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Quantitative Comparison of Algorithms for Tracking Single
Fluorescent Particles

Michael K. Cheezum, William F. Walker, and William H. Guilford
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 USA

ABSTRACT Single particle tracking has seen numerous applications in biophysics, ranging from the diffusion of proteins in
cell membranes to the movement of molecular motors. A plethora of computer algorithms have been developed to monitor
the sub-pixel displacement of fluorescent objects between successive video frames, and some have been claimed to have
“nanometer” resolution. To date, there has been no rigorous comparison of these algorithms under realistic conditions. In this
paper, we quantitatively compare specific implementations of four commonly used tracking algorithms: cross-correlation,
sum-absolute difference, centroid, and direct Gaussian fit. Images of fluorescent objects ranging in size from point sources
to 5 um were computer generated with known sub-pixel displacements. Realistic noise was added and the above four
algorithms were compared for accuracy and precision. We found that cross-correlation is the most accurate algorithm for
large particles. However, for point sources, direct Gaussian fit to the intensity distribution is the superior algorithm in terms
of both accuracy and precision, and is the most robust at low signal-to-noise. Most significantly, all four algorithms fail as the
signal-to-noise ratio approaches 4. We judge direct Gaussian fit to be the best algorithm when tracking single fluorophores,
where the signal-to-noise is frequently near 4.

INTRODUCTION

Single particle tracking is the use of computer analysis 0fl992; Schitz et al., 1997). Some groups have claimed
video images to follow the sub-micron motion of individual “nanometer” resolution. Unfortunately, there have been no
organelles, microspheres, and molecules under microscopgtudies quantitatively comparing the efficacy of these algo-
observation. This technique has seen numerous applicatiomshms under a variety of conditions. Complicating matters
in biophysics, including the diffusion of proteins in cell is the fact that many laboratories develop custom-written
membranes (Ghosh and Webb, 1994), kinesin-driven movezomputer programs for analyzing the data, and incorporate
ment of beads on microtubules (Gelles et al., 1988), and thadditional thresholds and filters to improve the consistency
myosin-driven movement of actin filaments in vitro (Work of their results. This shortcoming is of particular concern
and Warshaw, 1992). Using this technique, investigatorsince the advent of single fluorophore imaging, in which
have been able to estimate the diffusion coefficients okingle fluorescent molecules are observed using intensified
proteins in cell membranes and the step displacements getideo cameras (Sonnleitner et al., 1999; Setet al., 1997;
erated by “molecular motors.” For an excellent overview of Goulian and Simon, 2000). The signal-to-noise ratio (S/N)
the technique, see Saxton and Jacobson (1997). in these studies can be as low as 3 or 4 (Kubitscheck et al.,
A plethora of methods have been used for tracking singl€000). Thus, finding the best algorithm for use under these
particles. All include two basic steps. The first is segmen-conditions, and knowing its limitations, is vital.
tation, in which multiple particles in a field of view are  Tracking algorithms may suffer two sorts of errors—
identified and discriminated. Subsequently, an algorithmdeterminate and indeterminate. Determinate errors are the
tracks the particles individually to monitor their displace- result of inaccuracies inherent to the algorithm, systemati-
ment between successive video frames. The performance ghlly biasing the results toward incorrect values. Indetermi-
the tracking algorithm (rather than the segmentation algonate errors, as the name implies, cause the individual mea-
rithm) defines the fundamental performance limit of the surements to fluctuate randomly, and generally result from
method. sensitivity to underlying noise in the data. Measures of these
Tracking algorithms used to date have included crosstwo error types are colloquially referred to as the “accuracy”
correlation of subsequent images (Gelles et al., 1988; Kuand “precision” of the algorithm, respectively.
sumi et al., 1993; Guilford and Gore, 1995), calculating the |n general, investigators assess the efficacy of the track-
center-of-mass (centroid) of the object of interest (Ghoshng algorithm by tracking the position of a stationary object,
and Webb, 1994; Lee et al., 1991), and directly fitting and taking fluctuations in the measured position as a mea-
Gaussian curves to the intensity profile (Anderson et al.gyre of accuracy or precision. Although this technique may
be used to set a lower bound on the detectable motion of the
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assumption that the S/N fully determines the accuracy of the A
apparatus and algorithm (Sdhet al., 1997). However, the
accuracy and precision of a tracking algorithm are depen-
dent upon the noise, the position of the source relative to the
imaging array, the shape and intensity of the object, and the
spatial resolution of the imaging system. =
The purpose of this study is to quantitatively compare the l .

High-resolution
Image

efficacy of four commonly used tracking algorithms: cross- SIS ok
correlation, sum-absolute difference (SAD), centroid, and

direct Gaussian fit. Images of fluorescent particles with | cCDImage
diameters both greater than and less than the wavelength ¢ -

the emitted light {) were computer generated, convolved e
with an appropriate point-spread function, and resampled & ===
with known sub-pixel displacement into a lower resolution
array representing a video camera. Shot noise was added 1
give S/N ranging frone to as low as 1.3. One thousand
iterations of image pairs were compared with specific im-
plementations of each of the four algorithms for every
combination of actual displacement and noise level. The
bias error (accuracy) and standard deviation (precision) of
the algorithm were determined by comparison to the known 4=
displacement. We show that, for the case of a sub-wave:
length diameter particle, direct Gaussian fit to the intensity
distribution is the superior algorithm in terms of both accu-
racy and precision. However, all four algorithms fail as theFIGURE 1 @) Schematic illustration of the process of image simulation
S/N approaches 4. Cross-correlation offers the best perfOﬁmd testing. A high-resolution image matrix is created that is subsequently
mance of the four algorithms when the diameter of theshifted relative to and integrated to generate a matrix representing a CCD

ticle is=\. Th data h . tant ificati f camera. For each of 1000 iterations of the tracking algorithms, shot noise
particie 1S=A. ese data have Important ramincations for ;g applied to the CCD imageB) Generated image of a point source object

single fluorophore imaging, where the S/N is frequentlywith shot noise. The mean white level is 40 photoelectrons and the mean
near 4. background level is 10 photoelectrons. Each pixel is 100 nm in width.

