be the potential differenc€ — Z’, whenZ' is the
E crossing point of a line through the ellipsoid’s center &hd
with the internal membrane surface. For a given paiht
FIGURE 4 Schematic cut through an ellipsoidal cell with a confocal other possib”ities can also be conceived to define a refer-
membrane thickness. The inducing external fig/the local field&,., and a0 point at the inner membrane surface. Nevertheless, at
the cytoplasmic fieldg; are oriented along a principal semiaxis with the . . 1 s .
pole X. A¢ is 0 V for all points of the symmetry plane oriented perpen- the elllpSOId S poles amd)'dEfmltlons should be consistent
dicular to that semiaxis. The amplitude Bf,. is given by the potential at ~and for any definition the following considerations should
point X and its distance from the symmetry plane. The amplitudg; hold.
given by'the potenFiaI at pointand its'dist.emce from the symmetry plane. Let us assumé\¢ for a given pointX’ at the external
i,‘i’ 2;5‘:'&)( 's defined as the potential differenge— Y. Forag atpoint o, 406 to be defined in two different ways, a correct and a
' slightly incorrect one, e.g., as the potential differenses-
Y and X' — Z', respectively. In this case, for geometric
equivalent body of the cell and its cytoplasm must exhibit a'€aS0ns, a reduction of the membrane thickness reduces the

constant field (Maxell, 1873; Fricke, 1953; Landau anddistance of the pointy” and Z'. This in turn reduces the
Lifschitz, 1985). When a principal axis, e.@.,is oriented ~ €fror in A¢ related to a possible potential differenge —

in parallel to the external fiel&, the local fieldE,,. and the ~ Z'» more since the cytoplasmic conductivity is much higher
cytoplasmic fieldE; are also parallel to that axis. Fig. 4 than that of the membrane and the potential differefice

At point X, the pole of axisa of the ellipsoidal cellA¢  different definitions ofA¢ will approximate each other and
is at maximum. This point has the largest distance from théhaich the correct value for a negligibly thin membrane.
symmetry plane, which is defined by the other two semi-Furthermore, the voltage drop over a given distance within
axes. Because, at the pol, E,., andE,, are in parallel, the cytoplasm is much lower than over the membrane for all
is given by Eq. 6. Using Eqs. 4 and 5, after some rearrangdhan in the 1% range can be expected for cells with a
ments, the following expression can be obtained (for detail§emiaxis length and membrane thickness of the order of 10

my
-

loc

of the derivation see: Gimsa and Wachner, 1999): pnm and 10 nm, respectively.
These considerations show that Egq. 3 can be used to
A, = anm E ) calculateA¢ whenaiis replaced byl, the distance of a given
a 1 ayq—a f2’ point to the symmetry (&) plane. Similarly, Eq. 7 can be
(1 + ag(m o, )) 1+ 2, normalized by the factod/a, leading to
with 1 Qinfl
Ad, = — Ed.

| e 8 " <1+a<1+a‘”ﬂ_a)) P

ca 27TC\aO'e + (ainﬂ - a)O'i * 9/ ( ) ¢ Oij aoe fg,a
f, f. . 0o ando; stand for the external field frequency, the ()

characteristic frequency of membrane polarization along

semiaxisa, and the conductivities of the external and inter- Expressions fod are given below. For an ellipsoidal cell
nal media. Please note thiat, is the —3-dB frequency of  with the a-semiaxis oriented in field direction, the symme-
the A¢ amplitude. Egs. 7 and 8 were derived for area-try plane is determined by the semiadeandc. This plane
specific membrane parameters. Assuming the respectivis also the reference for the perpendicularly oriented local
influential radii, the equations are valid for the poles of cellsand cytoplasmic fields. These properties, up to now, have
of the general ellipsoidal, the spheroidal, and the sphericadllowed us to avoid the vector notation that will be intro-
shape. duced for the general orientation.
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by the absolute length of the local vector. For a given
surface pointP,, P,, andP, of the ellipsoid, the following
equation holds:

P2 P2 P2
¥+F+?:ll (12)

The combination of Egs. 11 and 12 leads to a general
expression for the local vector of the membrane point:

COoSa cosf3
P =|cosasinp
Sina
» abc
(@ sir? B + b? cos’ B)c? cos a + a’h? sirfa’

