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ABSTRACT Some proton pumps, such as cytochrome c oxidase (CcO), translocate protons across biological membranes
at a rate that considerably exceeds the rate of proton transport to the entrance of the proton-conducting channel via bulk
diffusion. This effect is usually ascribed to a proton-collecting antenna surrounding the channel entrance. In this paper, we
consider a realistic phenomenological model of such an antenna. In our model, a homogeneous membrane surface, which
can mediate proton diffusion toward the channel entrance, is populated with protolytic groups that are in dynamic equilibrium
with the solution. Equations that describe coupled surface-bulk proton diffusion are derived and analyzed. A general
expression for the rate constant of proton transport via such a coupled surface-bulk diffusion mechanism is obtained. A
rigorous criterion is formulated of when proton diffusion along the surface enhances the transport. The enhancement factor
is found to depend on the ratio of the surface and bulk diffusional constants, pKa values of surface protolytic groups, and their
concentration. A capture radius for a proton on the surface and an effective size of the antenna are found. The theory also
predicts the effective distance that a proton can migrate on the membrane surface between a source (such as CcO) and a
sink (such as ATP synthase) without fully equilibrating with the bulk. In pure aqueous solutions, protons can travel over long
distances (microns). In buffered solutions, the travel distance is much shorter (nanometers); still the enhancement effect of the
surface diffusion on the proton flow to a target on the surface can be tens to hundreds at physiological buffer concentrations.
These results are discussed in a general context of chemiosmotic theory.

INTRODUCTION

Proton translocation across biomembranes is a key step in
biological energy conversion in mitochondria and chloro-
plasts. The translocation is carried out by proton pumps,
membrane enzymes that utilize redox energy (or light en-
ergy in photosynthetic systems) to move protons from one
side of the membrane to the other, thereby creating electro-
chemical gradients. Later, the free energy stored in proton
gradients is utilized in synthesis of ATP or other energy-
requiring processes (Skulachev, 1988; Cramer and Knaff,
1990)

Proton pumps, such as cytochrome oxidase (CcO) (Wik-
ström, 1998), are very efficient—they are capable of pump-
ing more than 103 H� per second (Babcock and Wikström,
1992). The corresponding time scale for overall processing
of a single proton is as short as 1 ms. Moreover, some
proton-transfer reactions during the catalytic cycle of CcO
occur on even a shorter time scale of 0.1 ms, and the
reprotonation of some protolytic sites of the enzyme from
the bulk is believed to occur even faster (Karpefors et al.,
1999, 2000; Kotelnikov et al., 2001). Similar time scales of
proton transfer reactions have been reported for bacterio-
rhodopsin (Heberle, 2000).

The high rate of proton pumping raises the question about
the maximum possible rate of supply of protons by the
organelle’s medium to the pump, given the fact that the
concentration of available protons is limited and the diffu-
sion occurs with only a finite speed (e.g., in the bulk free
protons diffuse with coefficient Db � 10�4 cm2s�1, see
review in Gutman and Nachliel, 1997). Although the diffu-
sion control has not been directly implicated in proton
pumps, such a diffusion-limited kinetics does seem to occur
in a number of proton-conducting channels (DeCoursey and
Cherny, 1999). The absence of the diffusion bottleneck in
CcO is ascribed to a proton-collecting antenna surrounding
the entrance of the proton-conducting channel, which en-
hances the proton influx from the solution to the channel
entrance (Gutman and Nachliel, 1997; Brandsburg-Zabary
et al., 2000). Hence, the rate of proton supply is modified by
the properties of the surface of the protein, or that of the
surrounding membrane. The lateral membrane diffusion has
been also suggested to occur in other proton-conducting
systems (DeCoursey and Cherny, 1999). The relevant ques-
tion then is how to correctly estimate such a diffusion-
limited and surface-enhanced rate of proton supply from the
medium to the entrance of the proton-conducting channel.

The above question is complicated by the fact that the
nature of the protons participating in the process is not
always known with certainty. For instance, under physio-
logical conditions, the concentration of free protons in the
organelles is of an order of 10�7 to 10�8M. Hence, in a
typical organelle with dimension of 1 �m, there will be only
an order of one free proton or less(!) on average. The
splitting of water is energetically unfavorable, hence the
involved protons must belong to buffer molecules that con-
tain acidic or basic groups. These buffer molecules can be
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both mobile and immobile, i.e., fixed on the surface of
membrane proteins and on the membrane itself (Gutman
and Nachliel, 1997; Brandsburg-Zabary et al., 2000). The
presence of fixed and mobile buffers changes the effective
concentration and mobility of the protons (Junge and
McLaughlin, 1987).

The question of how the membrane surface can modify
the proton transport is also of interest in a more general
context of chemiosmotic coupling (Nicholls and Ferguson,
1992; Ferguson, 1995). Previously, it has been suggested
that the diffusion of protons along the membrane may play
a major role in translocation of protons between the gener-
ators, such as CcO or bacteriorhodopsin, and consumers,
such as ATP synthase (Scherrer, 1995; Teissié, 1996; Gab-
riel and Teissié, 1996; Nachliel et al., 1996; Antonenko and
Pohl, 1998; Krasinskaya et al., 1998). Long-distance migra-
tion of protons along membranes has been observed in
purple membranes and reconstituted bacteriorhodopsin (He-
berle and Dencher, 1992; Alexiev et al., 1994, 1995; He-
berle et al., 1994; Scherrer et al., 1994; Nachliel et al., 1996;
Riesle et al., 1996). Long-range proton diffusion has also
been observed along lipid (Gabriel et al., 1994) and stearic
acid monolayers (Slevin and Unwin, 2000; Slevin and Un-
win proposed a similar model to what is discussed in this
paper, and analyzed it numerically. They found that, for
stearic acid monolayers, the surface diffusion coefficient is
1.2 � 10�5 cm2s�1). The effect of the surface on the proton
transport depends on its properties—diffusion coefficient,
nature of the lipid head groups, their pKa, concentration, etc.
(Scherrer, 1995; Teissié, 1996). Because these properties
are not easily defined, since the proposal of the chemios-
motic theory, there has been a continuing debate about
whether the surface participates in the proton transport.

To formulate an exact criterion of when and how the
surface can affect the proton transport is also a nontrivial
theoretical problem. Various aspects of the effect of reduced
dimensionality have been discussed by many authors in a
general context of diffusion-controlled ligand–receptor
binding (Adam and Delbrück, 1968; Berg and Purcell,
1977; Berg and Blomberg, 1976; Hardt, 1979, 1981;
Schranner and Richter, 1978; Berg, 1985). It has been
recognized that, when diffusion is limited to one or two
dimensions, for example, DNA molecule or a membrane,
the rate of finding the target can be significantly increased.

In our previous paper (Georgievskii et al., 2002), a phe-
nomenological model was developed that describes diffu-
sion of protons near the entrance of a proton-conducting
channel. The transport of protons occurs both through the
bulk and along the membrane surface, which can exchange
protons with the bulk. There are two regimes of the proton
transport. In the first regime, the exchange between the bulk
solution and the membrane is so fast that a local equilibrium
is always established between the surface and bulk concen-
trations at neighboring points. This case is most likely to
occur in a typical biological environment. In the second

regime, the exchange is slow, so that the local equilibrium
is not established. A rigorous solution of the model was
obtained with no restrictions on the exchange kinetics.