Repeat 1000X

Noise Added

Track Particle

Centroid

Gaussian Fit
Cross-correlation
Sum-absolute Difference

MATERIALS AND METHODS r is the distance from the origin, NA is the numerical aperture of the
objective (1.3) is the wavelength of light (570 nm), ardgl is the Bessel
function (Young, 1996). The PSF has a radius (RS6) of approximately
To create an accurate model for a fluorescent object imaged with &-27#m (=30 pixels in the high-resolution object function). We acquired
charge-coupled device (CCD), we first created a high resolution matrixN€ convolved image by multiplication of the original image and the PSF
containing the initial, noise-free object function (i.e., image) of the particle'” Fourier space, and inverse transformgtuon_ No '5|gn|f|cant magnitudes
to be tracked (Fig. B). Each cell in the matrix contains the corresponding Were found at the edges of the matrix prior to the inverse transform. The
intensity of the target in space. Three target sizes were used: a point sourBQiNt source, represented as one pixel in the high-resolution image, takes
(d < \), a cell-sized objectd > A), and an object on the scale of the on Fhe s.cgled intensity dlstrlbutloq of the PSF. Larger objects retain their
wavelength of lightd ~ A). Assuming a fluorescence emission wavelength PaSic original shape but appear diffracted.
of 570 nm tetramethylrhodomine isothiocyanate (TRITC), high-resolution
object functions were created of targets sized one pixel (9 nmui@,5and CCD image construction
5.0 um in diameter. The object functions were constructed by assigning a
“white level” of 10,000 to each element within the radius of the object, andtnhe ccD image was constructed by integrating over rectangular regions
a "black level” of 0 to all other cells. These levels were later scaled.  corresponding to CCD pixels to form a smaller matrix representing a CCD
Objects viewed through a microscope are distorted by the point—spreafhcepme (Fig. 1). The CCD matrix was assumed to cover the same
function of the objective. To more faithfully model the distribution of physical dimensions as the high-resolution matrix, but Withthe reso-
intensities in the high-resolution image, we convolved the high-resolutiontion. The factor of eleven was chosen so that the peak intensity of a small
object function with an appropriate point-spread function (PSF), object would be centered on a CCD matrix cell rather than a cell boundary.
23 2 By shifting the high-resolution matrix by one high-resolution element
PSRI’) _ ( 1(ra)) (1) relative to the CCD, and then integrating the underlying cells, we were able
r ! to simulate relative displacements of less than one pixel on the CCD. We
assumed an objective of 180magnification, resulting in 0.Lum/pixel in
where the CCD matrix, which is typical of values reported in the literature.
27NA A collection of noise-free CCD_ image; with diﬁgrent r(_alative_displace—
a= (2) ments was created by convolving object functions with point spread
A functions and then integrating. These images were subsequently scaled to

Image models
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give a black level of 10 (assumed to be the photoelectrons/pixel/frame)Gaussian fit

and a white level between 15 and 1000.
The equation of a two-dimensional (2D) Gaussian curve is of the general

form

Noi del — X)? — Yo)?
oise mode Gix y)=A-eXp[—(X Xo) —I;(y Yo) @

Intensifiers for CCD cameras generate shot noise in the image (Ryan et al.,
1990). Shot noise is a Poisson process (Papoulis, 1984) where the noise
increases as/N, N being the number of detected photons or photoelec-WhereXO is thex coordinate of the center of the curve, afcndB are
trons (Ryan et al., 1990). Shot noise was simulated in our experiments b¥onstants. The peak of the point-spread function, and therefore the
drawing a random value for each pixel from a Poisson distribution of mear]ntensity distribution of a point source, is well approximated by a
N (Press et al., 1997), whef¢ is the level for that particular pixel (see g4 ggjan. Thus, directly fitting the above equation to images of sub-
previous paragraph). This value was used as the measured intensity for ”Wavelength particles has become a common method of particle tracking
pixel. Anderson et al., 1992; S¢twet al., 1997). We fit a 2D Gaussian using

The resu_lt IS a real|st|_c Image repr_esentlng a quoresc_ent pa.rtlcle %4 simplex algorithm with a least-squares estimator (Press et al., 1997),
known location imaged with an intensified CCD camera (Fig)INoise 5 10ing the constants and B to float. As in centroid, independent

was generated independently for every trial of the tracking algorithm. fitted values ofx, and y, are subtracted to find the displacement
between any two images.