(13)

FIGURE 5 Sketch of a cell of th | ellinsoidal sh The brinci Now, Eqg. 3 can be written in a general form, to obtain the
etch of a cell of the general ellipsoidal shape. The princi-. . . -

pal semiaxes, b, andc, define the orthonormal coordinate systeqy, z. mt_juced transmembrane potential of a cell with a negligibly

P(x, y, 2) is a membrane surface point of the cell, defined in sphericalthin membrane,

coordinates (gngle& and B). With respect to the cell, the homogeneous S N Lo N N N

external fieldE has an arbitrary orientation, determined by the angles Ad) =Eo P-E-P= (Eloc - Ei) -P. (14)

ands. .2 .
The components of the local field,. and the cytoplasmic

field E;, Eipc.a Eocty Eioc.c AN Ei o Eip, E; o respectively,

are induced along the three principal axes by the relevant
components of the external field,, E,, E,,

In case of a general orientation, the constant local and
cytoplasmic fields are not usually aligned to a semiaxis or to
each other. Accordingly, their ¥ symmetry planes are

The general case

ZatZh  am
Zia+Zn+tZoaa *

tilted differently around the center point of the ellipsoid. _ Eioc.a Ziy+Zh b
Consequently, for a given point at the outer and inner Eioe = | Eioc| = o+ 75+ ZngEy . (19)
membrane sides, different distances to the respective sym- Bioc.c ' 75 4 7 ' G
metry planes have to be taken into account to calculate the %Lﬂ ,
transmembrane voltage from the absolute values of the local Zict Zm+ Zeo C
and cytoplasmic field strengths, in analogy to Eqg. 3. To z, i
overcome this problem, the vector notation will be used in v o o Ey
the following. The principal semiaxes, b, and c of the E Ziat Z:“ tZea @
ellipsoidal cell are used to determine an orthonormal coor- E — EIZ i.b Bind E (16)
dinate systemy, y, andz (Fig. 5). ' ET' ot ZmtZsp b 7|

The homogeneous external fidkds orientated arbitrarily v Z*. Cinfi
within this coordinate system with the orientation being WT 2

i,c m e.c

determined by the anglegand s,
Using Egs. 15 and 16, Eq. 14 becomes (compare to Eq. 6)

E, COS7y C0Sd
E=|E/|=|cosysins|El. (10) Zr i
E, sinvy ZL A+ Zht+ 2, a X
The local vecto® of the membrane point under consider- Ad = Z5 Bl =
ation shall be determined by the angtesnd 8, ¢ = Yt Z5+Z5, b B P, (17)
P, cosa CosfB Zn Cinn
P=|Py|=|cosa sinB|B]. (11) ZE+ZE+ 75, ¢ F
P, sina

whereP is given by Eq. 13. This is the general expression
In Egs. 10 and 11, spherical coordinates are used, i.e., thef the induced transmembrane potential. Neglecting the
coordinates of a surface point of a unit sphere are multipliegbermittivities of the cytoplasm and the external medium, the
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impedance terms in Eq. 17 can be replaced by the respective

term of Eq. 9. We thus obtain the final expression,

! B
1 amnm—a f2 a
1+ag P + o 1+ 2
1 Bin
=Vl I
AP=1 (1 pgl Ly P = BY) PR
9 O bo. f2,
1 Cinfi
E,
1 ¢cw—c¢ f2 ¢
1+cg . + co. 1+ iz
(18)

where the characteristic frequencies of membrane polariz
tion, f. , f., andf. , are given by Eq. 8. Please note that

1893

10°V/m

AD/V@E

log(frequency/Hz)

FIGURE 6 Frequency dependenceisp according to Eq. 9 at the three
poles of a hypothetical, ellipsoidal cell for an external field strength of 100

é_\//m (solid ling). The three curves correspond to the three semixis

andc, oriented in field direction. The curves are designated by the semiaxis
oriented in field direction. For calculations, the geometry of chicken

these characteristic frequencies vary along the three prinCrythrocytes, obtained from microscopic measurements, was assumed
pal axes. As a result, for an arbitrarily oriented cell, the(semiaxes lengtiab:c = 7.7:4:1.85um). A specific membrane capaci-

point of the highest induced transmembrane potentialance and conductance 6f= 10"* F/n” andg = 125 S/nf, as well as

changes with increasing frequency. For frequencies ap . )
9 9 9 y a .drespectlvely, were used. For comparison, also the curves of the complete

1$hodel (Eg. 6) are plotteddéshed lines The frequencies of the 3-dB

proaching that of the membrane dispersion, the point

nternal and external conductivities of = 0.53 S/m, andr, = 0.01 S/m,

shifted toward the longest axis with the highest charactergecrease in tha¢ amplitude, with respect to the low-frequency plateau,

istic frequency (compare to Fig. 6).