In this paper, we present a detailed analysis and applica-
tion of the fast exchange regime to the relevant experimen-
tal studies of proton migration along biological membranes.
The plan of the paper is as follows. In the next section the
model is presented and the fast exchange approximation is
introduced. In the following section, the solution of the
model is described and simplified derivation for the fast
exchange regime is given in Appendix A. The concept of
the capture radius is introduced in the next to last section. In
the last section, we discuss the results and parameters of our
model, and give numerical estimates for pure unbuffered
and buffered aqueous solutions and the rate expression
derived in this paper. The concept of proton lifetime on the
surface, for which an explicit formula is derived in Appen-
dix B, the extension of the theory to buffered solutions, and
the capture radius are also discussed in the last section.

MODEL

We consider the following idealized model. A half-space
filled with a solution of protons (free or attached to buffer
molecules) is limited by a membrane. The membrane is
populated with protolytic groups and can exchange protons
with the bulk. The protons can diffuse both in the bulk and
on the surface of the membrane. The diffusion coefficients
on the surface and in the bulk are different. There is a
specific finite lifetime of the protons on the surface, during
which protons can migrate along the surface. The protons
are dynamically exchanged between the surface and the
bulk. On the surface of the membrane, there is a sink (or a
source) of the protons of molecular size through which
protons are removed (supplied) to the system. (For simplic-
ity we will talk about the removal of the protons from the
system. The results for the reversed process are identical in
the approximation considered in this paper.) We model this
sink of the protons as an absorbing spot on the surface, such
that, after a proton gets to this spot, it is immediately
removed from the system. Thus, the absorbing conditions
are ideal, and there is no reverse reaction with the sink. The
absorbing spot models the entrance of the proton channel,
through which protons are pumped out of the system. The
questions in which we are interested are: 1) what is the
maximum (diffusion-limited) rate at which protons can be
collected (pumped out) from such a system, and 2) at what
distance from the absorbing spot the equilibrium concentra-
tion both in the bulk and on the surface will be established.
The former question is related to the efficiency of proton
pumps and the latter to the discussion of the nature of
chemiosmotic coupling between the source and the sink of
the protons on the membrane. The effects of the finite size
of the organelle on the results can be easily incorporated and
will be discussed in the paper.
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In a system of a finite size, after some transient period, a
quasi-stationary flow and a distribution of the concentration
of protons are established. In our idealized infinite model,
these conditions can be described as completely stationary
by assuming that there is a compensating source of the
protons at infinity such that the equilibrium is maintained at
an infinitely large distance from the sink.

The stationary proton concentration in the bulk, n(x, y, z),
obeys the three-dimensional diffusion equation

�2n

�x2 �
�2n

�y2 �
�2n

�z2 � 0. (1)

(The symbols used in the equations and their meanings are
listed in Table 1.) The boundary condition on the surface
depends on the properties of the surface. We assume that the
coupling between the bulk and surface protons is described
by the Langmuir kinetics of adsorption/desorption. The
surface groups can be protonated from the bulk with a
bimolecular rate constant kon (in units of M�1s�1) and
deprotonated with a monomolecular rate of desorption koff

(in units of s�1). The rate of protonation is proportional to
�0 � �, where �(x, y) is the stationary surface density of
protons captured at a given point (x, y) at the surface, and �0

is the concentration of the protolytic groups on the surface.
We will consider the case when the surface protolytic
groups are far from saturation, � �� �0, a regime that is
practically the most important one. Then the proton flux
from the bulk to the surface is given by the equation

Db

�n

�z
�

z�0
� �onn�0 � koff�, (2)

where Db is the bulk diffusion coefficient. This equation is
the boundary condition to Eq. 1. It relates the bulk concen-
tration of protons and its normal derivative at z � 0 to the
surface concentration.

The second assumption of the model is that there exists a
long-range connectivity between the protonatable groups on
the surface (as described, e.g., in the percolation model
[Rupley and Careri, 1991; Gutman and Nachliel, 1995,
1997]), resulting in a Brownian proton migration along the
surface. The stationary concentration of the protons on the
surface satisfies the two-dimensional diffusion equation,

Ds��2�

�x2 �
�2�

�y2� � � Db

�n

�z
�

z�0
, (3)

where Ds is the surface diffusion coefficient. The bulk
diffusion flux Db�n/�z at z � 0 is a source of protons on the
surface.

The proton channel entrance, which serves as a sink for
both the bulk and surface protons, is modeled by a circle of
radius r0 on the membrane surface. Eqs. 1–3 supplemented
by the absorbing boundary condition inside the channel
entrance and the equilibrium condition at infinity were
solved in our previous paper (Georgievskii et al., 2002).

Qualitatively, there are two regimes of proton transport,
depending on the rate with which protons are exchanged
between the surface and the bulk. In the fast-exchange
regime, each of the two Langmuir terms in the right-hand
side of Eq. 2 is much larger than the total diffusional flux on
the surface, the term on the left-hand side. Then the surface
density and the local bulk density of the protons in every

TABLE 1 Symbols used in the equations

Symbol Meaning
Equation(s)

Defining

x, y Cartesian coordinates on the surface 1
r Polar radius on the surface 9
z Cartesian coordinate orthogonal to the surface 1
� Surface proton density at x, y 3
�eq Equilibrium surface proton density at infinity 14
n Bulk proton density at x, y, z 1
n0 Equilibrium bulk proton density at infinity 12
kb Bulk proton flux through the channel entrance area 10, 12
ks Surface proton flux through the borderline of the channel entrance 11, 15, 23
Lsb First characteristic length parameter of the theory 6, 9
Ls Second characteristic length parameter of the theory 7
Tdw Proton dwell time at a single surface protolytic group 8
R0 Effective radius of the channel for unrestricted surface area available for proton diffusion 17
Reff Effective radius of the channel when the surface area available for proton diffusion is restricted by Lmax The Rate
Lmax Dimension of the cluster of protolytic groups around the channel entrance The Rate
Rc Capture radius 20–22
Pc Capture probability 19, 22
C0 Numerical constant 13, A13
Tl Depletion time 24
Parameters for buffered solutions Buffers
Other symbols Table 2
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point on the surface are essentially in equilibrium and are
related as

� � L0n. (4)

The equilibrium association constant L0 in Eq. 4 is ex-
pressed in terms of the parameters of the Langmuir kinetics,

L0 �
�on

koff
�0 � 10pKa

(s)

�0, (5)

where pKa
(s) refers to the protolytic surface groups. Note

that, in this definition, 10pK
a
(s) has a dimension of inverse

concentration, M�1, where M � mole/liter � NA � 10�3

cm�3 and NA is the Avogadro number. Because �0 is the
number of groups per unit surface, L0 has a dimension of
length. The physical meaning of L0 is the height of a column
in the bulk equilibrium solution that contains the same
number of protons as a spot on the surface with the same
area as the column’s cross-section. Eq. 5 is written for a
pure (unbuffered) solution. In the presence of a buffer, it is
modified as discussed in the Discussion, Buffers.

