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ABSTRACT It has been postulated that cardiac cell models accounting for changes in intracellular ion concentrations violate
a conservation principle, and, as a result, computed parameters (e.g., ion concentrations and transmembrane potential, V,,))
drift in time, never attaining steady state. To address this issue, models have been proposed that invoke the charge
conservation principle to calculate V,,, from ion concentrations (“algebraic” method), rather than from transmembrane current
(“differential” method). The aims of this study are to compare model behavior during prolonged periods of pacing using the
algebraic and differential methods, and to address the issue of model drift. We pace the Luo-Rudy dynamic model of a
cardiac ventricular cell and compare the time-dependent behavior of computed parameters using the algebraic and
differential methods. When ions carried by the stimulus current are taken into account, the algebraic and differential methods
yield identical results and neither shows drift in computed parameters. The present study establishes the proper pacing
protocol for simulation studies of cellular behavior during long periods of rapid pacing. Such studies are essential for
mechanistic understanding of arrhythmogenesis, since cells are subjected to rapid periodic stimulation during many

arrhythmias.

INTRODUCTION

Mathematical models of excitable cells have undergone a
remarkable evolution since Hodgkin and Huxley’s pioneer-
ing work in the 1950s (Hodgkin and Huxley, 1952). The
modeling paradigm established by Hodgkin and Huxley
uses the total current flowing through ion channels in the
membrane to determine the transmembrane potential (V)
(Noble, 1962; McAllister et al., 1975; Beeler and Reuter,
1977; Luo and Rudy, 1991). In this paradigm, a differential
equation is solved for each current and V,,,. A later stage in
the evolution of mathematical models has been the devel-
opment of cell models that account for dynamic changes in
intracellular ion concentrations (DiFrancesco and Noble,
1985; Luo and Rudy, 1994; Winslow et al., 1999). These
dynamic models build upon the original paradigm by cal-
culating not only V,, but also intracellular ion concentra-
tions from the transmembrane ionic currents.

Although dynamic models have proven to be a useful and
widely accepted tool for studying the electrophysiology and
contractility of excitable cells, they face mounting concern
regarding their behavior in response to prolonged periods of
rapid pacing (Guan et al., 1997; Yehiaet al., 1999; Endresen
et a., 2000; Rappel, 2001). Specificaly, drift of intracellu-
lar ion concentrations and V,, and the existence of an
infinite number of steady states, are often cited as problems
with such models (Guan et a., 1997; Yehiaet a., 1999). To
address these concerns, models have been formulated based
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on the principle of charge conservation. In this formulation,
the differential equation computing V,,, from the transmem-
brane current (“differential” method) is replaced with an
algebraic equation relating V,, to intracellular ion concen-
trations (“algebraic’ method) (Varghese and Sell, 1997,
Endresen et a. 2000). It has been hypothesized that this
approach produces a model that is stable with respect to
drift in computed parameters (ion concentrations, V,,).

In this study, we examine the phenomenon of drift in the
Luo—Rudy dynamic (L Rd) mathematical model of the mam-
malian ventricular cell during prolonged periods of pacing.
We find that no drift occurs if ions carried by the stimulus
current are accounted for in the calculation of intracellular
ion concentrations. When the stimulus charge isincluded in
the formulation, the differential method and the algebraic
method yield identical results.

Long-term pacing studies reproduce the physiological
situation in the beating heart. During many cardiac arrhyth-
mias, cells are subjected to periodic stimulation at afast rate
over extended periods of time. Therefore, smulation studies
of cellular behavior in response to long periods of rapid
pacing are essential for mechanistic understanding of ar-
rhythmogenesis. The present study demonstrates that a dy-
namic model of the cardiac ventricular cell can be used for
such studies and establishes the correct protocol for doing
s0. Thiswork has been published in abstract form (Hund et
al., 2001).