Tracking Algorithms

Algorithms for tracking the motion of single particles may be divided into Correlation

two basic cgt_egories. The fir_st c_ategory_is algqrithms that estimgte th?:orrelation (COR) is more computationally intensive than the above tech-
absolute positions of the particle in each image independently. This cateﬁiques (Gelles et al., 1988). This method compares an inlage4 kernel

gory in_cludes the center—c_)f—mas_s, or cgntroid, algorithm, and dire(?t fits of(K) of a successive imag&., which contains the object being tracked, is
Gaussian curves to the intensity profile. The second category 'nC|Ude§hifted relative td in one-pixel increments. For each increment, a corre-

algorithms that estimate the change in position of a particle by comparingation value is calculated that describes how well the valug< imatch

an image t‘o one subsequent. This category includes cross-correlation a%se of the underlying image, At the relative shift wher&k and! are

SAD algorithms. most similar, one finds a maximum in the correlation mati, The
cross-correlation betweef and| is given by

Centroid n—1m-1
Comparing the center of mass or centroid of two successive images of a xxvy = E E IX+i,y+i{Ki,J}1 ()
particle is a computationally simple and efficient method for estimating the i=0 j=0

distance an object has moved. For our purposes, an image is a imafrix

intensities that contains both an object and a background. Eq. 3 gives thgpqe x andy describe the distance the kerriél has moved over the
centroid calculation for a single axis. original imagel. If K and| are similar except that the object in the image
has translated along theaxis by p pixels, then the resulting correlation
nom nom matrix will have a maximum in ceK, ;. The kernel dimensions were fixed
C,= 2 E(Xi . |ij) E 2 iy (3) at 30 X 80 in th_ls study, irrespective of _objegt diameter, to generate
unbiased comparisons among different object sizes.
Correlation tends to match the brightest regions of two images rather
) ) ) ) ) ) ) than the best topographical fit, resulting in errors in some cases. To
wherex; is the coordinate of a pixel on theaxis, and; is the intensity of  gjjeviate this problem, one may use normalized correlation. Each value in
that pixel. To calculate the distance an object has mo@gds calculated  the correlation matrix is divided by the root mean square (RMS) of the
for one image and subtracted fro@, for a subsequent image. This original image intensities, as shown in Egs. 6 and 7.
equation assumes that the intensities of the object have higher numerical
value than the background (not the case in all computer programs). Al-

i=1j=1 i=1j=1

though this approach is valid for asymmetric particles, the method is n-im-1 |X+iy+j{Kij}
especially susceptible to changes in particle shape and orientation between XN,y = 2 2 W , (6)
successive images. i=0 j=0 Xy K

It is vital to exclude as much of the image background as possible,
lest it strongly bias the centroid calculation to the center of the image.

This is accomplished by setting a threshold (expressed here as a fraction n—1m-1 n—1m-1
of the peak image intensity) that a pixel must exceed to be included in _ 12 _ 2
the calculation. There are two methods of handling thresholds. In "%y Z 2 [l X*"y“] My = z E [K'vl] )

simple thresholding, values below the threshold level are assumed to be i=0 j=0 i=0 j=0

zero, whereas those above threshold are unaltered (in the centroid

calculation, this is numerically equivalent to subtracting the thresholdn andmare the dimensions &, andM, andM,, ,, are the RMS values of
value from all pixels, and setting negative values to zero). Morethe kernel and the overlapping portion of the image, respectively.
commonly, binary thresholding is used, where values below threshold Normalized covariance is an extension of this concept intended to deal
are taken to be zero, whereas those above are taken to be one. We testeith situations where the image and the kernel have a relative offset in

both methods. intensity. In this method, one subtracts the mean of keé¢rnfebm each cell
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in K, and subtracts the meanirin the overlapping region from each cell x andy are solved directly using the equations
in |. Eq. 10 describes the normalized covariance calculation.

_ 2 2 iy
- ]

IX,)’

X = D2 Yo = C/2€. (14)

(8) Cosinusoidal interpolation was accomplished as in deJong et al. (1990).

n-m The peak of the correlation function relative to the reference image is given
by
-1 -1
R = =0 Ejnlo Ki,j 9
= 9 Smax = —0lw, (15)
_ _ wherew is the angular frequency aridthe phase of a cosinusoid, given by
n-im-l [leriy+ — eyHKi; — K} the equations,
Ny =2 X YRS Y| (10)
i=0 j=0 Py K [ ZXo, Yo) — Z(X-1, Yo)
o) 0s , (16)
22(x1, Yo)
Sum-absolute difference
6 — tant Z(Xo, Yo) — Z(X_1, Yo) 17
The SAD method determines the translationl atlative toK that mini- 22(X4, Yo) * SiNw (17)

mizes the sum of absolute differences between the overlapping pixels,
The notation designating the cells in the COR/SAD matrix is the same as

k-1 k-1 in the description of parabolic interpolation, witfx,, y,) designated as the
SAny = E 2|Ix+i v+~ Kij|_ (11) peak intensity in the matrix. The above implementation is for one-dimen-
T isoj-0 ’ sional fitting only.