Eq. 4 is a modified boundary condition to Eq. 1 (replac-
ing Eq. 2) and it provides a direct coupling between the
surface and bulk diffusion. The analysis shows (Geor-
gievskii et al., 2002) that the formal condition for the local
equilibrium described by Eq. 4 is expressed in terms of two
length parameters characterizing the system. The first
parameter,

Lsb �
Ds

Db
L0, (6)

is of the order of an effective size of the collecting antenna,
or a capture radius (see the Capture Radius). Another
parameter,

Ls � �Ds/koff, (7)

is the average distance that a proton migrates along the
surface during its surface dwell time,

�dw � koff
�1. (8)

The formal condition for the fast exchange reads Lsb �� Ls,
whereas the opposite case, Lsb �� Ls, corresponds to the
slow exchange regime. In this paper, we will consider in
more detail the case of the fast exchange because it is most
relevant to the proton transport in biological systems.

Using the cylindrical symmetry of the problem and the
coupling condition 4, we rewrite Eq. 3 as

d2n

dr2 �
1

r

dn

dr
� Lsb

�1n�z � 0, r 	 r0, z � 0, (9)

where r is the distance on the surface, measured from the
center of the proton channel, n 	 n(r, z), n�z � �n/�z at z �
0, and Lsb is given by Eq. 6. A simplified method to solve
the coupled Eq. 1 and 9 with appropriate boundary condi-

tions is presented in Appendix A. The solution to these
equations is the function n(r, z) given by Eqs. A1, A6, A8,
and A14. The function n(r) 	 n(r, z � 0) necessary to
calculate the surface proton flux in the next section is given
by Eq. A15.

THE RATE CONSTANT

The total rate of proton transport to the channel consists of
two proton fluxes, k � kb � ks. The bulk proton flux kb

through the channel is given by

kb � 2
Db �
0

r0

n�zr dr. (10)

The surface proton flux ks through the border of the channel
entrance is

ks � 2
r0Ds

d�

dr
�

r�r0

. (11)

The expressions for the stationary distributions of both
the surface and bulk protons are given in Appendix A and
Eq. 13.

The mechanism of proton transport to the proton channel
is different for different values of Lsb. If Lsb � r0, the proton
transport occurs mainly via absorption of protons from the
bulk solution by the channel entrance, i.e., kb �� ks. In this
situation, one can neglect the surface diffusion and replace
Eq. 3 with n�z � 0, r � r0. This is the standard model for
proton transfer. The rate constant of such a process is given
by (Crank, 1990)

kb � 4r0Dbn0. (12)

More interesting is the opposite case, Lsb �� r0. The
distribution of the surface density is given by the equation

�
r� � �eq

ln
r/r0�

ln
C0Lsb/r0�
, r0 � r � Lsb, (13)

which is obtained by substituting Eq. A15 into Eq. 4. Here,
C0 � 1.1229 (see Eq. A13), and �eq is the equilibrium
concentration of protons on the surface,

�eq � L0n0 � �010pKa
(s)�pH, pKa

(s) � pH. (14)

Inserting Eq. 13 into Eq. 11, we obtain the rate constant due
to the surface diffusion mechanism,

ks �
2
Ds�eq

ln
C0Lsb/r0�
. (15)

The rate constant ks depends on the size of the proton
channel entrance in a much weaker, logarithmic fashion
than the rate constant kb for the bulk diffusion mechanism,
Eq. 12. As shown by Georgievskii et al. (2002), in the
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slow-exchange regime, when Ls �� Lsb �� r0, the expres-
sion for the rate has the same form as Eq. 15, but, in the
logarithmic factor, the length Lsb is replaced with Ls. In a
different context, Berg (1985) obtained an expression for
surface-enhanced diffusion flux similar to our Eq. 15.

For the purpose of comparison, the above equation is
rewritten in the form equivalent to the bulk rate, Eq. 12,

ks � 4R0Dbn0, (16)

where R0 is the effective radius of the channel, a formal
parameter that tells what the radius of the channel should be,
in the absence of the surface diffusion, to provide the same
absorption rate as in the presence of the surface diffusion.
The expression for R0 thus obtained is

R0 �



2

Lsb

ln
Rc/r0�
, (17)

where Rc is the capture radius (see Eq. 20). This expression
is valid for Rc �� r0. The effect of the surface diffusion can
now be measured directly by comparing the effective radius
of the channel R0 with the actual radius r0.

THE CAPTURE RADIUS

The above-introduced effective radius of the channel R0 is a
more or less formal parameter, which is useful for compar-
ison with the usual bulk diffusion. It should not be confused
with the actual size of the area on the membrane surface
from which protons are collected to the channel in the
process of the coupled surface-bulk diffusion. The size of
such an area is described in terms of the capture radius, Rc.
The latter is defined as the distance from which a proton
once on the surface will be absorbed by the channel.

The capture radius Rc can be also understood as a dis-
tance between a generator and a consumer of protons on the
surface of the membrane at which the exchange between the
two occurs mainly via the surface, before equilibrating with
the bulk. The coupling between the source and the sink in
this case is said to be local. The opposite case of delocalized
coupling is realized when the source and the sink are each
in equilibrium with the bulk. The rate of absorption by the
consumer in this case will neither depend on the rate of
proton generation (assuming infinite volume), nor on the
distance between the generator and the consumer (Fergu-
son, 1995).

The probability of capture by the channel via the surface
diffusion is described by the function,

Pc
r� � 1 �
�
r�

�eq
� 1 �

n
r�

n0
. (18)

The deviation of �(r) from the equilibrium value �eq is due
to absorption by the channel, and is a measure of the
probability that the proton will be absorbed by the channel
from a specified position. At the boundary of the absorbing

channel, � � 0 and the probability is exactly one. At an
infinitely large distance from the channel, � � �eq and the
probability of absorption is zero.

From Eq. A15, we find that

Pc
r� �
ln
C0Lsb/r�

ln
C0Lsb/r0�
, r0 � r � Lsb. (19)

The capture radius defined formally as the distance at which
the probability of capture decreases to zero is

Rc � C0Lsb. (20)

One should notice that, because the dependence of the
probability of capture on the distance is logarithmic, the
capture radius should be understood only as defining an
order of magnitude of the relevant characteristic length (say,
increasing Rc by a factor of e will change the probability
only by 1/ln(Lsb/r0) �� 1, because we assume Lsb �� r0).
Thus, the constant C0 � 1, Eq. A13, is essentially irrelevant
in the above expression for Rc. It is recalled that, here, we
treated the case Lsb �� Ls. In a general case, as shown by
Georgievskii et al. (2002), the capture radius is

Rc � max
Lsb, Ls�, (21)

and the capture probability is given by

Pc
r� �
ln
Rc/r�

ln
Rc/r0�
. (22)

This expression is valid for Rc �� r0 and r0 � r � Rc.