METHODS
The differential method

The LRd mathematical model of the mammalian ventricular myocyte (Luo
and Rudy, 1994; Zeng and Rudy, 1995; Faber and Rudy, 2000) is imple-
mented in al simulations. Every time step, model equations provide the
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TABLE 1 Abbreviations TABLE 2 Initial conditions
AP Action potential [K*; 138.9 mM
APD Action potential duration (ms) [Na*] 11.5 mM
Acp Capacitive area of membrane (cm?) [ca) 7.83 X 10°° mM
Cn Membrane capacitance (u.F) [K* 1o 45 mM
F Faraday’s constant, 96,485 (C/mol) [Na], 132 mM
lcax Total Ca?" current through all ion channels in LRd model [Ca&t, 1.8 mM
(AP loar = loary T locay + lcam T lcap (Faber Vo, -89 mv
and Rudy, 2000) [Ca® sk 1.18 mM
lkx Total K* current through al ion channels in LRd model [Caser 1.18 mM
(AP Ly = I + ks + laa + lep + lcax (Faber Co 150.72 mM
and Rudy, 2000)
Inat Total Na" current through all ion channels in LRd model
(LA/UF) Tyar = Ina + Tnap + lcana (Faber and Rudy,
2000) . . . , )
o Ca?* leak from NSR (mM/ms) Eq. 6 is numerically integrated with the Forward Euler method and atime
Inaca Na*-Ca?* exchanger (uA/uF) step of 5 us
Inak Na'—K™" pump (nA/uF)
Lol Ca?™" release from JSR (mM/ms) .
ly Ca?* transfer from NSR to JSR (mM/ms) The algebraic method
" .
lup ca .uptake into NSR (m“."’”"s) V,,, can be calculated directly from intracellular ion concentrations based on
JSR Junctional sarcoplasmic reticulum . Y .
) - a charge conservation principle (Varghese and Sell, 1997; Endresen et al.,
NSR Network sarcoplasmic reticulum : ; :
2000). To derive this formulation for the LRd model, Egs. 1-5 are com-
Vinyo Volume of myoplasm (uL) bined as
Vig Volume of JSR (nlL)
Ve Volume of NSR (uL) meoF
[C&@' )i Intracellular concentration of bound and free Ca?* (mM) (a{K*]i + 9[Na‘], + 2- at[Caﬂ]imt
[Ca&Jiqtor ISR concentration of bound and free Ca?* (mM) AcapCnn
[CéM e NSR concentration of Ca2* (mM)
[K*T; Intracellular concentration of K* (mM) 2V + Vs 24
[Na]; Intracellular concentration of Na*™ (mM) + meo a,[Ca? Jisrtot T — me a[Ca* s | (7)
iR Time derivative

transmembrane currents through ion channels, pumps, and exchangers
from which changesin [K*];, [Na*];, [Ca*; 1o [C8* ] 1o A [C ]
are determined asfollows (I 1, Inat | car @€ sumsof al currentsin the LRd
model through K", Na, Ca?" channels, respectively. See Table 1 for
definitions and abbreviations).

AcaCnn
(Kl == [ — 2lnadd, 0
myo
+ Acap m
a{Na'"] = Viny [INat + 3lyak + 3lnacal: (2
AcapCrn
at[Ca2+]i,tot 2Vap F [lcat — 2lnacal
Vnsr Vjsr
- [Iu — 1 ]+7|r91 (3)
meo P feak meo l
at[C:a2+j|jsr,tot = Itr - Irel: (4)
V.
at[ca2+]nsr = u IIeak VJsr l (5)

In accordance with the original modeling paradigm established by Hodgkin
and Huxley (1952), transmembrane currents also provide the change in V,,,
every time step as

OVm = _(IK,t + INat + ICa,t + Iy + INaCa)- (6)

= — (It * Inag T lcat + Inak + Inaca)

Eq. 7 is integrated to give the final form of the algebraic method,

V,
Vi =50 ([K+].+[Na+].+2 [C&" ]
AcarCrn
2V 2V,
Ty [ ety [CaZ*]nsr— ) (8)
myo

where C, is a constant of integration. Endresen et a. (2000) define C, as
the total extracellular concentration of K*, Na*, and Ca?*. We, instead,
determine C, by substituting initial values for the dynamic model variables
in Eqg. 8. Initia conditions used in this study are provided in Table 2. Eq.
8 expresses the voltage difference across a capacitor with capacitance C,,
and charge proportional to the total intracellular concentration of ions.

In both the algebraic and differential methods, transmembrane currents
are calculated for every time step, after which the changes in intracellular
ion concentrations are determined using Egs. 1-5. The differential method
uses Eq. 6, a differential equation, to calculate V,,,, whereas the algebraic
method determines V,,, from Eq. 8, an agebraic expression.