Geometrical simplifications
The spheroidal and cylindrical shape

The reduction of the general ellipsoidal cell shape to
spheroidal shapeb(= c) is a significant simplification,

because it allows for the introduction of closed expressions d =

for the depolarizing factors into Eqg. 4 to obtain the influ-
ential radii for Egs. 8, 17, and 18, respectively (see Appen
dix).

The cylindrical shape is the limiting case of an infinitely
long spheroidl§ = c; a >> b, ¢) and the depolarizing factors
for this shape are well defined(= 0, n, = 0.5,n;, = 0.5).
These factors result in influential radii af.; = &, b,; =
2b, andc;,; = 2c (Eqg. 4) which allow for a further simpli
fication of Egs. 8, 17, and 18, respectively. For the cylin-
drical shape, also the local vector expression (Eq. 13) can
simplified.

The oriented ellipsoidal cell

a

A

are marked. Please note that these characteristic frequencies increase with
the length of the axis oriented in field direction. The frequencies are given
by Eq. 8.

considered point to the symmetry plane is solely given by
the x-component of Eq. 13 (Figs. 1 and 4),

abccosa cosp
\e”(az sir? B + b? cos B)c? cos a + a?b’sif o
(19)

Like in Fig. 5, a describes the angle relative to theb
plane, B, the angle within this plane. The external field is
oriented at 0°, 0°. Introduction of Egs. 8 and 19 into Eq. 9
results in a Schwan equation for oriented cells of the general
ellipsoidal shape.

Figure 6 presents the frequency dependenckdoét the

ree poles of a cell model of the general ellipsoidal shape
according to Eq. 9A¢ was calculated for a hypothetic cell
with the geometry of chicken erythrocytes and the electric
parameters of human erythrocytes at an external conductiv-
ity of 0.01 S/m. For these parameters, deviations of the
curves obtained from Eq. 9 and from the complete model

t

For oriented cells with the shape of a general ellipsoid(Eq. 6) were found in the higher frequency range. Whereas
spheroid, cylinder, or sphere, a number of simplificationsthe curves obtained from Eq. 9 smoothly approach the zero
can be introduced. For the general ellipsoidal shape, we cafi¢, the complete model exhibits small, additional plateaus

start from Eq. 9. For example, when semiaais oriented
in the direction of the external field, the symmetry \@®

in the high frequency range. After a strong decrease, two
more plateaus are reached. For our conditions, the first

planes of the local and the cytoplasmic fields are defined bylateau is due to the capacitive bridging of the external