DISCUSSION AND CONCLUSIONS

Summary

The surface can enhance the flow of protons to a target, such
as the entrance of a proton channel, via its low-pK proto-
natable groups capable of catching protons from the bulk
and then shuttling them along the surface. If there are only
a few such groups, then, quantitatively, the enhancement
can be expressed in terms of so-called virtual bimolecular
rate constants introduced by Gutman and coworkers (Yam
et al., 1988). When there are many such groups, and the
connectivity between them is established, the transport to
the target on the surface is a combined surface–bulk diffu-
sion. The model discussed in this paper refers to the latter
type of proton transfer.

The theory developed allows one to evaluate the maxi-
mum (diffusion-limited) rate at which a proton pump can
translocate protons across a membrane. The model is phe-
nomenological. It assumes that the protons are collected by
a proton channel in the membrane, and that they can diffuse
both along the surface and from the bulk toward the en-
trance of the channel. There is a dynamic proton exchange
between the surface and the bulk, which is described by the
Langmuir adsorption/desorption kinetics. Such a coupling

Proton Transport 2837

Biophysical Journal 82(6) 2833–2846



results in a nontrivial coupled surface and bulk proton
diffusion in the system. The surface was assumed to be
infinite, homogeneous, and characterized by a surface pro-
ton diffusion coefficient, Ds, pKa of the surface protolytic
groups, pKa

(s), their density �0 (the number of groups per
unit surface), and the parameters of the Langmuir kinetics—
the first-order rate constant of desorption, koff, and the
second-order rate constant of adsorption, kon. The radius of
the proton sink on the surface is r0. The bulk protons are
characterized by the bulk diffusion coefficient Db and the
equilibrium bulk density n0.

In this phenomenological description, we do not specify
the precise nature of the protonatable groups on the surface,
but rather characterize them by their pKa, their density �0,
and the proton diffusion coefficient Ds. The protonatable
groups on the surface of the protein (Gutman and Nachliel,
1997), and the protonatable lipid head groups of the mem-
brane both can play the role of the proton-transmitting
elements on the surface (Scherrer, 1995; Teissié, 1996). In
this section, quantitative estimates will be made with the use
of parameters from Table 2, where the values of pKa and �0

are characteristic of carboxylates on the surface of proteins
such as cytochrome c oxidase and bacteriorhodopsin, and
are in the range of values for protonatable lipid head groups
studied by Scherrer (1995).

Modeling the channel entrance as a plain sink of a given
radius r0 with free proton diffusion in its vicinity may look,
at a first glance, as an oversimplification. Indeed it has been
suggested that the entrance of protein proton channels may
be surrounded by negative charges that provide a guiding
electrostatic potential, which extends to some distances,
leading to both directed and enhanced bulk diffusion toward
the channel entrance. The range of action of the attracting
potential, however, may be expected to be only of the order

of the Coulomb cage radius, say, 7–14 Å. Because the
phenomena described by the present model typically occur
on a much larger scale, as we demonstrate below, this
external “short-range” potential can be described in our
phenomenological model by simply increasing the effective
radius of the channel from a few angstroms to 10–15. The
rate of surface transport, as we saw, only weakly, logarith-
mically, depends on the channel radius. Thus, the increase
of the effective size of the channel may be insignificant.
However, the relative contribution of the bulk and the
surface transport may be indeed affected, because the bulk
contribution is proportional to r0. This uncertainty in r0

should be kept in mind when estimates are made using this
theory.

Within the model developed, the theory also allowed us
to formulate a criterion of when the coupling between a
source and a sink on the membrane surface is localized, i.e.,
the transport between the two occurs before the protons
generated by the source are fully equilibrated with the bulk.

Both the issue of diffusion-limited transport and the
range of delocalization of the surface protons are of
interest in a general context of chemiosmotic theory of
energy transduction.

The rate

In this paper, we treated the case of the fast exchange
between the surface and the bulk, a regime in which the
surface and bulk protons are in local equilibrium. Formally,
the condition for the fast exchange is Lsb �� Ls. The study
of the opposite case of the slow exchange (Georgievskii et
al., 2002), Lsb  Ls, yields the expression for the rate similar
to the one obtained here.

TABLE 2 The parameters of the model

Characteristics of the surface
pKa

(s) � 5 pKa of the protolytic groups
r0 � 1 Å Radius of the channel entrance
�0 � 10�2 Å�2 Density of the protolytic groups
d � 6 Å The reaction radius of the protolytic groups
Ds � (10�7 � 10�4) cm2s�1 Diffusion coefficient of protons on the surface

Pure aqueous solutions, pH � 7
Db � 10�4 cm2s�1 Diffusion coefficient of protons in bulk water
Kon � 2
dDb � 2.3 � 1010 M�1s�1 Rate constant for proton association on the surface
koff � 2.3 � 105s�1 Rate constant for proton dissociation from the surface
L0 � �010pKa(s) � 170 �m Equilibrium constant for proton association on the surface*
�eq/�0 � 10pKa(s) � pH � 0.01 The equilibrium degree of saturation of the surface†

Buffered aqueous solutions, pH � 7
pKa

(B) � 6 pKa of buffer molecules
D�b � 5 � 10�6 cm2s�1 Diffusion coefficient of buffer molecules in bulk water
K�b � 3 � 1010 M�1s�1 Rate constant for proton binding to a buffer molecule
k�d � 3 � 104 s�1 Rate constant for proton dissociation from a buffer molecule
K�on � 108 M�1s�1 Rate constant for collisional proton transfer from buffer to surface
K�off � 109 M�1s�1 Rate constant for collisional proton transfer from surface to buffer

*10pKa(s) has the dimension of inverse concentration, see Eq. 5.
†See the definition of �eq in Eq. 14.
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In the regime where the surface diffusion dominates the
transport, in both cases of the fast and slow exchange
between the surface and the bulk, the rate can be written in
the form

ks �
2
Ds�eq

ln
Rc/r0�
, (23)

where Rc is essentially the maximum of two lengths, Ls and
Lsb (the factor C0 in the exact definition is close to unity and
can be neglected). The logarithmic factor is expected to be
roughly in the range of one to ten. Due to the logarithmic
dependence, the radius of the channel r0 has a minor effect
on the rate.

The effect of the surface on the maximum rate of absorp-
tion by the channel is described in terms of the effective
radius of the channel, R0, as defined in Eq. 17. When R0 is
much larger than the actual radius of the channel, r0, the
surface-modified diffusion enhances the rate by a factor of
R0/r0. Analytical results could be obtained in the regime
where the surface dominates proton transport, R0/r0 �� 1,
and the protonation of the surface is far from saturation, �eq

�� �0. The latter condition makes the coupling between the
bulk and the surface linear.

Because the surface diffusion coefficient typically is not
expected to be much different from that of the bulk (the
reported values for Ds/Db are in the range of 10�3 to 1
[Heberle et al., 1994; Scherrer et al., 1994; Slevin and
Unwin, 2000]), but the surface density can be much higher
than the equivalent bulk density (the measure is given by the
equilibrium constant L0, see Eqs. 4 and 5), the surface can
provide an extremely high output of protons. For example,
using Ds � 10�5 cm2s�1 and other parameters from Table
2, we obtain �dw � 4 �s by Eq. 8, L0 � 170 �m by Eq. 5,
Lsb � 17 �m by Eq. 6, Ls � 660 Å by Eq. 7, Rc � 17 �m
by Eq. 20, and R0 � 2 �m by Eq. 17. Thus, the enhance-
ment effect would be R0/r0 � 104, provided that the surface
available for the proton diffusion was infinite.