Finally, one can use a Gaussian to fit the peak in the COR/SAD matrix.
In contrast to the algorithms above, if the object in the image has translate/e used a simplex algorithm (Press et al., 1997) with a least-squares
along thex axis by N pixels, then the resulting SAD matrix will have a estimator to fit a Gaussian to the maximum and four nearest neighbors.
minimum in cellS_y ,. Although this algorithm has never been used for
tracking fluorescent particles, it is a standard algorithm for tracking the
motion of features in medical imaging (Bohs et al., 1993). We includedimplementation

tests of this algorithm for completeness.
As previously indicated, the background level was held constant at 10

photoelectrons/pixel. Altering the maximum photoelectron count for the
Interpolation methods object (white level) between 15 and 1000 photoelectrons/pixel changed the
signal-to-noise ratio of the image between 1.3 and 31.2. We also consid-
The centroid and Gaussian fit methods inherently return sub-pixel estimates @fred the deterministic case of SAN % (no noise). The original high-
distance moved because the position is calculated as an average over a seteé¥olution matrix was displaced by one or more high-resolution cells over
coordinates. However, methods that compare subsequent images return dise CCD matrix, resulting in known displacements of the object in multi-
crete matrices, and thus offer only whole-pixel estimates. To achieve sub-pixglles of Y11 CCD pixels, or the equivalent 6£9 nm.
resolution, the correlation, covariance, or sum-absolute difference matrices One thousand trials of each algorithm were performed for each condi-
must be interpolated to find the maximum or minimum. tion of distance moved, S/N, and threshold level (for centroid) to obtain a
The data in the SAD or correlation matrices form quasi-paraboloidbias B) and standard deviatiom for the condition,
meshes, where the y, andz-coordinates arg andy distances moved, and
the corresponding sum-absolute difference or correlation values, respec- B=(a—2a o={(@a—{a)’+ (18)
tively. Three functions were used to interpolate our data: paraboloid,
consinusoid, and Gaussian. We used closed form solutions to fit parabd=rror for the bias is equal te for the same condition. Error far was
loids and cosinusoids to the maximum and four nearest neighbors in théetermined by calculating for 10 sets of 100 successive iterations, and
correlation matrix (or minimum in the SAD matrix). Briefly, a parabaloid taking the standard deviation of the resulting independent estimates. The

defining a 2D surface is described by original high-resolution images were created using MatLab on an IBM
RS6000 43P workstation. All subsequent numerical experiments were
z=a+ bx+cy+ dx¥ + ey (12)  conducted on a Intel Pentium class microcomputer (Dell Optiplex) using

code written in Borland € +. Graphs were generated using SigmaPlot
x and y designate the coordinates within the correlation matrix. The (Spss Inc.).

coefficients in Eq. 12 are obtained from the cell containing the peak of the
correlation,z(X,, Yo), and the four immediately surrounding points on xhe

andy axes: RESULTS
a = 2(Xo,Yo) Thresholding in centroid
b= %(z(xl, Yo) — Z(X_1, Yo)) For point source objects, the precision and accuracy of the
centroid algorithm were critically dependent upon the
c= %(z(xo, Vi) — Z(Xo, Y-1)) threshold level applied to the image. As expected, lower
thresholds give poorer results at low S/N. With no threshold
d= —2z(Xy, Yo) + %z(xl, Vo) + %z(x,l, Vo) applied to the image, bias remains high at all S/N levels

(Fig. 2A). This is because all the background pixels in the
e= —2z(Xo Yo) + %z(xo, yy) + %z(xo, y_1)  (13) image are included in the center-of-mass calculation, bias-
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peak in theo versus S/N plot approaching 3 pixels for an
80 X 80 region of interest, typically at4 S/N. Increasing
the threshold results in a shift of this peak to lower S/N,
suggesting that higher thresholds are preferable. However,
at a threshold of 0.8, the drops to zero above 13.4 S/N.
Indeed, at a S/N of 31 and thresholds 0.8 and 0.2, we find
o = 0 and B = —(actual distance moved) for certain
sub-pixel displacements (not shown). These “discontinui-
ties” in the trend ofo- versus S/N result from a strong bias
to the nearest pixel, giving the same result in each trial.
Obviously, sub-pixel performance is severely compromised
at these threshold levels. A threshold of 0.4 returned the
lowest bias andr at moderate S/N while maintaining sub-
pixel performance ¢ # 0). Thus, a threshold of 0.4 was
used for the remaining comparisons.

We compared two methods for thresholding, described in
Methods. We found that binary thresholding—converting
pixels above threshold to 1, and those below threshold to
0—resulted in higher biases and discontinuous relationships
amongo, S/N, and actual displacement (data not shown).
Simple thresholding, where all values below the threshold
were set to 0, was used through the remainder of these
studies.

Normalized correlation and covariance

Normalized correlation and normalized covariance per-
formed similarly under all conditions to non-normalized

FIGURE 2 @) Bias versus S/N and threshold in centroid for a point Cross correlation, except at SA{ 3, where the differences
source target. Actual displacement was 1 pixel. Negative bias is toward thin performance were trivial. Thus, only non-normalized
reference (unmoved) image. Errors are represented in the lower pghel. (cgrrelation will be considered for the remainder of the

Standard deviation versus S/N and threshold in centroid. Error bars indicatﬁ,]
one standard deviation. Threshold values are indicated in the graphs.

Standard deviation values of 0 are omitted.

anuscript.