the semiaxe® andc. Consequently, the distanceof the

medium element already at relatively low frequencies (at a

Biophysical Journal 81(4) 1888-1896
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few MHz). The time constant of the external medium ele-Eqgs. 8 and 9 can further be simplified using the relatp
ment is larger than that of the cytoplasmic element. The= 3R/2.
constant plateau level at very high frequencies is reached
when the voltage divider properties are completely deter-
mined by the permittive properties of the media. As can be L .
seen from Fig. 6, thé\¢p amplitude and the-3-dB fre- Electric simplifications
quency differ for the axis oriented in field direction. The Simplifications of the model can also be introduced for
longer the axis in field direction, the higher the amplitude. certain electrical properties. For example, a zero membrane
This is the case, although the maximum field amplificationconductance can be assumed (see Egs. 8 and 9 or 18). The
factor along the oriented axis, given byq/a = 1/(1 - ny)  strongest electrical simplification that can be thought of was
decreases with the axis length (see Fig. 1 and Eq. 4)ntroduced by Fricke, leading to Eq. 1 (Fricke, 1953). Fricke
Obviously, the decrease of the amplification factor is over-yssumed an oriented ellipsoidal cell with negligible mem-
compensated by the increase in the axis length. Experimefyane conductance and a highly polarizable cytoplasm. In
tally, these relations can be conveniently tested in a rotatingys case, the whole cytoplasmic surface will be at the same
poration field that scans the cell in a plane around tWOpotentiaI (e.g., OV). Thus, A at any surface point is
principal axes (Gimsa et al., 1992). In parallel with the axisgjrectly given by the potential at the surface that can be
length, the—3-dB frequency is shifted toward higher fre- .10 jated from the constant local field and the distance to
quencies. We suppose that the3-dB frequency must be e symmetry plane (see Fig. 1). According to these con-
roughly related to the mean membrane curvature of th%iderations, the angle dependence /of can easily be
considered cell pole. Nonetheless, this relation is not fu”yintroduced into Eq. 1 by exchangirafor the respective
uno_lerstood and currently subject of more detailed inveSti'expression fod. d is given by Egs. 19, 20, 21, and 22, for
gation. cells of the shape of a general ellipsoid, a spheroid oriented
with the symmetry axis perpendicular, or in parallel to the
The oriented spheroidal cell field, and a sphere, respectively. It should be mentioned that

Reducing the oriented elliosoidal sh i iented sph Kotnik and Miklavcic (2000) applied Fricke’s condition to
educing the onented eflipsoidal shape to an oriented spheg spheroidal cell with the symmetry axis in parallel to the
roidal shape allows for a further simplification. As dis-

cussed above, for spheroidal cells £ ¢), closed expres- field. Accordingly, their result is identical to the combina-
! P ’ P . tion of Egs. 1 and 21 for the respective depolarizing factors

sions for the depolarizing factors can be given. Further, i Egs. A4 and A5). Using Eq. 20 instead of Eq. 21 leads to

the oriented case, Eq. 18 can be reduced to Eq. 9. When t ﬁ . ; : )
symmetry axisa of the spheroidal cell is oriented perpen- the solution for the perpendicular orientation of the symme-
try axis to the field, missing in their paper (The respective

dicular to the field, the geometrical expression iven . : . .
9 P thg depolarizing factor for the other axis orientation can be

by Eqg. 19 is reduced to . .
y=q obtained from the relation of the three factors. See Appen-
abcosa cosp dix). For Fricke’s condition also a solution for the arbitrary
d=——5_ : (20)  orientation of th | ellipsoidal sh ily b
B2 Sir a + b2 Co2 a orientation of the general ellipsoidal shape can easily be
A derived. For an infinitely high membrane impedance, Eq. 17

For the parallel orientation of the symmetry axis to the field,can be significantly simplified. Introducing Eq. 13 into Eq.
Eq. 20 can further be reduced. In this case, points of equal7 |eads to

A¢ form rings at the membrane surface around the symme-
try axis. This feature reduces the calculation of the distance

. ) a
in between a surface point and the symmetry plane to the ?nﬂ CoSa cosf3
two-dimensional case of an ellipse with semiazesndb. b COS7y C0Sd
To describe the equipotential rings, it is sufficient to define Ad = gf' cosa sinB || cosysind
a single anglep with respect to the symmetry axis. Eq. 20 sinvy
can be transformed into Cinfl sin
c
abcose N
4= ya?sirt ¢ + b?cog ¢ (1) |E| abc
\(@ sin® B + b? cos’ B)c* cos o

The spherical cell (23)

For a sphereg = b = ¢ = R) Eq. 21 becomes the

well-known expression, It should also be mentioned, that from a physical point of

view, Fricke’'s condition reduces th&¢-problem to the
d = Rcose. (22)  simple problem of the potential distribution at the surface of
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an ellipsoidal cavity in a dielectric, leaving a cell model that depolarizing factors,, n,, andn. depend on the axis ratigg= b/aand

misses almost any physiological property. 8 = cla. They are given by

Bd
SUMMARY %=:¢__y(1_35<U%k¢)—LEwﬂmx
The presentedA¢ expression (Egs. 17 or 18) is the Bd 52

complete Schwan equation fulfiling demands (i)—(vi), ™= —Na+t 1-8 (3-8 LE(k, ¢) — pZ— &
raised in the Introduction. The derivation is based on the v