Pacing protocols

Two different pacing protocols are used: The first uses a voltage-pulse
stimulus and the second a current stimulus. In the first protocol, the cell is
paced from aresting steady state for 33 min at basic cycle lengths (BCLS)
of 300 and 1000 ms. The voltage pulse depolarizes V,,, to —45 mV for 0.5
ms. Aswill be explained below, this protocol violates conservation for both
the differential and algebraic methods. At the end of the voltage pulse, the
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FIGURE 1 RestingV,,asafunction of time before onset of pacing in the
differential method. Resting steady states are shown for three different
initial values of [K*];: 137.9, 138.9, and 139.9 mM. All other initia
conditions are the same for the three traces.

differential method resumes calculation of V,, using the discrete form of
Eq. 6,

Vm,n+l = Vm,n - At(lK,t + INa\,t + lCa,t + INaK + INaCa): (9)

where At represents the time step, and n isthe time-step index. Importantly,
in this scheme V,, o is —45 mV for computing V,,, , after cessation of the
voltage pulse. The transmembrane current initiated by the voltage-pulse
stimulus continues to depolarize V,,, from the holding potential of —45mV.

The voltage pulse violates conservation in the differential method
because the depol arization from the maximum diastolic potential (V,;, qiz) t0
—45 mV is not accompanied by a consistent change in intracellular ion
concentrations. In the algebraic method, conservation is violated during the
voltage pulse because Eq. 8 does not hold for the original value of C,.
However, the violation is only temporary because V,,, returns immediately
to the value satisfying Eq. 8 for the original value of C, once the voltage
pulseis over.

In the second protocol, the cell is paced with a current stimulus 0.5 ms
in duration and —50 pA/uF in amplitude. Unless stated, the stimulus
current is assumed to carry K™ ions and is added to I, , before calculation
of [K™]; using Eq. 1. This protocol insures that conservation is not violated
at any time in the differential or algebraic methods. Both methods remain
conservative if the stimulus current is assumed to carry Na* or Ca2* ions,
provided that the appropriate ion is accounted for in computing ion con-
centrations.

In dynamic model simulations as in experiments, a current stimulus is
typically used to pace the cell. However, the algebraic method does not
respond to a current stimulus unless an ion species is assumed as charge
carrier. To compare the differential and algebraic methods in response to
pacing with a nonconservative stimulus, a voltage stimulus must therefore
be used. In one smulation using the differential method, the stimulus
current is added to the total current in Eq. 6 but is not assumed to carry a
particular ion species for the purpose of computing ion concentrations. This
is done to directly demonstrate that failure to account for ions carried by
the stimulus current results in drift of model parameters.

RESULTS

Before pacing, the model cell isleft undisturbed for 15 min
to attain aresting steady state. Figure 1 showsresting V,,, as
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FIGURE 2 APs€licited with a voltage-pulse stimulus to —45 mV from
resting steady state ([K ']; , = 138.9 mM) in the algebraic (solid line) and
differential (dashed line) methods. Note that both are practically superim-
posed.

afunction of time for three different initial values of [K™];
(indicated by [K™]; o) using the differential method. Initial
values of al other model variables except [K ], are identi-
cal for al three cases. Both the differential and algebraic
methods settle to the same resting steady state for each
[K™io (Vi = —88.94 mV, —89.04 mV, —89.22 mV for
[K™]io = 137.9 mM, 138.9 mM, and 139.9 mM, respec-
tively). A different value of [K™]; o results in a different
steady state. However, once steady state is achieved (time
constant to reach steady state is about 7 s), it does not drift
for either the differential or algebraic methods.

Figure 2 shows the first action potential (AP) generated
with a voltage-pulse stimulus from the [K '], = 138.9 mM
resting state in Fig. 1. The algebraic and differential meth-
ods after one stimulus produce APs that are qualitatively
and quantitatively very similar (error in AP duration of
<0.001%). However, in Fig. 3, when the model is driven
with a voltage pulse at a rapid rate (BCL = 300 ms) for a
prolonged period of time, the algebraic and differential
methods diverge with respect to several computed parame-
ters, including Vp, 4o (Fig. 3A), AP duration (APD, Fig.
3B), [Na']; (Fig. 3C), and [K™]; (Fig. 3 D). Specificaly,
the computed parameters in the differential method display
alinear drift that is absent in the algebraic method. Figure
4 shows that the drift of computed parameters depends on
the pacing rate, with aless pronounced drift occurring when
the cell is paced at a BCL of 1000 ms, consistent with
previous statements in the literature (Yehia et a., 1999;
Rappel, 2001).