If the proton diffusion on the surface around the channel
entrance is restricted by a finite area, such as a cluster of
protonatable groups of dimension Lmax and Lmax � Rc, then
the enhancement factor is less than R0/r0. In this case, a
proton, once adsorbed by the cluster with a high probability,
will be dragged into the channel before returning to the
bulk. The cluster, therefore, will act as an absolutely ab-
sorbing disk for which the rate of absorption is given by Eq.
12 where r0 should be replaced with Lmax. The effective
radius of the channel, Reff, will be equal to Lmax, and the
enhancement effect will be Lmax/r0.

In the opposite limit of Lmax � Rc the surface proton flow
is independent of Lmax, and Reff is gradually approaching R0

somewhere between R0 and Rc. This behavior is schemati-
cally depicted in Fig. 1. One can see, therefore, that the
length parameter Rc is a critical parameter that determines
the rate, although formally the rate depends only logarith-
mically on it.

Above, we gave estimates of the effective radius of the
channel and the surface enhancement effect for a pure
unbuffered solvent. Buffers can change these estimates dra-
matically. However, the surface is still predicted to domi-
nate the transport up to a high buffer concentration (see
Buffers subsection).

In Fig. 2, the proton flux into the channel due to the
surface-diffusion mechanism is shown as a function of the
surface-diffusion constant. Within the assumed range of Ds,
the rate of proton supply to a channel may vary from 105 up
to 4 � 107 s�1. In cytochrome c oxidase, the rates of
internal proton transfer in different redox states of the
enzyme were estimated in the previous work from this

FIGURE 1 Schematic dependence of the effective channel radius Reff on
Lmax, the maximum dimension of the surface area available for the proton
diffusion. The effective radius is equal to Lmax when Lmax is smaller than
the capture radius Rc, and reaches its limiting value R0 at Lmax � Rc.

FIGURE 2 The dependence of the rate of the surface-mediated proton
supply to the channel entrance, ks, on the surface diffusion coefficient, Ds,
calculated by Eq. 15 with parameters from Table 2 for pure solution.
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group (Kotelnikov et al., 2001) to be (102–104) s�1, so that,
even at the lowest diffusional mobility on the surface, the
calculated rate of proton delivery is still sufficiently high to
prevent a bottleneck in CcO turnover. Further, in the work
cited, the proton channel was represented by a single pro-
tonatable group that was in the fast equilibrium with the
bulk at the apparent protonation rate of 5 � 1011 M�1s�1,
which is an order of magnitude higher than that expected for
a diffusion-controlled protonation from the bulk. From Fig.
2, it is seen that, at the lowest diffusion constant, the flux is
105 s�1, which corresponds to the apparent bimolecular
protonation rate from the bulk of 1012 M�1s�1 at pH � 7.
Thus, the results shown in Fig. 2 are consistent with our
previous findings.

The high surface rate is due to a relatively high concen-
tration of protons on the surface, their high mobility, and,
most importantly, to the reduced dimensionality of diffu-
sion. The latter results in practical independence of the rate
of absorption on the actual radius of the channel. In contrast,
the bulk diffusion to the channel is limited by the small size
of the channel and a relatively low bulk density of protons.

An increased effective radius of the channel, R0, is equiv-
alent to the effect of a proton-collecting antenna (Gutman
and Nachliel, 1997). In the antenna model, special proper-
ties of the groups surrounding the entrance to the channel
are required (high mobility, overlap of their Coulomb wells,
etc.). We find that, in fact, any surface area surrounding the
channel that conducts protons can already significantly in-
crease the output of protons through the channel. That is, if
the enhancement of the infinite surface is significant, R0/r0

�� 1, a patch of a similar surface with dimensions of
Lmax � Rc can also serve as an enhancement factor of the
output of the channel. In this case, the proton conducting
patch of the surface is exactly equivalent to the antenna
model of Gutman and Nachliel (1997; see also the Capture
Radius subsection). In contrast, when Lmax � Rc, only a part
of the proton-collecting collecting cluster will work as a
collecting antenna, see Fig. 1. The main point here is that no
special properties, such as an extremely fast exchange be-
tween the groups of the antenna, are in fact required. The
two-dimensional nature of the antenna can significantly
relax the requirements on the transport and the collecting
properties of the groups making up the antenna.

It is well recognized that the effect of the surface can be
significant only if the dwell time on the surface is relatively
large. In this case, the proton can migrate a long distance on
the surface during its dwell time, Ls �� r0, and Ls is often
tacitly assumed to be the natural length that determines the
size of the region on the surface from which protons can
migrate to a target. We find, however, that such a region, in
fact, can be much larger than Ls, and is equal to Lsb instead
when Lsb �� Ls. Moreover, we find that this is a typical
situation. When the exchange between the surface and the
bulk is fast (in the sense discussed in Model section and
below in the Parameters and Assumptions subsection), the

proton can many times desorb and be readsorbed by the
surface, staying, on average, close to the surface, and hence
make use of the reduced dimensionality of the space in
which its migration occurs.

The surface depletion rate and the dwell time

The above result can be qualitatively understood if it is
recognized that the actual average time that the proton
spends at or near the surface, �l, is not the same as the
inverse of the desorption rate, koff

�1. Indeed, the proton that
desorbs from the surface can be recaptured again by the
surface groups. Therefore, the actual time during which a
proton will be localized in the vicinity of the surface will be
defined by how quickly the proton migrates into the bulk
from the surface (we assume that the desorption rate koff is
high, see Eq. 29). A detailed description of such a surface-
depletion kinetics is given in Appendix B. The probability
of finding a proton on the surface decays with time as t�1/2,
and the depletion time �l, apart from the numerical factor of
the order of one, is

�l �
L0

2

Db
, (24)

where L0 is given by Eq. 5. This time is directly related to
the coupled surface–bulk diffusion of the proton, and is
typically much longer than koff

�1. For pure unbuffered solu-
tions and the parameters from Table 2, we obtain �l � 1 s.

The capture radius

The capture radius Rc describes the maximum distance at
which a source and a sink on the surface can exchange
protons without full equilibration with the bulk. Thus, if the
distance between the donor and acceptor is less than Rc, the
coupling is localized.

Eq. 19 and a more general Eq. 22 provide expressions for
the probability of capture of a proton that was initially
localized on the surface at a distance r from the channel. We
find that the capture radius Rc is the larger of two lengths,
Lsb and Ls.

Recently, the question of the nature of communication
between a source and a sink on the membrane surface has
been directly addressed experimentally by studying two
connected ion channels (Antonenko and Pohl, 1998). The
reported distance of “direct” coupling between the donor
and acceptor is of the order of 100 �m, which is in a
remarkably good agreement with our estimate of Rc � 17
�m in the Rate subsection above. Similar distances in the
micrometer range are measured by other authors (Heberle
and Dencher, 1992; Heberle et al., 1994; Alexiev et al.,
1994, 1995; Scherrer et al., 1994). Lateral proton movement
on a macroscopic scale has been also observed both in pure
aqueous solutions and buffered solutions (Gabriel et al.,
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1994, and references therein). We note that, according to the
present theory, Rc is a function not only of the properties of
the surface but also those of the buffers (see the Buffers
subsection below).