influential radii (Fig. 1, Eq. 4) that allowed us to put up Bé B2

a lump model that almost precisely reflects the Laplace M=~ 7 — & (B — ) LE(k, ) + B o (A1)
solution (for details see Gimsa and Wachner, 1999). The N

advantage of this approach is the easy simplification OLF and LE are the elliptical integrals that are functionsafnd¥. k and
the mathematical problem to be solved. Canceling the¥ also depend on the axis ratios according to

permittive elements of the cytoplasm and the external i 5

solution and introducing area-specific membrane proper- Kk = 732 and ¢ = arccoss). (A2)
ties lead to Eq. 18. Thus, Eq. 18 contains the area- V1-6°"

specific conductance and capacitance of the membrane
and the conductive properties of the internal and external

media. These parameters can be replaced by other phys-
iological properties, like permeabilities, ion concentra- LF(k, ¢) =J
tions, etc. (DeBruin and Krassowska, 1999; Gimsa et al.,

1989). Long cylindrical cells or axons can be modeled by

the limiting case of the spheroidal shape, an infinitely ¥

long cylinder. Principally, Eq. 18 can also be extended by LE(k, ) = J vl — K sir? ¢ do. (A3)
a surface-conductance term according to Grosse and 0

Schwan (1992). Nevertheless, the surface conductance

introduces lateral membrane currents that are neglecte-aqe sum of the depolarizing factors along the three principal axes is always
in the finite element ansatz unity (n, + n, + n. = 1). For the sum of the relative influential radii from

- . L Eq. 4, it follows thate/a,, + b/b,,q + c/c,s = 2. For numerical values of
Under certain experimental conditions, the cell prop-the depolarizing factors refer to Bernhardt and Pauly (1973) or Fricke

erties may be subject to a time-dependent change. Th@953).
cytoplasmic conductivity may, for example, change due Fc_)r oblate and pro!ate spheroids closed, explicit expressions can be
to ion Ieakage through field-induced membrane poresobtalned (see, e.g., Stll'le'1944). For the oblate case p) the factorn,

. . . along the symmetry axia is
(Gimsa et al., 1989). Modeling these relations may, e.g.,
be important in investigations on the dielectric membrane 1+ _
breakdown (DeBruin and Krassowska, 1999; Marszalek Na= g (e —arctane) with e= \(b/a)’ -1
et al., 1990). An AC field below the frequency of mem-
brane dispersion may, in parallel to thep induction, (A4)
induce a compression of the cell (Sukhorukov et aI.,anol for the prolate casa ¢ b):
1998). Such time-dependent geometry changes, in turn,
influence the inducead¢ and can be modeled by Eq. 9. 1-¢ 1+e . ——
The time-dependent charging and discharging of the ™a= 53 ('09 1—e Ze) with e= |1 - (b/a)®
membrane can be modeled when the frequency depen-
dence is transformed into a time dependence. (A5)

The elliptical integrals are then

[
— ¢,
LK sir ¢ ¢

In Egs. A4 and A5g stands for the eccentricity of the spheroid. From the
sum of the depolarizing factors along the three principal axes being unity,
it follows that, for the spheroich, = 1 — 2n, with a being the symmetry
axis. For spheresa(= b = c), all factors are 1/3.

APPENDIX:

THE DEPOLARIZING FACTORS
We are grateful to Ms. Ch. Mrosek, Ms. S. Gauter, and Mr. S. Lippert for

For spheroids, analytic equations for the depolarizing factors were first "~ ’ ) ) )
derived by Stratton (1941) and more detailed by Stille (1944). Thethelr ass!stance and to Dr. U. Gimsa and Mr. R. Sleigh for help with the
depolarizing factors were extended to the general ellipsoidal shape ir[]nanuscrlpt. Dr. H. P. Schwan,_ Dr. ‘]',H' BernhardF, and Dr. P. Marszalek
1945, independently by Stoner (1945) and Osborn (1945). Dependin@re acknowledged fc_Jr fruitful discussions on the history of the transmem-
on the axial ratio of the ellipsoid the depolarizing factor along a given rane voltage equations.

principal axis can take on values between 0 and 1. For the generdD.W. is grateful for a grant by Nachwuchistierungsgesetz des Landes
ellipsoid with the three principal axes b, andc anda > b > c, the Berlin (NaF@G).
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