Comparison of algorithms

Bias as a function of distance moved

ing the result toward the geometric center of the image.
Thus, the bias is always roughly equal in magnitude to théBias was periodic for centroid, COR, and SAD as a function
actual displacement. Increasing the threshold (limiting theof actual distance moved, with a period of 1 pixel (Figh)3
pixels included in the centroid calculation to only the bright- Qualitatively, bias above one pixel of actual movement did
est) results in less bias at lower S/N. However, no signifi-not differ from bias below one pixel. For example, bias for
cant improvement is seen at any threshold level below 3.@ given algorithm will be the same at 0.3, 1.3,,2.3. pixels
S/N. actual displacement, except at very low S/N where the
The relationship between and S/N is more complex algorithms cease to function. At these “limiting” S/N, bias
(Fig. 2B). At 1.3 S/N, o returned by all threshold levels are will often scale proportionately to the actual displacement.
low and roughly equal~0.1 pixels). At such a low S/N, However, for simplicity, we will only consider actual dis-
even a moderately high threshold (expressed as a fraction placements over the range of 0—1 pixel.
the peak intensity in the image) includes many background Only the highest S/N is shown in Fig. 3. Although the
pixels in the centroid calculation. As a result, the back-magnitude of the bias increases with decreased S/N, the
ground pixels in the image bias the result toward the georesults are readily generalized to lower S/N. For all algo-
metric center of the image, giving a consistent result in eachithms, bias is approximately zero at multiples of 0.5 pixels.
trial. At slightly higher S/N, many fewer background pixels For COR and SAD, bias is toward the nearest whole pixel
are included in the centroid calculation, which introduceswith a maximum bias at-0.3 pixels actual distance moved.
tremendous variability into the position estimates, evenAt high S/N (31.2 in Fig. 3A), bias reaches a maximum of
though they become more accurate. This is reflected in &0.1 pixel in the case of SAD. COR was nearly an order of

Biophysical Journal 81(4) 2378-2388



Algorithms for Single Particle Tracking

2383

0.15 20
A —e—— Gaussian A
0.10 o Centroid
A0 | ——=+—- sAD _ = >
—~— COR o /r’ ‘\\ 02
@ 005 | S ! @ 00
o o o J N @
x ) g vV —e \\ X
2 000 e St A e ey 2 02
] N e e o
o] Y A © S
m -0.05 . J o o4
v\\y,,v/ © —e—— (Gaussian
-0.10 _ -0 Centroid
0.6 SAD
e
-0.15 : ‘ ; — < —- COR
0.00 0.25 0.50 0.75 1.00 100
0.1
B B
o o
o ’___'\\ e
o]
) ’ / A m
[} /v’ ® —_
™ ¢ \ Q
-y : d N ) X
~ : Pl o — \'\ o
[} .F_—.‘/'L‘.?o,//o—o—\—hﬁo\._’“ ;
S ' R
r - 1
0.01 ‘ : ;
0.00 0.25 0.50 0.75 1.00 0.01 1 1‘0 100
Actual Distance Moved (pixels) SIN

FIGURE 3 @) _Bias_ Versus ac_tual distance moved _for a point SOUrCer1GURE 4 @) Bias versus S/N for a point source targ®t:Gaussian fit;
target. ®, Gau_55|an fitO, centroid; V, sum-ab.solu.te d_lfference; a@, . O, centroid; ¥, sum-absolute difference; and, cross-correlation. Actual
cross-correlation. S/IN was 31.2. Note that bias in direct Gaussian fit iSjistance moved was 0.27 pixels. Errors are given in the lower padjel. (

largely independent of dl_sta_mce moved. Errors a_lre represented in the |0W%’tandard deviation versus S/N. Error bars indicate one standard deviation.
panel. B) Standard deviation versus actual distance moved. Note that

variance in direct Gaussian fit is largely independent of distance moved.

Error bars fall within the symbols. troid returned the lowest at whole and half pixel move-
ments, and highest at intermediate motions. COR returned
the lowesto overall, whereas SAD and centroid returned the

magnitude less biased under the same conditions. The$éghest.o did not change significantly when cosinusoidal

values are not significantly different from the performanceinterpolation was used instead of parabolic.

at infinite S/N (data not shown). Peak bias was reduced by

25% by using cosmu.sgldal mterpolaﬂon rather than paray. o < a function of SIN

bolic, so all the remaining data use cosinusoidal interpola-

tion. In contrast, centroid was biased toward the midpointrigure 4 shows bias ana as a function of S/N for 0.27

between adjacent pixels, reaching a maximum bias opixels moved. An actual displacement of 0.27 pixels was

~0.08 pixels at high S/N. Direct Gaussian fit to the imagechosen because it results in the greatest overall bias (see Fig.
was effectively unbiased and independent of actual dis3). However, the results generalize readily to all displace-
placement. ments. At low S/N, the relationship between bias and S/N is
relatively complex (Fig. 4\). At S/N = 1.3, the two com-
parative algorithms, COR and SAD, choose nearly random
locations within the matrix. Biases in this case may be

Standard deviation at the highest S/N was independent andomly high or low in any given round of simulations, but

actual distance moved for direct Gaussian fit=a0.02 fall toward zero at S/N= 3.6. Similarly, Gaussian fit is free

pixels (Fig. 3B). In contrast,o returned by the three other to return values outside the actual image boundaries, which

algorithms was highly dependent on actual distance movedan result in very high biases at low S/N.