It should be noticed that a distance as long as Lmax � 100
�m between the source and the sink requires a very long
lifetime even if proton diffusion on the surface is as fast as
in the bulk. For Ds � 10�4 cm2s�1, one obtains Lmax

2/
4Ds � 0.25 s. This long time clearly can not be a simple
desorption time �dw (� 4 �s by the estimate given in the
Rate subsection). However, it is very close to our estimate
of the surface depletion time, �l � 1 s, given in the previous
subsection. Thus, the long distance of direct and local
coupling can be explained by the coupled surface–bulk
diffusion considered in this paper.

In contrast to our calculations and the above-cited exper-
imental data, Gutman and coworkers derived from their
experimental results that the proton-collecting antenna con-
sisted of a few (typically 2–3) surface groups in a close
vicinity of the fluorescein probe (Flu) and its dimension did
not exceed 30 Å (Gutman and Nachliel, 1997). This dis-
agreement might be a consequence of the way the experi-
mental data were described. A notable example is the work
on cytochrome c oxidase (Marantz et al., 1998). The Flu
protonation on the enzyme surface was found to be medi-
ated by one carboxylate (COOnear

� ) and one histidine
(Hisnear) located within 10 Å from the probe. In addition,
two moieties of 15 distant carboxylates and 10 distant
histidines were found to affect the dynamics of Flu proto-
nation indirectly, via proton exchange with COOnear

� and
Hisnear. Obviously, in this case, the antenna extends far
beyond the 10 Å distance and involves many surface
groups. Thus, what we describe in terms of the surface
diffusion, Gutman and Nachliel describe in terms of shut-
tling protons between distant and nearby groups. In the
work on bacteriorhodopsin (Checover et al., 1997), it is also
obtained that the size of the antenna is comparable to the
dimension of the molecule. In other experiments by Gutman
and Nachliel (1997), where the antenna dimension was
found to be small, the contributions of distant groups might
not be properly resolved because the kinetic constants for all
numerous proton-transfer reactions were extracted from a
single kinetic curve, the protonation dynamics of the probe.

Parameters and assumptions

The phenomenological parameters of this theory listed in
Table 2 are actually not all independent. For instance, the
ratio of �on and koff for the unbuffered solution is expressed
in terms of pKa

(s), Eq. 5, which runs typically from 4 to 6.5
(see, e.g., data for cytochrome c [Marantz and Nachliel,
1999], bacteriorhodopsin [Nachliel and Gutman, 1996], and
cytochrome c oxidase [Marantz et al., 1998]). The absolute
value of koff is expected to strongly depend on pKa

(s) (Gut-

man and Nachliel, 1995), whereas that of �on on the bulk
diffusion coefficient Db, see Eq. 25.

It is recognized that the surface diffusion coefficient can
depend on both pKa

(s) and koff. The potential field around a
binding site on the surface is characterized by two energy
barriers. The first one is for the proton displacement in the
direction perpendicular to the surface (Teissié, 1996), and
the second is for the lateral movement. The first barrier is
always associated only with pKa

(s), but the second will also
depend on the distance between the surface sites and on how
much their Coulomb cages overlap (Matthew and Richards,
1982; Gutman and Nachliel, 1990, 1997; Peitzsch et al.,
1995). If the sites are close enough, the lateral barrier will
be small (due to overlaps of the neighboring wells), and, for
some range of values of pKa

(s), the surface diffusion coeffi-
cient should be independent of pKa

(s). At some high pKa
(s),

however, Ds should be expected to decrease exponentially
with the increase of pKa

(s), because the barrier for the lateral
translation will increase. The understanding of all intricate
relations between pKa

(s), Ds, koff, and �on requires a detailed
microscopic model of the surface and solving the diffusion
equation in the Coulomb potential, similar to the approach
developed by Agmon (1988) for bulk reactions, which is
beyond the scope of the present paper.

The parameters Lsb and Ls are also related. The rate
constant of the diffusion-controlled protonation of a single
surface group from the bulk can be written as (Crank, 1990)

�on � 2
dDb, (25)

where d is the reaction radius. We disregard other factors
due to electrostatic interactions (Gutman and Nachliel,
1995) and adopt the rate expression for the reaction on a
half-sphere. Inserting Eqs. 25, 5, and 7 into 6, we obtain

Lsb

Ls
� 
2
dr0�0��Ls

r0
�, (26)

Lsb

Ls
� 
2
d10pKa

(s)

�1/2�0��Ds

Db
�1/2

. (27)

Thus, Lsb depends quadratically on Ls, and the ratio Lsb/Ls

increases linearly with Ls.
It can be seen from the above relations that, to have an

enhancement effect in the transport rate ks, the dwell time
on the surface should be sufficiently large, �dw �� r0

2/Ds, so
that Ls �� r0 (see Eqs. 7 and 8). Indeed, the first factor in
Eq. 26 is �1 because both the reaction radius and the target
size are of the same order or smaller than the separation
between the surface groups. Therefore, if Ls  r0, we obtain
Lsb  r0 as well, and, according to the results of the Rate
Constant section, no enhancement effect would be obtained
in this case. However, typically, Ls is expected to be large
and the condition Ls �� r0 to be satisfied.

In Eq. 27, the first factor is �103 for the unbuffered
solution. For the reported values of Ds/Db � 10�3 � 100
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(Heberle et al., 1994; Scherrer et al., 1994) one has Lsb ��
Ls, i.e., only the fast exchange regime is realized (see the
Introduction). Thus, for the unbuffered solutions, we obtain
the estimate for Ls using d � 6 Å,

Ls � 0.2 �m � �Ds

Db
� 60 � 2000 Å. (28)

Under the same conditions Lsb � 0.17 � 170 �m, and
therefore typically we have Lsb �� Ls.

Our final remark is on the conditions under which the
surface and bulk protons are in local equilibrium, resulting
in Eq. 4. It is qualitatively clear that it should be the case
when the exchange rate between the surface and the bulk is
sufficiently high. It is not immediately obvious, however,
what this rate should be compared with (to determine if it is
indeed sufficiently high). The relevant estimate can be ob-
tained as follows. The formal condition could be directly
derived from Eqs. 2 and 3, where the terms describing the
surface–bulk exchange kinetics must dominate over the
surface diffusion term. The analysis shows that koff

�1 should
be short compared with the characteristic diffusion time,

koff
�1 �� �c �

Rc
2

Ds
. (29)

Thus, the condition for the fast exchange can be stated as
�dw �� �c. Using the definitions in Eqs. 7, 8, and 21, we
obtain Lsb �� Ls.

It is interesting to note that, because Lsb is increasing
quadratically with Ls, see Eq. 26, the greater the length Ls is,
the better condition Lsb �� Ls is satisfied. The latter is a
condition for the local equilibrium between the surface and
the bulk protons, which requires a fast exchange with the
bulk, i.e., a “short” dwell time. However, with increasing Ls

the dwell time of the proton on the surface is increasing
instead(!). The seeming contradiction is resolved when it is
recognized that, although with increasing Ls the dwell time
�dw does increase, the corresponding time scale of the
diffusion, �c, with which �dw should be compared, increases
even more rapidly due to its quartic dependence on Ls.