Figure 5 shows the time-dependent behavior of computed
parameters when the cell is paced with a current stimulus
rather than with a voltage-pulse stimulus. Computed param-
eters drift if the differential method is used with a current
stimulus that does not carry a particular ion species into the
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plication of avoltage pulse train at a BCL of 300 msin the algebraic (solid
line) and differential (dashed line) methods.
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FIGURE 4 V., during application of a voltage pulse train at two
different BCLs: 300 ms (dashed line) and 1000 ms (solid line).

cell (D.M. (noion carrier) in Fig. 5). Importantly, when the
current stimulus is assumed to carry K™ ions into the cell,
computed parameters do not drift, and the algebraic and
differential methods yield identical results. The version of
the LRd model examined in this study contains a formula-
tion of ly.ca that has been modified from the original
formulation to saturate at high voltages (Varghese and Sell,
1997; Faber and Rudy, 2000). When the simulation in Fig.
5 isrepeated with the original formulation of I, (LUo and
Rudy, 1994), the computed parameters again do not drift
(data not shown).

Figure 6 shows [K™]; versus V,, (phase-space plot) for
nine consecutive beats during pacing at a BCL of 300 ms,
after 33 min of pacing. When the model is paced with a
conservative stimulus (Fig. 6 A), the model’s trajectory in
phase space adheres to a single limit cycle (limit cycles for
three different [K™]; , values are shown). Figure 6 A, inset
shows an enlarged limit cycle for the intermediate value of
[K™]i o- As V,,, depolarizes during the AP upstroke, [K™];
increases dueto K™ ions carried into the cell by the stimulus
current (stage 1 in Fig. 6 A, inset). Next, K* ions leave the
cell through K™ -selective ion channels such as the rapidly
activating and slowly activating delayed rectifier K* cur-
rents, which contributes to the repolarization phase of the
AP (stage 2). During diastole, V,, repolarizes slowly, and
[K™]; increases as Iy« restores cell homeostasis by trans-
ferring Na* ions out of the cell and K™ ions into the cell
(stage 3). When the next stimulus is applied, the trajectory
has returned to the exact point from which it began the
previous cycle (asterisk in Fig. 6 A, inset).

In a conservative system, the entire upstroke from
Vin.dgia t0 the AP peak is associated with a change in ion
concentrations (stage 1 in Fig. 6 A, inset). However, this
is not the case in the differential method when the cell is
paced with a voltage-pulse stimulus (Fig. 6 B, shown on
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FIGURE 5 (A) V4 (B) APD, (C) [Na'];, and (D) [K*]; as afunction
of time during pacing with a current stimulus at aBCL of 300 ms using the
algebraic method (solid line) and the differential method (dashed line
indicated with arrow). In both cases, the stimulus current carries K* ions
into the cell and contributes directly to computed changes in intracellular
ion concentrations. Note the lack of drift and identical results for both
methods. An additional simulation is shown using the differential method
and a current stimulus that does not carry a particular ion species into the
cell (dash-dot line). Notice that computed parameters drift if charges
carried by the stimulus current are not taken into account in the computa-
tion of ion concentration changes.
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the same y axis scale as theinset in Fig. 6 A). Notice that
subsequent stimuli (1, 1, 1” in Fig. 6 B) begin at a
different point in phase space, reflecting a drift in com-
puted parameters. As discussed in Methods, the depolar-
ization of V,,, from V, 45 to the holding potential of —45
mV is not associated with a parallel change in intracel-
lular ion concentrations (stage 1 in Fig. 6 B, inset). Dur-
ing the voltage pulse, V,, is held constant at —45 mV and
[K™]; increases (stage 2 in Fig. 6 B, inset). Upon cessa-
tion of the voltage pulse, the Na* current depolarizes V,,
from the already depolarized holding potential of —45
mV (stage 3 in Fig. 6 B, inset). Na" ions enter the cell
and [K™]; continues to increase through lyac. Impor-
tantly, entry of ions is associated with a change in V,, for
only aportion of the upstroke (from —45 mV to the peak V,,
of 40 mV). Fewer Na* ions entering the cell during the
upstroke diminishes the driving force for Iy, . A reduced
Inak results in less entry of K™ ions during and following
the AP, which is consistent with the steady downward drift
of [K™]; between stimuli (Figs. 3 D and 6 B). Because |«
is a repolarizing current, reducing its driving force should
depolarize V,, 4, and prolong APD. This prediction is con-
sistent with the results of Fig. 3, Aand B.