For SAD and CORg was lowest at whole pixel displace-  In contrast, centroid begins with a high bias at limiting

ments, and maximal at the midpoint between pixels. CenS/N, and falls monotonically toward zero. Centroid tends to

Precision as a function of actual distance moved
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TABLE 1 Approximate S/N at which bias and o drop below

0.2
0.1 pixels and 1.0 pixels, respectively, for various algorithms A
Algorithm SIN, 1pias SIN; o,

Gaussian fit 4.2 4.0 g

—_ i — MmNy O
Centroid 7.8 6.6 > 00 ¥ %5\;9 DA
Sum-absolute difference 6.9 8.1 X v o} v Vo
Cross-correlation 4.2 6.3 =

8 o

m -0.2 o

o
o Centroid

return the center of the image matrix at limiting S/N, and so T %R
the bias is approximately equal to the actual displacement g4

under these conditions. 1 10 100
As an arbitrary gauge of performance, we determined the
SIN at which the bias drops below 0.1 pixels on the de- g 10
scending limb of the bias versus S/N curve (Table 1).
Gaussian fit and COR performed best, returniti®y 1 pixels o Centroid
bias at S/IN> 4.2. In contrast, centroid did not retusr0.1 100 ™ T
pixels bias until S/IN> 7.8. The method of interpolation had
a negligible effect on the S/N at which bias fell below 0.1

pixels in COR or SAD.

101 ] oo TR

c (pixels)

Precision as a function of S/IN 102 4 -3

For all but one algorithm (centroidy; decreased monoton-

ically as S/N increased (Fig.HB). Standard deviation at 1.3 103 ‘
S/N for COR and SAD are equal, and fully explained as the 1 10 100
variance one would predict by choosing random locations SIN

within the COR or SAD matrix. Gaussian fit at low S/N

exhibits very higho, as the curve-fitting algorithm may FriGURE 5 @) Bias versus SIN for a Bm target: O, centroid; ¥,
return random values that fall outside the image. In contrasium-absolute difference; and, cross-correlation. Errors are given in the
centroid returned lows at 1.3 S/N, indicating that the lower panel. Actual distance moved was 0.27 pixels. The scaling is the
algorithm reproducibly finds the center of the image ratherS2Me s in Fig. 4. (B) Standard deviation versus S/N.

than the center of the object. For centroidjncreases as

S/N rises to 5.6 S/N, and then falls. Once again, as an

arbitrary gauge of performance, we determined the S/N at For SAD and CORg was highest at 0.5 pixels moved,
which o drops below 1 pixel on the descending limb of the whereas centroid displayed uniformwith respect to dis-

o versus S/N curve (Table 1). Gaussian fit performed th@ance moved at high S/N (data not shows)was approx-
best, reachingr < 1 pixel at S/IN~ 4. imately one order of magnitude lower at each S/N compared
tod << A (Fig. 5B). This is expected because a larger target
has a higher total energy, making motion estimation less
susceptible to noise. The resultsdat A were qualitatively
When the object is much larger than the wavelength of lighsimilar and quantitatively intermediate to thosedat<< A

(d > \), the profile of pixel intensities is no longer de- andd > A, and will therefore not be discussed.

scribed by a Gaussian. Gaussian fit has therefore been

omlttgoi from thI.S portion of thg anaily3|s. Among the thre.eDISCUSSION

remaining algorithms, correlation still performed the best in
terms of bias error (Fig. B). Bias versus actual distance We have demonstrated significant differences between
moved is reminiscent of that fat << A (Fig. 3A). How-  common implementations of particle tracking algorithms
ever, both COR and SAD remained<a0.1 pixels bias atall both in terms of their accuracy and precision. For particles
SIN tested. Centroid, in contrast, did not fall below 0.1that are smaller than one wavelength in diameter, direct fit
pixels bias until S/IN> 4.7. Overall, the bias for each of the of a Gaussian curve to the intensity profile may be judged
algorithms at low S/N was improved relative to tracking thethe best method by several criteria. This method achieves a
point-spread object, whereas, at high S/N, improvementgiven precision at lower S/N compared to the other algo-
were trivial. rithms tested. Further, both the bias and the variance are

Large objects
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independent of the actual distance moved—a characterist®eem to be an order of magnitude a more stringent require-
unique among the algorithms tested. When direct Gaussiament for accuracy, both requirements give conveniently
fit cannot be used, such as when the particle is much largesimilar estimates of the minimum required S/N.
than one wavelength in diameter, cross-correlation appears By these definitions, we can estimate that the limiting
to be the best choice. S/N for direct Gaussian fit is approximately 4. For compar-
Why does Gaussian fit operate with less bias than COR®%on, limiting S/N for cross-correlation, SAD, and centroid
Gaussian fit is similar to COR, in that a kernel (function) is are very roughly 6.3, 8.1, and 6.6, respectively. Quantita-
matched to an underlying matrix containing pixel intensi-tively, this agrees well with predicted values from Walker
ties. However, in Gaussian fit, the kernel is perfect—that isand Trahey (1994). None of these algorithms should be
noise-free and known to fit the intensity distribution acrossexpected to return believable results if the S/N is less than
the object. Thus, Gaussian fit operates at a lower effectivéhe corresponding limit.
S/N than COR (see Walker and Trahey, 1994). Alterna- Properly estimating the S/N is critical to application of
tively, when COR is used with a second or subsequenthese guidelines, but is most often calculated incorrectly.
image as a kernel, one would expect the error in the estiShot noise is proportional to the square root of the number
mates to increase by at least2 (Walker and Trahey, of photoelectronsd = V/'N). As a result, the noise level is
1994). Although this is often a trivial increase, it becomeshigher in pixels containing a fluorescent object than in the
important when S/N is limiting, as we have demonstratedbackground, even though the noise may be more visually
One might also generalize that, when tracking point sourcapparent in the background. Failure to account for this
objects, COR cannot match the precision of Gaussian fitgelationship may lead to very large errors in estimated S/N.
whatever the exact implementation of the algorithm. For example, assume a fluorescent object on an imperfectly
Our data comparing COR, normalized COR, and SAD dadark background. Assume that the mean photoelectrons/
not agree with a related study by Friemel et al. (1995)frame/pixel detected for the object is 144, while, for back-
These same three algorithms were used to track synthetground, it is 16. The mean RMS noise in these two regions
patterns representing speckle in ultrasound images. Friemef the image is expected to bé144and\/16, or 12 and 4,
found that normalized COR and SAD performed similarly respectively. S/N is calculated as the difference in mean
at all S/N, judged in terms of, whereas non-normalized intensity between the objectf and backgroundiy), di-
COR performed significantly worse and converged with thevided by a representative noise leve) (
others only as S/N became very high. However, there are
two significant differences between our two studies. First, SIN= (I, — Ip)/o. (19)