Buffers

The present theory is easily generalized to the case when an
unsaturated buffer is present in the solution,

HBº B� � H�, pKa
(B) � pH, (30)

and when the collisional proton exchange between HB and
the surface groups is the dominant pathway of the proton
movement.

Reaction 30 introduces proton generation/consumption in
the bulk (Nunogaki and Kasai, 1988) with a characteristic
time,

�� � 
k�bH
��eq � k�d�

�1, (31)

where k�b and k�d are the proton-binding and dissociation rate
constants, respectively. In deriving Eq. 31, we assumed that
[H�] � const. Here and below, the primed parameters refer
to the buffered solutions. Using the parameters from Table
2, we calculate the characteristic diffusion length

�6D�b�� � 3000 Å.

We will see in this section that this length is much longer
than the capture radius in our problem, hence the exchange
reaction 30 is very slow on a relevant time scale and can be
neglected. The above estimate for ��, Eq. 31, was obtained
under the assumption that the proton diffusion is sufficiently
fast in comparison with that of the buffer molecules and,
therefore, [H�] � const. In the oposite limit of slow proton
diffusion, the supply of protons to the reaction region will
be a limiting factor, and reaction 30 can be neglected as
well.

In this situation, the concentration of the protonated
buffer molecules, [HB], plays the role of the concentration
of free protons in the solution. The proton flux F from the
bulk to the surface can be written in a way identical to Eq. 2,

F � ��onn�0 � k�off�, k�off � ��offB
��, (32)

where n now stands for [HB] and the primed constants
related to the collisional proton exchange between the
buffer and the membrane groups, which we assume to be the
main mechanism of proton supply to the surface. Then the
rate constants obey the relation

��off

��on
� 10pKa

(B)�pKa
(s)

. (33)

With the above substitutions, one can then use all the
derived formulas in this paper.

The diffusion coefficient D�b now describes the diffusion
of the buffer molecules in the solution. The parameter L�0 for
the buffered solution, which comes into the expression
L�sb � L�0(Ds/D�b) (cf. Eq. 6) can be written as

L�0 �
�eq

HB�eq
, (34)

where �eq is independent of the buffer. Substituting Eq. 14
into Eq. 34, one finds

L�0 � L0

H��eq

HB�eq
� L0

10�pKa
(B)

B��eq
, (35)

where L0, as before, relates to the unbuffered solution,
Eq. 5.
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This situation is different as compared to the pure unbuf-
fered solution, because the ratio [H�]eq/[HB]eq can be sev-
eral orders of magnitude smaller than one. Hence, L�sb, the
capture radius R�c (Eq. 21 with primed parameters), and the
effective radius of the channel,

R�0 �



2

L�sb

ln
R�c/r0�
, (36)

will be significantly decreased as compared to the pure
unbuffered solution. Thus, the buffer can be a major factor
that determines whether the proton transfer occurs via the
buffer in the bulk solution or through the surface-diffusion
mechanism.

To discuss this issue quantitatively, we will write the
expressions for L�sb and L�s in the form

L�sb

r0
�

B�0

B�
, (37)

L�s
r0

� �Q
B�0

B�
, (38)

where [B] � [BH] � [B�] � [B�] is the total concentration
of the buffer, and

B�0 �
Ds�0

D�br0
10pKa

(s)�pKa
(B)

, (39)

Q �
D�b

r0�0��on
. (40)

The parameters [B]0 and Q are useful measures of enhance-
ment of the proton transport. According to the present
theory, the enhancement effect in the buffered solutions
occurs when L�sb is large, L�sb �� r0. However, L�sb is rapidly
decreasing with increasing buffer concentration, and [B]0

represents the maximum concentration of the buffer under
which the effect of the surface enhancement can still be
observed. For Ds � 10�5 cm2s�1 and other parameters from
Table 2, we obtain [B]0 � 3.3 M. With regard to the latter
estimate, we notice that Gabriel et al. (1994) measured the
influence of both inorganic (sulphate) and physiological
(TRIS) buffers on the lateral diffusion and found that the
buffers do not destroy it up to [B] � 200 mM.

The meaning of Q will be clear if we insert ��on �
2
w�d�D�b similar to Eq. 25, supplemented with a factor
w� � 1, taking into account that the protonation reactions
via buffers are not generally diffusion-controlled. Then we
obtain

Q � 
2
w�d�r0�0�
�1 	 1. (41)

Thus, Q is a numerical factor greater than unity because
both the reaction radius and the radius of the channel are
smaller than the distance between the groups on the surface,

�0
�1/2. For ��on � 108 M�1s�1, which corresponds to w�d� �

0.5 Å, we obtain Q � 30.
Figure 3 shows L�sb, L�s, and R�0 as functions of the buffer

concentration. This figure demonstrates that, even though
both the two characteristic lengths and the enhancement
factor R�0/r0 are very rapidly decreasing with increasing
buffer concentration, a large enhancement effect of 10–600
still can be obtained at reasonable buffer concentrations
from 1–100 mM. The highest concentration where the effect
disappears is [B]0 � 3.3 M.

The L�sb and L�s curves cross at [B] � 0.1 M, which means
that a change in the regime of proton transfer occurs from
the coupled (fast-exchange) regime at smaller concentra-
tions to the uncoupled (slow-exchange) one at higher con-
centrations. Yet, both regimes are similar with respect to the
ability of the surface to accelerate the proton delivery to the
target, the difference in the rate being only in the logarith-
mic factor. The capture radius Rc (the larger of L�sb and L�s)
and the enhancement effect of antenna, R�0/r0, both decrease
with the buffer concentration.

Figure 4 shows the calculated proton fluxes along the
surface and from the bulk. The supply of protons from the
bulk due to the collisional proton transfer from the buffer

FIGURE 3 The dependence of L�sb (solid line), L�s (dotted), and R�0
(dot-dashed) in units of �0 on the buffer concentration [B] calculated by
Eqs. 37, 38, and 36, respectively, with the parameters from Table 1. [B]0

� 3.3 M by Eq. 39, Q � 30 by Eq. 40. R�0 is the effective channel radius
in the presence of a buffer, L�sb and L�s are two length parameters for
buffered solutoins that define the regime of proton diffusion, [B0] is the
maximal concentration of the buffer beyond which the effect of the surface
disappears, and Q is a dimensionless parameter (see Eqs. 40 and 41). In a
vicinity of [B] � 0.1 M, a change of the regime of the surface diffusion
occurs from the doupled (fast exchange) regime, L�sb �� L�s, to the uncou-
pled (slow-exchange) one, L�sb �� L�s. Because we did not treat the case L�sb

� L�s, the behavior of R�0 near the intersection of the two curves is shown
only qualitatively.
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molecules dramatically decreases at low buffer concentra-
tions. On the contrary, the surface flux decreases much
slower, only logarithmically, due to the reduced dimension-
ality of the diffusion space.