The agebraic method, however, isimmune to drift even
when the cell is paced with a voltage-pulse stimulus (Fig.
6 C). Similar to the differential method, no changeinionsis
associated with the depolarization from V,, 4, to —45 mV
(stage 1 in Fig. 6C, inset). Similar to the differentia
method, there is an increase in [K™]; during the voltage
pulse (stage 2, Fig. 6 C, inset). During this stage, Eq. 8 does
not hold, and conservation is temporarily violated. How-
ever, in the algebraic method, when the voltage pulse ends,
V,,, returns to the value determined by Eq. 8, which is aso
consistent with the new intracellular ion concentrations
(stage 3, Fig. 6 C, inset). From this state, the fast Na*
current activates and depolarizes the AP upstroke to the
peak V,, vaue of 40 mV (stage 4, Fig. 6 C, inset). It is
apparent that, in the algebraic method, the change in intra-
cellular ion concentrations during the entire upstroke from
Vindia t0 the AP peak is taken into account.

DISCUSSION

Long-term pacing is an essential protocol for the experi-
mental and theoretical investigation of the electrophysiolog-
ical properties of cardiac cells. Importantly, during many
cardiac arrhythmias, cells are stimulated at a fast rate for
prolonged periods of time. Under such conditions, intracel-
lular ion concentration changes are important determinants
of the cell electrophysiological behavior. Simulation studies
of these processes require the use of a dynamic cell model
that accounts for ion concentration changes. It is essential to
insure that the model does not suffer from nonphysiological
behavior during long-term pacing. In this study, we examine
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FIGURE 6 (A) [K™]; asafunction of V,, (phase-space plot) during pacing with a current stimulus (a conservative protocol) at a BCL of 300 ms for three
different initial values of [K*];. Enlargement of limit cycle corresponding to [K™]; , = 138.9 mM is shown in the inset. The asterisk marks the application
of the stimulus. (B) Phase-space plot during application of a voltage-pulse train (a protocol that violates conservation) using the differential method. The
model’ s trajectory near the stimulus (asterisk) is enlarged in the inset. Note that, upon cessation of the voltage pulse (end of stage 2), depolarization of V,,
(stage 3) occurs from the holding potential of —45 mV. (C) Same as (B), but using the algebraic method. Note in the inset that, upon cessation of the voltage
clamp (end of stage 2), V,, returns to a slightly repolarized value (stage 3) before the upstroke (stage 4).

the behavior of the LRd model during prolonged pacing
protocols.

Important findings are: 1) The LRd cell model reaches a
resting steady state with a time constant of ~7 sin both the
differential and algebraic methods. 2) When pacing the LRd
cell model, computed parameters do not drift if ions carried
by the stimulus current are included when computing intra-
cellular ion concentrations. 3) The differential and algebraic
methods of calculating V,, produce identical results when
the stimulus is accounted for in computing intracellular ion
concentrations.

The algebraic method versus the
differential method

Recently, mathematical cardiac-cell models have been for-
mulated that replace the differential method of calculating
V,, with the algebraic method (Varghese and Sell, 1997;
Endresen et a., 2000). As shown in this study, the algebraic
and differential methods compute identical results in a con-
servative system. Therefore, the choice of using the differ-
ential method over the algebraic method cannot be the
fundamental reason for drift observed in such models. If
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charge is conserved in the system (including charge carried
by the stimulus), then the choice of method has no impact
on the behavior of the system.

The researcher interested in computer modeling must
choose between the two different methods for calculating
V.. The differential method solves an additional differential
equation, whereas the algebraic method contains an initial
condition (Cp) that must be determined before running the
simulation. Both methods produce nonphysiological results
when a nonconservative stimulus is used. In general, the
algebraic method is more resistant to drift (Fig. 6 C). How-
ever, the differential method is just as robust when paced
properly with a conservative stimulus (Fig. 6 A). Relative to
the overal complexity of dynamic models, none of these
distinctions is very significant in terms of implementation,
and, therefore, the choice of which method to use is left to
the individual researcher’s discretion. Before a choice is
made, however, it may be advisable to run the same simu-
lation with both methods to ensure that conservation is not
violated in the system.