speckle patterns are continuous and relatively uniform. The | le. choosina far the back dRM
net effect may be to increase the effective spatial samplin hour exampie, Choosing ferh€ backgroun Soty)

density per object relative to a discrete object. Indeed as in Sonnleitner et al., 1999) would yield a S/N estimate of

144 — 16)/4, or 32. However, the RMS variation in the
tracking 5wm objects increases sampling density per objec N . ! . I
gow J Ping y P J F%\aekground is an inappropriate choice fgrbecause it is

relative to a point source, and we see that SAD and CO | t N ion in the i Thus. th .
converge in their performance (Fig. 5). Second, Friemef € lowest noise region in the image. Thus, the noISe over

dealt with additive noise rather than shot noise. WhateveFhe object §,) yields a more accurate estimate of S/N

the exact source of the discrepancies, the differences béh 11). Jhliwas the method used to determltr:e tge S/'\ég]
tween these two studies highlight the importance of under- this study. A more conservative estimate can be obtained by

standing tracking algorithm performance in each umquepmp""g""tIng the noise error, asap, + o (Kubitscheck et
imaging modality , 2000), which, in this example, ylelds SAM 10.

Limiting S/N Implications for single molecule imaging

One of the most important indices of algorithm performanceThese limits are of critical importance for the emerging field
is the limiting S/N. That is, what minimum S/N is necessaryof single fluorophore imaging. Whether detected using an
for the algorithm to function? We have rather arbitrarily intensified CCD camera (Goulian and Simon, 2000; Kubits-
defined “limiting” as that S/N at which the worst-case biascheck et al., 2000) or a spot-confocal system (Warshaw et
falls to 0.1 pixels and the standard deviation to 1 pixel atal., 1998), the S/N when detecting single fluorescent mol-
0.27 actual pixels moved. Although the choice of theseecules in real time is generally limited to approximately
limits is completely arbitrary, they do have some practical3—4. Although a S/N of 4.0 is just barely acceptable by our
relevance. At a standard deviation of 1 pixel, or 1 pixelcriteria, a drop in S/N from 4 to 3 increases bias by approx-
RMS, 67% of the time the algorithm can be expected tamately four-fold, and variance by two orders of magnitude
return the correct value to within 1 pixel. This then is awhen Gaussian fit is used! Thus, taking steps to maximize
reasonable gauge of the S/N needed for 1-pixel precisiorS/N is crucial when particle tracking is to be used with
Although the choice of 0.1 pixel's worst-case bias wouldsingle fluorophores.
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Claims of sub-pixel resolution region of interest, regardless of where the tracked feature
resides. Gaussian fits to a noisy image can return values
%ompletely outside the image unless artificially constrained.

vievze;gl with Zome hSkiptiﬁ ism.S/I:\I s trug thj‘t’ 3g1;i\£en d?“r COR and SAD may return random whole-pixel estimates of
conditions and at the highest examined (31.2), reChycation within the COR/SAD matrix. Further, the interpo-

Gaussian fit has a predicted mean accuracy (under %4tion function may give a value that lies outside the matrix

ﬁ'ssumed cclJlndkl]tlons) IOf 1 r:]m a;d a greC'Sl%Tﬂ nm.f boundaries. These effects can result in randomly high or low
owever, all these algorithms degrade rapidly in per Or'apparent biases on any given round of simulations.

mance below 10 S/N. Gaussian fit, for example, degrades to” ; - qarate-tox S/N. centroid. SAD. and COR can still
1Q-nm precision at-9 S/N, and to onI.y 100-nm precision (1 1, biased, though the underlying cause is not as apparent.
p|?<el) at 4'0 S/N. These values are in reasonablgggreeme&tentroid is biased because the centroid of a continuous
with Kubitscheck et al. (2000).'Reasonab|'e precision can b'ﬁmction need not equal the centroid of a sampled function
expected from all four algorithms at high S/N, though like an image). It has been proposed that sub-pixel bias in

predicted biases of several nanometers persist for all b OR and SAD resilts from the failure of the interpolation

Gaussian fit. Even here, one should consider additional Sourc?ﬁgorithm to accurately account for the shape of the peak in

of noise and inaccuracy that will undoubtedly decrease acCyp . COR/SAD matrix (deJong, 1990). Indeed, we have no a

ratl:y aFd. p'recr|15|on in all algorlthmsh(seﬁ L|m|ta]1(t.|ons)l. ith priori knowledge of the shape of the peak. The fact that
mplicitin these statements Is that the tracking algorithme i, s jqa| interpolation is less biased than parabolic an-

has been properly optlmlzed.. The centrom! aIgonthm, forecdotally supports this conclusion, as does visual inspection
example, has seen many variations. The size of the ima