Gutman and Nachliel (1990, 1995, 1997) argued that
buffers change the proton dynamics significantly. The
above results are consistent with this expectation and give
quantitative estimates of the buffer effect on the coupled
surface–bulk proton diffusion.

APPENDIX A: THE SOLUTION OF THE MODEL IN
THE FAST-EXCHANGE REGIME

Here, a simplified derivation of the solution of the coupled surface–bulk
Eqs. 1 and 9 is presented. A more regorous and complete solution of the
problem is given in Georgievskii et al. (2002).

Instead of n(r, z) and n(r), we will consider the new functions,

u
r, z� � 1 �
n
r, z�

n0
, (A1)

and u(r) � u(r, z � 0), where n0 is the equilibrium bulk concentration of
protons. Inserting them into Eq. 9 gives

d2u

dr2 �
1

r

du

dr
� Lsb

�1u�z � 0, r 	 r0. (A2)

The boundary conditions to Eq. A2 are

u
r� � 1, r � r0, u
r� 3 0, r 3 �. (A3)

The function u(r) has an important meaning of the probability of capture of
a proton that was initially on the surface at a distance r from the channel
entrance. Similarly, u(r, z) is the probability of capture of a proton that was
initially at the point (r, z) in the bulk solution.

If Lsb �� r0, one can neglect the surface diffusion in Eq. A2, which then
reduces to u�z � 0 for r � r0. This is a standard problem of an absorbing
spot on a reflecting surface (Crank, 1990); the proton transport occurs via
the bulk, and the rate is given by Eq. 12.

Below, the solution to Eqs. 1 and A2 is obtained in the regime when
Lsb �� r0. As we will see, in this case, the proton flux incoming from the
bulk is collected from a large surface area. Therefore, at small r, one can
neglect the term Lsb

�1u�z in Eq. A2 and write

d2u

dr2 �
1

r

du

dr
� 0, r � r0. (A4)

The general solution of Eq. A4 can be written as

u
r� � ln
Rc/r�/ln
Rc/r0�, r � r0, (A5)

where we have used the fact that u � 1 at r � r0. To find the unknown
length parameter Rc, we will make a Fourier–Bessel transform of Eq. A2
over r. Because its right-hand side is different from 0 only at r � r0,
without restriction of generality, the Fourier transform of Eq. A2 can be
written as

�
q�
q2 � Lsb
�1q� � C, qr0 � 1, (A6)

where C is constant, �(q) is the Fourier transform of u(r),

�
q� � �
0

�

J0
qr�u
r�r dr, (A7)

and J0(x) is the Bessel function. In Eq. A6, we have used the fact that a
general, cylindrically symmetric solution of the diffusion equation, Eq. 1,
can be written as

u
r, z� � �
0

�

e�qzJ0
qr��
q�q dq. (A8)

As a result, the Fourier transform of uz(r) is given by

� �
0

�

J0
qr�uz
r�r dr � q�
q�. (A9)

Making the inverse Fourier transform of Eq. A6, one obtains, for u(r),

u
r� � C �
0

�

dxJ0
x�
1

x � r/Lsb
, r � r0.

(A10)

Only x � 1 contribute to this integral. At r �� Lsb, the integral can be
estimated as

u
r� � CLsbr
�1 �

0

�

dxJ0
x� � C
Lsb

r
, r � Lsb. (A11)

Thus, one can see that u(r) decreases as 1/r.

FIGURE 4 The calculated dependence of the rate of the surface-mediated
proton supply to the channel entrance on the buffer cocentration [B]. Solid
line, the total rate k � ks � kb; dotted line, the surface rate ks; dashed line,
the bulk rate kb. The parameters are from Table 2. A spike at [B] � 0.1 M
is due to our neglect of regorously solving the equations for the surface–
bulk diffusion in the intermediate case between the two limiting cases.
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To estimate u(r) at r0 � r � Lsb, the integral in Eq. A10 can be taken
by parts,

u
r� � C ln
C0Lsb/r�, r0 � r � Lsb. (A12)

The constant C0 is given by (Gradshteyn and Ryzhik, 1994)

C0�exp��
0

�

dx ln xJ1
x�� � 2e�� � 1.1229, (A13)

where J1 (x) is the Bessel function, and � � 0.5772 is Euler’s constant.
Comparing Eqs. A5 and A12, one finds Eq. 20 and

C �
1

ln
C0Lsb/r0�
. (A14)

Having the above solution for u(r), one can now find �(r), n(r), u(r, z), and
n(r, z). Thus, using Eqs. A12–A14 and Eq. A1 at z � 0, we obtain

n
r� � n0

ln
r/r0�

ln
C0Lsb/r0�
. (A15)

Then, Eq. 13 is obtained by substituting Eq. A15 into Eq. 4.

APPENDIX B: THE LIFETIME OF THE PROTON
ON THE SURFACE

In this section, we consider the following problem. Let a proton be initially
localized on the membrane surface, and the rate of proton exchange
between the surface and the bulk be high. Then, the rate-limiting step in the
proton dissociation process will be the bulk diffusion, and the question is:
how long will it take for the probability of finding the proton on the surface
to decrease to a given value, say 0.5? We will denote this time �l.

Because the r coordinate on the surface plane is not essential to the
problem, it can be integrated out,

S � � �
r�r dr, (B1)

N
z� � � n
r, z�r dr.

Then N (z) satisfies the one-dimensional diffusion equation,

�N

�t
� Db

�2N

�z2 , (B2)

with the boundary conditions, cf. Eqs. 3 and 4,

Db

�N

�z
�

dS

dt
, (B3)

S
t� � L0N
0, t�. (B4)

The initial conditions to Eqs. B2 and B3 are

S
0� � 1, N
z, 0� � 0. (B5)

To solve Eqs. B2–B5, we will use the Laplace transform method,

N�
z� � �
0

�

e��tN
z, t� dt, (B6)

S� � �
0

�

e��tS
t� dt.

The Laplace transforms of Eqs. B2–B4 are

�N�
z� � Db

d2N�

dz2 , (B7)

Db

dN�

dz
� � 1 � �S�, (B8)

S� � L0N�
0�. (B9)

In deriving Eqs. B7 and B8, we have used the following property of the
Laplace transform:

f �� � � f
0� � �f�, (B10)

where f �� is the Laplace transform of the derivative f�(t) 	 df/dt. The
solution of Eq. B7, which does not increase at infinity, can be written as

N�
z� � N�
0�exp(���/Db z). (B11)

Substituting this into Eq. B8 gives

�Db�N�
0� � �S� � 1. (B12)

From Eqs. B9 and B12, on finds

S� �
1

� � L0
�1�Db�

. (B13)

Making the inverse Laplace transform of Eq. B13, one arrives at the
following expression for S(t):

S
t� �
�Db


L0
�

0

�

d�
e��t

��
� � Db/L0
2�

�
1


 �
��

��

dp
e�p2tDb/L0

2

p2 � 1
.

(B14)

For t �� L0
2/Db, one has S(t) � 1. For t �� L0

2/Db, the probability decreases
very slowly, S(t) � 1/�
tDb/L0

2. Numerical integration gives that S(t) �
0.5 at t � 0.59L0

2/Db 	 �l.
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