Drift is caused by a nonconservative
implementation of the stimulus

It has been reported in the literature that dynamic cell
models, which account for changes in intracellular ion con-
centrations, show a nonphysiological drift in computed pa-
rameters (Yehiaet al., 1999; Endresen et a., 2000; Rappel,
2001). This drift occurs during rapid pacing for prolonged
periods of time (Yehia et al., 1999; Rappel, 2001). The
results of the present study establish that such drift is due to
a nonconservative implementation of the stimulus, and not
to an intrinsic property of the LRd model. The drift disap-
pears when ions carried by the stimulus current are ac-
counted for in the computation of ion concentrations. In
general, when using a dynamic model, any source of charge
(such as the stimulus) must also be considered a source of
ions. Failure to do so violates conservation and may produce
a nonphysiological behavior due to drift of model parame-
ters. In this study, the problem is easily corrected by incor-
porating the stimulus current into the total K™ current in the
LRd formulation. Assuming that other ions in the system
(Na" and Ca®") to be the stimulus charge carrier is aso
consistent with the conservation principle, as long as these
ions are accounted for in the formulation. It is worth men-
tioning that previous agebraic methods have been applied
to automatic cells (e.g., pacemaker cells) that require no
external stimulus for excitation (Varghese and Sell, 1997,
Endresen et al., 2000). It would be expected, therefore, that
the drift observed in the present study would not occur in
such models because they do not require pacing. In addition,
models that do not account for dynamic changes of intra-
cellular ion concentrations (Hodgkin and Huxley, 1952;
Noble, 1962; McAllister et a., 1975; Beeler and Reuter,
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1977; Luo and Rudy, 1991) are not susceptible to the
stimulus-dependent drift discussed in this study.

Another problem with dynamic models cited in the liter-
ature is that limit cycles are not unique (Guan et al., 1997;
Yehia et al., 1999). Figures 1 and 6 A confirm that steady
state in the LRd model is not unique and depends upon
initial conditions. However, the existence of an infinite
number of steady states is only problematic when conser-
vation is violated (Figs. 3 and 6B). Figures 4 and 6 A
illustrate that, in a conservative system, the trgjectory of the
model in phase space does not stray from the limit cycle
determined by the initial conditions.

Although our results suggest that a nonconservative im-
plementation of the stimulus current underlies the reported
drift in computed parameters, other possible sources of drift
exist. For example, we numerically integrate Eq. 6 with the
Forward Euler method, which conserves the quantity of
interest (C, in Eq. 8). To understand the conservative nature
of the Forward Euler method, we discretize Eq. 6 as

Viig =V, — At- ZIJ, (10)

where At represents the time step, and n is the time step
index. Forward Euler applied to Egs. 1-5 gives the discrete
form of the ion concentration differential equations as

[X ]n+1 [X]n At- Cn- Kj*® Ij,na (11)

where X; is an ion species and ; is a constant related to the
volume of distribution in the cell. We sum over ion species
and combine Egs. 10 and 11 to yield

[X]n+1 E [X I (12)

m"*

1
Vn+1 - IE C
Eqg. 12 shows that the quantity

1
V, — Eﬁ[xj]nz Co
i ]

m
is independent of n and is thus conserved by the Forward
Euler method. Numerical methods that do not conserve C,
from one time step to the next may result in drift. For
example, amethod that updates | (the current) between Egs.
10 and 11 will not conserve C,, the result of which may be
drift in computed parameters.

Simulating AP propagation in multicellular
tissue models

This study emphasizes the important contribution of an
external stimulus current to changes in intracellular ion
concentrations during prolonged pacing of the LRd single-
cell model. Microelectrodes that impale the cell for current
stimulation are commonly filled with solution containing
K™ as the primary cation. This guided our choice of K* as



Steady State in the Luo—Rudy Model

the charge carrier of the stimulus current in this study. In the
heart, cells are stimulated by electrotonic current that flows
through gap junctions from depolarized neighboring cells.
Because K" concentration is much greater than that of other
cations, it is safe to assume that K™ is the charge carrier of
this current (although anions such as CI~ may contribute as
well). Similar to the case of external current stimulation,
ions carried by the intercellular electrotonic current during
AP propagation should be accounted for in the calculation
of intracellular ion concentrations to preserve conservation
in the system. Thisis particularly true during fast, repetitive
activation such as occurs experimentally when a multicel-
lular tissue preparation is subject to rapid pacing, or in the
in situ heart during tachyarrhythmias. For a given cell, the
net ionic change (influx minus efflux) should be considered.
Failure to do so may give rise to drift in computed param-
eters during propagation over prolonged periods of time.

It isimportant to note that this study examines drift in the
LRd model, specifically. Nonphysiological drift has been
reported in other dynamic models (Yehia et al., 1999,
Michailova and McCulloch, 2001; Rappel, 2001), which
should be evaluated independently for any unique sources
of drift.
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