K | the threshold level th ) f , h parabolic and cosinusoidal fits to our COR and SAD
ernel, the threshold level, the option of converting thej-qq (not shown). Direct Gaussian fit to the image is

imagg to binary before thresholding, and image averagin resumably unbiased because it accurately reflects the
(Goulian and Simon, 2000) can all affect the accuracy an hape of the peak of the PSF

precision of the algorithm. Assume, for example, that one To eliminate assumptions about the shape of the peak in

used centlrou.ji apd chose. Fhe threghold Ieyel to give th'?he correlation matrix, others have estimated the centroid of
lowest variability in the position of a fixed object. Although , peak (Gelles et al., 1988) instead of resorting to inter-

this is certainly an intuitive approach, the likely cause of the olation. This again requires the use of thresholds to isolate
low variability is that the investigator has chosen a threshol he peak in the centroid calculation—a parameter whose
that blasgs the algorithm con.S|s't.ent!y to t'he center Of theeffects must be carefully assessed. Further, the correlation
ngaregt pixel. Though the vqugblllty in estimated positions, -+ is a sampled function, so it is probable that the
might imply nanometer precision, the accuracy would aC%entroid of this matrix will be biased (see previous para-

t“f;‘”Y be on the orderlffhl pIXE! '(typlticaII);' 10;) nm). | q graph). However, we did not extensively test this particular
t is common to track the position of a fixed particle an implementation of correlation.

. o S I
use the variance of the positions as an indicator of both
precision and accuracy. However, such empirical tests of
tracking algorithm efficacy are lacking in two respects. Limitations
F|.rst, one does not .knOV\./ if the particle is truly mot|onle§s.|_his study focused on the simplest case of particle track-
with respect to the imaging system. Second and more im- . S

e ing—a point-source. The situation becomes much more

portantly, one does not know the actual position of the . . I )
. . . . . complex when the “particle” becomes greater in dimension
particle relative to the elements in the imaging SyStemthanA and when the particle is no longer symmetric. One
Without this knowledge, one cannot estimate the bias in the ' P ger sy '

tracking algorithm, which indicates the true accuracy of theexample IS the tracking of cell movements through laminar

: . .. flow chambers (Smith et al., 1999). Although our data on
measurement. Claims of sub-pixel accuracy and precisio

i o ; Huorescent objects>\ in diameter suggests excellent be-
(or even whole-pixel precision in very low contrast images)

X . . ) havior both in terms of bias ang, we did not simulate the
must be demonstrated in numerical simulations or more . . :
. . entire range of variables expected of a real, moving cell.
rigorous experiments than those performed to date. Thes

might include tracking of microspheres s;imultaneously(‘ge”s are not of predefined shape, can change apparent

through video and an alternative, higher resolution tech-Shape over short time spans, and are not ordinarily uni-

nique, such as back-focal plane interferometry (Allersma e{ormly fluorescent.
alq 1598) P y For the centroid calculations, we expressed the threshold

as a fraction of the noise-free peak image intensity, and it
was therefore constant for any given S/N. However, should
thresholds be thus applied to real images, the threshold
value for any given image will vary due to variations in the
At very low S/N, very large biases can result. At low S/N, peak intensity, and this may randomly vary the bias. If the
centroid tends to weight toward the geometric center of thédackground level of a series of images is relatively constant,

Claims of nanometer or even sub-pixel resolution should b

Origins of bias
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it may be adequate to set an absolute intensity for théheir existing software. We highly recommend the algorithm of
threshold. Otherwise, setting a threshold relative to thalirect Gaussian fit whenever a fluorescent point source is being
mean pixel intensity may be a better choice. tracked, particularly when S/N is limiting.

Another example of single particle tracking applied to
relatively large, asymmetric particles is the tracking of
myosin-driven movement of fluorescent actin filaments in
the in vitro motility assay (Work and Warshaw, 1992).
Measuring the frame-to-frame velocity of actin filaments
has proven a very fruitful technique. Although a number of REFERENCES
techniques have been developed for tracking actin fila- _ _
ments, centroid is the most common underlying algorithm* S, " oG e ing G Gell suriace recepiors by Muores
This is cause for concern, because the S/N in these exper-cence digital imaging microscopy using a charge-coupled device cam-
iments, which effectively involve single molecule imaging, era.J. Cell Sci.101:415-425.
is =5, and because the actin filament can change shape aAdersma, M. W., F. Gittes, M. J. deCastro, R. J. Stewart, and C. F.
orientation as it progresses randomly across the myosin- S;T;"ﬁft;?egrg'm ng&.ﬂg‘)ﬁ;ﬁ?j‘_%ﬁ%ﬁﬂﬂg;g_Cd motility by back focal
coated surface. If an asymmetric particle changes shape gfy,c | n. g. H. Friemel, B. A. McDermott, and G. E. Trahey. 1993. A
orientation during tracking, centroid will not always repre- real time system for quantifying and displaying two-dimensional veloc-
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fore a wholly valid measure (Uttenweiler et al., 2000). Actin deBeer, E. L., A. M. A. T. A. Sontrop, M. S. Z. Kellermayer, C. Galambos,
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llaments are only / nm wide, and can therefore be consid- assay has a periodic compone@ell Motil. Cytoskel.38:341-350.
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